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Abstract. This study proposes and justifies a Bayesian ap-(Kaiser, 1994; Torrence and Compo, 1998; Percival and
proach to modeling wavelet coefficients and finding statis-Walden, 2000), and is essentially a tool to visualize the fre-
tically significant features in wavelet power spectra. The quency content of a signal as it varies through time. Over the
approach utilizes ideas elaborated in scale-space smoothirlgst decades, wavelets have become a popular tool for data
methods and wavelet data analysis. We treat each scale of trenalysis. Applied fields that are now making use of wavelets
discrete wavelet decomposition as a sequence of independeimtclude signal and image processing in physical studies, en-
random variables and then apply Bayes’ rule for construct-gineering, music, medicine etc.

ing the posterior distribution of the smoothed wavelet coef- It is known that the raw wavelet-based estimator of the
ficients. Samples drawn from the posterior are subsequentlyime-varying power spectrum suffers from the same serious
used for finding the estimate of the true wavelet spectrum atlisadvantage as the periodogram in the Fourier analysis. Be-
each scale. The method offers two different significance testing an asymptotically inconsistent estimator of the true spec-
ing procedures for wavelet spectra. A traditional approachtrum it requires some kind of smoother to be applied in a
assesses the statistical significance against a red noise badkequency domain to reduce the variance of the individual
ground. The second procedure tests for homoscedasticity giower measurements. A natural extension to wavelets would
the wavelet power assessing whether the spectrum derivdbe to assume stationarity over some time interval and smooth
tive significantly differs from zero at each particular point of the wavelet spectrum along the time axis.

the spectrum. Case studies with simulated data and climatic In this study, we formulate a method in a Bayesian frame-
time-series prove the method to be a potentially useful toolwork, with the smoothing procedure efficiently substituted
in data analysis. by sampling from the posterior density. The latter is con-
structed basing on the prior information that can be inferred
from the data themselves. In developing this approach we
largely utilize ideas elaborated in a family of the so-called
scale-space techniques (Chaudhuri and Marron, 1999; Park

A variety of different methods and tools have been developeqe tsilé vzvgotf t?,o;égfszs?natﬂ: @a“glérzi(;o:)éeg;ghs% ic;ggtﬁfgs in
to analyze statistical properties of data sequences. A study Q y u bap N )

) . . . . the analyzed data that are “really there”, or in other words,
time-series at different levels of time/space resolution repre-

sents a particular interest. Classical approaches, such as 1age statistically significant relative to the established hypoth-

. . . _eSis. The method implements two independent significance
Fourier transform, allow analysis of the frequency content mtestin rocedures for the estimated wavelet spectrum. A
the signal. This implicitly presumes the harmonicity of the 9p P :

studied process. For most real time-series, however, this a conventional one, introduced in Torrence and Compo (1998),

sumption is not accurate, leading to misinterpretations of th(}ypot_hesmes that the _background process can adequately be
output results. described by the stationary AR(1) model and tests for the

Decomposing a time-series into wavelets, in tun aIIOWSpresence of features inconsistent with it. For the second ap-

highlighting of the variability features at different time-scales proqch, "’.‘d°.p‘ed from the sc_:ale-space methods, gtest for hon-
stationarity in a wavelet variance is developed with the deci-

Correspondence to: D. V. Divine sion rule based on the spectrum derivative.
(dmitry.divine@npolar.no)

1 Introduction
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80 D. V. Divine and F. Godtliebsen: Bayesian approach to wavelet power spectra

The paper is presented as follows. In Sects. 2.1 and 2.2 wathere ¢=1, ..., N;, summation is over the width
present the basics of the wavelet theory and show how the apt j=(2/ —-1)(L-1)+1 of the wavelet filters; at scale
plication of Bayes rule can be used for modeling the waveletj, and L denotes the width of the wavelet filter at scale 1.
coefficients. Finding the smoothing paramegethrough  Notation “2 (t+1)—1—/ mod N” is defined as follows. If
solving the minimization problem is shown in Sect. 2.4. The j is an integer such thati<N -1, then; mod N=j; if
procedure utilizes the estimate of the noise variance, intro-j is any other integer, theh mod N=j+pN, wherepN is
duced earlier in Sect. 2.3. Section 2.5 justifies the choice othe unique integer multiple o¥ such that & j+pN<N-1
the mother wavelet function. Section 2.6 briefly introduces(Percival and Walden, 2000). The numb¥y of wavelet
the concept of the wavelet spectrum and provides signifi-coefficients at each decomposition leyefollows the law
cance tests for the smoothed wavelet power. Section 3 deN;=N /2/ provided that the analyzed sample si¥e=/2’/
scribes the numerical implementation of the proposed techfor some integerd <J0 and!, with JO denoting the number
nique. In Sect. 4 we show some examples of data analysisf levels in the “full” DWT (Percival and Walden, 2000).
to demonstrate the method’s performance and potential, folin practice the length of the time-series may be an integer
lowed by conclusions in Sect. 5. multiple of 2/ only by chance. To override this restriction

the “padding” with zeroes up to a nearest integer multiple

of 2/ is used, with subsequent elimination of the biased
2 Method wavelet coefficients. Note that the use of the orthogonal
basis ensures that the derived wavelet coefficients do not
contain redundant information, i.e. they are approximately
independent both along and across the scales.

2.1 Wavelet transform

Wavelet decompositions can be commonly divided into two
principal classes following the type of the basis used for
transformation. This comprises the use of an orthogonal ba
sis in the discrete wavelet transform (DWT), a nonorthogo-
nal basis in the maximal overlap discrete wavelet transform .
(MODWT), or the continuous wra)lvelet transform (CWT). A Suppos_e that the observed signalz=1, ..., N can be pre-
. ) . .sented in the vector form as

wavelet function used for constructing the basis can be ei-
ther real or complex. Thus, one can also distinguish be, — 5 4 n (3)
tween complex (captures better oscillatory behaviour) and
real (more suitable for isolating peaks or discontinuities)wherea=[i, ..., iy]" is the true underlying signal. The
wavelet transforms. We in this study restrict our analysissuperscriptl’ denotes the transpose, anet[ns, ..., ny17
to real wavelets only, although the theoretical considerationglenotes a vector of independent Gaussian distributed errors
are generally applicable to complex wavelets too. with zero mean and a diagonal covariance matrix with ele-

Given a discrete stochastic processr=1, .., N, witha  mentse?. We assume for now that this quantity is known,
time incremensz, a continuous wavelet transform is defined although the most common situation is that it has to be es-
as a convolution ofi, with a scaled and translated version timated. Since the DWT is an orthonormal transform, the
of the “mother wavelet?/p which forms a basis of the trans- additive noise component being transformed has the same

2.2 Modeling the wavelet coefficients: a Bayesian ap-
proach

form. We write statistical properties as the untransformed noise.
57 5 In what follows below, we rest upon the property of the
Wi (s) = /ot Z up ol (t — t)_t]. 1) DWT to decorrelate e_ffici_ently the time-series even provided
s i3 s that the analyzed series is generated by a long-memory pro-

cess (see Percival and Walden, 2000, for details). Under the
reasonable approximation thidt;, are random samples from
the Gaussian distribution, one can apply Bayes' rule for mod-
eling these coefficients by their posterior distribution. For

. . ) . such an approach we adopt the ideas from the recently devel-
cated around time and stretched according to the investi- oped posterior smoothing technique (PS) in the scale-space

gated scale. . ;
The continuous decomposition scalef the CWT in case fzrg(r)nswork of data representation (Godtliebsen andadig

of the [,DWT Is substituted by z.i.dyad|c scale2,j =.1’ e J The realistic model fo# ;; at each decomposition levgl
wherej denotes a decomposition level. Expressing the con-
. s . . . can be presented as
volution operation in terms of a linear filtering, the discrete
wavelet transform writes as follows: W=W-+y 4)

The wavelet transform can generally be thought of as an ex
tension of the common discrete Fourier transform with the
periodic exponentiat’®’ replaced with a localized wavelet
function o[ (' — t)i—,’]. This mother wavelet function is lo-

L1 P ~
] Here W=[Wq, ..., Wy1¥ and W=[Wx, ..., Wy]T denote

Wi= " hitti e 1 b :
! JE2 4+ D-1-1 mod N @ the observed and true wavelet coefficients respectively, and

=0
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D. V. Divine and F. Godtliebsen: Bayesian approach to wavelet power spectra 81

M=N; is the number of wavelet coefficients at the refer- Samples can now be drawn from the posterior distribution.
ence level of the DWT. Note that we omit further in this sub- An efficient exact sampling algorithm for this situation is de-
section the subscrigt denoting the level of the wavelet de- scribed by @igrd (2004). The degree of smoothness in the
composition under consideration. Also here and elsewherebtained realizations foW depends heavily on the choice of
the term “observed”, when applying to the wavelet coeffi- 8 in the same way as the degree of smoothness in the local
cients, highlights the fact that they are derived from obser-linear kernel estimator is controlled through the bandwidth
vations, rather than implying that they have really been ob-see Chaudhuri and Marron (1999). The choice of appropri-
served. ate can be organized in a data-driven way and is discussed
We assume that the true wavelet coefficieRitscan be  further in Sect. 2.4.
modeled by a Gaussian Markov Random Field, see Rue
(2001), which is specified through the local characteristics 2.3 Estimating the noise variance

IS Qrk » Assessing the noise characteristics in a number of situations
E (W’|W_’> - Z 0, Vi and is not a trivial task and its detailed consideration lies beyond
o the scope of the present paper. No universal recipe can be
Var (W,|W_,) = Q;l, (5) proposed and each case should generally be considered indi-
vidually. Besides it is yet to be decided what will be regarded
where Ealb) and Vala|b) denote conditional expectation as noise in the course of the analysis. In the typical climate
and variance foa givenb, respectivelyQ is the inverse co-  proxy record, for example, the noise constituent is a mixture
variance matrix, or often referred to as the precision matrix.of an instrumental noise (measurement and dating errors),
The Q matrix is nonzero if and only ik € {9,Ur}. Hered, climatic noise, which inheres in the background process it-
denotes the neighbors to data painend W_, denotes all  self and some extra variability due to the postdepositional
elements ofW apart fromW,. This illustrates the Markov alterations of the initial profileHisher et al., 1985). Their

keo; 1t

property, i.e. separation may not be possible at all, so the question will be
. A what part of the variability can be attributed to one or another
pWiW_p) = p(Wi|[Wy,). (6)  component and subsequently filtered out.

When analyzing climatic series the problem is also of-

Based on these assumptions, the prior modeWais given o complicated by the presence of a serial correlation. If

by neglected, the resulting? may be substantially underesti-
) mated. We therefore propose a procedure that may be suit-
p(W) x exp[—ﬂ Z (W: — Wk) ] , 7) able when one deals with a time-series having pronounced
I~k auto-regressive characteristics. AR(1), the simplest model,

) . is the one most commonly used. If one assumes that the ana-
where~k means that the points indexed byandk are ;e time-series is generated by an AR(1) process, the noise
neighbors. In our default implementatidh={r—1,74+1}iS  {arm can be associated with residuals of the time-series and
used (with obvious modifications at the borders). The paramsiteq AR(1) model. This readily yields the estimate of the
eter B in Eq. (7), controls the degree of smoothness in the

realizations oW obtained fromp(W). If samples are drawn
from Eq. (7), large values of will give smooth realizations o= var(u — uagr)) -
of W while small values o8 will give rougher realizations.

sian distribution with meai, and standard deviatian, i.e. the procedure of feature detection. This, on the other hand,

noise variance as:

W, ~ N[W,, o2]. Hence, the likelihood oW given W is brings more confidence to conclusions drawn from the anal-
ysis.
(W|W) ( = >Mexp = %(W W)?|.(8) 2.4 Choice of8
=— - - . : oice 0
P A/ 27[0 202 =1 ! !

. ... .. Modeling and analysis over a broad range of the smooth-
:ijosr']ngf %”‘é?\/ser‘i?:g: ég?g%enré %r%?r?), the posterior distrib u'ing parameter simultaneously is a typical approach in the

scale-space methods of data exploration. In our case, when
the wavelet decomposition itself already gives the time-scale

P(WIW) o« p(WIW)p(W) representation of a time-series, this will produce a redundant
1 M 5 R N2 output and exert a substantial additional computational bur-
X exp| =53 Z(Wt -W)* -8 Z (Wz - Wk) . den. An apparent way of solving this problem lies in model-
=1 t~k ing the wavelet coefficients at a single valuegafather than
the range.

www.nonlin-processes-geophys.net/14/79/2007/ Nonlin. Processes Geophys., 14, 79-88, 2007



82 D. V. Divine and F. Godtliebsen: Bayesian approach to wavelet power spectra

Given the model (Eq. 4) for the wavelet coefficients, the with “*”, denoting the complex conjugate, being relevant
respective variance at each decomposition Igvislthe sum  only if the complex mother wavelet is used. Commonly,
of the true (smoothed) coefficients variance and the noise: when only one realization of the wavelet decomposition is
02 = G212 given, the squared absolute values of the wavelet coefficients

J =Y i i i
are used as an estimator for the true WPS. This measure is
wherecfj2 is a function of the smoothing parameferHav- called “wavelet periodogram” and has properties similar to
ing approximately GaussiaW;; and Wj,, a simple sample its counterpart in Fourier analysis (Nason et al., 2000; Ma-
variance can be used as a reasonable estimatoj?0and ~ raun and Kurths, 2004). Bayesian modeling of the wavelet
0}2. The problem of finding an optimal amount of smooth- coefﬂuents, in its turn, provides us wlth Fheoreﬂcglly un-
ing applied to the wavelet coefficients is now the problem ofrestricted number of independent realizations. This allows

minimizing the relationship calculating the expectation value of the periodogram imme-
) ) 5 diately using Eqg. (11).
(07 —0%) —yo;(B) (10) The wavelet power spectrum (also called the wavelet vari-

with regard tog at each level of the wavelet decomposition. 21C€) decomposes the time-dependent variance of a time-
The parametep >0, set to unit by default, can be used to ad- seriesu; on a scale—by-scal_e basis. _Percwal and Walden
just the amount of smoothing to a desired value. One shoulézooo) Sh‘?W that 'the WP_S is well defmeq for bOt_h second
mention, however, that in some occasions the estimated nois¥d€" stationary time-series and non-stationary time-series
variance may exceed the particular wavelet scale varianc¥"Ith stat|onar_y backward differences as long as the mother
simply by chance, making the solution of Eq. (10) impos- wavelet function has the backward difference scheme em-
sible. In such situations, the amount of smoothing applied tg?€dded and its widtfL is large enough. Given the non-

the wavelet scale is determined by a signal/noise ratio for thestat|oqary tlme—ser|e§_ whose packward dllff(_aren.ce of adder
whole signal, namely the value of in Eq. (10) is substi- 'S stationary, a conditiolh >2d is to be satisfied in order to

tuted byajz*a2/asz, whereo, 2 denotes a standard estimator €NSure that the wavelet variance is a good approximation of

of the time-series variance. the t|mg-ser|es variance. ) o
Our first approach to assessing the significance of peaks

2.5 Choice of wavelet function in the modeled wavelet spectrum is based on testing the null-
hypothesis that the analyzed signal represents samples drawn
Since the proposed method is based on the DWT transformfrom a stationary process with a given background power
a choice of a wavelet function becomes crucial. Our choicespectrumS(f). If a peak in the WPS is significantly above
was a least asymmetric wavelet function of the width 8this background spectrum, then it can be claimed to be a
(LA(8) or Sym4 in different notations). Percival and Walden “real” feature with a certain percent confidence. Many real
(2000) argues that LA(8) often provides a good trade-off be-time-series, in particular in geophysical studies, can be mod-
tween the width of the wavelet function and its smoothnesseled using a stochastic autoregressive process of the first or-
Being relatively short, and therefore providing a narrower der, or AR(1), with a positive lag-1 autocorrelation coeffi-
cone of influence in the wavelet decomposition, its shape isient. This model is used as default in some wavelet applica-
still a good match to the characteristic features for most of thetions (see for example Torrence and Compo, 1998; Grinsted
time-series. The wavelet center frequency, 0.71, is slightlyet al., 2004). Recall now that the wavelet coefficients at level
lower the optimal value of 1, suggesting its better localiza- j are nominally associated with frequencies in the interval
tion in the time domain. “Least asymmetric” means that the[ f;, f,1=[1/2/*1, 1/2/] (Percival and Walden, 2000). Us-
associated wavelet filter has nearly zero phase property, i.éng the results of Torrence and Compo (1998)qaguantile
the resulting features in the wavelet decomposition will befor the distribution ofW2/0,? at the j-th level of DWT is
aligned in time with the features in the time-series being an-defined as

alyzed.
- e Q) Lo,
2.6 Wavelet power spectrum and significance testing i.p 8f Ju 1+¢%2—2pcog2nf) -

f. (12)

After the sampling procedure is performed, we are left with whereo, 2 is a standard estimator of the time-series variance,
some K realizations (samples) of the tru@; for each  p[0> Q1(x)] =« and Q1 is X12 distributed, =0, ..., 0.5 is

decomposition leveli. The modeled wavelet coefficients the frequency anélf = f,— f;. We now can consider a feature
can now be utilized for calculating the smoothed observed, pe s; 2, AR

€ s . gnificant iﬂi/j?t>os 4}, With o equal to, say, 0.05.
wavelet power spectrum (WPS), which is an estimator for - o gecond approach utilizes all available realizations of
the “true” WPS of the underlying process. This is defined

. ) . 'the wavelet power at each particular scale of the DWT. From
by analogy with Fourier analysis, as the wavelet transforma-these realizations and a decision rule it is decided, at each

tion of the autocorrelation function: (j, 1) location, whether the derivative of the wavelet spec-
Py =EW;;W}), (11) trum is significantly different from zero. We interpret the

Nonlin. Processes Geophys., 14, 79-88, 2007 www.nonlin-processes-geophys.net/14/79/2007/



D. V. Divine and F. Godtliebsen: Bayesian approach to wavelet power spectra 83

procedure as testing for violation in homoscedasticity at the
particular level of the DWT. The magnitude of the derivative
is estimated from th& samples by:

Y 2
dPjri=Wiiin, — Wik

For the chosen statistical modéP;; at point(j,¢) has a
symmetric distribution centered at zero when the derivative
at this point is zero. At each poiif, t) we therefore claim
thatd P;; is “significantly different” from zero if the absolute
value of the meaik (d P;;), is large compared to its standard
deviationSD(d P;,):

E
j.ar

' E@P;)
SD(det)

Hereqfa denotes an appropriate quantile depending on the
DWT scale numbeyj, and the level of the test. For es-
timating E(d P;;) andSD(d P;;) we use ordinary empirical
estimators for the mean and standard deviation.

The quantileqfa is estimated directly from the data fol-
lowing the procedure proposed in @igl (2004). For each
scale numbey, it is found by using the empirical distribu-
tion, obtained from the large amount of available simulated
samples. We define the standardized estimates of the deriva-

; s
tived Ps , by

itk SD(dPj;)

Then, for each decomposition levekl, ..., J and the esti-
mated wavelet power in the points-1, ..., N;, the quantile

gji,« 1S chosen to be the largest value such thato2000f
the modeled standardized realizati#dstS[ k‘, k=1, ..., K
are greater thag;; .. For large values oK, we have that
P HdPﬁ’k‘ >qj,,a} ~a. We then proceed conservatively,
and choose]fa to be the maximum of all th&V; quantiles

qj1,o for each decomposition levg| i.e.quaz max {qjs.a}-
This can be basically thought of as a procedure correcting fo
multiple testing.

Changey set by defaultto 1 to Qy <1 ory>1 if the
modeled spectrum needs to be under- or oversmoothed.
Choose between solving the minimization problem for
B (default) and specifying the value of the smoothing
parameter manually.

2. Find the DWT of the original data sequence for the pre-

scribed range of scal¢s The DWT algorithm is based

on the routinewavedec from the Wavelet toolbox for
Matlab. The method implementation fitted to the use
of LA(8) basis function can, in principle, be adapted
to other wavelets. By default “padding” with zeroes is
used to extend the analyzed time series up to a nearest
integer multiple of 2, with subsequent elimination of
the biased wavelet coefficients.

3. Solve the minimization problem (Eq. 10) with respect

to B for each wavelet decomposition scale.

4. At each point(j, r) of the observed DWT draw a nec-

essary number of realizations of the modeled wavelet
coefficients from the constructed posterior distribution
(Eg. 9). Our default choice iK=200. As an extra op-
tion, inverse DWT (implemented usingaverec func-
tion) uses realizations averaged o¥effor reconstruct-

ing the smoothed signal from the modeled (smoothed)
wavelet coefficients.

. Calculate the smoothed wavelet periodografy

(Eq. 11) .

. Calculate quantilegfa from the modeled realizations

of the wavelet periodogran®;, » or ¢**® using the
specified value o.

7. For each scalgapply the significance testing procedure

to the modeled wavelet power spectrum.

A computer program that performs the above steps is avail-
Fable from the authors. The zip-archive includes MATLAB
codes, program documentation and examples files. The pro-
gram requires\avel et Toolbox extension package for Matlab

to be installed.

3 Numerical implementation

The computational steps to analyze the signal using the pro4 Results

posed method are as follows:

In this section we investigate the robustness of the proposed
1. Set input arguments: Specify the noise variance termechnique. Case studies with synthetic data and two real
in the signal model, as defined in Eq. (3), and chooseclimatic time-series demonstrate the overall performance of
a desired type of the quantile for significance testingthe method and its potential as a useful tool for data analy-
procedure. Note that when choosigd®® quantile,  sis. Comparison of results with outputs from other methods
a relevant estimate of the autocorrelation parameter igproves the adequacy of the proposed approach to time-series
to be additionally provided. By default this parame- exploration.
ter is generated through the embedded function. If the The sample climatic time-series were preliminarily de-
value of the noise variance is not available, it can be estitrended using a linear fit and subsequently tested for sta-
mated using the default procedure proposed in Sect. 2.3ionarity of the expected mean. For the latter procedure we

www.nonlin-processes-geophys.net/14/79/2007/
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84 D. V. Divine and F. Godtliebsen: Bayesian approach to wavelet power spectra

analyzed the time-integrated wavelet spectrum following the (a) testing for consistency of the estimated (smoothed)
technique proposed in Percival and Walden (2000). In or- spectrum with the prescribed (true) spectrum of the pro-
der to check appropriateness of the AR(1) model, which is cess

often used by default in geophysical applications, we fitted ) ) ) o ]
this model to the sample time-series. The cumulative pe- (b) testing for detection of spurious significant features in
riodogram test for randomness of the residuals (Box et al.,  these purely random data samples.

1994) has proved the adequacy of the proposed model fo

describing the time-series used in both examples. (n the first experiment we examined whether, on average,

the true spectrum and its estimate are consistent. If the true

A three-component visual displ vice i for show- . . . .
three-component visual display device is used for sho spectrum at a point falls outside of the confidence interval of

ing the results of the analysis. It comprises the raw and the{he modeled spectrum, then this point considered a “miss”

smoothed time-series (panel A), estimated true power spec- . ) .
trum of a signal (panel B) and a feature map showing the outc_The confidence intervals were constructed based on our prior

put of the significance testing procedure (panel C). The lastmowledge of the process type. Using the results and no-

panel in programming implementation of the method may ation lntr((])ducec_i n Se(_:t. 2.6 reaﬁ’“gy gl\ée_s an approximate
have two different visual representations depending on wha%oo(l_a) % confidence interval fOWJ'l/U‘Y in the form
testing procedure has been chosen. For demonstrational pug- o o

poses, however, the examples shown below display the ou SjQ1(1 - E)’ Sj Q1(§)] :

put from both of the available testing methods.
Black areas in panel Ca (testing against red noise backS; here denotes the theoretical normalized discrete Fourier

ground) highlight those parts of the power spectrum shown iy yer spectrum of the analyzed process averaged over the
panel B that are statistically significant at the prescribed sig-

nificance level, according to the criterion stated above. TheProper range of frequencies and defined as

color map used in panel Ch is similar to that one originally in-

(13)

troduced in Chaudhuri and Marron (1999) with areas where 1, N(0,1)

the wavelet power exhibits statistically significant increase 1 [/ 1— ¢?

and decrease flagged as red and blue, respectively. The ve§; = | 57 /f/ 142 — 26 cos(27rf)df’ AR(1) process
tical axis in panel B shows the decomposition scale number. ‘ 1 [/ 1

In panel C, for convenience, these are substituted by inverse df, random walk

of the wavelet pseudo-frequency (i.e. pseudo-period) corre-
sponding to the decomposition scale. This is defined as thavith f andsf being the same as defined earlier in Sect. 2.6.
frequency maximizing the Fourier transform of the wavelet Based on 500 available realizations of the same process the
function. This may provide a hint about the real time scalerelative number of misses were estimated for each point of
being analyzed. Semitransparent fringes of the panels outthe wavelet spectrum. The analysis have demonstrated that it
line the areas affected by the edge effects. Note that the redsually does not exceed a prescribed value fofr any of the

sults obtained for these parts of the decomposition and sigthree types of processes (AR(1) witk=0 and$=0.7, and a

sf Jy asirter)

nificance testing should be interpreted with caution. random walk) considered. This indicates that the modeled
_ wavelet spectrum of a time-series is a reasonable estimate of
4.1 Testing the method the theoretical one.

Both significance testing procedures were subject to verifi-

For testing the proposed technique we ran a series of NUMegayion for spurious detection of significant features in purely

ical simulations. As test data we used generated time-series,nqom data samples. Running the method in such cases
with well-known spectral characteristics. These are purelyshomd, ideally, give no significant features. In practice, the

random process, stationary autoregressive process of the firgf, her of false identifications will depend on the level of the

order with positive autocorrelation and a random walk pro- test, which was set ta=0.05. We used the same design as

cess, which is a non-stationary fEType process with sta- iy the first series of numerical experiments. The results of
tionary backward difference of the first order. We generatedi,e analysis were obtained in the form of the relative number
500 time-series of the length 1024 for each of the categoriesys teatyres spuriously found to be significant at each point
The assigned value af was equal to one in all three cases f the wavelet spectrum. These are not shown here in order
and the autocorrelation coefficientin the AR(1) process 4 requyce the size of the current presentation. We found that

was set to (7. Since we initially knew all the parameters of {5 5| three types of the processes considered the average
the analyzed signals, we used them when running the prog mper of false identifications for testing using the empir-

gram. The following testing procedures have been implesjca| quantile was much below the level of the test. Such a

mented: low number of false identifications is certainly due to virtual
correction for multiple testing embedded in the procedure of
estimating the quantile. This approach appears thereby to be
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Fig. 1. (A) Raw (blue) and smoothed (red)di3 seasonal SST indefB) normalized smoothed wavelet periodogram (estimate of the true
wavelet power spectrum) of the time-series. See color bar from the right of panel (B) for spectral power grd@atieeature maps for
the power spectrum shown in B calculated usitf® (C,) andgZ quantiles C},). Grey areas irC,, highlight the features in the wavelet
power spectrum of greater than 95% confidence for a red-noise process. Red and blue @, esgnate the areas where the wavelet
power exhibits, respectively, statistically significant increase and decrease. Semitransparent fringes of pareeisd 8, enclose the areas
affected by the edge effects.

conservative enough to be recommended for use in situationd.2 Example 1: Nio3 SST index
where a suitable model for the analyzed time-series is uncer-

tain. Figure 1 shows an application of the proposed technique to

The procedure of testing against the AR(1) backgroundy,s Nipo3 sea surface temperature, (SST) used as a mea-
showed similar results (no features detected) only for purelyg .« of the amplitude of the EI Rib-Southern Oscillation

random and AR(1) time-series, i.e. when the testing hypoth-ENSO)_ The Nfio3 SST index (panel A) is defined as
esis was trivially true. Testing the random walk series treated,o seasonal SST averaged over the central Pacif&-5

as being AR(1), in turn, yields a persistently higher number50 N 90° W-150 W. The data for 1871-1997 is presented

of features marked as statistically significant (up to 20%, de-, the form of seasonal anomalies. A detailed analysis of

pending on magnitude of added random noise). The resulfys (ime_series using the wavelet decomposition technique
is not unexpected keeping in mind that the theoretical specig +ound inTorrence and Compo (1998).

tral power of the normalized random walk time-series is gen- AR(L .
The feature map calculated using®R® quantile

erally higher than the one for the stationary AR(1) process, ) oo S .
(¢=0.71) shows increased significant variability inconsistent

whatever the autocorrelation coefficient is. ! . .
with an AR(1) model on the time-scale of approximately
3 years before 1940 and after 1960, with somewhat fewer
peaks marked as significant in between. This is in line with
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Fig. 2. Same as for Fig. 1, but for GISR280 oxygen isotope record.

the conception of weaker ENSO variability during this period  Figure 2 shows the results of the analysis. Testing the null-
(Dong et al., 2006). The feature map also generally repro-hypothesis that the background process is AR¢E.85)
duces the results presented in Torrence and Compo (1998gveals the variability at scale 3 (1-2 kyears) inconsistent
where the real and complex CWT (Figs. 1b and c there, rewith the proposed model. Some more features appear as sig-
spectively) with testing against the red noise was used. Anificant at the first two scales too. They can largely be inter-
the same time more conservative testing using the empiricgbreted as an extension of sharp major peaks at 1.5ky scale
quantile with noise variance estimate @47)? yielded an  (so-called Dansgaard-Oeschger oscillations) to finer scales.
anticipated result, with only one peak flagged as significant. Two peaks are also detected as significant on the longer
scales. These results are in a good agreement with spec-
4.3 Example 2: GISP2180 oxygen isotope record tral analyses presented in Grootes and Stuiver (1997) and
Schulz and Mudelsee (2002). Testing using the more con-
As a second example, we consider the glacial part (13-servative empirical quantile marks as “real” only the peak
59ky BP) of the oxygen-isotope record, measured asclose to 40000 BP, identified as interstadial 8, according to
01806 ratio, from the GISP2 ice core from Greenland the classification proposed in Dansgaard et al. (1993).
(Grootes and Stuiver, 1997). This time-series reflects, to a
large extent, air temperature fluctuations above Greenland One needs to mention nevertheless that this inference may
during this period. Prior to applying the wavelet transform appear to be too conservative due to application of a simpli-
we binned initially unevenly sampled record at century reso-fied model for estimating2. When all types of noise except
lution. Assuming the AR(1) model for the analyzed signal is the instrumental error are ruled out, its value is much reduced
generally true, the noise variance(668)? is estimated from  to a common estimate @f.1)?, weakening accordingly the
the residuals following the procedure proposed in Sect. 2.3. conservatism of the test. The number of features detected as
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significant in this case is essentially higher (not shown here)method. These problems are nevertheless planned to be
among them are Dansgaard-Oeschger oscillations at millensolved in the next version of the program through substituting
nial scale. This example underscores the crucial role of ahe inversion procedure in Eq. (5) by the exact solution and
proper choice 062 for making further inference whether the using the open source functions for the wavelet transform.
features seen in the analyzed time-series can be regarded as
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