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Abstract. The inter-scale coupling in the dynamics of the tation, which is referred to as direct cascade Frisch (1995).
magnetic field in the Earth’s magnetospheric cusp is studied’he opposite phenomenon, the inverse cascade, in which
with the technique of transfer entropy. This is a non-linearstructures aggregate giving rise to larger scale eddies, seems
data analysis technique conceived to determine which is théo be confined to theoretically well defined situations, as the
process that plays the role of the “dynamical driver” between2-D turbulence described in Kraichmann and Montgomery
two processes interacting. (1980). However, there are experimental indications of di-

The time series of the magnetic field components mea+ect and inverse cascade processes in the magnetic field of
sured along the trajectory of a spacecraft through the cusphe magnetospheric turbulent boundary layer, as Savin and
are decomposed via continuous wavelets, so a time series difis co-Authors showed in Savin et al. (2004). This motivated
the square modulus of the wavelet coefficients may be assahe present research, in which a new data analysis technique,
ciated to each scaléconsidered. The coupling between to introduced in Schreiber (2000) and refined in Keiser and
two nearby scales is studied, with the purpose of singling outSchreiber (2002), here referred to as transfer entropy anal-
turbulent cascade directions from large to small scales angsis (TEA), is adapted to study the “cascades” in the magne-
viceversa. tospheric turbulence.

Preliminary physical conclusions are proposed. The TEA is based on the principle that interacting pro-
cesses exchange information entropy Haken (1983): given
two interacting processeX and Y, the transfer entropy
Tx_.y from X to Y will measure the influence of onY,
so that making a comparison between the quantifies y

In fluid as well as in magneto-hydrodynamic turbulence, theand Ty—.x one should be able to say which is the process

presence of an inter-scale dynamics shows up clearly Friscf'Or€ strongly '”f'”enc'”g the other. o )
(1995): excitations on many different space scales interact |N€ TEAmay be exploited to determine in which sense the

with each other. Non-linear terms in the equations goVem_turbulent cascade evolves, whether direct or inverse. Indeed,

ing turbulent systems are responsible for the inter-scale dy@SSume to deal with a time serieg) describing a turbulent

namics. For instance, in the fluid case three-wave interactiorffvelution via measurements made by a probe moving very

and cascades are all phenomena governed by such non-lineSjPWly through the turbulent flux, so that some definite (prob-
terms in the Navier-Stokes equations. ably unknown) relationship exists between the time scales in

This paper is devoted to the study of the inter-scale dy-* (t) and the space scales in the field theory. Suppose to be

namics of the turbulent magnetic field in the Magnetosphereable to extract a collectiop of time serieg(r) describing
of the Earth, in particular to the study of the verse of cascad@ows (1) appears at each time scdleThen, apply the TEA

processes taking place in the turbuient magnetic field in thet® COUPles of time series () ande, (1) with ¢ > ¢ in this
magnetospheric cusp (MC) case, if the TEA indicates that: influencess,, a diagnosis

The traditional scenario of fluid turbulence predicts that of_d|rect pascade may be done, while |fthe_smallersc.ale evo-
larger scale excitations give rise to smaller ones viafragmenlUtlon ce mflue_nces th_e larger scale evolutien, one might
state to be facing an inverse cascade process.
Correspondence to: M. Materassi Actually, more complex mechanisms could be invoked to
(massimo.materassi@fi.isc.cnr.it) explain turbulent fluctuations in a plasma, as those described

1 Introduction
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spacecraft ix 5 (r) then the time series at hand are related to
(local) poloidal plane the local fields as

axial (.cﬁ)\\ B(t)=B(xs(t),1). (1)
direction N B, ‘
B \\ \ | The time series analysed are described in some detail in

Yordanova et al. (2005) and Yordanova et al. (2004). As de-
scribed in Yordanova et al. (2005), these magnetic fluctua-
tions are anisotropic, since the turbulent statistical and spec-
tral features along the average fiéBl) (axial direction) and
perpendicular to it (poloidal plane) are different. Expecting
this anisotropy to lead to different cascade behaviours in the
axial and poloidal directions, here we apply the TEA sepa-

¥ rately to the time series of the axial component
B-(B)
Bo = (2)
[(B)]

Fig. 1. A pictorial vision of the axial-poloidal decomposition of the . -
vector B as measured by the POLAR satellite along its trajectory. and to the ones of the two PO'O'da' components indicated as
Bj and By, so that the total field reads

) B(t)=Bo(t)e; + Bi(t)er1+ Bz (1) élo,
Strong bulk field,

more Intermittent transverse fluctuations 5 (B)

¢ =TB (B)-é11=0, (B)-é12=0, 3

\

By (t) — By (t) By (t) — o
e11-e12=0.

r 1 The axial-poloidal decomposition is illustrated in Fig. 1.
100k 1 Note that(B) is in principle an ensamble average and might
N WWW 1 depend on time for nonstationary evolutions. In practice, this
50F . will be calculated as the time average Bfinstead, hence
. W ] will be a constant vector. In all our calculations, we assume
oF WMW%WMMWWW 1 the equivalence of ensemble and time statistics (stationar-
F ‘ | ity) and space and time statistics (Taylor hypothesis) Frisch
' . o4 . 1 (1995). Plausibility reasons for accepting this hypotheses in

. o the same data segments usede here were given in Yordanova
Universal time in hours et al. (2004).

Fields in nT

1.8 12.0 2.8

In Fig. 2 the three time serie® (1), B1 (t) and B> () are
depicted. It is visible how

(Bi) < (Bo). (4

At a glance, the poloidal components appear to be more in-
in Chang et al. (2004) for the dynamics of structures aris-termittent thanByg.
ing from resonances. In those scenarios no definte verse in

the cascades appear, one rather speaks about multi-scale co- .
herent structures in interaction: confuse pictures about the 1T ansfer entropy and the magnetic turbulence

verse of cascades emerging from the TEA could Sljpport'I'he transfer entropy from a proceBdo a proces< in the

:E?sgsrécgglii}ﬁir;?;(r)jsﬁvl\f[g(:h seems 1o be the case, indee ife lapser is the quantity of information that the stateXf

’ o has at the time-+t due only to the state df at the timer

The data us_ed here are magnetic field measurements Cok . eiber (2000). If the processEsepresented by (1) and
lected by the instruments on board of the NASA POLAR y rohresented by (1) are treated as probabilistic evolutions,

§pacecraft Russel et al. (1995). The time ser_ies considereg‘e transfer entropy representing the dynamical influence of
is that of the three components Bf measured in the orbit o proces on the proces¥ is defined as

segment starting at 11:55 UT and ending at 12:44 UT, on 11
April 1997. Measurements were taken in the northern cusp’~* () =

region in the magnetic latitudes range®® — 67.95°, and PG+ @),y () 5)
from 13:40 to 14:17 MLT. These time series have been elab= 2 7 +1).x@).y®) '092< PG+ xD) )

x(1)
orated also in Yordanova et al. (2005). If the trajectory of the *¢—®

y(t—1)

Fig. 2. The three components of the vect®ras measured by the
POLAR satellite along its trajectory.
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where p (x (t+71),x (¢), y (¢)) is the joint probability of
having the statesx (r) and y(r) at the timer and

x (t+7) at time t+t, while p (x (t+7) |x (t), y (t7)) and
p (x (t+71) |x (¢)) are conditional probabilities. In the defi-
nition (5) the delayr is the only time parameter on which
Ty, x depends if the processes are stationary.

The comparison between the two quantifigs, x (r) and
Tx—y () will tell whether the proces¥ influencesX more
than vice-versa: ify_. x > Tx_.y this is the case. Here the
differential transfer entropy (DTE) frorfi to X

(6)

is used: whem\Ty_, x>0 the dynamical influenc¥ — X
prevails on the dynamical influencé — Y.
The usefulness dfy_, x in the study of the inter-scale dy-

def
ATy .x = Tyx — Tx-y

155

wherel is the time interval on which the serid¥(z) is de-
fined. Then the square modulus of this complex time series

BY (1) is used:

i . def| =@ 2
eV () & Bg)(z)] . (10)

All the parameter values chosen for the analysis are justified
in Appendix A. Once the definition (10) is given, the quantity
TE(’_)) . is calculated by assuming the evoluticné’é andgé’,) to

be describing stationary processes, and evaluating the proba-
bilities as the normalized histograms. These probabilities are
directly inserted in (7).

2.2 Adjacent scale TEA

. . . i () (@)
namics of the magnetospheric turbulence is clear once thd N€ transfer entropieg,; , andT,,_, can be calculated for

two time seriesc (¢) andy (¢) in (5) and (6) are two time se-
riese, (t) andey (¢) describing the turbulent evolution at two
different scaleg and¢’. Hence, the quantity

Tpsp (v) =

=

ey (1)
ey (t—1)
ee(t—1)

p (g (+7) e (1), & (t))) 7)

p (e (t+7) , ep (1), 8¢ (1)) log, ( p (e (17) ler )

can be defined, and similarlg,_,, (t). Considering that in

any couple of scaleéﬁ, E’), but one choice seems particu-
larly meaningful for the study of cascade processes. Since in
the traditional picture of turbulence the most important inter-
scale coupling giving rise to cascade processes takes place
between fluctuations at two nearby scales, a sensible choice
for the couple(¢, ¢') is ¢’=t—d¢. Itis likely that also other
couplings may take place, between largely different scales
too. This will be the object of future studies.

Due to the numerical implementation of the continuous
wavelet transform (9), the differene& will rather be in-

the phenomenon of direct cascade the larger structures deteiended as
mine the smaller ones, while in the case of inverse cascade

the opposite takes place, one can use the DTE

ATpp (0) =Tomp (1) = Tpg (1), £ > € (8)

den = 2n+l - En’

being{¢,} the discrete sequence of scales adopted in the dis-
cretization of the continuous transform (9). In Appendix A

to determine the prevailing verse of cascade processes: whehe expression fofZ,,} is given together witld¢,, in (A4) and

AT,_, >0 the direct cascade frofto ¢/ <¢ is taking place,
while if AT,_, <0 an inverse one is at work.

It's important to say that analysing the time series col-

(A5). ' ‘
The quantitiesTe(’_))Z_dz () and Tg(’_)dg_)lZ (r) have been
constructed by applying (7) holding the delafixed as twice

lected along the POLAR trajectory and treating them as probthe sampling time/r=0.12 s. This choice of = 2dr cor-
abilistic evolutions we are not looking at the single direct or responds to analysing the dynamics on the shortest possible
inverse cascade event of “eddies” crumbling or coalescingtime within which an interaction may be captured by study-

while crossing the MC the spacecraft buildsBi) visiting

ing the given time series. Once we've done so, the differen-

different points of the plasma flow. Different cascade eventstial entropy
are then put together: the verse of the cascade indicated by

the TEA will then be simply the statistically prevalent verse.

2.1 The scale variables

. . . A
In order to single out the excitations at given scales, the timg

seriesB (¢) is wavelet-transformed by using a Morlet wavelet
as the mother wavelet of the continuous transform:

t—t

)dt/,
12

1

§X2>.

www.nonlin-processes-geophys.net/14/153/2007/

~ (i 1 / *
Bé><r>=—EfBi(t)w(
1

¥ (x) = 71_711 eXp(ia)ox —

ATz(t—)w—dz = Tz(l—)w—dz (r) - TZ(Z—)dZ—% () (11)
depends only on the scaleand can be studied as a function
Tz(g 1—q¢ (©). Such an analysis is expected to define those
ervals of scales in which direct cascade processes prevalil
and those in which the opposite takes place. The anisotropy
described in Yordanova et al. (2005) is expected to possi-
bly give different behaviours Q&T((ieid( (¢) for i=0 (axial
component) of=1, 2 (poloidal components).

In order to find out synthetically what the TEA analy-
sis may teach about the magnetic turbulence in the cusp,

AT,}ZZW will be presented rather as a function of the

Nonlin. Processes Geophys., 14, 153-161, 2007
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Fig. 4. Comparison between the power spectrlb?g@r) (f) of the
first poloidal componeniB1 (top) and the DTEATe(l)Z_de )

—

Fig. 3. Comparison between the power spectnﬂ?&?) (f) of the

. )
axial componeniy (top) and the DTEAT,,_;, (f) (bottom).  y40m)  and £z are the limits of the turbulent cascade deter-

{;L ;md IR arte tlhezli(;l(w)i;s Ofl thfhturé)u::ent ca_lstcadet:eterr;ilr_]ed ?n mined in Yordanova et al. (2005). In the bottom picture the red line
ordanova et al. ( ). In the bottom picture the red line ISi 7D (f) from the real data, while the black smooth line is

AT, ., (f) from the real data, while the black smooth line is ¢ >¢=4¢ " @
. e (0) its polynomial fitG,y (f). In the spectrum, note a local (extremely
its polynomial fitG,y (). In the spectrum, note a local (extremely weak) hump at-0.2 Hz, local bumps at-0.8 Hz, ~1 Hz and fx

weak) hump at-0.2 Hz, local bumps at-0.8 Hz, ~1 Hz andfg (the latter is the most visible feature). Three slight bumps at higher
(the latter is the most visible feature), and three slight bumps at,f (0)

) - ] 0) requencies. In the fitted cur o (f) note the local maxima at
higher frequencies. In the fitted C”rg‘éo (f) note the localmax- g7 1, ~2 Hz and~3 Hz and the local minima slightly before
ima at~0.2 Hz,~1 Hz and~2 Hz, and the local minima between

fr and between 2 Hz and 3 Hz.
0.5 Hz and 06 Hz, and at abouf.

rect cascade events respectively. The result presented here as

frequency obtained from the TEA will confirm and enrich that picture
with the indication of the statistically prevalent verse of the
wo + 4/ wS +2 fragmentation-coalescence interactions.
f= - (12) The results have been checked via a surrogate data test,

. ) ) described in 2.3.2.
of the Fourier component corresponding to the time-scale

¢ of the wavelet analysis. Heang(i)Z_de (f) will be 2.3.1 Quantities from real data

compared with the Fourier power spectrum(l) (f) of
the i-th component ofB (¢), so that the physical features
of ATZ(’_)) t—ae (f) will be straightforwardly compared with
those already interpreted Wordanova et al. (2005).

The Fourier spectra of the components Bfr) were cal-
culated in Yordanova et al. (2005) as power laws with two
“breaks” at the frequencies

fL~eq0.06 Hz, fr € [1HZz 2 HZ]. (13)
2.3 Results . . I
The frequencies, and fx may be interpreted as delimit-

The time series under exam was studied by Yordanova et aing the inertial range of the turbulent cascade: according to
(2004) and in Yordanova (2005) in terms of its multifrac- this interpretation, the energy would be injected at the scale
tal properties as far as the magnetic eneiBy’ was con- ¢ (1) and cascade down to the scélefr), where it is dis-
cerned. In Yordanova et al. (2005) the spectral properties ofipated. The frequency is considered as the cusp ion cy-
the time seriesBg (1), B1(t) and B> (1) were analysed, to- clotron frequency, wherg; is rather assimilated to the Solar
gether with the PDFs as appearing at different (time) scalesWind ion cyclotron frequency, so to say that the harmonic
The results found there appear to be in reasonable agreeme@@mponents oB () with f < f;, are governed by the flux of
with the picture described by Chang and his co-authors inthe Solar Wind. This Solar Wind driving is mainly affecting
Chang et al. (2004): the spacecraft is crossing a “gas” of fil-the axial componensy (¢).

amentary current “structures” interacting with each other via The behaviour ofATe(’)(fde (f) is presented in the Fig-

—

coalescence and fragmentation, giving rise to inverse and diures from 3 to 5, while Fig. 6 refers to the excitations in the

Nonlin. Processes Geophys., 14, 153-161, 2007 www.nonlin-processes-geophys.net/14/153/2007/
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Fig. 5. Comparison between the power spectrm(r?) (f) of the Fig. 6. Comparison between the power spectrﬂéﬁ” (f) of the

second poloidal compone® (top) and the DTEAT(Z)Z a0 (D) poloidal intensityB,, (top) and the DTEAT(”)E 40 () (bottom).
(bottom). f7 and fr are the limits of the turbulent cascade deter- f; and fg are the limits of the turbulent cascade determined in
mined inYordanova et al. (2005). In the bottom picture the red line Yordanova et al. (2005). In the bottom picture the red line is

is ATK(Z)E 4¢ () from the real data, while the black smooth line is AT("),Z 4¢ (f) from the real data, while the black smooth line is its
its polynomial fltg(z) (f). Inthe spectrum, note a local (extremely polynomial fit, g(") (f). In the spectrum, note the local (extremely
weak) hump at-0. 2 Hz, local bumps at0.9 Hz ande (the latter  weak) hump atvO 2 Hz, local bumps at-0.8 Hz, ~1 Hz andf
is the most visible feature). In the fitted curg (f) note the lo-  (the latter is the most visible feature). In the fitted cu@%) 2]
cal maxima at-0.3 Hz,~1 Hz and~2 Hz and3 Hz, and the local note the local hump at0.2 Hz, the local maxima at0.8 Hz,

minima at~0.6 Hz, slightly beforefg and slightly after 2 Hz. slightly after fg and slightly before 3 Hz, and the local minima
slightly beforefg and at~2 Hz.

poloidal intensityB,, ) ) o
is hence superimposed to the valueadf, . ,_,, (f). Then,

the physical conclusions are drawn from the analysis of the
B, = \/B? + B2. 14 .
" ! 2 (14) smooth, more readable pI@ﬁj) (f). The degred is fixed as
N=20, because this is the best value to satisfy the condition

. . (i) :
Looking at the behaviours oA7,”},_,, with f (red plots (15)

in the bottom panels of Figs. from 3 to 6) it is difficult to
distinguish a tendency or even to establish clearly for which r « 7, r > fr = g@ (f) ~eqO. (17)

frequencies the sign Qj‘T,H,Z 4¢ Points towards a direct or . i
an inverse cascade. All is possible to state at first glance The details of the comparisons between the behaviour of

is thatAT() goes to zero well outside the interval of heg(’)s and the spectra are reported completely in the cap-
P tions of the figures.

frequencieg /.. /x] . e

In general, it can be stated that the S|gng§5 (f) is

f<fi, > fr=> AT_)[ 20 (f)~eq0 (15) rather well defined in the inertial intervpl, , fr], where in-
deed it is pointing towards posﬂm&Teﬂz a0 (f),i.e.direct
and that it oscillates around zero without a well apparentcgscade:

sign. The first physical conclusion should be that events of

coalescence and fragmentation of the turbulent structures arg¢r < f < fr = Q(’) (f)>0. (18)

both present and probably mixed at all the scales. o o }
In order to target more clearly some “theoretical” be- Comparing the plots of; (f) andgyq (f) one discovers

haviour of AT,”,__, (f), it is then tried to draw a “fitting ~ that the stationary points @59 (f) correspond roughly to

curve” through the values calculated from the data (black(more or less weak) local “bumps” oﬁ“) (f), denoting

plot in the bottom panels of Figs. from 3 to 6). Ande-  the correspondence between local maxima of the differen-

gree polynomial fit tial transfer entropy and spectral features. A minimum of
N (’) o (f) is located slightly before the “break” frequengy.
Gg® (f) = Z g(i)fk (16) As far as the anisotropy between the axial and the poloidal
N k directions is concerned, the most noticeable difference is that

www.nonlin-processes-geophys.net/14/153/2007/ Nonlin. Processes Geophys., 14, 153-161, 2007
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Fig. 7. Comparison ofATKQLM and gé%) as calculated from

the time seriesBg (1) and from the surrogate data associated to it. Fig. 8. Comparison OfATz(Bz—de and gg)) as calculated from
From top to bottom: real time series, AAFT surrogate data (serieshe time series; (r) and from the surrogate data associated to it.
“aaft B0"), phase randomized surrogate data (series “ranBOM  From top to bottom: real time series, AAFT surrogate data (series
and a Gaussian noise (series “Baussnoise”). “aaft B1"), phase randomized surrogate data (series “ranBa)

and a Gaussian noise (series “Baussnoise”).

2.3.2 Surrogate data test

O ; 1,2 (n) .
Gao Is smaller thar>;™ andGa, , so that along the poloidal In order to check how reliable these results may be consid-

plane the "direct cascade” events are more |mport(%)ntly preV"’léred, a surrogate data test for the nonlinearity of the dynam-

lent than alonge,. Another difference betweed,; and  jcs producing them may be used. Indeed, nonlinear couplings
Qéﬁ‘z’") is thatg%’z‘") have an enhancement at frequenciesshould be the origin of cascades and coalescence events.
higher thanf, going to zero then, this increase being much  The results of the surrogate data test are presented in Fig-
smaller forgé%). ures from 7 to 9.

Nonlin. Processes Geophys., 14, 153-161, 2007 www.nonlin-processes-geophys.net/14/153/2007/
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For every time series analysed one may produce the surro
gate data described in Theiler et al. (1992), in particular the 0.010]
phase-randomized surrogate data (indicated in the Figures a i
“random”) and the Amplitude Adjusted Fourier Transform
surrogate data (indicated in the Figures as 'aaft’). The phase
randomized data are constructed as the Gaussian linear prc
cess with the same power spectrum of the original real data, 7
while the 'aaft’ data are supposed to mimic a process ob- ~0.005L
tained from the linear Gaussian one with the same power
spectrum of the original real data via a non-linear transfor-
mation. We have also produced pure Gaussian noises withou
any relationship with the real data.

The results of the surrogate data test is indicating that
the quantitiesa7,”, ,, and ggg of the real data are not
very much different from those obtained from surrogate data,
apart in the Gaussian noise case. On one hand, considet 010F
ing that the “essentially linear” time series constructed via ok
the “random” or via the “aaft” procedures should have zero T . .
AT&_M everywhere, this result should be interpreted in Frequen ‘
stating thatATZ(’_Zl_d@ andggg are not meaningfully differ- Differential entropy of random_ B2
ent from zero, in general, so that one might conclude _ UO0E ' ' '

o
o
@
®
5
a’
0]
35
>
O
c
o,
W
N

tial entropy

Differen

y

entrop

rential

Diffe

entropy

AT, 0 (f) ~eq0, G5 (f) ~eqOV f € [0.006 Hz 4 HZ] .
(19)

Differential

This would point towards an equivalence between the occur-
rence of the direct and inverse cascade events registred dut ‘
ing the flight of the spacecraft. Frequencies in Hz

On the other hand, since both the “aaft” as well as the Differential entropy of B2_gaussnoise
phase-randomized “random” surrogate data have the sam«  0.0030 :
power spectrum as the real ones, and si@%a(f) is seen

to have a rather good correlation with th’é” (f) features,
there is no surprise in the apparently deluding results of
Figs. from 7 to 9.

ot
(
¢
c

al entropy

virterent

3 Discussion ionies

The Earth’s MC has always been known as a region of highly _ @ @
turbulent plasma. The presence of plasma turbulence pro' 9 9 Comparison ofAT,~, ;, and Gy, as calculated from

d . e the time seriesB, () and from the surrogate data associated to it.
uces a state of turbulence in the local magnetic field as well , . . .
due to the strict coupling between matter and field in a con—f rom toe to bottom: real time series, AAFT Surro-gat? data (series
. . o . aaft B2"), phase randomized surrogate data (series “ranB@i)

ducting fluid. The turbulent magnetic field is then expected ;4 4 Gaussian noise (series “Baussnoise”).
to show those non-linear phenomena of turbulent systems as
energy cascades due to inter-scale couplings.

In principle, processes of fragmentation of magnetic struc-
tures into smaller ones, and coalescence of magnetic struclelay considered is=0.24 s, as long as twice the sampling
tures forming bigger size excitations are both possible. Intime of the data.
the present paper the transfer entropy introduced in Schreiber The plot OfATe(zz—de as a function of the frequency is
(2000) has been used to establish the existence of a prevaleitidicating the existence of a frequency interval within which
sign in these cascade processes. The quantity studied is thedirect cascade regime should be prevalent. This frequency
differential transfer entroprTl(’_))g_dl telling how much the interval is slightly wider than the inertial interval obtained
dynamical driving of the&-sized structures onto thé—d¢)- in Yordanova et al. (2005) studying the power spectrum
sized structures is stronger than the opposite one. The causaf the magnetic axial and poloidal excitations. The plots
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of ATKQ(%@ (f) and its polynomial fitgé’g (f) show be- plasma turbulence in the Earth’'s MC) with a simple case
haviours rather correlated with the (weak) features appearingtudy.
in the powerspectrurﬂs(i) (f). This correlation between the One should mention that the Earth’s MC is one the most
DTEs and the power spectra is showing up in all the com-highly variable and complicated region of the geospace: in
ponents ofB, even if the inter-scale coupling taking place order to refine the mathematical tools adopted here it will be
within the causal delay considered here is stronger along th@ecessary to try them on the simpler cases of synthetic tur-
poloidal directions. bulence data (in which one completely knows the verse of
The surrogate data test used criticizes strongly the reliabilthe “cascades” occurring) and of real data collected in less
ity of the ValueSATg(i))g_dg found here, and in 2.3.2.this has Complicated, and more well known, regions of the Helio-

been used to guess (15). However, strictly speaking, the fa&el‘_)SPage- I It culat hould b g
thatATe(’_{,Z_dl and gé’g for real and surrogate data are not ast but not least, all these calculations should be repeate

very much different does not mean that (15) is satisfied. In—for many values of the causgl delay This should aII-ow-
explore the entropies relative to processes occurring in a

stead, it means that the approach based on the wavelet tran?— i ltor. the tvpical fi fih i
form and the transfer entropy notion is not sufficient to con- apse ottime equalle, tn€ typicaltime ot tn€ energy trans-

clude whether we are dealing with the cascade process Jterfromﬁ to £—dt.

linear Gaussian process (random) or nonlinearly transformed

Gaussian process (aaft). It is worth reminding that the oc-Appendix A

currence of dual cascades, i.e. regimes in which direct and

inverse cascade events are well possible, has been repeate@oosing the wavelet analysis parameters

predicted in the literature about magnetic turbulence in space

plasmas. In particular, one may quote the works by Chandrhe wavelet analysis technique is extensively used in the

(see Chang et al. (2004) and those quoted in Yordanova et astudy of fluid turbulence and irregular media Farge et al.

(2005)), claiming for a regime of very complex interactions (1999).

among coarse-grained field and current configurations; the The continuous wavelet transform coefficients are time se-

paper Savin et al. (2004), in which single events of direct andries of the same length and sampling of the original one, for

inverse cascades are targeted in scalograms; the plasma siall the scales considered. The definition of the transform is

ulations International School ASSE (2006) shown by Shuklaformula (9). The Morlet function is chosen as mother wavelet

in his invited paper in L'Aquila for the Summer School ASSE because it is very good for the time and frequency resolu-

2006. tion, matching the minimum uncertainty condition. Being
Some more final comments should be considered. oy ando; the frequency and time spread respectively, one
First of all, the results presented here are still very prelim-has indeed:

inary ones, obtained via still developing tools (the applica- 1

tion of transfer entropy to wavelet-analysed geospace data i£0 > 1= o001 = i (A1)

rather r?ew, as far as the Authors are aW‘f’“e of). .. Herewe have chosemy = 6, so that (x) turns out to fulfill
Continuous wavelet tra_nsform, used in our analysis, is &he admissibility condition Farge (1992).

redundant transform, which means that the wavelet trans-

form coefficients are correlated. This property might aﬁecttrum of the scaleg, but a discretisation is done for pursu-

the transfer entropy calculations. We plan to use the discretﬁang the numerical implementation of it Torrence and Compo
wavelet transform but this can be done at the expense of fre(1998) The scales admitted are given by the collection

quency (scale) resolution.
The data collected here are obtained as measurement, = 2V €min, n € N, (A2)

along the satellite trajectory, as written in (1): this means that,_ . L .
) . Y : - eing V a positive integer referred to as number of voices,
we are using the identification of time and space statistics o - .
so that?,,.y=2¢,. If V is chosen suitably the wavelet con-

:\:zntu_rb;ﬁn;&edﬂér\:\gaz mgar\]stutrlgn?egz zﬁg]utlgfb\gel\:\;e q iﬁtructed are quasi-orthogonal, and select quasi-independent
y-p I : . . scales. Some mathematical results Daubechies (1992) and
future investigations, to give a more rigorous and reliable

idea of the space configuration of the field. In the presentf'\i/lllil(ljatl_%?egal)e'Eg‘\f:ieh;zztnv_vgw24 this property is ful-

paper one cannot claim to be calculating the proper ensem- The minimum scalemp is fixed as twice the sampling
ble statistics defining the transfer entropies theoretically. It’stime min

only possible to interpret the indicationsmfl‘e(g/éﬂlé (f)as
valid on the set of cascade events encountered by the spacémin = 2dt = 0.24 s (A3)

craft along its trajectory. , .
. . ._..__With our parameters one obtains the scale sequence
These are sample results obtained with very few statistics:

we are actually facing a highly variable system (the magneto-¢,, = 28 - 0.24 s n € N. (A4)

In principle the transform (9) allows for a continuous spec-
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The minimal difference of scales distinguished is then: Keiser, A. and Schreiber, T.: Information transfer in continuous pro-
cesses, Physica D, 166, 43-62, 2002.
n 1 n . -
dE(n) = lyyq — by = 28 (2§ _ 1) .0.24 5= 2% x 0.02 5 Hal\;(()ernk,, ﬁoégyelrgggcs Springer-Verlag (Berlin, Heidelberg, New
(A5) Chang, T., Tam, S. W. Y., and Wu, C.-C.: Complexity induced
anisotropic bimodal intermittent turbulence in space plasmas,
This will be thed? separating the two adjacent scales in our  Physics of Plasmas, 11(4), 1287, 2004.
analysis. It grows exponentially with Russel, C. T., Snare, R. C., Means, J. D., Pierce, D., Dearborn, D.,
Larson, M., Barr, G., and Le, G.: The GGS/Polar magnetic field
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