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Abstract

Cirrus cloud formation is believed to be dominated by homogeneous freezing of super-

cooled liquid aerosols in many instances. Heterogeneous ice nuclei such as mineral

dust, metallic, and soot particles, and some crystalline solids within partially soluble

aerosols are suspected to modulate cirrus properties. Among those, the role of ubiqui-5

tous soot particles is perhaps the least understood. Because aviation is a major source

of upper tropospheric soot particles, we put emphasis on ice formation in dispersing

aircraft plumes. The effect of aircraft soot on cirrus formation in the absence of contrails

is highly complex and depends on a wide array of emission and environmental param-

eters. We use a microphysical-chemical model predicting the formation of internally10

mixed, soot-containing particles up to two days after emission, and suggest two princi-

pal scenarios, both assuming soot particles to be moderate ice nuclei relative to cirrus

formation by homogeneous freezing in the presence of few efficient dust ice nuclei:

high concentrations of original soot emissions could slightly increase the number of ice

crystals; low concentrations of particles originating from coagulation of emitted soot15

with background aerosols could lead to a significant reduction in ice crystal number. A

critical discussion of laboratory experiments reveals that the ice nucleation efficiency

of soot particles depends strongly on their source, and, by inference, on atmospheric

aging processes. Mass and chemistry of soluble surface coatings appear to be crucial

factors. Immersed soot particles tend to be poor ice nuclei, some bare ones nucleate20

ice at low supersaturations. However, a fundamental understanding of these studies

is lacking, rendering extrapolations to atmospheric conditions speculative. In particu-

lar, we cannot yet decide which indirect aircraft effect scenario is more plausible, and

options suggested to mitigate the problem remain uncertain.
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1 Introduction

Soot particles are ubiquitous in the atmosphere. They are produced by biomass burn-

ing and incomplete combustion of fossil fuels. Fresh soot particles consist of spherical

primary particles that aggregate into larger clusters of fractal-like shape. They are

usually associated with organic and inorganic soluble material at their surfaces. Soot5

particles potentially serve as cloud condensation and ice nuclei, thereby affecting the

formation of tropospheric clouds.

Soot aerosols have been detected with wire impactors in the troposphere and lower

stratosphere (Pueschel et al., 1992; Blake and Kato, 1995; Strawa et al., 1999; Clarke

et al., 2004). More detailed in-situ measurements of ambient black carbon-containing10

aerosols by selective detection of single particles using laser-induced incandescence

have become available only recently (Baumgardner et al., 2004; Schwarz et al., 2006).

Owing to their capability to strongly absorb sunlight (Liu and Mishchenko, 2005;

Schnaiter et al., 2005), soot particles modify clouds and climate (Ackerman et al., 2000;

Jacobson, 2001; Hansen and Nazarenko, 2004; Johnson et al., 2004; Roeckner et al.,15

2006).

In the upper troposphere, soot emissions from jet aircraft engines likely enhance

the background concentrations of carbonaceous particles by number in major flight

corridors (Hendricks et al., 2004, 2005). The abundance of carbon-containing aerosol

decreases rapidly above the tropopause (Murphy et al., 2006, 2007). Ice forming ability20

and number density are key factors controlling their effect on high cloudiness. There-

fore, studies that address the role of soot particles in cirrus formation ought to pay

special attention to the specific, aircraft-induced perturbation.

After some general remarks highlighting the various aspects of how aviation affects

cirrus cloudiness, i.e. via contrail formation and soot emissions, we focus on the indirect25

effect of soot particles and explain the approach taken in this study.
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1.1 Impact of aviation on cirrus cloudiness

Aircraft influence high clouds by directly producing contrails that persist and spread in

ice supersaturated air and by injecting soot particles that may act as heterogeneous

ice nuclei (IN) after emission and affect cirrus cloud formation and evolution. Several

studies have investigated the climatic impact of young, line-shaped contrails, yielding5

large differences in predicted radiative forcing (Minnis et al., 1999; Ponater et al., 2002;

Marquart et al., 2003; Sausen et al., 2005; Stuber et al., 2006). To date, estimates

of the global radiative forcing caused by spreading, persistent contrails or from aircraft

soot-induced cloud changes are not available (Wuebbles et al., 2007).

Line-shaped jet contrails from aircraft cruising in the tropopause region are com-10

posed of µm-sized ice crystals and are easily distinguished from natural high clouds.

Soot particles emitted by jet engines are mainly responsible for their generation within

one wingspan behind the aircraft (Kärcher et al., 1995, 1996). Factors controlling jet

contrail formation are reasonably well known, although uncertainties exist concerning

details of the ice crystal size distribution and optical properties, and hence their radia-15

tive forcing.

Persistent contrails grow into larger cirrus sheets (contrail cirrus) by the combined

action of wind shear, turbulent mixing with ambient air, ice supersaturation, and de-

positional growth and sedimentation of ice crystals (Jensen et al., 1998). They often

organize themselves in long-lived, regional-scale clusters (contrail outbreaks). Contrail20

cirrus exert a direct radiative forcing likely different from background cirrus because

of differences in duration, extent, and ice crystal number and size. Besides some lidar

data and regional information drawn from satellite observations, virtually no in-situ data

is available for contrails older than a few minutes. It is likely that contrail cirrus coverage

exceeds the coverage of line-shaped contrails, hence the climate impact of contrail cir-25

rus might be larger than previously thought. This issue clearly warrants further studies.

Soot particles emitted by aircraft jet engines may also perturb cirrus properties and

alter cirrus coverage without contrail cirrus being involved. Our study addresses im-
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portant aspects of this indirect effect. Like contrail cirrus, exhaust soot particles are

advected with the wind field over large distances, sometimes into regions without air

traffic. The perturbation likely occurs on regional or smaller scales, because the resi-

dence time of aerosols in the tropopause region is of the order of few days to weeks,

depending on the location of the emission relative to the tropopause, season, and lat-5

itude. The magnitude of the perturbation (e.g. changes in ice cloud particle effective

radius) depends on the ice-forming ability of soot particles that interact with ambient

aerosols, on the efficiency of aerosol particles to nucleate ice, on the abundance of

water vapor (H2O), and on dynamic processes setting the stage for the generation of

clouds in ice supersaturated regions.10

We underscore that contrail cirrus can exert an indirect effect on cirrus on their own.

If cirrus clouds form in the presence of contrail cirrus, the background cirrus may have

different properties, because its crystals nucleate in regions with preexisting ice. Con-

trail cirrus may compete with background cirrus for the available water vapor, altering

its microphysical and optical properties. The situation is further complicated by the fact15

that background cirrus itself might be affected by aged aircraft soot emissions in heavily

traveled aircraft corridors.

It is conceivable that the indirect effect occurs at times along with contrail cirrus,

because contrail cirrus need ice supersaturation to persist and grow, which in turn

facilitates ice formation at low supersaturations. It is therefore important to study both20

the direct radiative effect of contrail cirrus including associated changes in background

cirrus and the indirect microphysical effect of soot aerosol or other anthropogenic and

natural IN on cirrus cloudiness. We reiterate this interdependency of direct and indirect

effects at the end of this work.

1.2 Indirect effect of aircraft soot on cirrus25

On the premise that aircraft soot particles are more effective IN than liquid aerosol par-

ticles and that cirrus formation is dynamically triggered by slow synoptic uplift, cloud-

resolving simulations have shown that the resulting cirrus have different areal coverage
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and optical properties than cirrus formed on liquid particles in the absence of aircraft

soot (Jensen and Toon, 1997). Little progress has been reported on this subject since

then (Kärcher, 2000; Schumann, 2005).

The main problem associated with assessing the role of aircraft soot in cirrus cloud

formation is to unambiguously demonstrate that ice nucleates (mainly) on the exhaust5

soot particles, or those affected by the soot, sulfur, and organic emissions via coag-

ulation and condensation. Designing airborne measurements that help resolve this

problem is a challenging enterprise. Heterogeneous ice nucleation rates of soot and

other insoluble particles are not well known (Cantrell and Heymsfield, 2005). There

is experimental evidence that cirrus ice crystal residues sampled and analyzed within10

aircraft corridors contain soot (Ström and Ohlsson, 1998), but this observation alone is

insufficient to demonstrate that soot particles have actually played a role in the process

of ice formation. Instead, soot could be included as a passive tracer within freezing

aerosol particles or could be scavenged by ice crystals after the cloud has formed.

Atmospheric variability in vertical winds below the synoptic scale often seems to15

control the cooling rates of air parcels containing ice-forming particles (Kärcher and

Ström, 2003), questioning the validity of the common assumption that cirrus formation

is triggered by slow synoptic uplift. The cooling rate history determines the relative

contributions of different ice nucleation pathways, i.e., which and how many aerosol

particles contribute to cirrus ice. Atmospheric cooling rates are difficult to determine20

experimentally and to describe and predict by models. Taken together, this renders a

separate experimental evaluation of dynamical and aerosol effects on cirrus formation

very difficult.

1.3 Approach taken in this study

We investigate the evolution of aircraft-generated soot aerosols up to two days after25

emission in upper tropospheric or lower stratospheric conditions in the absence of

contrails. Coagulation and condensation processes change the size distribution and

the chemical composition of the soot particles, which are key factors controlling their
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ice nucleation efficiency (Kärcher, 1999). We relate our computational results concern-

ing the physical properties, mixing state, and chemical composition of plume particles

with experimental studies of the ice nucleation behavior of pure and coated (internally

mixed) soot particles, including the most recent scientific developments. These labora-

tory studies encompass a suite of surface and morphological properties of soot parti-5

cles, which also affect ice nucleation and are difficult to address theoretically. Few field

studies suggest a minor role of soot acting as upper tropospheric IN, but the current

data base is insufficient to draw any conclusion.

Without a detailed understanding of these issues, a sound assessment of the asso-

ciated cloud impact remains speculative. We believe that our approach provides new10

insights into the potential for soot from aircraft and other sources to alter cirrus and

forms a solid basis for further studies. The actual simulation of cloud is beyond the

scope of this work; here, we will discuss important results on the concentration and

freezing regimes in which soot particles might be capable of modifying the cirrus cloud

formation process.15

In detail, we investigate the factors controlling the generation of internally mixed air-

craft soot particles that may act as IN for cirrus formation while the emissions spread

on a regional scale. For this purpose, we employ a Lagrangian plume model with inter-

active entrainment of constituents present in ambient air, gas phase sulfur chemistry

and condensation, and coagulation between particles of different size and composition.20

We vary variables influencing the ice nucleating ability of aviation soot, such as the fuel

sulfur content (FSC) or properties of the ambient particle population. We keep other

variables constant to which our results are not sensitive or whose average behavior is

sufficiently well known. Figure 1 schematically depicts the array of processes treated

in our study.25

Throughout this work, we assume an air pressure (p) of 250 hPa and a temperature

(T ) of 220 K (values typical for midlatitude flight levels), both in ambient air and within

the dispersing aircraft plume. The processes noted above are not very sensitive to

changes in p and T at subsonic cruise altitudes (9–13 km). We initialize our calculations
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with aircraft-induced volatile and nonvolatile particles and gaseous sulfur dioxide (SO2)

and sulfuric acid (H2SO4) emissions at a plume age of 10 s, representing the end of

the jet regime. At this stage of plume development, meteorological parameters have

approached ambient conditions and effects of ionization on interactions between vapor

molecules and particles have decayed. In the ambient air surrounding the plume, a5

constant concentration of SO2 and the size distributions and chemical composition of

background aerosol particles are prescribed. Organic matter is associated with both

aircraft-produced and background aerosols.

The rates of dilution of aircraft emissions and the associated rates of entrainment

of ambient species are time-dependent. In the expanding plume, particles change10

their chemical composition and size distributions through condensation and coagula-

tion processes. Emitted and entrained SO2 is oxidized to H2SO4 via hydroxyl (OH)

radicals during daytime, and H2SO4 subsequently condenses onto the particles. Any

soluble mass fraction in particles quickly equilibrates with ambient water vapor (H2O).

We track these processes over a time span of 48 h. The average plume encounter time15

in the North Atlantic flight corridor is 1−2 d (Kärcher and Meilinger, 1998), after which

our results could be used as guidance to initialize aircraft emissions in global models.

Section 2 describes the model, its initialization with the help of a near-field model,

and potential uncertainties involved in the simulations. Section 3 presents and dis-

cusses the model results. Section 4 reviews and critically discusses laboratory evi-20

dence of heterogeneous ice nucleation on soot, dust, and mixed-phase particles, de-

lineates the implications for cirrus formation, and highlights possible options to mitigate

indirect soot effects on cirrus. The main findings are briefly summarized at the end of

most subsections in Sects. 3 and 4. Section 5 concludes this work with recommenda-

tions for future research.25
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2 Model framework

2.1 Aerosol characterization

2.1.1 Aircraft-induced aerosols

Initial aerosol particle size and volume distributions emitted by aircraft in flight for three

different FSCs are shown in Fig. 2. The value of 0.1 g S/kg-fuel is closest to the range5

of the global fleet average (0.2−0.4 g S/kg-fuel), which shows a tendency to decrease.

Hence, the medium FSC case can be considered a lower limit of current average

conditions. The low and high S emission cases cause differences in the partition-

ing of H2SO4 and black carbon (BC) in particles, which we like to investigate. In all

cases, an S-to-H2SO4 conversion efficiency at emission of 3%, chemi-ion emissions10

of 2×10
17

/kg-fuel, and particulate organics with an emission index of 20 mg/kg-fuel

(see below) have been prescribed, consistent with a large body of in-situ observations

(Kärcher et al., 2000). Most of the organic emissions probably consist of condensable

aldehydes, but as their exact chemical composition is not known, we treat all of the

potential particle-forming organics generically as organic matter (OMaircraft). The pro-15

posed initialization is largely consistent with studies of the influence of fuel sulfur on

the composition of aircraft exhaust plumes (Schumann et al., 2002).

The gaseous and particulate emissions up to a plume age of 10 s have been calcu-

lated using a comprehensive chemical-microphysical near-field model (Yu et al., 1999).

The results at 10 s serve as an initialization of the far-field plume model whose ele-20

ments are sketched in Fig. 1. The near-field jet model accounts for charge effects on

aerosol nucleation and growth caused by chemi-ion emissions within the framework

of a multicomponent, size-resolved, kinetically-controlled vapor/aerosol system. Be-

sides OMaircraft, it includes aqueous H2SO4 aerosols (SA), black carbon soot particles

(BCaircraft), gaseous organic and SO2 emissions, and SO2 chemistry building up gas25

phase H2SO4 in addition to emitted H2SO4. Turbulent mixing, coagulation, and water

equilibrium are treated similar to the far-field model, see Sects. 2.2–2.4.
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As seen in Fig. 2, the particle emissions consist of a volatile mode V (solid curves)

composed of SA, OMaircraft, and water, and a nonvolatile mode N (dashed curves)

additionally composed of BCaircraft. Also shown are the volume concentrations of all

chemical species in particles except water (curves with symbols). All volatile number

distributions exhibit a pronounced mode at the smallest sizes, consisting of subcritical5

neutral organic and sulfuric acid molecular clusters. The initial tendency for H2SO4 to

collect on negatively charged ions and particles and that for organic vapors to collect on

positively charged species leads to additional, chemi-ion-induced volatile modes with

diameters up to 10 nm. Figure 2 shows that organic emissions contribute a significant

fraction of the total volatile aerosol volume, even in the high FSC case.10

Black carbon constitutes most of the volume of the nonvolatile particles (>95%). We

use a soot emission index of 10 mg/kg-fuel at the low end of reported values to ac-

count for the tendency of modern jet engines to generate a smaller BC particle mass.

Observed soot particle size distributions appear to consist of two lognormal modes

(Petzold et al., 1999), as also assumed in this study (Table 1), and show little vari-15

ability among modern aircraft. Because of the difficulty to measure ultrafine particle

properties one must keep in mind, however, that the size distribution of aircraft soot

emissions remains uncertain. Vapor condensation and scavenging of small volatile

particles causes BC particles to become internally mixed with OM and SA (Kärcher

et al., 1996). Increasing FSC enhances concentrations of H2SO4 in the early plume20

and leads to larger SA volume fractions in soot particles that have not yet interacted

with background aerosols (Table 2 and Fig. 2).

2.1.2 Background aerosols

The background aerosol number and volume size distributions are shown in Fig. 3,

representing different stages in the life cycle of free tropospheric aerosols at northern25

midlatitudes. Based on a climatology of aerosol properties taken over the continen-

tal USA, we select typical winter (WIN) and summer (SUM) distributions, which differ

in mean size and total number of particles but less in the shape of the size spec-
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trum (Hofmann, 1993). This distinction is important, because tropospheric aerosols

exhibit a marked seasonal cycle. Further, the interaction with clouds is known to mod-

ify aerosol populations. We select an aerosol spectrum lacking large particles typical

for air masses in which aerosol nucleation recently occurred (NUC), and contrast it

with an accumulated aerosol stage (ACC) prior to cloud formation in which the majority5

of particles had sufficient time to grow to relatively large sizes in the absence of hy-

drometeors (Schröder et al., 2002). Differences in the size distributions between the

four background cases (Table 1) imply variations in the scavenging efficiency of small,

aircraft-induced particles, which we like to study.

The chemical composition of background aerosols is more difficult to assess (Law10

et al., 2006; Murphy et al., 2006). It seems likely that sulfate and organics (and their

associated water) make up most of the aerosol particle volume, with organics contribut-

ing 10−50% of the solute mole fraction (Murphy et al., 1998). Data on the speciation of

organic compounds is hardly available, but we distinguish between OM in ambient and

aircraft aerosols, because particle freezing properties may depend on the organic com-15

position. Because of the lack of more detailed information, we assume an OMambient/SA

molar ratio of 0.2 in all background particles (Table 1). The remaining water fraction

in particles corresponds to relative humidities well below ice saturation, as detailed in

Sect. 2.4.

According to recent in-situ measurements in the troposphere and lowermost strato-20

sphere, ambient BC particles occur in the accumulation mode size range (0.1−1 µm,

lower sizes will become detectable in the future) with mass mixing ratios of the order

1−10 ng/kg-air close to the tropopause (Schwarz et al., 2006). These observations also

indicate that a significant fraction of BC particles are internally mixed or coated. Other

measurements carried out over the North Atlantic using condensation nuclei counters25

demonstrate that upper tropospheric concentrations of nonvolatile condensation nuclei

(presumably containing BC) are surprisingly high, i.e. in the range 10−30 cm
−3

(Minikin

et al., 2003). It is not yet clear how representative these data are. We assume constant

BCambient volume fractions in background particles over the entire size range (Table 1),
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leading to a total ambient BC mass of 2.5 ng/kg-air in the winter case and 7.5 ng/kg-air

in all other cases. These BCambient values correspond to annual mean concentrations

in the North Atlantic flight corridor predicted by a global model (Hendricks et al., 2004).

To compute BC mass concentrations from simulated volume concentrations, we use a

bulk mass density of 1.8 g cm
−3

.5

Aerosol organic carbon (OC) to black carbon ratios in ambient soot particles typically

range between 1 to 3 according to lower tropospheric measurements (Novakov et al.,

2005). High OC/BC ratios up to 25 systematically occur only with low BC mass concen-

trations. There are several uncertainties associated with these measurements, among

which is the difference between OC and OM (organic matter may contain other species10

besides carbon). In our background particles, the OM/BC ratios range between 1.7
and 62 (Table 1). It seems plausible that the OM/BC ratio in particles increases as they

age and are transported into the upper troposphere, due to condensation of low-volatile

organic vapors. In sum, our assumptions about the relative amounts of SA, OMambient,

and BCambient and their distribution over particle size appear to be reasonable, but can-15

not be accurately constrained by current observations.

2.2 Entrainment and dilution

The generic equation governing the time history of a tracer mixing ratio χ in a dispers-

ing plume is given by

dχ

dt
=−ω(t)(χ − χb) , (1)20

where ω denotes the entrainment (or dilution) rate and the subscript b abbreviates

background. The solution of Eq. (1) reads

χ (t)=χb+D(t)(χo − χb) , (2)
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the subscript o denoting an initial condition. The dilution factor follows from

D(t)=Do exp
[

−
∫ t

to

ω(t)dt
]

. (3)

At the end of the jet regime at to=10 s, Do=0.001. We use a constant value

ωo=0.005 s
−1

at plume ages between 10 s and 2 min and the power law function

ω=α/t with α=0.8 at later times (Kärcher, 1999, Fig. 4). These choices account for5

suppressed mixing in the wake vortex regime and an average plume expansion be-

havior in the following atmospheric dispersion regime guided by in-situ observations

(Schumann et al., 1998) and large eddy simulations (Gerz et al., 1998). The mixing

time scale 1/ω in the dispersion regime increases with time and is approximately equal

to the plume age.10

We integrate Eq. (1) analytically over one time step τ, hence the discretized form of

Eq. (2) reads

χ+=Dτχ−+(1−Dτ)χb . (4)

In Eq. (4), the subscripts + and − denote values at the next (t+τ) and actual (t) time,

respectively, and from Eq. (3) we have15

Dτ=exp(−ωoτ) (5)

in the vortex regime (10 s ≤ t ≤ 2 min) and

Dτ(t)=
( t

t+τ

)α
(6)

in the dispersion regime (t>2 min) for use in Eq. (4). As we keep T and p constant,

Eqs. (1), (2), and (4) hold for number concentrations as well. The first term on the right20

side of Eq. (4) describes the dilution of all species (molecules and particles) present

in the plume, and the second term describes entrainment of ambient SO2 and number

and volume concentrations of background aerosol particles (curved arrow in Fig. 1).
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2.3 Coagulation

We describe self- and hetero-coagulation over seven particle size distributions (Fig. 1)

using a stationary size structure (Jacobson, 2002). The particle types used to initial-

ize the simulations are shown in Fig. 2, the other plume distributions attain non-zero

values after they are generated by coagulation processes. Aircraft-emitted volatile (V)5

and nonvolatile (N) aerosols and entrained background aerosols (A) hetero-coagulate

to form the binary mixtures VN, VA, and NA. Coagulation of V with VN or VA increases

the volume of these binary distributions and constitutes a loss path for particles in the

V distribution. The same holds for coagulation of N with VN or NA, and for coagulation

of A with VA or NA. Once V and NA, N and VA, A and VN or any of the binary mixtures10

hetero-coagulate with each other, they generate a mixed distribution MX that contains

the chemical components of all other distributions. In addition, all particles within each

size distribution coagulate among themselves. These interactions are summarized in

Table 3, along with a summary of the chemical components associated with each parti-

cle type. As for OM, we distinguish between BC originating from aircraft emissions and15

from other sources to track them separately, as noted in Sect. 2.1. Sizes of particles

containing BC are interpreted as those from volume-equivalent spheres.

With seven number concentrations and 42 species volume concentrations in parti-

cles that are distributed over 100 size bins, a total of 4900 coagulation equations are

solved simultaneously. Coagulation kernels are used to describe particle interactions20

by Brownian motion, covering kinetic and diffusive regimes. Large values (close to

unity) for the sticking coefficient β for collisions involving neutral molecular monomers

and small clusters are unlikely, for which reason we adopt reduced values for β to de-

scribe coagulation between particles in the nm-size range (Yu and Turco, 1998). The

expression we use here reads25

β=min
{

1, β
ln(r∗/

√
ri rj )/ ln(r∗/rm)

min

}

(7)

with βmin=0.01, r∗=0.6 nm, and the radius of an H2SO4 molecule rm=0.277 nm. The
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subscripts i and j denote different particle size bins, with rm being the radius of the

smallest bin. Here, β quickly approaches unity when the colliding particles have grown

past a few nanometers.

2.4 Chemistry and condensation

The rate limiting step in the production of H2SO4 from SO2 in the gas phase is the5

oxidation of SO2 by OH (Stockwell and Calvert, 1983). Sulfuric acid may then condense

onto aerosol particles via gas phase diffusion and accomodation, increasing the SA

and total volume concentration of particles in each size bin. The governing equations

are ([·] denoting number concentrations):

d [SO2]

dt
= −k [SO2] (8)10

d [H2SO4]

dt
= −κ [H2SO4] + k [SO2] (9)

d [SAℓ ]

dt
= κℓ vm [H2SO4] (10)

where k=k̃[OH] and k̃ is the three-body rate coefficient for the gas phase reaction

of SO2 and OH to produce HSO3 (immediately reacting further to eventually produce

H2SO4), ℓ is an index running over all particle types and size bins, κℓ is the condensa-15

tion rate proportional to the number concentration of particles of a given size and type,

κ=
∑

ℓ κℓ is the total condensation rate of H2SO4, [SAℓ ] denotes the volume concen-

tration of H2SO4 in particles of a given size, and vm=4πr3
m/3.

For [OH] we use a daytime upper limit of 3 × 10
6

cm
−3

and reduce this value by a

factor of two to obtain a diurnal average. Together with the rate coefficient k̃ ≃ 1.5 ×20

10
−12

cm
3
s
−1

, this determines k and a chemical time scale 1/k for production of H2SO4

in the gas phase of about 5d. For ambient [SO2] we use 50 pptv (4×10
8

cm
−3

); this is

close to the median mixing ratio measured with a novel airborne mass spectrometer
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over Europe during springtime 2006 (H. Schlager, personal communication, 2007).

These observations also showed that [SO2] ranges between 30–150 pptv at 10.5 km

altitude (10 and 90 % percentiles, respectively). The concentrations of emitted H2SO4

and SO2 obtained from the near-field simulations at 10 s are summarized in Table 2.

We use condensation rates κℓ that are consistent with Brownian coagulation kernels5

and with Eq. (7), i.e. covering kinetic and diffusive growth regimes. The condensation

time scale 1/κ ranges from 1 min at young plumes ages to 2 h toward the end of the

simulations at plumes ages of 1–2 d, mainly because dilution decreases the particle

concentrations.

The system of chemical Eqs. (8–10) can be solved analytically over one time step to10

yield:

[SO2]
+
= [SO2]− exp(−kτ) (11)

[H2SO4]
+
= [H2SO4]− exp(−κτ)

+ K · [SO2]− exp(−kτ){1−exp[−(κ−k)τ]} (12)

[SAℓ ]
+
= [SAℓ ]− + vm (κℓ/κ)15

×
{

([H2SO4]−−K · [SO2]−)
[

1−exp(−κτ)
]

+ (K + 1) · [SO2]−
[

1−exp(−kτ)
]

}

, (13)

where K=k/(κ−k). The specific case κ=k does not apply to our problem (because

κ≫k), but for completeness we note these solutions as well (Eq. 11 remains un-

changed):20

[H2SO4]
+
=
(

[H2SO4]− + [SO2]−κτ
)

exp(−κτ)

[SAℓ ]
+
= [SAℓ ]− + vm (κℓ/κ)

×
{

[H2SO4]−
[

1−exp(−κτ)
]

+ [SO2]−
[

1−(1 + κτ) exp(−κτ)
]

}

.
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Because the amount of soluble matter in particles changes due to coagulation and

condensation of H2SO4, the associated water mass also changes with time. The

composition-dependent aerosol water content determines the total particle size. Ini-

tially, together with the air temperature T , the equilibrium water fraction in background

particles determines the H2O partial pressure pw . This value corresponds to relative5

humidities in the range 45−55%, depending on the background case. At these hu-

midities, ice is unstable, contrails (if generated) are only short-lived, and contrail cirrus

advected into such a region would dissipate rapidly.

It is highly justified to assume water equilibrium in subsaturated conditions. Vari-

ations of the aerosol water content by the slowly changing particle composition are10

small and the time for H2O to equilibrate with liquid aerosol particles is extremely short

(well below 1 s). We calculate the amount of particulate water from pw and the actual

concentrations of SA and OM in particles of radius r at every time step by iterating the

water equilibrium equation to find the water mass fraction W :

pw=p
sat
w (W, T, r) . (14)15

Here psat
w is the saturation H2O vapor pressure over the solution including the Kelvin

effect in each radius bin for each particle type (Luo et al., 1995). The particle water

content is obtained from W , which is defined as the ratio of the water mass to the

total (water plus soluble) mass per particle. To calculate the soluble mass, we treat

OMambient and OMaircraft as SA but consider only half of the respective OM mass to20

account for the typically lower hygroscopicity of OM compared to SA. The BC cores

themselves are assumed to be hydrophobic, i.e. pure BC particles do not take up any

substantial amount of water.

Table 1 lists the dry lognormal mode diameters of the four background particle types,

along with their species volume fractions after equilibrium water uptake. Figure 2 shows25

the corresponding size distributions of the particles including the water fraction. To

compute the total (wet) mode diameters, we determine an equilibrium growth factor
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according to

GF=

[ ρSA(T )

ρ(W, T )

1

1−W
]1/3

, (15)

where ρ is the solution bulk mass density and ρSA is the density of pure sulfuric acid.

As the BC volume fractions are very small, the dry mode diameters are multiplied by

GF to obtain the final ambient particle sizes. Values for GF range between 1.57 and5

1.64, depending on the relative humidity of the background case.

2.5 Uncertainties

The processes described in Sects. 2.1–2.4 are operator-split. The time step increases

progressively with plume age by a factor 1.005, starting with a value of 0.2 s that is

held constant in the vortex regime. The time step is not allowed to increase beyond a10

small fraction of the simulation time, and is always much smaller than the time scales

discussed above. This results in a high accuracy of the numerical solutions.

Using a stationary size grid in solving the coagulation equations, two coagulating

particles form a larger particle a fraction of which is partitioned between two adjacent

bins, conserving total particle volume. This creates some numerical diffusion, which15

we minimize by using a small bin volume ratio of 1.38.

Uncertainties in ambient concentrations of SO2 will not seriously affect our results

because most of the H2SO4 condensing onto plume particles stems from the emitted

SO2. The results may change quantitatively upon variations in soot emissions and

plume dilution histories, but our qualitative arguments and principal conclusions will20

not change.

Brownian diffusion is well understood and validated for spherical particles. However,

fractal BC particles may behave differently. According to laboratory experiments, co-

agulation scavenging of combustion aerosols has been found to occur at faster rates

than predicted by Brownian diffusion theory (Hagen et al., 1991). The enhancement of25

coagulation kernels may be caused by effects of non-sphericity and/or charge effects.
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B. Kärcher et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

We refrain from adopting enhanced coagulation rates, because it is uncertain if the dry

(uncoated) polystryrene latex particles that acted as collector particles in the experi-

ments behave like tropospheric particles. Increased coagulation rates would accelerate

the formation of mixed particles containing aircraft soot over the results presented in

Sect. 3.5

We keep the SO2 concentrations and properties of particles entrained into the plume

constant. This implies that a blend of external processes beyond our control acts to

maintain the prescribed values, although these might change with time. To this end, we

are aware that we can only treat case studies with clearly defined boundary conditions,

but we believe that we capture the most important cases in using four representative10

background aerosol distributions. More importantly, this approach is a serious option

to develop or improve subgrid-scale parameterizations of soot-induced cirrus formation

in global models.

We assume the plume to be homogeneously mixed at any time, an approximation

that degrades as the plume ages because the area over which species must mix in-15

stantaneously increases with time. This is an inherent problem with any plume model

and can only be overcome by introducing at least one spatial coordinate. However,

we believe that the basic conclusions drawn from our model are robust and a larger

numerical effort would merely add more detail, rather than affect our findings.

3 Model results and discussion20

3.1 General features

We discuss the general features of plume evolution with the help of Fig. 4, displaying

the time history of SO2 and OM concentrations normalized to background values (top

left), the volume and mass mixing ratios of H2SO4 and total BC, respectively (top right),

and the total number concentrations of the key particle types (bottom). We have chosen25

the winter background distribution and an average FSC to highlight the main points; the
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other cases behave qualitatively similar.

The total OM concentration behaves like a chemically inert tracer. The amount of

emitted OM (top left panel) exceeds that contained in background aerosol by a factor

of 20. After a short, slow decay phase during the vortex regime, the OM mixing ratio

decreases more rapidly and approaches the ambient value (contained in entrained5

background aerosols) after about 10 h.

Sulfur dioxide is initially 35 times more abundant than the assumed background con-

centration (50 ppt). Plume dilution reduces most of the emitted SO2 after several hours

of plume age, and SO2 entrained from the background atmosphere takes over the dom-

inant part (solid red curve). This is illustrated by a simulation without SO2 emissions,10

showing the evolution of entrained SO2 only (dashed red curve, top left panel). Sul-

fur dioxide is additionally affected by gas phase oxidation. In contrast to [OM], [SO2]

starts to fall below its background level after 2 d, because by then it becomes efficiently

oxidized to H2SO4 with an e-folding time scale of 5 d, compare Sect. 2.4.

The total BC mixing ratio (top right panel) exhibits the same tracer-like evolution as15

OM, except that the assumed wintertime background concentration of 2.5 ng/kg-air is

not approached even at t=48 h, where BCaircraft=15 ng/kg-air. In the background cases

SUM, ACC, and NUC, we prescribe BCambient=7.5 ng/kg-air; here BCaircraft is twice as

large at the end of the simulation. This implies that on the plume scale, most of the BC

by mass (and even more so by number) stems from the nonvolatile aircraft particles.20

The H2SO4 mixing ratio (solid red curve) decays much faster than by dilution alone

because of additional condensational losses (see below) that take place on a time

scale of t=1 min initially, as shown in Sect. 2.4. At t=10 min, [H2SO4] starts to rise

due to oxidation of SO2. The comparison of the solid and dashed red curves (top

right panel) computed with and without SO2 emissions quantifies the production of25

additional H2SO4 vapor by oxidation of emitted plus entrained versus entrained SO2

as the difference of these two curves. At 1−2 d, [H2SO4] starts to decrease again.

On these time scales, plume SO2 is oxidized at a faster rate than it can be replaced

by freshly entrained SO2. Hence the chemical source of plume H2SO4 weakens and
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condensation onto plume aerosols becomes more important.

Within 5–10 min, the emitted H2SO4 is mainly taken up by the volatile plume

aerosols, which are initially present in very high total concentrations of nV=2×10
9

cm
−3

(bottom panel), decreasing rapidly to 5×10
6

cm
−3

at t=5 min due to self-coagulation.

The initial self-coagulation time scale is given by 1/(CV,VnV)=1 s, with the coagulation5

coefficient CV,V=5×10
−10

cm
3

s
−1

. This condensation contributes to the growth of par-

ticles in the V distribution, enhances their mean size, and hence slows their coagulation

rates with larger plume particles. A simulation with SO2 but without H2SO4 emissions

(dotted red curve, top right panel) supports this explanation. No H2SO4 is available for

condensation initially, as it is only slowly chemically generated.10

The concentrations of particles in the N distribution falls to zero within the first

few time steps, and is therefore not visible. This happens because N particles are

transformed into VN particles by scavenging of small particles from the V distri-

bution (Table 3). This process occurs on a time scale of 1/(CN,VnV)=0.2 s, with

CN,V=3×10
−9

cm
3

s
−1

and the initial nV value from above. The same argument applies15

to particles from the distribution NA. Once these form by hetero-coagulation between

emitted N and entrained A particles, scavenging of V particles transforms them into

MX particles on a similar time scale. In contrast, A particles are not readily depleted

by transformation to VA and MX because they are continuously replenished by entrain-

ment.20

The total initial concentration of VN particles is practically equal to the emitted soot

concentration and slowly decays owing to dilution and formation of MX particles, reach-

ing about 10 cm
−3

at t=2 d. Entrainment of A and subsequent coagulation with V leads

to a roughly constant level of A+VA particles in the plume comparable to the back-

ground aerosol concentration (Table 1). As the final product of coagulation processes,25

the total concentration of MX particles increases more slowly, but reaches values com-

parable to VN at the end of the simulation.

In sum, mixing ratios of BCaircraft well above background BC values are present within

1−2 days after emission and constitute a significant perturbation of the refractory com-
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ponent of plume aerosols. The key role of the V distribution consists of feeding SA and

OMaircraft into the particle types VA, VN, and MX, all of which contain BC and OM in var-

ious amounts and from various sources. Emissions of H2SO4 and H2SO4 photochem-

ically produced from SO2 further enhance the amount of soluble matter contained in

plume aerosols. The A and VA distributions provide a reservoir of BCambient-containing5

particles that mix with emissions containing BCaircraft to generate MX particles. The N

and NA distributions are numerically unimportant and need not be considered further.

3.2 Number and volume distributions

The size distributions of number (black) and volume (red) concentration after t=24 h

are shown in Fig. 5 for the four background cases and for the three FSCs (thin curves).10

The background distributions are also shown (thick curves), for comparison. Figure 6

displays the total volume distributions along with the concentrations of the chemical

species contained in the plume particles, but for medium FSC only.

In Fig. 5, a marked enhancement of particle number at small D≈0.01 µm is seen in all

cases. The strongest enhancements occur with the WIN and NUC distributions, which15

offer much less surface area to scavenge the small plume aerosols than the SUM and

ACC distributions. For a given background case, the increases are most pronounced at

high FSC (dashed), indicating that they are caused by the addition of the small, mainly

sulfur-containing V particles. The small difference between the medium (solid) and low

(dotted) fuel sulfur cases is caused by the presence of OM in the volatile particles,20

keeping the perturbation high even when the volatile emissions contain only little SA.

The high number of small particles in case NUC reduces the emission particles from

the V distribution as efficient as the lower number of larger particles in case WIN, as

the rate coefficients for coagulation scavenging scale ∝ nr2
for D<0.1 µm, i.e. in the

free molecular regime.25

Changes in the background volume concentrations are generally less pronounced.

Aircraft-produced SA and OM from the volatile emissions typically produce a further

mode in the 0.01−0.1 µm diameter range, which is also obvious from Fig. 6. Only in
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case NUC, the volume is increased also at large sizes (∼5 µm). Figure 6 shows that

this is caused by BC-containing particles from the nonvolatile emissions.

Figure 7 repeats this information for individual particle types (mainly ambient, A+VA;

mainly aircraft soot, VN; final mixture MX). All distributions contain various amounts of

OM and BC from ambient and aircraft sources, depending on size. The A+VA distribu-5

tions contain excess OM from aircraft emissions at small sizes. The VN distributions

are dominated by BCaircraft and OMaircraft, being the only particle type lacking ambient

contributions. The MX distributions show the most complex partitioning between BC

and OM from ambient and aircraft sources. The size-dependent distributions of chem-

ical species in different plume particles sheds some light on the complexity of freezing10

processes possibly causing an indirect aircraft effect on cirrus clouds. We will reiterate

this issue in Sect. 4.

Our results are consistent with in-situ measurements in the plume near-field, as re-

marked in Sect. 2.1. Several studies have attempted to quantify the regional or global

scale particle perturbations due to aircraft emissions based on in-situ observations (Fa-15

hey et al., 1995; Hofmann et al., 1998; Anderson et al., 1999; Schröder et al., 2000)

and global modeling (Danilin et al., 1998; Rahmes et al., 1998; Kjellström et al., 1999;

Hendricks et al., 2004). The key results are that aircraft-induced increases in tropo-

spheric sulfate and BC-containing particles are small by mass but can be significant by

number. The perturbation is more important above than below the tropopause owing to20

the longer residence time of lower stratospheric emissions. Note that besides chemical

composition, the number concentration enhancement is important for the indirect effect

on cirrus clouds.

Several issues render a quantification of the far-field perturbation level diffcult, among

which are the sparsity of far-field observations, the large variability of upper tropo-25

spheric aerosols in the Aitken size range, uncertainties in extrapolating from near-field

measurements to larger scales, and the possible presence of clouds that act to strongly

reduce the aircraft particle emissions due to efficient scavenging by cloud particles.

The results shown in Figs. 4–7 will be affected by transport and mixing processes be-
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fore they can be regarded as a realistic regional perturbation. These processes can

only be treated within a global model after appropriate parameterization of the plume

processes studied in this work.

In sum, emissions from aircraft engines lead to a variety of complex, mixed particles.

These particles contain either only volatile components (SA and OM) or volatile and5

nonvolatile (soot) components. Particle number concentrations and species volume

fractions vary between different particle types, and their chemical composition addition-

ally depends on the size. The most complex particle type MX originates from internal

mixing with ambient particles. The particle type most closely resembling the original

nonvolatile emissions is VN, which is dominated by OM and BC, but also contains sig-10

nificant amounts of SA. The aqueous SA and OM coating of VN particles increases

as the plume ages. The combined particle type A+VA represents perturbed ambient

aerosols entrained into the plume, while V is the decaying ultrafine, fully soluble com-

ponent of the emissions.

4 Potential for soot-induced cirrus formation15

To evaluate the potential of aircraft emissions to modify cirrus cloud formation, we need

to judge the ice nucleation efficiency of individual particle types in the temperature and

humidity range of the aging plume. To put this discussion on a solid basis, we first

review the current state of laboratory studies of ice nucleation, then motivate typical

cirrus formation scenarios, highlight atmospheric implications, and finally address pos-20

sibilities to mitigate the indirect effect.

4.1 Laboratory studies of ice nucleation by soot particles

Only a few laboratory studies have addressed the ice nucleation properties of soot

particles at T<233 K. To a great extent, most studies have used idealized soot particles

of unknown relevance for atmospheric soot.25
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DeMott et al. (1999) investigated the ice nucleation ability of BC particles (“lamp

black” from Degussa Corporation, Frankfurt/Main, Germany) at 213−233 K using a

continuous flow diffusion (CFD) chamber (Rogers et al., 1998). Particles were dis-

persed from soot samples on the vibrating surface of a speaker. The resulting aerosol

particles with mean mobility equivalent diameters of about 240 nm (aggregates of pri-5

mary particles of average size 95 nm) were either directly passed to the CFD chamber

or first coated with an approximate monolayer or multilayer of H2SO4 molecules. The

soluble mass fractions were estimated as 0.3% and 2%, respectively, and no size

change was detectable by a Differential Mobility Analyzer for the coatings used. The

BET (Brunauer-Emmett-Teller) specific surface area was stated as 20 m
2/g; later ex-10

periments using Degussa soot with a much larger surface area of 420 m
2/g showed

that these samples were not more ice nucleation active.

The untreated particles and those with monolayer coverage activated ice only at a

relative humidity close to water saturation (Fig. 8, DS untreated and DS H2SO4 mono-

layer). The threshold for ice nucleation by 1% of the particles varied from about 100%15

relative humidity with respect to water at 233 K to 93% at 213 K. This corresponds to

ice saturation ratios, Si , of 1.5 and 1.6, respectively. In experiments with multilayer

H2SO4 coverage (Fig. 8, DS H2SO4 multilayer) ice nucleation by 1% of the particles

occurred at Si between 1.55 at 228 K and 1.33 at 213 K. These thresholds are below

the homogeneous freezing thresholds of soluble particles (Koop et al., 2000) only at20

T<220 K. The lower and upper threshold curves are calculated for 1% of the solution

particles with radii 1 µm and 0.1 µm to freeze within 100 s and 1 s, respectively.

From this we conclude that only a multilayer H2SO4 coverage and cold temperatures

render the Degussa soot particles more efficient IN than liquid solution particles. The

greater acidic coverage must facilitate greater water uptake, although it is not clear25

how this increases the ice nucleation efficiency at low temperatures. The mechanism

by which ice forms on the soot surface in contact with the aqueous H2SO4 layer in

the immersion mode remains unknown. For instance, it is not known how thick a layer

must be to permit the formation of ice germs by immersion. We point out that for thin
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(monolayer) coatings, there is no clear distinction between deposition and immersion

nucleation modes.

Möhler et al. (2005a) used soot particles from a graphite spark generator (GS) for

ice nucleation studies at T=185−240 K. These particles had a fractal-like, agglomerate

structure with mean mobility equivalent diameters of 70−140 nm and large specific sur-5

face areas of ∼300 m
2/g. Untreated GS particles and GS particles coated with H2SO4

were used in different experiments in the cloud chamber AIDA of Forschungszentrum

Karlsruhe. The coated particles had mean diameters in the range 90−200 nm and

H2SO4 volume fractions between ∼20–80%. Figure 8 shows the ice nucleation thresh-

old of 0.1−0.3% of untreated GS particles to vary from Si values 1.3 at 186 K to 1.410

at 240 K, with minimum values of 1.1 at 215 K. After coating with H2SO4, the onset

thresholds range from 1.55 at 185 K to 1.4 at 230 K (Fig. 8, GS H2SO4 coating). These

thresholds are significantly higher compared to the untreated GS particles, but still

below the homogeneous freezing range.

Between 215 and 220 K, the ice nucleation onsets of DS soot with multilayer H2SO415

coverage and H2SO4-coated GS soot agree with each other. The increasing differ-

ence at warmer T may be caused by differences in coating thicknesses or different

surface structures of the DS and GS particles. It is not clear why the H2SO4-coated DS

particles show a steeper T -dependence of the nucleation thresholds than the H2SO4-

coated GS particles. Regardless, the results for both soot samples suggest that at least20

at T<225 K, sulfuric acid coated soot particles of some type are capable of nucleating

ice below the homogeneous freezing thresholds.

The causes responsible for the marked difference between the ice nucleation onsets

of untreated GS particles and DS particles without coating or with monolayer H2SO4

coverage are not understood. This difference cannot be caused by instrumental ar-25

tifacts or measurement uncertainties, but is related to different physical or chemical

surface properties of the DS and GS particles. Further laboratory studies are needed

to resolve this issue.

In addition to H2SO4, OC in emitted aerosols or contained in ambient aerosols con-
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tributes to the chemical composition of the plume particle mixtures. Möhler et al.

(2005b) employed the AIDA to investigate the ice nucleation ability of soot particles

with different OC content generated in a propane burner with different fuel-to-air ratios.

At T=207 K, 0.1−1% of flame soot particles with 16% OC mass content (FS16 in Fig. 8)

nucleated ice at Si≃1.45, somewhat below the homogeneous freezing thresholds. At5

the same temperature, ice nucleation onset by flame soot with 40% OC content (FS40

in Fig. 8) was observed at Si=1.5−1.7, i.e. close to or slightly above the homogeneous

freezing levels. At a peak Si of 1.9 very close to water saturation, still fewer than 1% of

all soot particles were active as IN. No significant water uptake was observable.

A suppressed IN activity for thicker OC coatings was confirmed recently in simi-10

lar AIDA experiments using flame soot particles from the same propane burner. At

a temperature of 226 K, about 20% of the low OC content particles activated ice at

Si=1.1−1.3. Increasing the OC content by variation of the flame conditions again

markedly suppressed the ice nucleation activity. (More details of these measurements

will be published elsewhere.) From these results it is evident that increasing the OC15

content makes the flame soot particles more hydrophobic and suppresses water con-

densation and therefore ice nucleation. The hydrophobic nature of high OC content

flame soot was also observed in experiments between 240−245 K. However, the mere

presence of OC may not be an adequate descriptor of hygroscopicity. Instead, the

general impact of OC may depend on the nature of the combustion process and fuel,20

so, for instance, may not be uniform for jet fuel combustion versus biomass burning.

At temperatures above 235 K, recent laboratory studies report little, if any, ice activ-

ity of different soot samples (Dymarska et al., 2006; Kanji and Abbatt, 2006). Only a

minor fraction of soot particles acted in the immersion mode after water condensation.

The requirement of water saturation at the warmest temperatures is in agreement with25

the results for DS and untreated GS (Fig. 8), which also show ice nucleation activ-

ity only close to or slightly above water saturation. Earlier studies by DeMott (1990)

showed 0.1% and 1% of acetylene-produced soot particles effective as IN in simu-

lated adiabatically-cooling cloud parcels at 249 K and 239 K, respectively. The studies
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by Diehl and Mitra (1998) and Gorbunov et al. (2001) report relatively large number

fractions of soot containing droplets to freeze at temperatures as high as 253 K and

268 K, respectively. The latter study did not well document aerosol concentration and

size distribution as well as ice particle measurements during the mixing-type cloud

chamber experiments. The results from this study at relatively warm temperatures5

have not been reproduced in more recent studies and so should not be extrapolated

to cold cirrus temperatures. Diehl and Mitra (1998) investigated the freezing of large

water droplets with diameters 0.3−0.8 mm suspended in a vertical wind tunnel. Each

droplet probably contained a large number of soot particles, which was not specified.

Therefore it is not possible to relate the fraction of frozen droplets to the soot particle10

number or mass in the droplets. Freezing could have been induced by a minor fraction

of the soot particles immersed in the droplet. Again, the results should probably not be

extrapolated to cirrus conditions.

We cannot draw a definite conclusion about size effects on heterogeneous ice nu-

cleation. The existing data might indicate a moderate dependence on size for bare15

particles, with higher nucleation thresholds for smaller particles, but this becomes less

clear once the particles are coated with hygroscopic material. In this context, we recall

that most aircraft-emitted soot particles are actually smaller than 100 nm in diameter

(see Sect. 2.1 and Table 1). To better assess the role of aircraft soot in ice forma-

tion, more systematic laboratory studies of ice nucleation by small soot particles are20

required.

The above discussion of laboratory studies of ice nucleation by soot aerosol particles

can be summarized as follows:

(I) In the temperature range 213−233 K, Degussa lamp black soot without coating

or with monolayer H2SO4 coverage activates ice only above the homogeneous freez-25

ing thresholds near water saturation. The same soot particles with multilayer H2SO4

coverage show ice nucleation by 1% of the particles below the homogeneous freezing

thresholds only below 220 K.

(II) About 0.1−0.3% of soot particles from a graphite spark generator are ice active
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at low ice saturation ratios ranging from 1.3 at 186 K to 1.4 at 240 K, with minimum

values of about 1.1 at 215 K. A similar small number fraction of the same particles

immersed in aqueous H2SO4 show a slightly enhanced ice nucleation onset between

1.55 at 185 K and 1.4 at 230 K before homogeneous freezing could set in.

(III) Flame soot aerosol particles with an OC mass content of 16% showed ice nucle-5

ation onset at Si=1.45 clearly below the homogeneous freezing thresholds at T=207 K.

A recent study extends this finding, indicating that ice nucleation thresholds decrease

to values 1.1−1.3 at 226 K for flame soot particles with similar OC content. Increasing

the OC content to 40% markedly suppresses the ice nucleation efficiency of flame soot,

at least as caused by variations of flame soot generation in the laboratory.10

(IV) At temperatures above 235 K, a wide range of ice nucleation activity has been

observed for soot particles from various sources. The most recent studies show little,

or modest, ice nucleation activity of soot particles in the immersion mode. Some earlier

studies that inferred high IN activity for soot aerosols were poorly quantified. Further

study is needed to clarify the role of other ice nucleation modes such as contact freez-15

ing (Sastry, 2005).

We have emphasized that more laboratory studies are needed to understand the

differences in ice nucleation behavior of soot particles from various sources. Most

recent works to be published elsewhere (Koehler et al., 2007
1
; DeMott et al., 2007a

2
;

b
3
) suggest that there is a range of ice nucleation behaviors at low T from hydrophobic20

soot requring water activation for freezing, to moderately IN active. For these extreme

case particles, hygroscopicity tends to more ice formation toward the homogeneous

freezing limit, or ice nucleation at moderately lower relative humidities.

1
Koehler, K., Petters, M. D., DeMott, P. J., et al.: Cloud condensation nuclei activity and ice

nucleation ability of selected combustion particles, Atmos. Chem. Phys., in preparation, 2007.
2
DeMott, P. J., Petters, M. D., Prenni, A. J., et al.: Cloud activation behaviors of some diesel

exhaust particles, J. Geophys. Res., in preparation, 2007a.
3
DeMott, P. J., Petters, M. D., Prenni, A. J., et al.: Ice nucleation behavior of biomass com-

bustion particles, Atmos. Chem. Phys., in preparation, 2007b.
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4.2 Ice formation by dust and mixed-phase particles

We briefly summarize findings concerning the ice nucleation ability of mineral dust

particles, which are key competitors of soot and liquid aerosols during ice formation in

the atmosphere.

It has long been known that mineral dusts can act as efficient heterogeneous IN5

in a wide range of temperature conditions (Pruppacher and Klett, 1997). A number

of laboratory studies suggest that pure dust particles from various sources including

atmospheric samples and appropriate surrogates, clays, and mineral components in-

ternally mixed or coated with sulfate and organics, are effective IN (Zuberi et al., 2002;

Hung et al., 2003; Archeluta et al., 2005; Möhler et al., 2006; Knopf and Koop, 2006;10

Kanji and Abbatt, 2006).

Evidence from field observations exists that mineral particles, fly ash, and metallic

particles far from their source regions may serve at times as IN in cirrus clouds, in some

cases also without being associated with significant acidic or other condensed compo-

nents (Heintzenberg et al., 1996; Chen et al., 1998; DeMott et al., 2003; Sassen et al.,15

2003; Cziczo et al., 2004; Twohy and Poellot, 2005; Richardson et al., 2007). These

IN components are disproportionally enriched in these components in total aerosols,

whose overall chemical composition is dominated by sulfates and organics. At the

same time, some of these field measurements suggest that soot, while apparently be-

ing present as IN across the tropospheric temperature regime, constitute only a minor20

fraction in apparent IN.

As a general conclusion from the above-mentioned laboratory studies, we note that

the onset ice saturation values for heterogeneous nucleation on dust particles are of-

ten seen to be as low as Si=1−1.25 in cirrus conditions, but Si=1.3−1.4 for 200 nm

diameter Asian dust particles and Si=1.35−1.5 for kaolinite and montmorillonite im-25

mersed in super-µm aqueous (NH4)2SO4 droplets has also been reported. Perhaps

not surprising, and similar to some soot samples, dust particles and their surrogates

often nucleate ice over a range of Si -values (∼10–20%), which can be attributed to
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different nucleation characteristics of individual particles contained in the various sam-

ples. Particle size effects in heterogeneous ice formation are noted (Archeluta et al.,

2005), with larger particles (>100 nm) causing ice nucleation at lower Si than smaller

particles in the same temperature range. Dust particles do not always appear to be

good IN depending on their surface conditions. So far, only few studies have examined5

the effect of coatings on dust-induced ice nucleation.

While the homogeneous freezing process involving supercooled liquid particles ap-

pears to be quite well understood (Koop et al., 2000; Möhler et al., 2003; Haag et al.,

2003b; Abbatt et al., 2006), uncertainties remain concerning the formation of crystalline

organic and inorganic phases within partially soluble aerosols such as ammonium sul-10

fate and certain organics, in particular oxalic acid (Zuberi et al., 2001; Abbatt et al.,

2006; Zobrist et al., 2006; Shilling et al., 2006; Beaver et al., 2006). In several cases,

ice formation in mixed-phase particles is observed to compete with deliquescence of

crystalline solids at low supersaturations (Si−1<0.4−0.5). This could bring about more

complicated pathways to form cirrus than by fully insoluble IN alone.15

4.3 Cirrus formation scenarios

Next, we outline the conditions in which soot particles from aircraft might alter cirrus

microphysical properties.

In Fig. 9 we present results from a physically-based parameterization scheme for

cirrus formation from multiple aerosol types in adiabatically rising air parcels (Kärcher20

et al., 2006). This scheme has originally been designed for use in global models and

validated against detailed numerical simulations. Despite a number of underlying sim-

plifications, its results are quantitatively reliable and robust.

Figure 9 shows the total number densities of ice crystals, ni , as a function of soot

particle number density, ns. Besides ns, several other crucial parameters are varied25

in these calculations: (i) the vertical wind speed, w, ranging from purely synoptic uplift

(top panel) via mean values typically observed on the mesoscale (middle panel) to lee

wave or convective forcing (bottom panel); (ii) the abundance of mineral dust particles
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as indicated by the legends, with concentrations nd rising with w; and (iii) the threshold

saturation ratios Scr for ice nucleation by the soot particles as given at the top of the

figure, whereby the highest value is below but close to the homogeneous threshold.

The number size distribution of liquid H2SO4/H2O particles and the assumed sizes of

dust and soot particles are given in the figure caption. The results are insensitive to5

variations of the liquid particle properties. The choice of IN sizes is guided by the fact

that the ice-active particle population is mainly found in the size range above ∼ 100 nm

in atmospheric observations (DeMott et al., 2003; Richardson et al., 2007) and that

soot particles from combustion are typically smaller than soil-derived dust particles.

Dust and soot particles are assumed to be monodisperse. This captures their main10

effects and the poor knowledge about their atmospheric size distributions does not

warrant more details to be included in this type of simulations.

In all panels in Fig. 9, the black curves denote the dependence of ni versus ns

without interference by dust particles. In the limit of small ns, ni arises exclusively

from homogeneous freezing of liquid particles, and soot does not play any role in ice15

formation. The number of ice crystals formed by homogeneous freezing increases

from 0.05 cm
−3

to 10 cm
−3

when the updraft speed increases from 5 cm/s to 100 cm/s,

highlighting the sensitive dependence of ni on the cooling rate. Increasing nd in this

limit (from black via blue to red curves) decreases ni roughly by a factor of 2 (blue

curves) and 5 (red curves) in each panel. These early formed ice crystals enhance20

the H2O losses due to depositional growth, and thereby reduce the rate of increase of

supersaturation, which causes fewer liquid particles to freeze homogeneously.

This indirect aerosol effect in cirrus clouds appears when one type of IN is added

to a liquid aerosol population. Because ni decreases when IN are added (in contrast

to increased cloud droplet number caused by enhanced cloud condensation nuclei in25

liquid clouds), we have previously called this a negative Twomey effect (Kärcher et al.,

2006). Satellite observations of polluted aerosol and cloud properties over the Indian

Ocean lends support for the existence of a negative Twomey effect in the atmosphere

(Chylek et al., 2006).
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In our scenarios, dust particles are the most efficient IN, nucleating ice at Scr=1.1.

Their highest concentrations in Fig. 9 have been chosen such that homogeneous freez-

ing still occurs at any given w in the limit of small ns. Upon increasing ns, soot parti-

cles exert an additional negative Twomey effect by nucleating ice at Scr=1.3,1.45,1.5
(dashed, solid, dotted curves). These ice crystals add to the preexisting crystals origi-5

nating from the dust IN and amplify the negative Twomey effect. The soot effects would

be larger than discussed below, if soot particles were better IN than assumed here.

Note that the assumptions of single threshold values for IN is an idealization, as real

IN might nucleate ice over an extended range of ice saturation ratios.

The ice concentration ni falls as soon as ns exceeds a certain limit, which de-10

pends on w, nd , and the Scr-values of soot. For example, in a mesoscale updraft

with w=25 cm/s, ns must exceed ∼10 L
−1

for nd=10 L
−1

and Scr=1.45. This ns-limit in-

creases with increasing w (to counteract a larger cooling rate) and Scr (to compensate

less efficient IN activity), and it decreases with increasing nd (to still allow homoge-

neous freezing to eventually take place).15

Upon increasing the soot concentrations above these ns-limits, we enter a regime

in which ni rises in proportion to the available ns. All curves collapse to a single re-

lationship irrespective of nd and Scr. Further increasing ns leads to constant ni . In

this asymptotic case, the final ni is determined by the number of soot particles that

nucleate ice at any given w and is slightly higher (within a factor 2) than ni formed for20

the smallest ns-values. Hence, adding a large number of soot particles leads to a tradi-

tional Twomey effect that increases the number of cloud particles, but which is typically

weaker than the negative Twomey effect occurring at intermediate values of ns.

4.4 Atmospheric implications

We now relate the laboratory measurements to our model results and evaluate conceiv-25

able cirrus changes. We use the soot concentration ns as a synonym for either nMX or

nVN, depending on which soot particle type actually nucleates ice in the plume. Here,

nMX stands for concentrations of ambient particles modified by aircraft BC emissions;
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the ice-active population (Dp>100 nm) consists of immersion nuclei, in which BC cores

are surrounded by large masses of soluble OM and SA, and water, as inferred from the

species volume fractions shown in Figs. 6 and 7. Further, nVN are the number densities

of original soot emissions modified by scavenged soluble matter; in these particles, the

BC cores dominate the overall volume, and the initially small volume fraction of soluble5

OM and SA increases only slowly with time. The values nMX and nVN typically differ by

two orders of magnitude, as can be inferred from Fig. 4. These concentration ranges

are repeated in Fig. 9 as double arrows, assuming that 1% of them actually nucleate

ice. This ice-active fraction is uncertain, but 1% is consistent with the onset of ice

nucleation often measured in the laboratory (Sect. 4.1).10

Referring to Fig. 8, the soot particles with Scr-values above the homogeneous freez-

ing range would not actively participate in cirrus formation, but could still influence the

number of BC inclusions within ice crystal residues. Once these ice crystals evapo-

rate and release their soot cores, it is possible that the cores facilitate ice formation in

a subsequent nucleation event by lowering the supersaturation threshold to form ice15

again (preacitvation). The mechanism of preactivation is poorly understood both theo-

retically and experimentally (Hobbs, 1974) and has previously been identified as being

potentially relevant for dust (Knopf and Koop, 2006).

It is neither known how individual soot particle inclusions combine upon core release

(i.e., fractionate into smaller pieces or aggregate into larger clusters) nor whether atmo-20

spheric soot particles including those from aircraft show preactivation effects. Owing

to the fractal-like morphology of soot particles, it is possible that their ice nucleation

efficiency may be affected by water-filled micropores even in water-subsaturated con-

ditions due to a negative curvature effect (Suzanne et al., 2003). In this context, the

formation of short-lived contrails (in a subsaturated atmosphere) may be of special rel-25

evance, because soot particles experience water supersaturations and the resulting

droplets freeze when forming contrails (Kärcher et al., 1996).

Our discussion in Sect. 4.3 has shown that soot particles with Scr-values below the

homogeneous freezing curve are capable of modifying cirrus properties, even if they
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are relatively poor IN (Scr≥1.3). At a given cooling rate, the magnitude of the soot effect

is mainly governed by the ratio (ns/nd ) and the range of Scr-values for soot IN. With

the help of Figs. 8 and 9, we infer two main possibilities which can be summarized as

follows.

(A) VN particles initiate ice formation at rather high ns>100 L
−1

, requiring soot parti-5

cles with thin surface coatings acting as IN. This might lead to a slight increase (factor

2 at most) in ni for low to medium vertical wind speeds. At very high w, ni ∝ ns, likely

accompanied with a slight decrease of ni relative to homogeneous freezing except for

very high concentrations of mineral dust IN.

(B) MX particles lead to ice formation at relatively low ns<100 L
−1

, implying that the10

ice-forming soot particles have a sufficiently thick surface coating or are immersed

within large, liquid aerosol particles. This range of ns-concentrations might lead

to significant reductions in ni (factor 2−5), particularly for the commonly observed

mesoscale range of w, including large portions of the contiguous synoptic and oro-

graphic/convective scales.15

These two scenarios are expressed with the caveat that the ice nucleation efficiency

of very small (<100 nm) soot particles has not been fully explored experimentally and

that most aircraft-induced soot particles are indeed of such small sizes at emission and

remain so in the plume, because self-coagulation is slow.

We add three remarks to better judge our inferences.20

First, dust particles are assumed to be very good IN to maximize their impact. If

we assumed that dust particles were less perfect IN, then their concentrations would

have to be higher than noted in Fig. 9 in order to exert similar effects on ni . In this

context, we note that in upper tropospheric background conditions, up to few tens of

heterogeneous IN per liter of air is a realistic order of magnitude (DeMott et al., 2003;25

Haag et al., 2003a; Richardson et al., 2007), but up to a few hundered IN per liter have

been observed in polluted air masses with substantial air traffic (Rogers et al., 1998).

If the IN concentrations are even higher, as it is possible in aging aircraft plumes, then

they might dominate ice formation even at relatively high updraft speeds (DeMott et al.,
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1997; Gierens, 2003), as noted above under (A).

Second, dust particles could be present in a fraction of the ambient particle popu-

lations A and VA, or included in A as external mixtures. For simplicity, we ignored a

possible presence of ice-active dust in MX particles. In addition, we did not consider

possible heterogeneous nucleation induced by crystalline phases in OM+SA mixtures5

as described in Sect. 4.2, because virtually nothing is known about their atmospheric

relevance. If we included both, MX particles containing dust as effective IN and mixed

phase organic/inorganic plume particles nucleating ice on their own, then the effect of

soot aerosols on cirrus formation would be smaller than quantified above.

Third, the magnitude of the indirect aerosol effects is maximized in idealized par-10

cel simulations without consideration of sedimentation and variability in vertical wind

speed, relative humidity, and other parameters. This has been demonstrated by in-

cluding these effects in more complex simulations (Haag and Kärcher, 2004). In these

simulations, the basic trends discussed above have been confirmed in principle, but the

magnitude of changes seen in probability distributions of ni , ice water content, effective15

radius, and cirrus cloud cover are somewhat weaker.

Closer inspection of Fig. 8 allows further potential implications about the soot-

induced, indirect effect on cirrus to be drawn. The ice nucleation efficiency of GS

particles maximizes between 215−225 K, a regime including mean upper tropospheric

temperatures where aircraft contrails frequently form. If real jet engine soot particles20

behaved like the GS particles, then the indirect effect triggered by VN particles would

not (often) occur in the presence of contrail cirrus, despite their high efficiency to act

as IN. This is plausible because the high ice crystal number concentrations in contrail

cirrus will drive ice saturation ratios close to unity.

However, outside of but near the contrail plumes, MX particles that have interacted25

with ambient aerosols at earlier times and then behave like the GS particles could

trigger additional ice formation. In aircraft corridors, this mechanism might lead to a

diffuse background of thin cirrus sheets embedded in clusters of contrail cirrus. Scenes

that are compatible with this hypothesis are frequently seen in satellite observations,
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one of which we present in Fig. 10.

The thick, yellowish band represents a lower and mid level cloud system formed in

a front moving from the North Atlantic over Spain. White or bluish colors above this

band indicate higher cirrus clouds. A more detailed analysis of time series around this

scene shows that this weather system advects copious contrails with a wide range of5

geometrical sizes, not all of them being visible in Fig. 10. The contrail cirrus cluster

extends from the center portion of the figure in a band towards north-east, and, less

visible, also towards south-west.

Recall that the bluish colors collocated with the contrail cirrus cluster indicates thin

cirrus. Based on satellite observations alone, the exact vertical location of this thin10

cirrus relative to contrail cirrus cannot be determined. Hence, it is possible that the

contrail cirrus evolved entirely unaffected by the soot-induced cirrus. Even if the diffuse

thin cirrus background occurred in the same vertical levels as the contrail cluster, the

former could have been triggered by IN from other sources. Only a combination of

satellite observations with in-situ measurements of IN activity and composition could15

provide a more conclusive answer.

We take the comparison with GS particles a step further and increase T beyond

225 K. Contrails then form less and less frequently, so that, on average, the indirect

effect from MX and/or VN particles can dominate under favorable conditions, even

when soot nucleation thresholds rise with increasing T , as for the GS particle samples20

shown in Fig. 8. Note that, at least for GS particles and unlike for T<225 K, the role of

H2SO4 coatings is less important at high T .

If VN or MX particles behaved like the FS particles shown in Fig. 8, then their indi-

rect effect would be negligible around 205 K, similar to DS particles with small or no

coating above 220 K. More recent results from AIDA measurements (not shown) indi-25

cate substantially lower FS nucleation thresholds at higher T (226 K), a similar trend

the coated DS particles exhibit with decreasing T . At least for the FS particle samples,

organic-rich coatings of order 40% by mass would effectively shutt off ice nucleation

below homogeneous freezing. However, as stressed in Sect. 4.1, our present knowl-

7879

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/7843/2007/acpd-7-7843-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/7843/2007/acpd-7-7843-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 7843–7905, 2007

Indirect effect of soot

on cirrus
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edge about the effects of coatings and particle size on ice nucleation is insufficient to

draw a final conclusion.

4.5 Possible mitigation options

The VN and MX particles are directly affected by SA and OM emissions and are the key

targets for mitigation strategies aimed at minimizing the aircraft soot-induced indirect5

effect on cirrus.

Based on our calculations (Fig. 9), a decrease in the soot number emission index

(i.e. nVN) will not substantially change our conclusions expressed as scenario (A) in

Sect. 4.4, unless this decrease is substantial (>90%). Even in such a case, this will

only increase the importance of scenario (B) at the expense of scenario (A) inasmuch10

as nVN and nMX then become comparable.

Based on the laboratory works, an increase in condensable organic emissions will

increase the organic coating of VN particles, making them less ice-nucleation active.

Current OC volume fractions on VN particles are low at emission (∼4%, Table 1) and in

the plume after 24 h (of order 10%, Fig. 7, middle panel). (Mass fractions are roughly15

1.5 times lower.) This implies that a large (perhaps more than five- to tenfold) increase

in the OC emission index is probably required to effectively shut off ice nucleation

on most of the VN particles. Current OC emissions mainly affect the upper tropo-

spheric background aerosol in the Aitken mode in some cases (Figs. 5-7), but such a

dramatic enhancement of OC emissions would generally modify the plume and back-20

ground aerosols, with unknown effects on atmospheric chemistry and cloud formation.

We stress again that this would only hold under the premise that real aircraft soot

cores in VN particles behave like the flame soot particles studied in the laboratory.

Therefore, the above option to increase OC emissions should not be viewed as a rec-

ommendation.25

We feel unable to address options to mitigate the ice-forming efficiency of MX par-

ticles based on available evidence. Figure 7 (right panel) demonstrates that MX par-

ticles show a very complex, size-dependent partitioning between BC and OM from

7880

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/7843/2007/acpd-7-7843-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/7843/2007/acpd-7-7843-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 7843–7905, 2007

Indirect effect of soot

on cirrus
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ambient and aircraft sources. If ice nucleation was triggered by the aircraft component,

then minimizing the BC number emissions could help reduce the indirect effect caused

by MX particles. Note that because of the high variability of background aerosol, it

would be very difficult to accurately quantify the efficiency of such a mitigation strategy.

Specifically, it is conceivable that the ambient BC and OM components (besides other5

possible IN) cause an indirect effect on their own, in which case we would expect a

high geographical and seasonal variability of resulting cirrus modifications.

The conflicting laboratory evidence concerning the role of acidic H2SO4 coatings

on VN particles (GS versus DS particles in Fig. 8) does not enable us to formulate a

mitigation option with respect to changes in the fuel sulfur content.10

5 Conclusions

In this study, we have investigated the role of soot aerosols in cirrus cloud formation

with a combination of process-oriented modeling and evaluation of laboratory results

of heterogeneous ice nucleation. Because of the renewed debate about the climate

impact of aviation and the possible prevalence of aircraft soot emissions in flight cor-15

ridors, emphasis was put on the factors controlling ice formation in dispersing aircraft

plumes in competition with ice-forming particles from other sources.

The key findings of this work have already been summarized at the end of Sects. 3.1,

3.2, and 4.1 (points (I)-(IV)). Conceivable cirrus changes caused by soot emissions

have been highlighted in Sect. 4.4 (scenarios (A) and (B)) and potential mitigation20

options noted in Sect. 4.5.

Perhaps the largest problem in estimating the indirect effect of soot aerosols on cirrus

is the lack of direct atmospheric observations together with the fact that most laboratory

studies employed idealized soot samples of unknown atmospheric relevance. Effects of

coatings and particle size on the ice nucleation efficiency have not been fully explored.25

Future laboratory studies should therefore include samples that are more represen-

tative of soot particles from real atmospheric source regions. It is possible that real
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atmospheric soot particles exhibit a wide range of ice nucleation activities, depending

on their source and atmospheric aging processes. It seems likely that this range is

narrower for aircraft-induced soot particles, the number and chemical composition of

which are relatively (but possibly not sufficiently) well defined. In this context, it is im-

portant to point out that the few atmospheric observations available to date suggest5

that soot constitutes only a minor fraction in apparent IN throughout the troposphere.

The inclusion of indirect aerosol effects in global models is at its infancy. As a first

step, using well defined yet idealized assumptions about ice nucleation thresholds of

various IN types in parameterization schemes that track the competition between dif-

ferent IN during cirrus formation, global parametric model studies of indirect effects of10

soot and dust aerosols appear to be feasible in the near future. Substantial progress

in parameterizing heterogeneous ice nucleation rates requires a better understanding

of basic mechanisms leading to the formation of ice germs on real IN surfaces, be-

sides more laboratory studies in which particle sizes and coatings, ice-active particle

fractions, and other parameters are varied systematically.15

However, we are far away from realistically modeling the coupling between direct

(contrail cirrus) and indirect (soot-induced cirrus) aviation effects on high cloudiness as

outlined in Sect. 1.1 and illustrated with the help of Fig. 10. Meanwhile, process studies

of the present type could be extended with a cirrus model and then used to study the

indirect effect of soot emissions on cirrus nucleation in isolation, once we know how to20

treat ice nucleation in the various aerosol types that build up in the plume as a function

of time. Such efforts should be complemented by coordinated atmospheric observa-

tions including airborne IN counters and aerosol mass spectrometers, quantification of

black carbon in fine aerosols by selective detection of single particles, in-situ measure-

ments of relative humidity and parameters determining the plume age, high resolution25

satellite observations, and meteorological forecasts of the formation and extent of ice

supersaturated regions.

In this way, we hope to stimulate further research in this area and contribute to an

improved understanding of the aviation impact on cirrus cloudiness.

7882

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/7843/2007/acpd-7-7843-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/7843/2007/acpd-7-7843-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 7843–7905, 2007

Indirect effect of soot

on cirrus
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Notation

FSC fuel sulfur content

IN heterogeneous ice nuclei

BC black carbon

OC particulate organic carbon

OM particulate organic matter

SA particulate sulfuric acid

W particulate water

V emitted volatile particles

N emitted nonvolatile particles

A entrained background (ambient) particles

VN coagulated particles resulting from V+N

VA coagulated particles resulting from V+A

NA coagulated particles resulting from N+A

MX coagulated particles resulting from V+NA, N+VA,

A+VN, VN+VA, VA+NA, NA+VN

WIN wintertime background aerosol

SUM summertime background aerosol

NUC background aerosol after new particle formation

ACC background aerosol prior to cloud formation
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B. Kärcher et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU
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Table 1. Lognormal size distribution parameters (total number density n, dry median diameter

Dd , geometric standard deviation σ) and non-water species volume fractions for aircraft non-

volatile particles (N) at a plume age of 10 s and four background aerosol particle types. The

latter consist of a wintertime (WIN) and a summertime distribution (SUM), a distribution follow-

ing homogeneous aerosol nucleation (NUC), and a strongly accumulated distribution (ACC).

Data for emission indices of chemi-ions and condensable organics (OM), as well as the effi-

ciency with which fuel sulfur is converted to condensable H2SO4 (SA) at emission are given in

Sect. 2.1. Characteristics of aircraft and ambient black carbon (BC) particles are also outlined

in Sect. 2.1. Concentrations of gas phase SO2 and H2SO4 and size-averaged volume fractions

of BC in nonvolatile aircraft particles are listed in Table 2. The simulated size distributions for

volatile aircraft particles at 10 s (not included here but shown in Fig. 2) are not strictly lognormal

and their species volume fractions are size-dependent.

mode 1 mode 2 volume fraction, %

n, cm
−3 Dd ,nm σ n, cm

−3 Dd ,nm σ SA OM
a

BC
a

N
b

5230 25 1.55 2 150 1.65 variable

WIN 400 20 2.4 0.006 760 1.88 20 4 0.2337

SUM 800 40 2.1 0.2 800 1.8 20 4 0.0747

NUC 2200 11 1.7 40 50 1.8 17.5 3.5 2.0953

ACC
c

50 15 2 220 115 1.45 17.5 3.5 0.0644

a
individually tracked in aircraft soot and background aerosol

b
based on near-field simulations, see Fig. 2

c
in addition third mode equal to mode 2 from summer distribution, see Fig. 3
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Table 2. Number concentrations of emitted SO2 and H2SO4 remaining in the gas phase after

volatile particle formation and gas phase oxidation for different fuel sulfur contents. Also given

are the size-averaged volume fractions of the chemical components of the nonvolatile aircraft

particles, the distributions of which are shown in Fig. 2. The values are taken from the near-field

simulations at a plume age of 10 s.

FSC, [SO2], [H2SO4], SA, OM, BC,

g S/kg-fuel cm
−3

cm
−3

% % %

0.01 1.4×10
9

3.3×10
7

0.012 0.54 97.64

0.1 1.4×10
10

3.2×10
8

0.11 0.54 97.33

1 1.4×10
11

1.9×10
9

1.08 0.53 94.26
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Table 3. Coagulation matrix referring to the plume particle types illustrated in Fig. 1. We deal

with plume emissions (volatile particles V, nonvolatile particles N), ambient particles A entrained

into and modified within the plume, and plume particles (binary types VN, VA, NA, and MX)

created by hetero-coagulation. For example, coagulation of VN with A particles produces MX

particles. Below this matrix, the first row shows the chemical components associated with each

type, whereby W denotes particulate H2O.

V N A VN VA NA MX

V V VN VA VN VA MX MX

N VN N NA VN MX NA MX

A VA NA A MX VA NA MX

VN VN VN MX VN MX MX MX

VA VA MX VA MX VA MX MX

NA MX NA NA MX MX NA MX

MX MX MX MX MX MX MX MX

W × × × × × × ×
SA × × × × × × ×

OMambient − − × − × × ×
OMaircraft × × − × × × ×
BCambient − − × − × × ×
BCaircraft − × − × − × ×
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plume emissions:
SO2, H2SO4

volatile particles
nonvolatile particles

ambient air:
SO2

background particles

coagulation
condensation

entrainment
dilution

photochemistry A

MX

N

V

VA

VN

NA

Fig. 1. Schematic of the dynamical, chemical, and microphysical processes leading to the

formation of internally mixed soot particles containing black carbon from various sources in

dispersing aircraft exhaust plumes. These processes are realized in a Lagrangian far-field

plume model. Details are discussed in Sect. 2, supplemented by the information given in

Tables 1–3. The key scientific questions are: (i) What is the time-dependent composition and

concentration of the BC-containing particles? (ii) Under which conditions do these particles

initiate the ice phase in cirrus clouds relative to unperturbed background particles?
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Fig. 2. Particle size (top panel) and volume (bottom panel) distributions of volatile (solid curves)

and nonvolatile (dashed curves) aircraft emissions taken at a plume age of 10 s. These results

are taken from a near-field plume model assuming mixing properties and emissions typical for

a cruising airplane.
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Fig. 3. As in Fig. 2, but for background aerosols. Shown are four distinct free tropospheric

cases describing typical midlatitude winter (solid curves) and summer (dashed curves) distri-

butions in the left panel, and distributions found after new particle formation (solid curves) and

before cloud formation (dashed curves) in the right panel.
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Fig. 4. Temporal evolution of total organic matter and SO2 mixing ratios (normalized to their

background values, top left), H2SO4 and total black carbon mixing ratios (top right), and total

number densities of selected plume particle types (bottom). Note the different concentration

scales for V particles on the right-hand side. In the top panels, the dashed curves have been

obtained by neglecting aircraft emissions of SO2, and the dotted curve neglects emissions of

H2SO4. The results assume the wintertime background distribution and medium FSC.
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Fig. 5. Total number and volume distributions for the four background aerosol cases 24 h after

emission for three FSCs. For comparison, the background distributions are shown as thick

curves in each panel.
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Fig. 6. Total and species volume distributions for the four background aerosol cases 24 h after

emission for medium FSC.
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Fig. 7. As in Fig. 6, but splitted up into different particle types.
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Fig. 8. Summary of threshold ice saturation ratios describing the onset of heterogeneous ice

nucleation by soot particles measured in laboratory studies. Threshold ranges are shown for

ice nucleation by: 1% Degussa soot (DS) untreated particles, and with H2SO4 monolayer and

multilayer coating (DeMott et al., 1999); 0.1−0.3% untreated and H2SO4-coated soot particles

(GS) from a graphite spark generator (Möhler et al., 2005a); and 0.1−1% flame soot particles

with 16% (FS16) and 40% (FS40) organic carbon content (Möhler et al., 2005b). Also shown

is the dashed water saturation curve (Murphy and Koop, 2005) and the solid curve for the

onset of homogeneous freezing of solution particles (Koop et al., 2000). The data from Möhler

et al. (typical relative uncertainty ±5 % for warmer T and ±10 % for colder T ) and DeMott et al.

(maximum relative uncertainty ±3 %) are calculated with vapor pressure relationships from

Murphy and Koop (2005) and Buck (1981), respectively.
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Fig. 9. Calculated total number density of nucleated ice crystals as a function of assumed

soot particle number density. The curves result from competition of three particle types during

ice formation in adiabatically rising air parcels. The ice nucleation thresholds of these particle

types are given at the figure top. Results are shown for updraft speeds of 5 cm/s (top panel,

synoptic-scale vertical wind, no variability in mesoscale vertical air motions), 25 cm/s (middle

panel, corresponding to typically observed background mesoscale temperature fluctuations),

and 100 cm/s (bottom panel, representative for strong updrafts in orographic waves or near

convection). The air parcels start rising at 250 hPa and 220 K at ice saturation and contain

mineral dust particles with concentrations noted in the legends, a wide range of soot particle

concentrations ns as indicated, and 500 cm
−3

lognormally distributed aqueous H2SO4 particles

with D=100 nm and σ=2. Dust and soot particles are assumed to be monodisperse with diame-

ters of 400 nm and 200 nm, respectively. The two arrows in the middle panel indicate the range

of number concentrations of BC-containing type MX and VN particles typical for far-field plume

ages up to 2 days from Fig. 4, assuming that 1% of those are active IN. As for the concentration

units, we note that 1 cm
−3

=10
3

L
−1

.
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Fig. 10. Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infra-Red Imager

(SEVIRI) geostationary satellite observation of a regional-scale contrail cirrus cluster (contrail

outbreak) and, possibly, aircraft soot-induced cirrus over Spain. The false color picture has

been taken on 28 May 2004, 10:00 UTC. The MSG-SEVIRI radiometer has a repetition rate

of 15 min and an approximate horizontal resolution of 3×4 km
2

per pixel. Red and green is

composed by the visible (0.6 µm) and near infrared (0.8 µm) channels, blue results from the

thermal infrared at (10.8 µm). Similar scenes are seen at times in satellite observations.
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