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Abstract. The Lagrangian trajectories of fluid particles are

experimentally studied in an oscillating four-vortex velocity

field. The oscillations occur due to a loss of stability of a

steady flow and result in a regular reclosure of streamlines

between the vortices of the same sign. The Eulerian velocity

field is visualized by tracer displacements over a short time

period. The obtained data on tracer motions during a num-

ber of oscillation periods show that the Lagrangian trajecto-

ries form quasi-regular structures. The destruction of these

structures is determined by two characteristic time scales:

the tracers are redistributed sufficiently fast between the vor-

tices of the same sign and much more slowly transported into

the vortices of opposite sign. The observed behavior of the

Lagrangian trajectories is quantitatively reproduced in a new

numerical experiment with two-dimensional model of the ve-

locity field with a small number of spatial harmonics. A qual-

itative interpretation of phenomena observed on the basis of

the theory of adiabatic chaos in the Hamiltonian systems is

given.

The Lagrangian trajectories are numerically simulated un-

der varying flow parameters. It is shown that the spatial-

temporal characteristics of the Lagrangian structures depend

on the properties of temporal change in the streamlines topol-

ogy and on the adiabatic parameter corresponding to the flow.

The condition for the occurrence of traps (the regions where

the Lagrangian particles reside for a long time) is obtained.

1 Introduction

The study of the Lagrangian trajectory properties in an un-

steady incompressible flows is currently one of the problems

in hydrodynamics. This problem has numerous applications,

including passive tracers transport in the atmosphere and in

the ocean. The variety of observed periodic, quasi-periodic

and turbulent flows generates different Lagrangian coherent

structures that essentially affect transport properties and for

example, result in the anomalous transport regimes appear-
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ance (Monin and Yaglom, 1971; Ngan and Shepherd, 1999;

Linden et al., 2001; Majda and Kramer, 1999).

The description of a Lagrangian particle behavior is based

on the equation of fluid-particle motion in the velocity field,

which can be specified either in the Eulerian form or in the

Lagrangian one (Monin and Yaglom, 1971):

dr

dt
= ve(r, t) = ul(r, r0, t, t0) (1)

If the Lagrangian field characteristics are specified, it is con-

venient to describe the tracer transport in terms of particle

displacements dispersion and the diffusion coefficient. These

characteristics are expressed through the correlation tensor of

the Lagrangian velocity, which is obtained by averaging over

an ensemble of trajectories (Monin and Yaglom, 1971).

The diffusion coefficient yields a fairly complete descrip-

tion of transport only for the normal diffusion regime, i.e., for

the scales on which spatial-temporal correlations of the La-

grangian velocities are not significant. An anomalous diffu-

sion occurs on the scales where these correlations are signif-

icant and for which the particle displacements fields usually

have a non-Gaussian statistics. A more complete description

of the transport process can be obtained by calculating the

probability density functions of the displacements for one or

two Lagrangian particles in certain points. Such calculations

are usually based on the Markovian models of particle ran-

dom walks that are described by the probabilities of transi-

tion between these points or, which is more realistic for com-

plicated flows, between subregions. A model of space-time

random walks, i.e., of jumps over random distances occur-

ring at random times, turns out to be more suitable to describe

the anomalous regimes associated with the existence of long

correlations in the Lagrangian velocity fields. This model

leads to an equation of the Montroll-Weiss type, which is

applicable for the description of coherent structures (Jones,

1995; Chukbar, 1995).

The problem becomes considerably more complicated if

the Eulerian velocity field is known and the Lagrangian field

characteristics must be determined. In this case a steady Eu-

lerian field corresponds to particle motions in steady orbits,

whereas a temporally periodic Eulerian field results in the

space-time randomization of particle trajectories. The case
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of rapidly varying Eulerian velocity fields is studied in suffi-

cient details (Klyatskin, 2001). The study of other cases re-

quires a combination of analytic, numerical and experimental

techniques.

The dynamics of Lagrangian particles in two-dimensional

divergent-free flows proves to be most accessible for the

analysis. The system of equations for the particle motion

in the corresponding velocity field is a Hamiltonian system

that makes possible application of the known methods for

its analysis (Lichtenberg and Lieberman, 1983). One of

the directions in recent investigations is the study of flows

with a small unsteady periodic component based on Mel-

nikov’s works and the Kolmogorov-Arnold-Moser (KAM)

theory (Rom-Kedar et al., 1990; Cencini et al., 1999). An-

other direction is the experimental and numerical study of

two-dimensional turbulent flows (Cardoso et al., 1996; Elh-

maidi et al., 1993; Haller, 2001). As it is shown in a number

of works, the transport in such flows does not lead immedi-

ately to a uniform distribution of tracer but it is accompanied

by the formation of typical coherent structures.

The study of two-dimensional flows with the time-periodic

and steady components of comparable amplitudes is also of

a great interest. For such flows the relationship between the

Eulerian velocity and the Lagrangian one and a random or

regular behavior of Lagrangian trajectories is the main unre-

solved problem. A laboratory study of these items is partic-

ularly important because the theoretical analysis is usually

too complicated and requires a number of simplifying as-

sumptions. An experiment with transport in time-dependent

Rayleigh-Benard cells is described in Solomon and Gollub

(1988); Solomon et al. (1998). More complicated quasi-two-

dimensional time-periodic four-vortical flow is experimen-

tally studied in Danilov et al. (1999, 2000) where it is shown

that the randomization of the Lagrangian trajectories leads to

a rapid transport of tracer inside the regions with the same

direction of fluid rotation and a rather slow transport in the

region with the opposite direction of fluid rotation. The treat-

ment of such processes can be obtained on the basis of the

adiabatic chaos theory (Neishtadt et al., 1991; Veinshtein et

al., 1996; Itin et al., 2002)

This paper is devoted to further studying of the La-

grangian trajectories and anomalous transport in quasi-two-

dimensional time-periodic flow following Danilov et al.

(1999, 2000) and Kostrykin and Yakushkin (2003). The main

result of our study consists in reaching a quantitative agree-

ment between measurements and calculations of the admix-

ture transport characteristics. Such an agreement is attained

due to a new experimental setup and a model of velocity field

reconstruction with correct topological properties. This pro-

vides us with a basis for understanding what kind of the Eu-

lerian velocity model can be applied in order to explain the

observed transport phenomena. In the paper, we also sum up

and develop some results of the preceding studies. In partic-

ular, we describe and analyze the generation of Lagrangian

coherent structures and determine their life times.

The paper is organized as follows. Some results related

to the appearance of structures and chaos in Hamiltonian hy-

drodynamic systems are considered in Sect. 2. In Sect. 3, the

laboratory experiment and the method of numerical model-

ing are described. Section 4 deals with the comparison of

experimental and numerical results. Section 5 discusses the

dependence of the Lagrangian coherent structure characteris-

tics on flow parameters. The obtained results are summarized

in the Conclusions.

2 Structures and chaos in Hamiltonian hydrodynamic

systems

In a two-dimensional divergent-free flow, the Eulerian ve-

locity field can be expressed in terms of the streamfunction

ψ=ψ(r, t)

Vx = −
∂ψ

∂y
,

Vy =
∂ψ

∂x
. (2)

The streamfunction plays the role of the Hamiltonian and

specifies the streamlines topology. It depends parametrically

on time. At a given time, two invariants can be calculated at

each point:

ω = 1ψ,K = ψxxψyy − ψ2
xy . (3)

The sign of the vorticity ω indicates the direction of vor-

tex rotation, and the sign of the quantity K corresponds to a

different behavior of neighboring trajectories (Okubo-Weiss

criterion; Elhmaidi et al., 1993). In other words, the regions

withK>0 andK<0 are the regions of elliptic and hyperbolic

motions, respectively. The fixed points, whose positions are

determined by the equation grad ψ(r0, t)=0, are also classi-

fied. Note that at a fixed point, the quantityK coincides with

the Gaussian curvature of streamfunction at this point. The

“instantaneous” separatrices passing through the hyperbolic

fixed points are described by the equation ψ(r, t)=ψ(r0, t)

and separate the regions with different character of motion.

In the unsteady flow, the spatial positions of the instan-

taneous separatrices vary over time. As a consequence, a

“separatrix region” arises. From the Eulerian velocity field,

one can calculate the areas bounded by the instantaneous

separatrices Is(t) and the quantity K(t) for the hyperbolic

fixed points and elliptic ones. Using these calculations, one

can define the dimensionless quantities α=1Is/I (the rela-

tive variation of the area bounded by the separatrices) and

β=〈|K|〉
1
2 /�, where 〈·〉 is the time-averaged quantity at

fixed point and �=2π/T is the frequency of flow oscilla-

tion. The quantity β can be treated as the flow adiabaticity

coefficient near a fixed point.

It follows that the transport regimes can be classified ac-

cording to the methods of their description: transport by

rapidly varying velocity fields (e.g., wave ones) with β≪1,

Nonlin. Processes Geophys., 13, 621–628, 2006 www.nonlin-processes-geophys.net/13/621/2006/
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resonance transport by fields with a small unsteady compo-

nent with α≪1 and β≈1, and adiabatic transport by quasi-

stationary fields with β≫1.

For analysis of the Hamiltonian systems, it is convenient

to use the action-phase coordinates: (I (ψ, t), φ) (Licht-

enberg and Lieberman, 1983). The value of the action,

which is equal to the area bounded by a streamline at a

given t , remains almost unchanged for a Lagrangian particle,

provided that the streamfunction varies sufficiently slowly.

If the streamfunction is expressed through the action, as

ψ=ψ(I, t), the quantity ∂ψ/∂I∼|K|
1
2 may be treated in the

elliptic region as an angular velocity of particle motion along

its orbit. In the hyperbolic region, a similar quantity char-

acterizes the relative rate of streamlines divergence (Danilov

et al., 2000).

In the case of a steady flow, the particle motion

equations in the action-phase coordinates take the form

I=I0, φ=φ0+a(I )t . It follows that the tracer initial distri-

bution F0(I, φ) transforms with time into a spiral (or a set

of spirals). In the case of a random spread of the initial val-

ues on the action coordinate, the randomization of particle

positions in phase occurs.

For a steady flow disturbed by a time-periodic compo-

nent, as it follows from the KAM theory, the stable invariant

trajectories are conserved in the regions of elliptic motion,

and these trajectories break down near the orbits to be reso-

nant with respect to the period of disturbance. At the same

time, homoclinic structures appear near the hyperbolic fixed

points, which results in randomization of the particle tra-

jectories. The randomization region grows with an increase

in the amplitude of the unsteady velocity component (Rom-

Kedar et al., 1990; Lichtenberg and Lieberman, 1983).

3 Laboratory experiment and numerical simulation

method

The laboratory experiment is conducted on the setup de-

scribed in Danilov et al. (1999, 2000). The setup represents

a horizontal tank with dimensions of 24×12 cm2 and a depth

of 0.7 cm filled with the electrolyte. A four-vortex quasi-two-

dimensional flow is generated magneto-hydrodynamically.

The amplitude of the velocity field in the vortices is deter-

mined by the magnitude of electric current passing through

the electrodes. At the critical value of exciting current

(J=215 mA), the flow becomes unstable and self-oscillating.

The oscillations are manifested in the periodic reclosure of

the vortices along each of the rectangle diagonals. The mea-

surements are carried out for the electrical current value

J=450 mA, with an amplitude of velocity of the order of a

few centimeters per second and oscillation period T≈50 s.

The Eulerian velocity field at the surface of fluid, which

could be approximated as two-dimensional, is experimen-

tally measured using PIV method. An aluminum powder is

used as a passive tracer to study the flow field in the labora-

tory experiment. Because of their small size and mass, the

powder clusters may be treated as fluid particles. We use a

system of digital analysis of video images to obtain the infor-

mation on the spatial distribution of tracer particles (Danilov

et al., 2000). The analysis of the measurements performed

reveals that the two-dimensional velocity field can be treated

as approximately divergent-free and consequently the parti-

cles motion is governed by some streamfunction. The cho-

sen number of tracks is sufficiently large to reconstruct the

streamfunctions at a uniform grid with 80×44 mesh points.

Figure 1 shows the topology of instantaneous streamfunc-

tions and the separatrices during a half-period of oscillation.

Initially, there are four vortices separated by the separatrix

passing through the central hyperbolic fixed point. Further,

this separatrix is divided into two branches, one of which

(external) continues to separate the flow into the regions with

opposite rotations. The second (internal) separatrix separates

the merged vortex from smaller vortices. Further the internal

separatrix disappears due to the confluence of elliptic fixed

points in the corner vortices. During the second half-period,

a similar evolution of the vortices occurs, but they are located

along the other diagonal.

We subsequently use an expansion of the experimental

streamfunction in terms of spatial Fourier harmonics with the

time-dependent coefficients:

ψ(x, y, t) =
∑

akl(t) sin(
kπx

Lx
) sin(

lπy

Ly
). (4)

One should note that, in Eq. (4), only harmonics satisfying

the boundary non-leakage condition are retained. Moreover,

because the small-scale harmonics are determined with a rel-

atively large error only the large-scale ones are used in the

calculations. We choose the following criteria to find a suit-

able spectral truncation. First, all harmonics are sorted by the

amplitudes, and, for a given number of largest harmonics N ,

one can define the truncated streamfunction. Next, we study

the behavior of the Gaussian curvature Kc(t) at the central

point – ( 1
2
Lx , 1

2
Ly), which is approximately happened to be

fixed in our case. In fact it is exactly fixed only for the central

symmetry, but in our case the flow has a weak asymmetry

due to the magnetic field distribution. We calculate the Kc
for every spectral truncation starting from N=2 and look for

the minimal number of harmonics for which Kc(t) changes

its sign four times during the period of oscillation. In this

case, one should expect to obtain the streamfunction topol-

ogy which will be analogous to that one described above.

This criterion is satisfied when the combination of 7 harmon-

ics in space and 3 harmonics in time is chosen. Figure 2

shows the dependence of Kc(t) for central fixed point and

gives us a possibility to estimate the flow adiabaticity coeffi-

cient as β≈4.4.

One can define an action at some point with a positive

value of the streamfunction as the total area enclosed by the

streamlines with a given value of ψ . For the points with

www.nonlin-processes-geophys.net/13/621/2006/ Nonlin. Processes Geophys., 13, 621–628, 2006



624 S. V. Kostrykin et al.: Lagrangian structures

Fig. 1. Streamfunction corresponding to J=450 mA at different

moments of time during the half period of the flow (thick lines de-

fine separatrices: from top (a) four vortices when internal and exter-

nal separatrices are nearly coincided, (b) four vortices when internal

and external separatrices are different, (c) three vortices with elliptic

central point.

a negative value of ψ , we define an action as the differ-

ence between the total area occupied by the flow and the

area enclosed within the corresponding streamlines. Figure 3

presents the positions of external and internal separatrices in

the action-time plane. In a general case, the entire region

of action can be divided into three subregions: subregion 1,

where equiaction contours do not intersect separatrices (not

realized in our case), subregion 2, where equiaction con-

tours intersect the internal separatrix, and subregion 3, where

equiaction contours intersect both separatrices.

The Runge-Kutta scheme of the fourth order is used for

the numerical calculation of the Lagrangian particles trajec-

tories. We integrate the trajectories of 10 000 particles for

Fig. 2. Time-dependence of the Gaussian curvature at the central

point.

Fig. 3. Time-dependence of the action on the external and internal

separatrices: solid line is internal separatrix, dashed line is external

separatrix.

a time period of 40T . The ensemble-averaged characteris-

tics happen to be insensitive to the doubling of the number

of particles and changing of the time step (∼1 s) used in the

integration.

4 Results of the laboratory and numerical experiments

There are two ways to compare the results of the laboratory

and numerical experiments. One can compare the tracer dis-

tributions at different moments of time initializing the tracer

in one of the corner vortices. The other way is to compare the

time evolution of the total number of particles in prescribed

regions, for example, in four equal rectangles into which the

entire domain is divided at the central point.

Nonlin. Processes Geophys., 13, 621–628, 2006 www.nonlin-processes-geophys.net/13/621/2006/
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Fig. 4. Typical trajectories of the particles during two period of

oscillation in the numerical experiment with reconstructed stream-

function (the area of initial particle positions is marked by a dia-

mond).

First, we consider the evolution of tracer patch during one

oscillation period. Both data sets show that during the first

stage of existence of corner vortices the tracer patch rotates

in one of the vortices to form the spiral structure. At the sec-

ond stage, during which the corner vortices are merged, this

structure is elongated and partially transported to the oppo-

site corner. At the last stage, when the central hyperbolic

point is formed, the tracer distribution is divided into two

main parts. These parts then remain captured in the diago-

nal corner vortices until the end of the period of oscillation.

One should note that the small number of particles may es-

cape from the co-rotating system of vortices and jump to the

counter-rotating vortex. The typical trajectories of two par-

ticles during first two period of the flow oscillation are pre-

sented in Fig. 4. Initially particles are located very close to-

gether in the area marked by diamond. But after some time

one of them remains in the co-rotating system of vortices

while the other one jumps to the counter-rotating vortex. It is

interesting to observe that this jump happens near the central

hyperbolic point.

Now compare the particle distributions at the moments of

time tn=nT , where n is an integer number. Figure 5 shows

the evolution of the spatial distribution of tracer over three

oscillation periods. One can see that to a large extent, only

the vortices located along the same diagonal (with the same

direction of rotation) exchange particles. Over several peri-

ods, we observe the mixing between these vortices, whereas

relatively small number of particles penetrate into the vor-

tices with the opposite circulation. As a result, one can ob-

serve the formation of the elongated (phase-extended) struc-

tures that exist for several periods. Over time an increasing

number of particles leave the vortices to form a chaotic cloud

covering the near-separatrix layer and penetrating into the

Fig. 5. Particles distribution in the laboratory experiment at the

different moments of time (from top and left): (a) t=0, (b) t=T ,

(c) t=2T , (d) t=3T .

Fig. 6. Particles distribution in the numerical experiment with re-

constructed streamfunction at the different moments of time (from

top and left): (a) t=0, (b) t=T , (c) t=2T , (d) t=3T .

vortex with opposite circulation. Figure 6 gives the results of

the analogous numerical simulation.

Figure 7 shows the relative numbers of particles in four

different rectangles that were obtained from both experi-

mental and numerical data. The area inside every rectangle

roughly coincides with the area inside the corresponding cor-

ner vortex. One can estimate adjustment times in phase (mix-

ing time between the vortices of the same sign) and in action

(mixing time between the vortices of the opposite sign) using

these results. For example, for the rectangle that encloses all

particles at the initial time t=0, it can be approximated by

the formula:

g(t) =
3

8

[

cos(π
t

T
) exp(−

t

Tf
)+ exp(−

t

Ta
)

]

+
1

4
, (5)

where Tf and Ta are the adjustment times in phase and

in action, respectively. Applying this approach to the nu-

merical data, we get the following estimates for the adjust-

ment times: Ta=10.1T and Tf=3.4T . Since Tf≪Ta it fol-

lows that during period of time t<Tf the particle exchange

between co-rotating vortices is strong and between counter-

rotating vortices is relatively weak.

www.nonlin-processes-geophys.net/13/621/2006/ Nonlin. Processes Geophys., 13, 621–628, 2006
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Fig. 7. Time-dependence of relative number of particles inside four

equal rectangles: (a) laboratory experiment, (b) numerical exper-

iment. Solid line is low left rectangle, dashed line is upper left

rectangle, short-dashed dotted line is upper right rectangle, black

circles is low right rectangle.

The measurement data on tracer transport are well in-

terpreted on the basis of concept of the adiabatic regime

(Danilov et al., 1999, 2000). In the adiabatic limit the ac-

tion is an invariant. A “rapid” mechanism associated with

the motion along the lines of constant action is responsible

for tracer redistribution between the vortices with the same

direction of rotation, because their merging and breaking are

not accompanied by a change in the total action. Actually,

the motion is close to the ideally adiabatic motion until one

of the particles intersects a separatrix. When the separatrix

is intersected, i.e., at the times ts where I=Is(ts), the action

changes by 1I∼1/β. More precisely, both the violation of

adiabaticity and a noticeable change in the action occur when

the particles travel through the region of hyperbolic motion

adjacent to the separatrix. A “slow” mechanism, which is

associated with a change in action, arises due to the intersec-

tion of the separatrix by a particle and leads to the transport

of particles into the vortices of opposite direction of rotation.

5 Structural properties of Lagrangian trajectories and

tracer transport in two-parametrical flow

Another interesting possibility is to study the dependence of

a passive scalar transport on the flow parameters. For this

purpose we use a simplified streamfunction with a topolog-

ical structure similar to the streamfunction obtained from

the measurements (Danilov et al., 2000). This simple two-

parametric streamfunction is not appropriate for a quantita-

tive explanation of experimental data, but it is convenient for

a qualitative analysis:

ψ(r, t) = B [ψ0(r)+ Aψ1(r, t)] ,

ψ0 = C22 sin

(

2πx

Lx

)

sin

(

2πy

Ly

)

+C42 sin

(

4πx

Lx

)

sin

(

2πy

Ly

)

,

ψ1 =

[

C11 sin

(

πx

Lx

)

sin

(

πy

Ly

)

+C13 sin

(

πx

Lx

)

sin

(

3πy

Ly

)]

sin(�t)−

−C31 sin

(

3πx

Lx

)

sin

(

πy

Ly

)

cos(�t), (6)

where Lx and Ly are the dimensions of the cell,

�=2π�T , C22=3.1 cm2/s, C42=1.1 cm2/s, C11=4.1 cm2/s,

C31=2.8 cm2/s, C13=1.2 cm2/s, T=50 s. This flow field de-

pends on two parameters: A (the relative amplitude of the

non-stationary part of the flow) and B (the scale factor of

the flow amplitude). It is possible to show that the parame-

ter A characterizes relative variations of the area bounded by

separatrices (α) and with an increase in A the value α also

increases. The parameter B is similar to the adiabaticity pa-

rameter (β).

Spatial structures arising in the distribution of tracer are

described by the Poincaré sections for tn=t0+nT . As a ref-

erence phase we chose t0=0 when there are two isolated

vortices along one diagonal (right-hand rotation) and one

merged vortex along the other diagonal. This topology is

maintained for a larger part of a half-period of oscillation.

The model results for the tracer patch initially located in

the low right corner are shown in Figs. 8–10, where the

Poincaré sections are given for a different number of periods

(n=1, 2, 4, 8).

As it can be seen from Fig. 8, if A=1 and B=1, the par-

ticle distribution forms helical structures similar to the case

with reconstructed stream function (4). After one period a

portion of tracer transfers into the other vortex with the same

direction of rotation, changing the action value only slightly.

Additionally, when a separatrix is intersected, an extended

“tail” is formed inside the central vortex. After one oscilla-

tion period the tracer is redistributed between the vortices,

holding a helical structure in each of the vortices. The struc-

tures belonging to the central vortex are formed from the

Nonlin. Processes Geophys., 13, 621–628, 2006 www.nonlin-processes-geophys.net/13/621/2006/
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Fig. 8. Particles distribution in the numerical experiment with two-

parametrical streamfunction (A=1, B=1) at the different moments

of time (from top and left): (a) t=T , (b) t=2T , (c) t=4T , (d)

t=8T .

Fig. 9. The same as in Fig. 8, but for A=0.5, B=1.

“tails” appearing every period. Thus, a Lagrangian trajec-

tory can be represented as a set of quasi-regular segments of

an ideally adiabatic motion. Appearance of a few segments

is connected with the particles jump to another orbits, which

occurs when separatrix intersects the Lagrangian trajectories.

Particle walks happen between the regions of partially stable

motions adjacent to the elliptic points. These characteristic

tracer structures are formed during a few periods. After eight

periods of oscillation they begin to destroy and the particle

segments uniformly occupy the entire region of the flow.

Figures 9 and 10 demonstrate the structure formation in

the cases of A=0.5, B=1 and A=1, B=4, respectively. As

one can see, in these cases an increase in the adiabaticity pa-

rameter B leads to the slowing down of the transport into

the vortices with opposite directions of rotation and, con-

sequently, to the smoothing of tracer concentration. To es-

timate this effect quantitatively we calculate an adjustment

time in action using the Eq. (5). The dependence of Ta on

the parameter B is presented in Fig. 11. One should note

that in all experiments with this two-parametrical flow we

had Tf<T . This is due to the roughness of the 5-harmonics

model. In the more complex model with 21 harmonics Tf is

much closer to the observed values (compare Figs. 7a and b).

Fig. 10. The same as in Fig. 8, but for A=1, B=4.

Fig. 11. Dependence of the adjustment time in action Ta on the

adiabaticity parameter B.

As it can be seen from Figs. 8–9, a decrease in A results in

the formation of strongly stagnant zones, which are decou-

pled or weakly coupled with the remaining flow. In the re-

gions completely untouched by the separatrix displacements

the stagnant zones appear. It corresponds to the case when in

the action-phase space the regions unreachable by the sepa-

ratrices exist.

6 Conclusions

New laboratory and numerical studies (specifying the per-

formed early in Danilov et al., 2000; Kostrykin and

Yakushkin, 2003) of the Lagrangian particle transport in

quasi-two-dimensional time periodic flow that can generate

chaotic trajectories are conducted. A fast transport of particle

into the vortices with a same direction of rotation and a much

slower transport into the vortices with the opposite direction

of rotation is observed. As it is shown in our previous studies,

a fairly slow change in the system velocity field means that

such experiments can be interpreted from the point of view
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of the adiabatic chaos theory. Previous attempts of numer-

ical simulations using the model approximation of field ve-

locity gave us only a qualitative explanation of the observed

picture. In present work we obtain the quantitative agree-

ment between the evolution pattern of tracer distribution and

the data of numerical simulation using the measured veloc-

ity fields. To achieve this agreement the velocity model must

conserve the main features of flow topology and its tempo-

ral variation. We suggested here a simple phenomenologi-

cal model of transport phenomena. This model contains two

characteristic times describing a transition of the Lagrangian

particles between co-rotating and counter-rotating vortices

respectively.

To analyze the adiabaticity factor on the particles transport

the simple two-parametrical presentation of velocity field is

used. The simulations performed demonstrate that charac-

teristic transport times increase when adiabaticity coefficient

grows. The obtained numerical results allow us to suggest

that the transport between vortices depends on local flow

properties near fixed points. The Lagrangian transport in-

cludes three major stages: transport along equiaction con-

tours, transport in action, and mixing of the tracer concen-

tration in the entire region. Lagrangian trajectories of liquid

particles combine features of regularity and randomness, in

particular, the coherent structures with certain lifetime are

generated. The results of the numerical simulation indicate

that with an increase of the flow adiabaticity coefficient the

Lagrangian trajectories stay near equiaction contours over in-

creasingly longer periods of time. Moreover, a change in the

separatrix region size can results to the formation of stagnant

zones or “traps”.

For fairly high values of the adiabaticity coefficient a more

complete description of the diffusion process in the action

space can be obtained by using a generalized model of parti-

cle random walks in the action-time space. For such gen-

eralized model additional elaborations are necessary. The

further investigation of this problem can also involve both

two-particles dispersion and coherent structures relation to

finite-time Lyapunov exponents.

It is necessary to note that the conclusions following from

the simulation performed in this work may prove to be

valid for studying the tracer transport by different quasi-two-

dimensional atmospheric flows including two-dimensional

turbulence.
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