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Abstract. Object-based classification is a promising tech-
nique for image classification. Unlike pixel-based methods,
which only use the measured radiometric values, the object-
based techniques can also use shape and context information
of scene textures. These extra degrees of freedom provided
by the objects allow the automatic identification of geolog-
ical structures. In this article, we present an evaluation of
object-based classification in the context of extraction of ge-
ological faults. Digital elevation models and radar data of
an area near Lake Magadi (Kenya) have been processed. We
then determine the statistics of the fault populations. The
fractal dimensions of fault dimensions are similar to fractal
dimensions directly measured on remote sensing images of
the study area using power spectra (PSD) and variograms.
These methods allow unbiased statistics of faults and help
us to understand the evolution of the fault systems in exten-
sional domains. Furthermore, the direct analysis of image
texture is a good indicator of the fault statistics and allows us
to classify the intensity and type of deformation. We propose
that extensional fault networks can be modeled by iterative
function system (IFS).

1 Introduction

The object-based classification requires a segmentation of
remote sensing data into highly homogeneous regions (or
objects). These image segments correspond to approxima-
tions of real world objects, characterised by shape and tex-
ture (Benz et al., 2004). Often, in geological image process-
ing, the objects (e.g. volcanoes, rivers, faults, etc) to be iden-
tified in the image can be visually separated based on their
shape and texture details. This paper details an efficient ap-
plication of object-based classification of geological features,
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which involves the extraction of normal fault morphology for
further statistical analysis.

A rift is a region where the Earth’s crust is under exten-
sional strain, hence forming a series of horsts and grabens
bounded by faults. The fractures generated in this process
of rifting are dominantly normal faults. Figure 1 shows the
geometry in a rift.

The study area is located in the vicinity of Lake Mag-
adi in Southern Kenya (Fig. 2). The N10 trending elon-
gated Magadi graben, bounded on both sides by major es-
carpments which cut Precambrian basement, is partly filled
by trachytes dated at 1.6∼1.1 Ma (e.g., Baker, 1958; Baker
et al., 1988). Fault orientation, striation and focal mechanism
analysis (Gloaguen et al., 1999; Gloaguen, 2000), kinematic
models (Chu and Gordon, 1999) and a recent plate veloc-
ity model (Sella et al., 2002, REVEL) have shown that the
stress field remained stable in intensity and direction during
the last 4 Ma withσ3 approximately EW and an extension
rate of about 4 mm yr−1. The crust, whose thickness is about
35 km, shows a typical continental velocity structure with
high velocity lenses at its base interpreted as mafic under-
plating (e.g., Mechie et al., 1994; Birt et al., 1997). The ef-
fective elastic thickness determined from gravity coherence
analyses is 15±4 km, comparable to the seismogenic layer
thickness of 18 km (Gloaguen, 2000). The study area com-
prises fault zones with hundreds of recent faults thus allow-
ing their statistical analysis. The Magadi trough is mainly
filled by trachytes erupted over a short time period (e.g.,
Baker, 1958). The faults analysed represent deformation in a
“homogenous” layer. The arid climate and minimal erosion
in this region have preserved the morphology of the faults.

Algorithms based on the automatic classification proce-
dure given in Marpu et al. (2006) are formulated to process
remote sensing data. The results of the algorithms and the
further application of the results in determining the statis-
tics of the fault populations using theobjectconcept are dis-
cussed. Further, the fractal behaviour is studied on the image
texture.
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Fig. 1. Fault geometry in a rift.
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Fig. 2. Location of the working area. Lake Magadi is located in
the Southern part of the Kenya Rift. Light grey areas represent Plio-
Quaternary volcanics, black lines are major rift escarpments.

2 Data

We use orthorectified and speckle filtered Radarsat Fine
Beam data. Field controls showed that the resolution of the
Synthetic Aperture Radar (SAR) is sufficient to measure all
of the faults that breach the surface. Discrepancies between
fault distribution and statistical laws cannot, therefore, be at-
tributed to the sampling. The radar data are acquired in as-
cending and descending orbits, allowing to measure precisely
faults otherwise in shadow on optic data. By virtue of the ge-
ometry of side-looking imaging radar, the same scene imaged
in opposite directions can effectively map the faults (Hender-
son and Lewis, 1998). Most of the faults within the Kenya
Rift are oriented N-S and are consequently almost orthogonal
to the radar beam. Within such a context, it is obvious that
SAR images significantly enhance the mapping of the fault
systems compared to optical data. The pre-processing step
involves a reduction of the speckle in the SAR data using a
Gamma filter.

Fig. 3. Schematic procedure for automatic fault extraction.

As the faults are characterised by steep slopes Digital Ele-
vation Model (DEM) can therefore be used for identification.
A DEM can be generated by numerous techniques, the most
commonly being based on the stereoscopic potential of opti-
cal and radar stereo-pairs. Radar data are one of the sources
for generating DEMs and hence are the basic input in the
process of fault mapping. The pre-processing step here in-
volves generating new image layers from the DEM with the
slope and aspect information. The orientation of the pixels in
their corresponding neighbourhood gives the direction of the
slopes. The gradient of the DEM and the direction informa-
tion are the input for the algorithm.

3 Extraction of faults

The procedure for automatic object-based classification de-
scribed in Marpu et al. (2006) is used to extract the faults.
The algorithm for extracting the morphology of faults is
shown in Fig. 3.

The automatic classification procedure starts with seg-
menting the image (dividing the image in to smaller ho-
mogenous regions). Segmentation is the most important step
for object-based classification. It is essential for any clas-
sification that the approximations (or subsets) of real world
objects are first clearly identified within the image. If the
segmentation algorithm is not capable of properly segment-
ing the image, then we cannot expect a proper classification.
The image segmentation into primitive objects is done using
multi-resolution segmentationalgorithm ofDefiniens Profes-
sional1 software. The procedure identifies the optimum fea-

1http://www.definiens.com
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tures based on Jeffries-Matusita distance (J). For two classes
C1 andC2 of sizen1, n2 with meansm1, m2 and standard
deviationsσ1, σ2 respectively and assuming gaussian distri-
bution,

J = 2(1 − e−B). (1)

whereB is theBhattacharya distance.

B =
1
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Based on the identified features which characterise the
classes, an approximate distribution is generated using a
minimum-distance clustering. Besides determining which
features best separate the object classes among each other,
it is essential to know which decision threshold allows maxi-
mum separability.The approximate distributions are then cor-
rected using the thresholds of separation for every feature to
get the final distribution. The thresholds are determined by
Bayes’ rule as (Nussbaum et al., 2005)
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We calculate the separability and corresponding thresholds
for each possible object class combination and for any num-
ber of given features. The results are hierarchically ordered
according to separability for each object class combination.
These in turn enable the compilation of a rule-based classifi-
cation model.

We first classify directly the acquired radar data (Radarsat
Fine Beam). The input parameters for themulti-resolution
segmentationalgorithm are carefully selected on a master
image. These input parameters are normally transferable to
the slave images. The result was not as accurate as expected.
Fig. 4 shows the classification in one of the images.

Two reasons are identified for this. The first one being
the considerable amount of speckle remaining in the im-
age even after a great deal of filtering and the second rea-
son is the large, non-gaussian variability of the image values
within the real-world fault objects, which makes it difficult
for the segmentation algorithm to clearly identify proper ob-
jects. The classification in this case is not highly accurate,
but can still be considered for mapping faults. However, a
post-classification statistical analysis of faults is not possible
with such an approach. We therefore generate radargrammet-
ric DEMs.

The same procedure is then applied on the DEM of the
same region. The gradient of the DEM identifies all the
slopes (Fig. 5).

The real-world fault object regions are homogenous in the
gradient image and hence the multi-resolution segmentation

Fig. 4. Extracted faults in a radar image.

algorithm resolves the image into better image objects. Fig-
ure 5 shows the classified image. It can be observed that the
individual faults are resolved accurately. The two colours
indicate the two throw directions of the faults. Disturbing
regions such as volcanoes are masked in order to avoid mis-
classification of volcanic flows as faults.

4 Fractal analysis

The distributions of fault dimensions, such as displacement
and length, have been used to understand the evolution
of fault systems (e.g., Watterson, 1986; Marrett and All-
mendinger, 1991; Cowie and Scholz, 1992). These relations
have implications for rupture mechanics and dynamics, and
they provide links to empirical earthquake scaling relations
(e.g., Cowie and Scholz, 1992). Fault-population distribu-
tions have been correlated with different statistic laws such
as gamma (Cardon, 1999), log-normal (Davy, 1993; Castaing
et al., 1995), logarithmic (e.g., Villemin and Sunwoo, 1987),
or power-law (e.g., Velde et al., 1990; Velde and Dubois,
1991). Power-law has a specific interest on its own as the ex-
ponent is interpreted as the fractal dimension and the faulting
has then a fractal behaviour, at least in one of its dimensions.

Objects which display self-similarity over an infinitely ex-
tended scale range are fractals and every fractal is charac-
terized by a unique fractal dimension. However, in geology
we have to confine ourselves to a finite scale range. At ev-
ery scale the object appears to have a similar shape in the
finite scale range. And the fractal dimension can be defined
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Fig. 5. Derivative of a DEM enhancing faults and extracted faults in the DEM.
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Fig. 6. Histogram of fault lengths (insert) and the corresponding
cumulative histogram in logarithmic scale (red curve). The fractal
dimension (D=2.33) is estimated by fitting the distribution (black
line, RMS=0.045;R2=0.99).

according to the following formula:

Ni =
C

riD
(4)

Ni is the number of objects with a characteristicri , C is a
proportionality constant andD is the fractal dimension. IfD
is an integer it refers to theEuclidean dimension.

The length of faults is one (along with fault spacing, fault
heaves etc.) of the characteristics that describes the fractal
behavior of fault networks (Turcotte, 1997). Therefore

Ni =
C

liD
(5)

whereNi is the number of faults having a length greater than
li , C is a proportionality constant andD is the fractal dimen-
sion.

Taking logarithm on both sides of Eq. (5), we have

log(Ni) = log(C) − D log(li). (6)

Once a satisfactory classification is achieved, we can use the
notion of the object to determine the statistics of the fault
populations. Every real world fault is an object in the image
and the shape of the object can be used to find the approx-
imate width and length of the faults. These statistics help
us in determining the fractal dimension of the faults in that
region. The lengths distribution and the corresponding frac-
tal dimensionD≈2.35 is calculated in the Magadi area using
that information (Fig. 6). The linearity of the curve in the
log-log plot of the cumulative histogram of lengths of faults
validates the method used in the present work. It also attests
that the fault network is fractal.

The fractal dimension can also be calculated from the
topology or the radar data of the region using the power-
spectrum (PSD). The fractal dimension of a two-dimensional
set can be calculated by calculating the slope of a linear fit
plot of power P(k) vs. wavenumber, k on a log-log.

S(k) ∝ k−s (7)

The PSD of a topologically 2-D remote sensing data can be
calculated with 2-D Fourier transform. As described in Carr
(1995) and Pentland (1984) the fractal dimension is calcu-
lated from the slope, s of the power versus frequency curve
in logarithmic scale as:

D = 2.5 −
s

2
(8)

The fractal dimension calculated using the PSD on 512×512
and 1024×1024 pixels subsets of the radar images and
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DEMs (example Fig. 7) corresponds toD≈2.4. The linear
fits are remarkably good (RMS<0.05;R2=0.99). This value
does not vary for the whole fault network area.

The fractal dimension (D=2.4) can also be found us-
ing the variogram of 512×512 and 1024×104 pixels sub-
sets the DEM (example Fig. 7). Linear fits are very good
(RMS<0.04;R2=0.99). Variogram analysis of radar images
was not unequivocal due to high variance induced by speckle.

γ (hij ) =
1

2
E

(

[

Y (xi) − Y (xj )
]2

)

(9)

γ is the semi-variogram,Y is the spatial function andhij is
the lag. The Hurst exponent (H) is the slope of the variogram
vs. lag on a log-log plot:

γ (hij ) ∝ 2
∣

∣hij

∣

∣

H (10)

The fractal dimension is related to H by an empirical relation,

D = 2 −
H

2
(11)

A fractal dimension very similar to that of the dimension of
fault lengths is calculated using radar images PSDs and using
DEM SVs and PSDs.

The similarity of fractal dimension shows that on images
highly textured by faults, a direct fractal analysis is sufficient
in order to asses the brittle strain regime. This shows that
fractal dimension is a good indicator for describing complex-
ity. We estimate the resolution to be less than 12 m (2 pixels)
on Fine Beam SAR data and generated DEMs. Field and
satellite images evidences suggest that the faults are highly
segmented. The persistence of the linked segments in long,
evolved faults imply that these segments must have a me-
chanical significance for the growth of faults. We quantita-
tively and qualitatively analyse the segment dimensions and
morphology to study patterns of fault segment growth and
linkage. Depending on the length of the faults and the num-
ber of segments then the morphology will change. A linked
segment face has a typical almond shape, suggesting flex-
ure of the brittle layer. For more evolved faults, the almond
shape of the segments is conserved. The segmentation can
be determined even in faults more than 10 km in length. The
shapes of the flexures of the hangingwalls and of the accom-
modation zones between faults show that the faults grow by
segment growth and linkage. After linkage, the flexures re-
main and are sometimes filled by isolated or connected lakes
whose centers are localized on the zone where the individ-
ual segments have a maximum displacement, rather than the
centre of the linked segments (fault) (e.g. Fig. 8).

5 Fault model

Using Fine Beam images we extract the morphology of the
fault planes using transects along the hangingwalls and the
footwalls (Fig. 8).

1 km

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
13

13.5

14

14.5

15

15.5

log
10
(k)

lo
g
1
0
(S
(k
))

0 0.2 0.4 0.6 0.8 1 1.2 1.4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

log
10
(h)

lo
g
1
0
(!
(h
))

Fig. 7. top) Subset of a radar image (size=512×512 pixels) mid-
dle) Calculating the fractal dimension from the slope of the power
vs frequency of the radar image in logarithmic scale (D=2.4; fit:
RMS=0.025;R2=0.99) bottom) Calculating the fractal dimension
from the slope of the variogram vs. lag of the DEM in logarithmic
scale (D=2.4; fit: RMS=0.03;R2=0.99).

Statistical analyses have been successfully applied in low-
strain regions where power-law scaling fits the data best (e.g.,
Scholz et al., 1991) and higher strain areas where exponential
laws seem to describe the fault distribution (e.g., Cowie et al.,
1993). This complexity arises from growth of faults, interac-
tion and connection of faults to form networks. Based on
this we propose that the fault network is an Iterated Function
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100 m

Fig. 8. Segmented faults imaged by Radarsat Fine Beam. This im-
age also show the fault segmentation and the geometries of accom-
modations zones. On the left-hand sides of the faults, the image
has a darker tone. This tone represents the thin coverage of lacus-
trine and eolian sediments that partly fill the depression created by
concave flexures. Their attitude and smoothness will create spec-
ular reflection, thus darker tones. The footwall underlies a convex
flexure that can also be seen by the grey variations caused by the
change in amount of signal reflected across the footwall surface as
the slope changes.

System (IFS) (Barnsley, 1988). Such a model allows us to
understand the structural evolution of a basin in 4 dimen-
sions, the fourth dimension being time. A model can now be
proposed for describing fault growth.

Figure 9 shows a simple model explaining faulting mech-
anism. It starts with small segments whose dimensions are
distributed according to a Gaussian law. In order to com-
pensate the stress, the segments grow. In this process the
growing segments connect forming complex systems which
are fractal. Each fault nucleus has an equiprobable chance
to occur at the surface. The first step is the synchronous
appearance of nuclei sub-equally scattered all over the sur-
face and respecting a given spacing, related to the zone of
influence of each fault. The flexure of the foot-wall creates
small depocenters. The growth of the depocenter, linked to
the vertical displacement is late in respect to the longitudi-
nal growth as can be seen on Fig. 8. The displacement is
compensated by a longitudinal growth, not the opposite. As
the segments grow longitudinally and perpendicular to the
minimum compression stress vector (depending on the het-
erogeneity of the hosting rock), they enter the zone of in-
fluence of other segments and faults. The growth of each

Fig. 9. Model of fault growth and interactions. See text for expla-
nations.

segment is random (fractal) and the increment tends to create
longer alignments. Small faults or segments that are offset
from longer faults may be unfavourably orientated with re-
spect to the stress patterns at propagating fault tips, and the
fault growth ceases. The maximum horizontal displacement
on one object being related to its size, the generation of long
linear faults is preferred.The fractal dimension gives a mea-
sure of the complexity of the system.

6 Conclusions

We show that radar data and DEMs can be successfully clas-
sified using an object-based approach in order to map faults.
This allow an unbiased and fast counting of faults for fur-
ther statistical analysis. We also demonstrate that image tex-
ture is highly influenced by surface deformation, as shown
by the identical fractal dimensions measured with SVs and
PSDs. PSD and SV fractal dimension measurements attest
the value of D=2.35 found with box counting and cumulative
lengths. The fractal analysis of the faults distribution reveals
the importance of fractal dimension as a texture measure
which can characterize the distribution.The fractal behavior
allows us to propose an evolution model for the growth, in-
teraction and linkage of faults in extensional domains. This
model differs slightly from previous models where maxi-
mum fault lengths play a large role (e.g., Cowie and Scholz,
1992; Cowie et al., 1993; Marrett and Allmendinger, 1991;
Scholz et al., 1991). In this model we consider faults as
sets of connected segments. Even after hard linkage, the
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segments preserve mechanical properties. This affects our
understanding of fault rupture during seismic events. It has
been shown that earthquakes magnitudes are linearly related
to fault ruptures and fault lengths in several geodynamic set-
tings (Wells and Coppersmith, 1994). On the other hand, the
earthquakes magnitudes are not related to fault lengths in the
Kenya Rift (Seth et al., 2001) nor in the Main Ethiopian Rift
(Keir et al., 2006). Both rifts are characterized by long faults
and very low earthquake magnitudes. Our model relates seis-
mic events to segment ruptures and thus allow us to reconcile
surface deformation with measured seismicity. In low strain
extensional rift, the deformation is diffuse and repartitioned
on growing and linking segments. Based on this fractal be-
havior of faults we are now developing a numerical model
of the extensional fault network evolution based on IFS and
fitting the distribution of earthquakes magnitudes.
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