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Abstract. The complexity of the daily pluviometric regime
of the Iberian Peninsula is analysed from the point of view
of its lacunarity, predictability and predictive instability.
The database consists of daily pluviometric records obtained
from 43 rain gauges in Spain and Portugal for the period
1950–1990. Five different series are generated for every
rain gauge. The first series is constituted by the consecutive
daily amounts. The other four consist of dry spell lengths
with respect to daily amount thresholds of 0.1, 1.0, 5.0 and
10.0 mm/day. A dry spell length is defined as the number of
consecutive days with rainfall amounts below one of these
thresholds. The empirical lacunarity for every rain gauge
is well reproduced by two power laws, the exponents vary-
ing notably from one gauge to another. The spatial distri-
bution of the lacunarity is characterised by a north to south
or southeast gradient, thus suggesting that this parameter can
be a useful tool to distinguish between different pluviomet-
ric regimes. The predictability of the five series is quanti-
fied by means of the rescaled analysis and the interpretation
of the Hurst exponent. Its patterns reveal that most part of
the Iberian Peninsula shows signs of persistence for the daily
rainfall and the dry spell series, although persistence is only
clearly manifested in some small domains. The instability of
possible predictive algorithms is analysed through the Lya-
punov exponents. They are only computed for the series of
daily amounts and for dry lengths respect to the threshold
level of 0.1 mm/day due to the short number of dry spells for
larger threshold levels. The series of daily amounts depict the
highest instability along the Mediterranean coast. The series
of dry spells show an increasing instability from NE to SW
Spain, with a relevant nucleus of high Lyapunov values in
the south-western Atlantic coast. As a summary, lacunarity
and Hurst and Lyapunov exponents depict a relevant spatial
variation, which is in agreement with well known patterns of
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the pluviometric regime, such as annual amount spatial dis-
tribution and return periods of dry spells.

1 Introduction

1.1 State of the art

The fractal nature of the rainfall processes is an accepted
behaviour and numerous studies have been published dur-
ing the last decades. It can be cited Lovejoy and Man-
delbrot (1985), Rodrı́guez-Iturbe et al. (1989), Olsson et
al. (1993), Hubert et al. (1993), Tessier et al. (1996), Harris
et al. (1996), Veneziano et al. (1996), Svensson et al. (1996),
Lima and Grasman (1999), Mazzarella (1999), Mazzarella
and Tranfaglia (2000), Sivakumar (2001a, b), Sivakumar et
al. (2001) and Salas et al. (2005), among many others. These
references include a set of concepts (multifractality, chaotic
behaviour, time persistence, predictability) applied to a va-
riety of topics as rain intensity, annual amounts, precipita-
tion caused by convective storms, characterisation and com-
parison of different climates and design and improvement of
rain-gauge networks.

Many features concerning the predictability of a pluvio-
metric regime can be analysed on the basis of the nonlinear
behaviour of the time series describing it. It can be cited,
among others, the rescaled analysis and the meaning of its
Hurst exponent, and also a set of descriptors of the mech-
anism governing this regime (embedding dimension, corre-
lation dimension, Kolmogorov entropy and Lyapunov expo-
nents) which are based on the concept of strange attractors
and on the reconstruction theorem. The present analysis of
the pluviometric regime of the Iberian Peninsula is aimed to
characterise the time irregularity (lacunarity) of the pluvio-
metric records and to evaluate the success of possible predic-
tive algorithms by means of the interpretation of the Hurst
exponent and their instability manifested by the Lyapunov
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Fig. 1. Geographical location of the 43 rain gauges belonging to
the National Meteorological Offices of the Spanish and Portuguese
Governments.

exponents. A future deeper characterisation of the nonlin-
ear mechanism governing the pluviometric regime could be
achieved by means of the additional concepts linked to the
reconstruction theorem.

Database and methodology are introduced in Sects. 1.2
and 1.3. Concepts of lacunarity and predictability and the re-
sults obtained for the daily pluviometric regime are detailed
in Sects. 2 and 3, respectively. Section 4 is devoted to de-
velop the concept of predictive instability, and includes the
mathematical formulation to compute Lyapunov exponents
and the main results. Finally, the main patterns deduced
for the pluviometric regime are summarised and discussed
in Sect. 5.

1.2 Collection of data

The dataset consists of daily pluviometric records covering
the period 1950–1990 obtained from 43 rain gauges belong-
ing to the Meteorological Services of the Spanish and Por-
tuguese Governments. These rain gauges were carefully cho-
sen on account of their excellent recording continuity and
they have recently been used in statistical modelling of dry
spell distribution (Lana et al., 2006). When a minor lack
of data is detected, dry spells including days with missing
data are discarded for computations. This decision does not
strongly affect results concerning Hurst and Lyapunov expo-
nents because the episodes of missing data are very scarce
and event nonexistent for some rain gauges. When moving
windows used to compute lacunarity include lack of data,
they are also discarded for computations. Nevertheless, la-
cunarity should not be strongly affected by a few missing
data, especially when a high number of moving windows
are available. Figure 1 depicts the location of these rain
gauges which are quite homogeneously distributed through-
out the Iberian Peninsula. Five different series are gener-
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Fig. 2. Daily rainfall amounts recorded at rain gauge FAB (vertical
bars) from 19 March to 18 June of 1950. Threshold levels of(a)
0.1 and 1.0 mm/day and(b) 5.0 and 10.0 mm/day are considered to
illustrate the dry spell length sequence.

ated for every rain gauge. The first is the series of the
daily rainfall amounts. The other four are formed by con-
secutive dry spell episodes. A dry spell is defined as the
number of consecutive days with rainfall amounts lowering
a threshold level. Four threshold levels (0.1, 1.0, 5.0 and
10.0 mm/day) are considered. The first level is the resolution
of the pluviometers and it represents a simple distinction be-
tween “wet” and “dry” days. The other three levels distin-
guish between episodes from very moderate (1.0 mm/day) to
remarkable daily amounts (10.0 mm/day). Figures 2a and b
schematise the set of consecutive daily rainfall amounts for
the rain gauge FAB (northern Mediterranean coast) during
the period 19 March–18 June 1950 and the associated dry
spells for the four different daily threshold levels. For in-
stance, consecutive lengths of 11, 13, 3, 19, 3 and 35 days
are detected within the recording period for a threshold level
of 10.0 mm/day. As expected, Figs. 2a and b show that spell
lengths tend to be fragmented with the decreasing threshold
level.

1.3 Methodology

The pluviometric regime of the Iberian Peninsula is charac-
terised by a remarkable spatial variability due to the great
climatic differences among the inner Peninsula (Central
Plateau) and the Atlantic and the Mediterranean influenced
areas. Additionally, the orography, the complexity of the
atmospheric circulation dynamics at mesoscale and, some-
times, the time irregularity of the Mediterranean climate

Nonlin. Processes Geophys., 14, 109–121, 2007 www.nonlin-processes-geophys.net/14/109/2007/



M. D. Mart́ınez et al.: Lacunarity and predictability of the pluviometric regime 111

also contribute to yield complex spatial and temporal pat-
terns of the pluviometric regime. These patterns cannot
be completely analysed and described by means of conven-
tional tools such as statistical distributions, return periods
or periodicities deduced from power spectra analyses (Lana
et al., 2004, 2006; Burgueño et al., 2005; Martı́nez et al.,
2007). Specifically, lacunarity, predictability of pluviomet-
ric records and instability of predictive algorithms are three
aspects which cannot be properly analysed by those tools.
The lacunarity of each daily pluviometric record is evaluated
by using the concept and definition introduced by Mandel-
brot (1982). The predictability (persistence, anti-persistence
or randomness of a dataset) is qualified through the rescaled
analysis and the meaning of the Hurst exponent (Feder, 1988;
Korvin, 1992; Turcotte, 1997). The instability of possible
predictive algorithms is quantified through the first two pos-
itive Lyapunov exponents (Eckmann et al., 1986; Stoop and
Meier, 1988; Diks, 1999).

The lacunarity for each rain gauge is computed using mov-
ing windows of increasing length from 1 to 100 days, cover-
ing different time scales as days, weeks, months or seasons.
Four different sets of lacunarity curves are obtained, one for
each threshold level. In that way, the relevance of the lacu-
narity in the daily pluviometric records is evaluated by con-
sidering both the time period (window length) and the rele-
vance of the episode (daily amount). It will be shown later
that every lacunarity curve is very well described by a couple
of power laws with exponents changing with the record (rain
gauge) and depending on the threshold level. Additionally,
lacunarity is expected to increase with the threshold level,
on account of the behaviour of the spell lengths shown in
Figs. 2a and b.

The degree of persistence, anti-persistence and random-
ness of the five different sets of pluviometric data is deduced
from the rescaled analysis, through the meaning of the Hurst
exponent. Then, the predictability of both the daily pluvio-
metric records and the dry spell length series can be checked.
This analysis is especially relevant as it permits not only a
better insight into the daily rain amount prevision, but a better
knowledge of the behaviour of the dry spell lengths, which
is very important when hazards concerning water resources
and supplies have to be characterised.

Finally, the degree of instability of a predictive algorithm
is a very important factor to delimit the necessary accuracy
of the basic data (the pluviometer resolution for instance) and
the possible success when predicting events. Since long se-
ries are needed to generate reconstructed vectors of the orig-
inal data (Takens, 1981; Grassberger and Procaccia, 1983a,
b) in order to accurately compute the Lyapunov exponents
(Diks, 1999), only the series of daily rainfall and dry spell
lengths for the threshold of 0.1 mm/day have been consid-
ered. Unfortunately, the number of consecutive dry spells for
higher thresholds, especially for 5.0 and 10.0 mm/day, is not
high enough to this purpose.

2 Lacunarity

The concept of lacunarity was introduced by Mandelbrot
(1982) as a way of quantifying the distribution of gap sizes
within a set of data. At the same time, it represents a mea-
sure of the failure of a fractal to be translationally invariant
and also plays a relevant role in the study of critical phenom-
ena. Moreover, several fractal sets characterised by the same
fractal dimension can be distinguished by their lacunarities.
For instance, it is possible to generate different Sierpinski
carpet sets with the same fractal dimension, but with differ-
ent lacunarity depending on the spatial concentration of gaps
(Lin and Yang, 1986). Some illustrative examples of time se-
ries with different lacunarity can be found in Turcotte (1997).
Whereas large lacunarity implies large gaps and clumping of
points, small lacunarity suggests a rather uniform distribu-
tion with shorter gaps. Opposite examples could be synthetic
series derived from a quite uniform distribution (low lacu-
narity) or a clumped distribution (high lacunarity). Interme-
diate examples could be those corresponding to a Cantor set
or a random Cantor set. In this pluviometric analysis, the
lacunarity is a measure of the distribution of segments, de-
fined as “sequences of consecutive days” with rain amounts
equalling to or exceeding a threshold amount, and gaps, de-
fined as “sequences of consecutive days” with rain amounts
below the selected threshold.

From a quantitative point of view,n(s, r) is introduced as
the number of moving windows of lengthr (days) containing
s segments (rainy days). After that, the probabilityp(s, r) is
evaluated as

p(s, r) = n(s, r)/N(r) (1)

the total number of possible windows of lengthr being

N(r) = ℓ − r + 1 (2)

with ℓ the total number of recording days, including seg-
ments and gaps. The first and second order moments ofs

are

M1(r) =

r
∑

s=1

s · p(s, r) (3a)

M2(r) =

r
∑

s=1

s2 · p(s, r) (3b)

and finally, the lacunarity is defined as the quotient

L(r) = M2(r)/ [M1(r)]
2 (4)

It is worth mentioning that a different approximation to the
evaluation of the lacunarityL is given by the computation
of the cluster dimension D (Korvin, 1992). An example ap-
plied to Earth sciences can be found, for instance, in Lana
et al. (2005), who analysed elapsed times and distances be-
tween consecutive seismic events. Another example is the
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Fig. 3. Empiric lacunarity, L(r), (open squares) as a function of the window length r for gauges ALM and VIG. Two power laws (solid lines)
reproduce quite well the evolution of L(r), whatever the daily amount threshold.

study of Mazzarella (1999), who used the concepts of clus-
ter dimension and Cantor dust to analyse the characteristics
of the daily rainfall for two meteorological observatories in
Italy. There are some similarities between the concepts of
lacunarity L and cluster dimension D. In rainfall processes,
both methods try to quantify the time distribution of dry
days or days with amounts lowering a threshold value (gaps).
High values ofL imply long gaps. On the contrary, low val-
ues ofL suggest a quite uniform distribution of short gaps.
From the viewpoint of the cluster dimension, the more iso-
lated the clusters of rainy days (rainfall concentrated in a few
consecutive days between long gaps), the smaller the value
of D. Thus, small values of D would be related to high val-
ues ofL. Conversely, low values ofL and high values of
D would be associated with quite uniformly distributed short
gaps.

The lacunarity of the pluviometric regime in the Iberian
Peninsula is evaluated for different window lengthsr from
1 to 100 days at steps of one day. In this way, a detailed
description of the lacunarity is achieved, especially at daily,
weekly, monthly and seasonal scales, which are of especial
interest in Climatology and Hydrology. Figure 3 depicts the
lacunarity obtained for gauges ALM and VIG. Very similar
curves are found for the rest of rain gauges. For all the thresh-
old levels, the empirical lacunarities are quite well fitted by
two power laws

L(r) = α · rβ ; r = 1, ....., rc (5a)

L(r) = δ · rε ; r = rc + 1, .....rmax (5b)

with negative exponentsβ andε, always being|β| > |ε|. rc
represents the critical window length for which the power
law changes from Eqs. (5a) to (5b), its value depending on

the threshold level. An automated detection of the criti-
cal window length for every rain gauge and threshold level
is questionable. rc is visually determined by testing the
power laws (5a) and (5b) for differentrc values.rmax is the
maximum window length (100 days). A relevant feature is
that, for a fixed window length,L(r) always increases with
the threshold level. The comparison of the two examples
shown in Fig. 3 suggests that different pluviometric regimes
are manifested by quite different lacunarities. Specifically,
rain gauge VIG is submitted to an Atlantic regime, where
drought periods are usually short (Lana et al., 2006) and an-
nual rainfall amounts are very remarkable (annual average
amount close to 1900 mm). The counterexample is the rain
gauge ALM, in the southern Mediterranean coast, where the
drought periods can be very severe and the annual rainfall
amounts very low (annual average amount close to 200 mm).
Effectively, an exhaustive revision of the results derived for
the 43 rain gauges confirms that rain gauges submitted to
Atlantic pluviometric regimes depict lower lacunarities than
those corresponding to the Mediterranean regime (especially
the southern Mediterranean) and the inner Peninsula (Cen-
tral Plateau). Consequently, the lacunarity becomes a use-
ful parameter to distinguish between different pluviometric
regimes. Figure 4 depicts the spatial distribution of the lacu-
narity for window lengths of 1 and 30 days and threshold lev-
els of 0.1, 1.0, 5.0 and 10.0 mm/day. It is worth mentioning
the strong reduction of the lacunarity from 1 to 30 days for
all the threshold levels. In this set of maps and the forthcom-
ings, the standard kriging interpolation (Oliver and Webster,
1990) has been used to obtain accurate spatial descriptions of
the variables analysed.

Another interesting question is the spatial distribution of
the exponents of the power laws given by Eqs. (5a) and
(5b), especially the exponentβ, which is associated with

Nonlin. Processes Geophys., 14, 109–121, 2007 www.nonlin-processes-geophys.net/14/109/2007/
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daily amount thresholds of 0.1, 1.0, 5.0 and 10.0 mm/day.

the greatest rate of reduction of the lacunarity with the win-
dow length. Figure 5 depicts the spatial distribution ofβ

for the four daily amount thresholds. As a general feature,
for the level of 0.1 mm/day, the western part of the Iberian
Peninsula shows the smallest reduction of the lacunarity with
the increasing window length, whereas the greatest reduction
is observed in eastern and, especially, in the south-eastern
Spain. A quite similar pattern still remains for 1.0 mm/day,
but not for greatest thresholds, especially, for 10.0 mm/day,
though small values ofβ are again detected in wide areas of
south-eastern Spain. The second power law, with the expo-
nentε, describes the evolution of lacunarity close to 1.0 (the
minimum asymptotic lacunarity) for window lengthsr that
often are close to or exceed one month.

3 Predictability

The rescaled analysis and the Hurst exponent provide us with
an interesting point of view of the behaviour of a complex
dynamic system (Feder, 1988; Goltz, 1997). Applications to
a variety of fields in Geology and Geophysics can be found,
for instance, in Korvin (1992) and Turcotte (1997). Some

examples of analyses of rainfall series for different spatial
domains at various time scales can be found in Oñate (1997),
Miranda and Andrade (1999, 2001), Whiting et al. (2003)
and Miranda et al. (2004), among others. Very briefly, the
rescaled process consists of the computation of mean values,
cumulative differences, and after that, maximum range of the
integrated signal,R(τ), and standard deviations,S(τ), for
subsets of series with different numberτ of consecutive ele-
ments. If there exists fractal behaviour, the Hurst exponent,
H , defined as positive, is introduced through the expression

R(τ)/S(τ) = aτH (6)

Values ofH close to 0.5 suggest the randomness of the mag-
nitude analysed. Then, successive steps of the complex dy-
namic system are independent and the best prediction is the
last measure. Values ofH clearly exceeding 0.5 indicate time
persistence of the dynamic system. It implies that the time
trend deduced for the analysed set of lengthτ will remain
and the best prediction must be based on the extrapolation of
this trend. Finally, values ofH well below 0.5 suggest anti-
persistence. Thus, the time trend will reverse and the best
prediction is the average over the lengthτ .

Nonlin. Processes Geophys., 14, 109–121, 2007 www.nonlin-processes-geophys.net/14/109/2007/
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The predictability of the pluviometric regime of the
Iberian Peninsula is analysed considering the five data series
generated for each rain gauge as an accurate estimation ofH

does not always need a very large number of data samples.
For this purpose, it is required, first, a low uncertainty onH .
Second, an acceptable square regression coefficient, derived
from the representation of log{R(τ)/S(τ)} in terms of log{τ },
is also recommended. Finally, the linear evolution of the log-
log representation should cover two or more magnitude or-
ders ofτ . A careful check on uncertainties onH and square
regression coefficients reveals that reliable Hurst exponents
are obtained for the 43 rain gauges and the five pluviometric
series. Uncertainties onH are usually small and they affect
the second decimal digit at the most. With respect to the
range used for the rescaled analysis,τ arrives up to 4000,
1000, 800, 400 and 200 elements for the consecutive daily
rainfalls and the four dry spell series respectively. Given that
values ofτ less than 10 are not considered to avoid compu-
tational artefacts, results for thresholds of 5.0 and especially
10.0 mm/day should be carefully considered since two mag-
nitude orders ofτ are not achieved. Figure 6 shows the ratio
R/S for rain gauge ZAR. In this example, whereas the series
of consecutive daily amounts and, especially, dry spells re-
spect to 0.1 mm/day depict clear randomness (values ofH

close to 0.5), the dry spells series for 1.0 and 10.0 mm/day
show some signs of persistence (values ofH nearing 0.6)
and dry spells for 5.0 mm/day should be governed by per-
sistence (H=0.61). Then, it should be more likely a suc-
cessful prediction of dry spells related to a threshold level of
5.0 mm/day than for levels of 1.0 and 10.0 mm/day and even
more than estimations of future daily rain amounts or dry
spells for levels of 0.1, 1.0 and 10.0 mm/day. A shortcoming
of the rescaled analysis of dry spells for high threshold lev-
els is the relatively short number of elements of the series.
Then, although the persistence detected for 5.0 mm/day, this
result has to be carefully considered since the constraint of
covering at least two cycles of the logarithmic scale ofτ is
not fully accomplished.

Figure 7 depicts the spatial distribution across the Iberian
Peninsula of the Hurst exponent for the five series. Solid
thick lines delimit areas governed by persistence and anti-
persistence (H=0.5). Signs of anti-persistence are not de-
tected for the daily rainfall series. A wide area of the
Iberian Peninsula depicts signs of persistence (0.5<H<0.6)
and only a small domain in the south can be associated with
a relevant persistence (0.7<H<0.8). The spatial patterns for
the dry spell series are quite different. The limit between
areas governed by persistence and anti-persistence tend to
drift from north to south as the threshold level increases.
Nevertheless, a substantial reduction of the areas of anti-
persistence is only evident for 5.0 and 10.0 mm/day. Clear
signs of persistence (0.6<H<0.7) are only detected in some
unconnected domains of the Iberian Peninsula for the thresh-
old level of 5.0 mm/day.
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Fig. 6a. Ratio R/S for rain gauge ZAR based on the series of con-
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4 Predictive instability

Uncertainties and instabilities concerning predictive algo-
rithms applied to complex mechanisms such as the daily
rainfall regime can be delimited through the Lyapunov ex-
ponents, which give a measure of how small uncertainties
on the starting conditions of a complex system could lead
to large errors in predictions of its future state. The Lya-
punov exponents are introduced on the basis of the recon-
struction theorem and reconstructed vectors (Takens, 1981;
Grassberger and Procaccia, 1983a, b). The main objective is
quantifying the predictive instability by computing the first
two Lyapunov exponents. In addition, the reconstruction the-
orem permits a complete description of a dynamical complex
system by means of the concepts of correlation dimension
and Kolmogorov entropy (Diks, 1999).

The pluviometric datasets are generically represented by
{x(k), k=1,. . . ,n}, with n the number of samples of each
series andx(k) either consecutive daily rainfalls or spell
lengths. The space of our dynamical system is reconstructed
by a set ofm-dimensional vectors

Zi={x(i), x(i+1), . . . , x(i+m−1)}; i=1, . . . , n−m+1 (7)

A very simple reconstruction of a dynamical system would
be that obtained from dimensionm equal to 2. It should be
something similar to assume, for instance, that a daily rain-
fall amount depends solely on the previous amount. The be-
haviour of the dynamical system is, of course, much more
complex and higher dimensions are necessary for a right de-
scription. A daily rainfall amount could depend, in a very
complex way, on many previous rainfall episodes and the
reconstructed space needs for vectorsZi generated with m
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Fig. 6b. Ratio R/S for rain gauge ZAR based on the four series of dry spells generated for threshold levels of 0.1, 1.0, 5.0 and 10.0 mm/day.

higher than 2. Equation (7) generates a set of vectors, where
(m–1) components ofZi−1 are also used forZi , and the num-
ber of previous daily rainfall amounts or dry spell lengths
used to explain the next episode increases with m. An exces-
sively high dimensionm would generate redundant or useless
information. Thus, it is convenient to search for the optimal
dimension m, usually designed as embedding dimensiondE ,
for the best reconstruction of the space of the dynamical sys-
tem. If the embedding dimension is estimated in some way,
the largest Lyapunov exponent, responsible of the instability,
is introduced as

λ1 = lim
i→∞

{

1

i
ln

∥

∥

∥

∥

δZi

δZ0

∥

∥

∥

∥

}

(8)

with δZ0 being an infinitesimal change on the starting point
in the reconstructed space of the dynamical system,δZi the
change on the reconstructed vector due to instability, after

the i-th step in the reconstructed space, and|•| the norm of
the Jacobian matrix. Ifλ1 is positive, a future state of the dy-
namical system could strongly depend on uncertainties on the
initial state. Then, the long-term prediction (large i) would
be submitted to an outstanding instability.

Non-negative Lyapunov exponents can be numerically es-
timated from a time series according to the procedure pro-
posed by Wolf et al. (1985). A more sophisticated compu-
tational algorithm (Eckmann et al., 1986; Stoop and Meier,
1988) permits to obtain all the positive and negative Lya-
punov exponents,λi (i=1,. . . ,dE) and a good estimation of
the embedding dimension. First, it is assumed that a func-
tion f(•) permits to relate the different reconstructed vectors
following the relationship

Zk = f (Zk−1) = .... = f k(Z0) (9)
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Fig. 7. Spatial distribution of the Hurst exponent for the series of daily rainfall and the series of dry spell lengths for the different threshold
levels. Solid thick line delimits the areas related to persistence and anti-persistence (H=0.5).

with Z0 being the starting point in the reconstructed space or,
in other words, the first reconstructed vector according to the
recurrence given by Eq. (7). According to Eq. (8), the main
objective is to quantify the instability of the dynamic system
by considering small perturbations at the starting point. For
this purpose, it can be considered the development off k in
terms of Taylor’s series aroundZ0

∥

∥

∥
f k(Z0)−f k(Z0+V0ε)

∥

∥

∥
=

{

k−1
∏

i=0

Df (Zi)

}

V0ε+O(ε2) (10)

with V0 an arbitrary vector,ε less than 1.0 and DF(Zi) repre-
senting the partial derivative matrix of the functionf . Thus,
V0ε represents the arbitrary small perturbation at the starting
point. The use of Eq. (10), with the arbitrary termV0ε, and
Eq. (8) to obtain infinitesimal changes on the starting point,
δZ0, and on thei-th step,δZi , is a valid option to determine
the largest Lyapunov exponent. Nevertheless, all the expo-
nents, includingλ1, can be estimated by taking into account
they are the eigenvalues of the partial derivative matrixDF.

www.nonlin-processes-geophys.net/14/109/2007/ Nonlin. Processes Geophys., 14, 109–121, 2007



118 M. D. Mart́ınez et al.: Lacunarity and predictability of the pluviometric regime

In this way, the arbitrary termV0ε is not necessary. The ma-
trix DF can be expressed as the product of matrices

Df (Zi) = A(Zi) B−1(Zi) (11)

the elements of the matrices A and B defined as

A(Zi)α,β =

M
∑

m=1

5i+1
mα 3i

mβ (12)

B(Zi)α,β =

M
∑

m=1

3i
mα3i

mβ (13)

with indicesα andβ ranging from 1 to the embedding di-
mensiondE and

5i+1 = f (Yi) − f (Zi)

3i = Yi − Zi
(14)

M is the number of samples of reconstructed vectorsYi

aroundZi and of samplesf (Yi) aroundf (Zi) The optimal
number of samples is the minimum of the pair{ 2dE, dE+4}

according to Stoop and Meier (1988). After computing
the partial derivative matrix, a base of orthonormal vectors
{V 0

1 , ..., V 0
dE

} is required to start the following iterative com-
putational process:

W
j
n = Df (Zj−1)V

j−1
n ; n = 1, ..., dE (15)

d
j

1 =

∥

∥

∥
W

j

1

∥

∥

∥
, d

j
m =

∥

∥

∥
ω

j
m

∥

∥

∥
; m = 2, ..., dE (16)

ω
j
m = W

j
m −

m−1
∑

i=1

(V
j

i , W
j
m)V

j

i (17)

V
j
n = ω

j
n/d

j
m (18)

Equations (15) to (18) are repeated many times to obtain

sets of
{

d
j

1 , d
j

2 , ..., d
j

dE

}

for j=1,. . . , k, and finally then-th

eigenvector (n-th Lyapunov exponent) is computed as

λn = lim
k→∞

1

k

k
∑

j=1

log(d
j
n ) (19)

An accurate computation of Lyapunov exponents according
to Eq. (19) requires to control the evolution of each of them
towards an asymptotic value for a large enough indexk. In
addition, it must be considered that, as the stationary corre-
lation dimension of the complex system has not been esti-
mated previously, the optimal embedding dimensiondE is
not known either (Lana et al., 2005). Then, all the compu-
tational steps, from Eqs. (11) to (19), must be repeated for
increasing dimensions of the reconstructed space until de-
tecting an optimal value that is assumed as the embedding
dimension. A Lyapunov exponent should be then determined

by searching for its stationary value after a long enough iter-
ation of Eqs. (15) to (18), and a large enough reconstruction
dimension.

The generation of the reconstruction vectors constraints
the determination of accurate Lyapunov exponents to long
sets of data, especially for large embedding dimensions.
Consequently, the Lyapunov exponents are only computed
for the series of daily rainfall and dry spell lengths generated
for the threshold level of 0.1 mm/day, in order to ensure a
large enough data sample.

Figure 8 shows the evolution of the first two positive Lya-
punov exponents,λ1 andλ2, with the number of iterations
of Eqs. (15) to (18) and with the increasing reconstruction
dimension for the series of daily rainfall amounts recorded
at rain gauge ZAR. One thousand iterations and an embed-
ding dimension of 15 are necessary to achieve asymptotic
values for the first,λ1, and the second,λ2, Lyapunov ex-
ponents. Very similar number of iterations and embedding
dimensions are necessary for the rest of rain gauges. The
spatial distribution of the first positive exponentλ1 is shown
in Fig. 9. For the daily rainfall series, a clear increase of
the instability (higher Lyapunov exponents) from western to
southern Iberian Peninsula and a narrow fringe of minimum
Lyapunov values (low instability) on the Pyrenees (northern
Iberian Peninsula) can be observed. The spatial patterns for
the series of dry spell lengths (0.1 mm/day) are very different.
Now a gradient is detected from NE Spain (low instability)
to SW Spain (high instability). Consequently, uncertainties
concerning prediction of daily amounts and dry spell lengths
do not have, in general similar spatial characteristics.

5 Conclusions

Daily rainfall records of 43 rain gauges belonging to the Me-
teorological Offices of the Spanish and Portuguese Govern-
ments have permitted to analyse some aspects of the non-
linear behaviour of the pluviometric regime of the Iberian
Peninsula. Specifically, the series of daily rainfall amounts
and consecutive dry spell lengths have been analysed from
the viewpoint of their lacunarity, predictability (re-scaled
analysis and Hurst exponent) and predictive instability (Lya-
punov exponents).

The decrease of the lacunarity with the increasing win-
dow length is well reproduced for all the rain gauges by two
power laws, whatever the daily threshold level. The first
power law is the most relevant as it reproduces the evolu-
tion of the lacunarity for window lengths often nearing one
month. The first power law models the most notable decreas-
ing of the lacunarity, while the second power law usually
reproduces its evolution for values close to the asymptotic
lacunarity of 1.0. The spatial distributions of the lacunarity
and of the exponentβ of the first power law typically de-
pict a notable organisation with south to north, and south-
east to north-west gradients, thus suggesting some degree
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Fig. 8. (a)Evolution of the first two positive Lyapunov exponents
with the number of iterations and(b) the reconstruction dimension
for the series of daily rain amounts recorded at the rain gauge ZAR.

of Atlantic and Mediterranean climatic influences. It must
be underlined, however, that patterns of the exponentβ for
5.0 and 10.0 mm/day threshold levels are less spatially or-
ganised.

The spatial distribution of the Hurst exponent is well or-
ganised for the five pluviometric series, but some differences
are observed. Whereas the series of daily amounts presents
either clear persistence or persistence close to randomness
throughout the Iberian Peninsula, the series of dry spells
mainly depict persistence to the north of the domain and anti-
persistence to the south. The randomness limit (isoline of

(a)

0.15 0.20 0.25 0.30 0.35

              First  Lyapunov exponent 
                         Daily rainfall

(b)

0.20 0.30 0.40

             First  Lyapunov exponent  
          dry spell length (0.1 mm/day)

Fig. 9. Spatial distribution of the first positive Lyapunov expo-
nent for the series of(a) daily rainfall and(b) dry spell lengths
(0.1 mm/day) after one thousand iterations (embedding dimensions
close to 15).

H=0.5) shifts towards the south with the increasing threshold
level. Consequently, a prediction of dry spell lengths based
on extrapolation of previous time trends would not be reliable
for the whole Iberian Peninsula. For some small southern ar-
eas, predictions should be based on the average of previous
dry spell lengths.

With respect to the predictive instability, it must be kept
in mind that it is strongly governed by the first positive Lya-
punov exponent,λ1. Consequently, the spatial distributions
of λ1 for daily rainfall and dry spell length (0.1 mm/day)
series (Fig. 9) provide a good approximation to the predic-
tive instability of the daily rainfall regime in the Iberian
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Peninsula. A common feature of all the series is the high
embedding dimension,dE , for which the first Lyapunov ex-
ponent achieves a stationary value. DimensiondE often
equals or exceeds a value of 15, which is a sign of a re-
markable randomness component in the time behaviour of
the daily amount and dry spell series. In addition to fu-
ture analyses of correlation dimension and Kolmogorov en-
tropy, which should give us some insight about the minimum
number of non-linear equations governing the pluviometric
regime and the “loss” of memory of the mechanism govern-
ing this complex process, the high embedding dimensions
already enhance the complexity of the pluviometric regime.
The spatial distribution ofλ1 is well organised, being espe-
cially relevant the clear north-west to south-west gradient for
dry spell lengths. It is also worthy of mention that places
where the predictability of the daily rainfall is very ques-
tionable (high Lyapunov exponent) do not match with those
where instability affects the dry spell length prediction. The
single exception is a narrow fringe in the southern Atlantic
coast of Portugal, where both daily rainfall and dry spell
length prediction should be submitted to relatively high un-
certainties. Additionally, it must be mentioned that places
in the Iberian Peninsula where the annual rainfall amounts
are not very large (southern Spain), and drought periods are
quite common, correspond to areas where prediction of dry
spell lengths contributing to relevant droughts is submitted to
significant uncertainty and instability.

As a summary, the present study introduces the first ele-
ments for a better knowledge of the daily rainfall regime of
the Iberian Peninsula from the point of view of its nonlinear
behaviour. Future studies intended for a deeper knowledge
of the nonlinear behaviour of the daily pluviometric regime
should also be based on the reconstruction theorem, but
addressed to the evaluation of the correlation dimension and
the Kolmogorov entropy.
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References
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Rodŕıguez-Iturbe, I., Febres de Power, B., Sharifi, M. B., and Geor-

gakakos, K. P. (1989). Chaos in rainfall, Water Resour. Res., 25,
1667–1675, 1989.

Salas, J. D., Kim, S. H., Eykholt, R., Burlando, P., and Green, T.
R.: Aggregation and sampling in deterministic chaos: implica-
tion for chaos identification in hydrological processes, Nonlin.
Processes Geophys., 12, 557–567, 2005,
http://www.nonlin-processes-geophys.net/12/557/2005/.

Sivakumar, B.: Rainfall dynamics at different temporal scales: A
chaotic perspective, Hydrol. Earth Syst. Sci., 5, 645–651, 2001a.

Sivakumar, B.: Is a chaotic multi-fractal approach for rainfall pos-
sible?, Hydrol. Processes, 15, 943–955, 2001b.

Sivakumar, B., Sorooshian, S., Gupta, H. V., and Gao, X.: A chaotic
approach to rainfall disaggregation, Water Resour. Res., 37, 61–
72, 2001.

Stoop, R. and Meier, P. F.: Evaluation of Lyapunov exponents and
scaling functions from time series, J. Opt. Soc. Am. (B), 5, 1037–
1045, 1988.

Svensson, C., Olsson, J., and Berndtsson, R.: Multifractal proper-
ties of daily rainfall in two different climates, Water Resour. Res.,
32, 2463–2472, 1996.

Takens, F.: Detecting Strange Attractors in Turbulence, in: Lecture
Note in Mathematics, edited by: Rand, D. A. and Young, L. S.,
Springer, Berlin, 1981.

Tessier, Y., Lovejoy, S., Hubert, P., Shertzer, D., and Pecknold, S.:
Multifractal analysis and modelling of rainfall and river flows
and scaling, causal transfer functions, J. Geophys. Res., 101,
26 427–26 440, 1996.

Turcotte, D. L.: Fractal and Chaos in Geology and Geophysics (2nd
edition), Cambridge University Press, 1997.

Veneziano, D., Bras, R. L., and Niemann, J. D.: Nonlinearity and
self-similarity of rainfall in time and a stochastic model, J. Geo-
phys. Res., 101, 26 371–26 392, 1996.

Whiting, J. P., Lambert, M. F., and Metcalfe, A. V.: Modelling per-
sistence in annual Australian point rainfall, Hydrol. Earth Syst.
Sci., 7, 197–211, 2003,
http://www.hydrol-earth-syst-sci.net/7/197/2003/.

Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A.: Deter-
mining Lyapunov exponents from a time series, Physica, 16D,
285–317, 1985.

www.nonlin-processes-geophys.net/14/109/2007/ Nonlin. Processes Geophys., 14, 109–121, 2007

http://www.nonlin-processes-geophys.net/12/557/2005/
http://www.hydrol-earth-syst-sci.net/7/197/2003/

