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Abstract. An efficient class of nonlinear models, con-
structed using cardinal B-spline (CBS) basis functions, are
proposed for high tide forecasts at the Venice lagoon. Ac-
curate short term predictions of high tides in the lagoon can
easily be calculated using the proposed CBS models.

1 Introduction

The Venice lagoon is one of the world’s most delicate and
unstable ecosystems. Since the disastrous flood that occurred
in November 1966, the problems of the Venice lagoon have
become one of national and international interest. The threat-
ened Venice city has frequently been inundated by high wa-
ters formed in the northern Adriatic Sea, where interactions
of several astronomical and meteorological phenomena often
occur. The end results are the Venice floods due to a combi-
nation of astronomical and meteorological effects: the tides
induced by the moon and the tides caused by stormy weather
arise from low atomospheric pressure combined with winds.
To prevent disastrous floods, measures have been taken since
1966, and perhaps the most famous project is the recently
endorsed MoSE (Modulo SperimentaleElettromeccanico—
Experimental Electromechanical Module) project, although
the feasibility of this project is still in public debate (Rosen-
thal, 2005; Salzano, 2005). A parallel and complementary
approach to engineering constructions, for example the bar-
rier system as involved in the MoSE, is to build an opera-
tional flood warning system, which is used to forecast the
main surge, for some time ahead ideally many hours or even
several days. The objective of such a flood warning system
is to support some necessary actions such as the removal of
goods from ground floors, the redirection of the city boat
traffic, and the installation of elevated pedestrian walkways
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(Vieira et al., 1993). The flood warning system is model-
based: it utilises both statistical and hydrodynamic models
to obtain short term as well as long term forecasts (Vieira et
al., 1993). The hydrodynamic modelling usually starts with
first principles that require a comprehensive physical insight
into the underlying dynamics of the system, whereas the sta-
tistical modelling and similar methods often start with ob-
servational data, based on which mathematical models that
support forecasts of the main surge are deduced.

Several authors have discussed the data-based modelling
problem relating to high tide forecasts at the lagoon, by treat-
ing the regularly measured water level as a nonlinear time
series, with the assumption that no information on the hydro-
dynamics of the lagoon is involved, but merely observed wa-
ter level data are available (Zaldivar et al., 2000). Many ap-
proaches have been proposed to model the associated nonlin-
ear time series including nonlinear regression models, chaos
and embedding methods, neural networks, evolutionary al-
gorithms, and other methods, see Zaldivar et al. (2000) and
del Arco-Calderon et al. (2004) and the references therein.

This study aims to present a novel and efficient data-based
modelling approach for predicting high tides at the Venice
lagoon. In the new modelling approach, it is assumed that
no a priori knowledge about the hydrodynamics of the la-
goon is available, but merely observed water level data are
used. Motivated by the successful applications of wavelet
transforms, especially the applications of wavelet multires-
olution decompositions, in nonlinear time series analysis
and complex dynamical system identification including geo-
physical and magnetospheric process modelling (Kumar and
Foufoula-Georgiou, 1997; Malamud and Turcotte, 1999a, b;
Chandre et al., 2003; Maraun and Kurths, 2004; Grinsted
et al., 2004; Wei et al., 2004a, b; Wei and Billings, 2004;
Kallache et al., 2005), cardinal B-spline multiresolution anal-
ysis (MRA) is employed in the present study to construct
parsimonious nonlinear models that can be used for high
tide forecasting. As will be seen, the resulting CBS models
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Table 1. Cardinal B-splines of order 1 to 4.

N1(x) N2(x) 2N3(x) 6N4(x)

0≤x<1 1 x x2 x3

1≤x<2 0 2−x −2x2
+6x−3 −3x3

+12x2
−12x+4

2≤x<3 0 0 (x−3)2 3x3
−24x2

+60x−44
3≤x≤4 0 0 0 −x3

+12x2
−48x+64

elsewhere 0 0 0 0

provide not only accurate short term forecasts, but also pro-
vide good long term predictions for the variation of water
levels in the lagoon. Compared with existing data-based
methods, the proposed data-based CBS modelling approach
can produce more accurate predictions for high tides at the
Venice lagoon.

2 Time series forecasting problem

Let {y(t)}Tt=t0 be a known observed sequence for the under-
lying dynamical time series. The goal of multi-step-ahead
forecasts is to predict the values ofy(t+s), with s≥1, using
the information carried by the observed sequence{y(t)}Tt=t0.
To achieve such a goal, a commonly used approach is to
learn a model, or a predictor, from the available data. To
obtain multi-step-ahead predictions of nonlinear time series,
both iterative and direct methods can be employed (Wei and
Billings, 2006). In theory, long-term predictions can be ob-
tained from a short-term predictor, for example a one-step-
ahead predictor, simply by applying the short predictor many
times in an iterative way. This is called iterative prediction.
Direct prediction, however, provides a once-completed pre-
dictor and multistep forecasts can be obtained directly from
the established predictor in a way that is similar to computing
one step predictions.

Following Wei and Billings (2006), a direct approach will
be considered. Take the case of thes-step-ahead forecasting
problem as an example. The task fors-step-ahead forecasts
is to find a model that can predict the value ofy(t + s) using
a set of selected variables{y(t),y(t−1), · · ·, y(t−d+1)}, in
the sense that

y(t + s) = f (s)(y(t), · · · , y(t − d + 1))+ e(t) (1)

wheref (s) with s≥1 are some nonlinear functions,e(t)is an
unpredictable zero mean noise sequence,d is the model order
(the maximum lag). For a real system, the nonlinear function
f (s) is generally unknown and might be very complex. A
class of models that are both flexible, with excellent approx-
imation capabilities, and which can represent a broad class
of highly complex systems are therefore required to ensure
accurate directs-step predictions. The model class that uses
cardinal B-splines as the basis functions to approximate the

s-step predictorf (s)(·) satisfies all these conditions and will
therefore be investigated in the present study as a new ap-
proach of achieving accurate directs-step predictions.

3 Cardinal B-spline models

3.1 Cardinal B-splines

Themth order cardinal B-spline function is defined by the
following recursive formula (Chui, 1992):

Nm(x) =
x

m− 1
Nm−1(x)+

m− x

m− 1
Nm−1(x − 1), m ≥ 2

(2)

where

N1(x) = χ[0,1)(x) =

{
1 if x ∈ [0, 1)
0 otherwise

(3)

It can easily be shown that the support of themth order
B-spline function is suppNm=[0,m]. Compared with other
basis functions, the most attractive and distinctive prop-
erty of B-splines are that they are compactly supported and
can be analytically formulated in an explicit form. Most
importantly, they form a multiresloution analysis (MRA)
(Chui, 1992). B-splines are unique, among many com-
monly used basis functions, because they simultaneously
possess the three remarkable properties, namely compactly
supported, analytically formulated and multiresolution anal-
ysis oriented, among many popular basis functions. These
splendid properties make B-splines remarkably appropriate
for nonlinear dynamical system modelling. The most com-
monly used B-splines are those of orders 1 to 4, which are
shown in Table 1.

For the mth order B-spline functionNm∈L2(R), let
Nm
j,k(x)=2j/2Nm(2jx−k), Dmj ={Nm

j,k:k∈Z}, wherej, k∈Z
are called the scale (or dilation) and position (translation)
parameters respectively. Following (Chui, 1992), for each
j∈Z, let V mj denote the closure of the linear span ofDmj ,
namely, V mj =closL2(R)<D

m
j >. The following properties

(Chui, 1992) possessed byDmj andV mj form the foundations
of the cardinal B-spline multiresolution analysis modelling
framework for nonlinear dynamical systems:

i) For any pair of integersm andj , with m≥2, the family
Dmj ={Nm

j,k(x):k ∈ Z} is a Riesz basis ofV mj with Riesz
boundA=Am (Am is a constant related tom) andB=1.
Furthermore, these bounds are optimal.

ii) Themth order B-spline functionNmis a scaling function
andV mj forms a multiresolution analysis (MRA).

From the above discussions, for every functionf∈V mj ,

there exists a unique sequence{cmk }k∈Z∈`2(Z) such that

f (x) =

∑
k∈Z

cmk 2j/2Nm(2
jx − k) (4)
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For convenience of description, the symbolφwill be intro-
duced to represent themth order B-spline functionNm and
the symbol “m” will be omitted in associated formulas.

3.2 The cardinal B-spline model for high dimensional
problems

The result for the 1-D case described above can be extended
to high dimensions and several approaches have been pro-
posed for such an extension. Tensor product and radial con-
struction are two commonly used methods (Wei and Billings,
2004; Billings and Wei, 2005). Following the idea in Hastie
and Tibshirani (1990) and Kavli (1993), in the present study,
a linear additive CBS model structure will be employed
to represent a high dimensional nonlinear function. Kavli
(1993) suggested a method to successively refine a linear B-
spline model for multivariate problems by adding new 1-D
submodels step by step.

For ad-dimensional functionf∈L2(Rd), the linear addi-
tive representation is given below

f (x1, x2, · · · , xd) = f1(x1)+ f2(x2)+ · · · + fd(xd) (5)

where fr∈L2(R) (r=1,2,. . . ,d) are univariate functions,
which can be expressed using the expansion (4) as below

fr(xr) =

∑
k∈Z

crj,kφj,k(xr) (6)

whereφj,k(x)=2j/2φ(2jx−k), andj, k∈Z are the scale and
position parameters, respectively.

Now consider the model given by Eq. (1) and let
xr(t)=y(t−r+1) for r=1, 2,. . . ,d. Using Eqs. (5) and (6),
model (1) can be expressed as

y(t + s) =

d∑
r=1

f (s)r (xr(t)) =

d∑
r=1

∑
k∈Z

c
(s,r)
j,k φj,k(xr(t))+ e(t) (7)

The remaining task is how to deduce, from Eq. (7), a parsi-
monious model that can be used fors-step-ahead forecasts
for a given prediction horizons. The following problem
needs to be solved:

– How to choose the scale and position parametersj and
k ?

– In practical modelling problems, the variablesxr(t)
(r=1, 2, . . . , d), as the lagged versions ofy(t), are
usually sparsely distributed in the associated space and
therefore the problem may be ill-posed. The representa-
tion (7) is thus often redundant in the sense that most of
the basis functions (or model terms),φj,k(·) in Eq. (7),
can be removed from the model, and experience shows
that only a small number of significant model terms are
required for most nonlinear dynamical modelling prob-
lems. The question is: how to select the potential sig-
nificant model terms from a large number of candidate
basis functions?

The scale and position determination problem will be dis-
cussed in the following section. The model term selection
problem has been systematically investigated in Billings et
al., 1989; Chen et al., 1989). In the present study, an orthog-
onal least squares (OLS) algorithm, interfered with by an er-
ror reduction ratio (ERR) index (Billings et al., 1989; Chen et
al., 1989), and regularized by a Bayesian information crite-
rion (BIC) (Schwarz, 1978; Efron and Tibshirani, 1993), will
be used to select significant model terms and to determine the
model size (the number of model terms included in the final
model). One version of the OLS-ERR type algorithm, called
the forward orthogonal regression (FOR) algorithm, is pre-
sented in the Appendix.

3.3 Determination of the scale and position parameters

Assume that ad-variate functionf of interest is defined in
the unit hypercube[0, 1]

d . Consider the scale parameter de-
termination problem first. Experience on numerous simula-
tion studies relating to wavelet multiresolution modelling for
dynamical nonlinear systems, for example Wei et al. (2004a,
b) and Wei and Billings (2004) and the references therein,
has shown that the scale parameterj in model (7) should not
be chosen too large. A value that is between zero and two
or three forj is often adequate for most nonlinear dynamical
modelling problems.

For cardinal B-spline functions, the position parameterk

is dependent on the corresponding resolution scalej . Indeed,
for each fixed pointx∈[0, 1], sinceNm has compact support,
all except a finite number of terms in the expression (4) are
zero. Take the 4th-order B-spline function as an example. At
a given scalej , the non-zero terms are determined by the po-
sition parameterk for k=−3,−2,−1, · · ·, 2j−1. In general,
for the B-spline function of orderm, whose support is[0, m],
the support for the associated functionφj,k(x)=2j/2(2jx−k)
is [2−jk, 2−j (m+k)], therefore, the position parameterk at
a resolution scalej should be chosen as−(m−1)≤k≤2j−1.

4 Water level modelling and high tide forecasting

4.1 The data

The data used here are the hourly recorded observations of
water levels at Punta della Salute, Venice Lagoon, for the
period from January 1990 to December 1994. These data
were partitioned into 5 data sets, symbolized by “data90”,
“data91”, “data92”, “data93”, and “data94”, corresponding
to different year numbers. The number of observations in
the data set “data92” was 8784, and was 8760 in the other
data sets. In the modelling procedure, the observations in
each year were chosen as the training data set and were used
to identify a model. The resultant model was then used to
predict water levels for the next year. For example, a model
identified from the data set “data92” will be used to predict
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Fig. 1.  One-hour-ahead prediction for typical high tides. The thin line with dots indicates the 
measurements (observed in 1993), and the thick dashed line indicates the prediction values. 

 

 

 

 

 

 

 

Fig. 1. One-hour-ahead prediction for typical high tides. The thin
line with dots indicates the measurements (observed in 1993), and
the thick dashed line indicates the prediction values.

water levels in 1993 and the predicted values will then be
compared with the real observations.

The maximum lag for the input variables in the initial
modelling procedure was chosen to be 24, to cover the range
of the maximum oscillation cycle of the related time series.
Thus, the variablesy(t), y(t−1), · · ·, y(t−23) were used as
inputs to form a predictor, whose output was the future be-
haviour, denoted byy(t+s) (s≥1).

Note that the original data were initially normalized to
[0,1] via a transformy(t)=(ỹ(t)−a)/(b−a), whereỹ(t) in-
dicate the initial observations, anda=−100 andb=150. The
identification procedure was therefore performed using nor-
malized valuesy(t). The outputs of an identified model were
then recovered to the original measurement space by taking
the associated inverse transform.

4.2 The models

Let xr(t)=y(t−r+1), r=1, 2,. . . , 24. The structure of the
initial CBS model was chosen to be

y(t + s) =

24∑
r=1

0∑
k=−3

c
(s,r)
0,k φ0,k(xr(t))

+

24∑
r=1

1∑
k=−3

α
(s,r)
1,k φ1,k(xr(t)) (8)

where φj,k(x)=2j/2φ(2jx−k),with j, k∈Z, are the 4th-
order B-spline functions. Notice that model (8), which in-
volves two scale levels forj=0 andj=1, is in structure dif-
ferent from model (7), where the model termφj,k(·) only in-
volves a single scale level. The reason that the initial model
(8) was chosen to be such a structure was to enrich the pool
of the model term dictionary, so that basis functions with dif-
ferent scale parameters can be sufficiently utilised. Although
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Fig. 2.  Four-hour-ahead prediction for typical high tides. The thin solid line indicates the 
measurements (observed in 1993), and the thick dashed line indicates the prediction values. 

 

 

 

 

 

 

 

Fig. 2. Four-hour-ahead prediction for typical high tides. The thin
solid line indicates the measurements (observed in 1993), and the
thick dashed line indicates the prediction values.

a total number of 216 model terms (basis functions) were in-
volved in the initial model (8) for any givens, only a small
number of basis functions were required to describe the re-
lationship between{y(t), y(t−1), · · ·, y(t−23)} andy(t+s),
and significant model terms were efficiently selected by per-
forming a model term detection algorithm,. Also, different
values fors usually led to different final models. For each
s, an OLS-ERR algorithm (Billings et al., 1989; Chen et al.,
1989), regularized by a Bayesian information criterion (BIC)
(Schwarz, 1978; Efron and Tibshirani, 1993), was used to
determine the number of model terms, and the parameters of
the final CBS model was then re-estimated by introducing a
linear moving average (MA) model of order 10 (Billings and
Wei, 2005; Wei and Billings, 2006).

4.3 Prediction results

Eight cases, corresponding tos=1, 4, 12, 24, 28, 48, 72,
and 96, were considered, and eight different CBS models
were identified for each of four data sets “data90”, “data91”,
“data92”, and “data93”. The resultant eight models were ap-
plied respectively over four test data sets, “data91”, “data92”,
“data93”, and “data94”, to calculates-step-ahead forecasts of
water levels. Prediction performance, measured by the root-
mean-square-errors (RMSE) as used in Zaldivar et al. (2000)
and del Arco-Calderon et al. (2004), over the four test data
sets, obtained from the identified CBS models, are shown in
Table 2. Compared with the results produced by multilayer
neural networks (Zaldivar et al., 2000) and evolutionary algo-
rithms (del Arco-Calderon et al., 2004), the results produced
by the proposed CBS models are better, both for short and
long term predictions.

To visually illustrate the performance of the identified
CBS models for high tide forecasting, both short term and
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Table 2. Prediction errors for water levels of the years 1991, 1992, 1993, and 1994, with 8760, 8784, 8760, and 8760 records, respectively.

Prediction horizon 1991 1992 1993 1994
Model size RMSE Model size RMSE Model size RMSE Model size RMSE

1 39 1.521 38 1.538 49 1.519 37 1.489
4 36 5.389 35 5.408 35 5.274 31 5.075
12 24 7.072 21 7.406 18 6.656 20 6.439
24 23 7.325 16 7.353 18 6.858 19 6.584
28 27 9.232 26 9.246 26 8.637 23 8.352
48 22 10.686 18 10.752 23 9.788 20 9.716
72 20 13.036 21 13.352 23 12.019 19 11.940
96 18 14.480 23 15.108 25 13.576 21 13.449
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Fig. 3.  Twelve-hour-ahead prediction for typical high tides. The thin solid line indicates the 
measurements (observed in 1993), and the thick dashed line indicates the prediction values. 

 

 

 

 

 

 

Fig. 3. Twelve-hour-ahead prediction for typical high tides. The
thin solid line indicates the measurements (observed in 1993), and
the thick dashed line indicates the prediction values.

long term predictions for some high tides were calculated
using the identified CBS models. Taking the prediction re-
sults for some typical high tides in the year 1993 as an exam-
ple, the 1-, 4-, 12-, and 24-h-ahead predictions are shown in
Figs. 1 to 4, respectively.

It can be seen from Figs. 1 to 4 that albeit the identified
CBS models can produce very good short term (4 h-ahead)
predictions for typical high tides at the lagoon, the resul-
tant models can not effectively produce long (>12 h-ahead)
term predictions for high waters (water level>110 cm). The
reason that the models can not provide effective long term
predictions may be that the “input” signals, considered here,
for the associated dynamical models may not be sufficient to
describe the real world dynamical systems, in other words,
additional input signals may be required to adequately char-
acterize the underlying dynamical behaviour. One solution
to this problem is likely to involve multiple time series, and
tides at several places in the Adratic Sea or the use of a 3-D
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Fig. 4. Twenty-four-hour-ahead prediction for typical normal water level. The thin solid line indicates 
the measurements (observed in 1993), and the thick dashed line indicates the prediction values. 

 

 

Fig. 4. Twenty-four-hour-ahead prediction for typical normal water
level. The thin solid line indicates the measurements (observed in
1993), and the thick dashed line indicates the prediction values.

hydrodynamical model with adequate forcing. Following the
idea of Cao et al. (1998), the extension of the methodology to
multiple time series approach, will be addressed in a future
paper.

5 Conclusions

The CBS models are a class of nonlinear representation,
where dilated and translated versions of cardinal B-spline
functions were chosen to be the basis functions (regressors or
model terms). As a special class of linear-in-the-parameters
representation, the CBS models are easy to train using some
standard model term selection algorithms, and the final iden-
tified models usually only include a small number of signif-
icant model terms. The proposed CBS models provide an
efficient representation for short term forecasts of high tides
at the Venice lagoon.

www.nonlin-processes-geophys.net/13/577/2006/ Nonlin. Processes Geophys., 13, 577–584, 2006



582 H. L. Wei and S. A. Billings: Cardinal B-spline model for high tide forecasts

Appendix A The forward orthogonal regression
algorithm

The CBS models are based on a prescribed prototype func-
tion, and temporal analysis is performed using some dilated
and translated versions of the same function. Data analy-
sis can thus be implemented using the corresponding coef-
ficients. The initial CBS model (8), where each basis func-
tion (model regressor) is a variant of the same cardinal B-
spline function, can easily be converted into a linear-in-the-
parameters form

y(t) =

M∑
m=1

θmψm(t)+ e(t) (A1)

where x(t)=[x1(t), x2(t), · · ·, xd(t)]
T , with

xr(t)=y(t−r+1) for r=1,2,. . . ,d, is the “input” (pre-
dictor) vector,ψm(t)=ψm(x(t)) are the model regressors,
θmare the model parameters, andM is the total number of
candidate regressors.

The initial regression model (A1) often involves a large
number of candidate model terms. Experience suggests that
most of the candidate model terms can be removed from the
model, and that only a small number of significant model
terms are needed to provide a satisfactory representation for
most nonlinear dynamical systems. The orthogonal least
square (OLS) type algorithms (Billings et al., 1989; Chen et
al., 1989) interfered with by an error reduction ratio (ERR)
index, can be used to select significant model terms, and a
Bayesian information criterion (BIC) (Schwarz, 1978; Efron
and Tibshirani, 1993), can be used to aid the determination
of the associated model size (Wei et al., 2006).

Consider the term selection problem for the linear-in-the-
parameters model (A1). Let{(x(t), y(t)):x∈Rd , y∈R}

N
t=1

be a given training data set andy=[y(1), · · ·, y(N)]T be the
vector of the output. LetI = {1, 2, · · · ,M}, and denote by
�={ψm:m∈I } the dictionary of candidate model terms in an
initially chosen candidate regression model similar to (A1).
The dictionary� can be used to form a variant vector dic-
tionaryD={φm:m∈I }, where themth candidate basis vector
φm is formed by themth candidate model termψm∈�, in
the sense thatφm=[ψm(x(1)), · · ·, ψm(x(N))]T . The model
term selection problem is equivalent to finding, fromI , a sub-
set of indices,In={im:m=1, 2, · · ·, n, im∈I } wheren≤M, so
that y can be approximated using a linear combination of
αi1,αi2, · · ·,αin .

A1 The forward orthogonal regression procedure

A non-centralised squared correlation coefficient will be
used to measure the dependency between two associated ran-
dom vectors. The non-centralised squared correlation coeffi-
cient between two vectorsx andy of sizeN is defined as

C(x, y) =
(xT y)2

||x||2||y||2
=

(xT y)2

(xT x)(yT y)
=

(
∑N
i=1 xiyi)

2∑N
i=1 x

2
i

∑N
i=1 y

2
i

(A2)

The squared correlation coefficient is closely related to the
error reduction ratio (ERR) criterion (a very useful index in
respect to the significance of model terms), defined in the
standard orthogonal least squares (OLS) algorithm for model
structure selection (Billings et al., 1989; Chen et al., 1989).

The model structure selection procedure starts from
Eq. (A1). Letr0=y, and

`1 = arg max
1≤j≤M

{C(y,φj )} (A3)

where the functionC(·, ·) is the correlation coefficient de-
fined by (A2). The first significant basis can thus be selected
asα1=φ`1, and the first associated orthogonal basis can be
chosen asq1=φ`1. The model residual, related to the first
step search, is given as

r1 = r0 −
yT q1

qT1 q1
q1 (A4)

In general, themth significant model term can be chosen as
follows. Assume that at the (m-1)th step, a subsetDm−1,
consisting of (m−1) significant bases,α1,α2, · · ·,αm−1,
has been determined, and the (m−1) selected bases have
been transformed into a new group of orthogonal bases
q1, q2, · · ·, qm−1 via some orthogonal transformation. Let

q
(m)
j = φj −

m−1∑
k=1

φTj qk

qTk qk
qk (A5)

`m = arg max
j 6=`k,1≤k≤m−1

{C(y, q
(m)
j )} (A6)

whereφj∈D−Dm−1, and rm−1 is the residual vector ob-
tained in the (m−1)th step. Themth significant basis can
then be chosen asαm=φ`m and themth associated orthogo-

nal basis can be chosen asqm=q
(m)
`m

. The residual vectorrm
at themth step is given by

rm = rm−1 −
yT qm

qTmqm
qm (A7)

Subsequent significant bases can be selected in the same way
step by step. From (A7), the vectorsrm andqm are orthogo-
nal, thus

||rm||
2

= ||rm−1||
2
−
(yT qm)

2

qTmqm
(A8)

By respectively summing (A7) and (A8) form from 1 ton,
yields

y =

n∑
m=1

yT qm

qTmqm
qm+rn (A9)

Nonlin. Processes Geophys., 13, 577–584, 2006 www.nonlin-processes-geophys.net/13/577/2006/



H. L. Wei and S. A. Billings: Cardinal B-spline model for high tide forecasts 583

||rn||
2

= ||y||
2
−

n∑
m=1

(yT qm)
2

qTmqm
(A10)

The model residualrn will be used to form a criterion for
model selection, and the search procedure will be terminated
when the norm||rn||

2 satisfies some specified conditions.
Note that the quantityERRm=C(y, qm) is just equal to the
mth error reduction ratio (Billings et al., 1989; Chen et al.,
1989), brought by including themth basis vectorαm=φ`m
into the model, and that

∑n
m=1C(y, qm) is the increment or

total percentage that the desired output variance can be ex-
plained byα1,α2, · · ·,αn.

In the present study, the following Bayesian information
criterion (BIC) (Schwarz, 1978; Efron and Tibshirani, 1993)
is used to determine the model size

BIC(n)=
N + n[ln(N)−1]

N−n
MSE(n) (A11)

In the present study, the mean-squared-error (MSE) in (A11)
is defined as

MSE(n)=
||rn||

2

2N
=

1

2N

∑N

t=1
[y(t)−ŷ(t)]2 (A12)

where ŷ(t) is the model prediction produced from the as-
sociated model ofn terms. The model size will be chosen
as the value where the index function BIC(n) is minimized.
Note that other popular definitions for MSE in (A11) are also
available, for example, MSE(n)=||rn||

2/N (Wei et al. 2006).

A2 Parameter estimation

It is easy to verify that the relationship between the selected
original basesα1,α2, · · ·,αn, and the associated orthogonal
basesq1, q2, · · ·, qn, is given by

An = QnRn (A13)

whereAn=[α1, · · ·,αn], Qn is anN×n matrix with orthog-
onal columnsq1, q2, · · ·, qn, and Rn is an n×n unit up-
per triangular matrix whose entriesuij (1≤i≤j≤n) are cal-
culated during the orthogonalization procedure. The un-
known parameter vector, denoted byθn=[θ1, θ2, · · ·, θn]

T ,
for the model with respect to the original bases, can
be calculated from the triangular equationRnθn=gn
with gn=[g1, g2, · · ·, gn]

T , wheregk=(yT qk)/(q
T
k qk) for

k=1,2, . . . ,n.
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