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Abstract. The problem of extracting climatically relevant
information from multivariate geological records is tackled
by characterising the eigenvalues of the temporarily varying
correlation matrix. From these eigenvalues, a quantitative
measure, the linear variance decay (LVD) dimension density,
is derived. The LVD dimension density is shown to serve
as a suitable estimate of the fractal dimension density. Its
performance is evaluated by testing it for (i) systems with
independent components and for (ii) subsystems of spatially
extended linearly correlated systems.

The LVD dimension density is applied to characterise two
geological records which contain information about climate
variability during the Oligocene and Miocene. These records
consist of (a) abundances of different chemical trace ele-
ments and (b) grain-size distributions obtained from sedi-
ment cores offshore the East Antarctic coast. The presented
analysis provides evidence that the major climate change as-
sociated with the Oligocene-Miocene transition is reflected
in significant changes of the LVD dimension density. This is
interpreted as a change of the interrelationships between dif-
ferent trace elements in the sediment and to a change of the
provenance area of the deposited sediment.

1 Introduction

Variations of the Earth’s climate occur on many very dif-
ferent temporal scales related to different driving forces.
The annual cycle is caused by the variations of the solar
net radiation. Interannual variability patterns like the El
Niño/Southern Oscillation (ENSO) (Battisti and Sarachik,
1995) or the North-Atlantic Oscillation (NAO) (Hurrell et al.,
2003) are related to the internal variability of the atmosphere-
ocean system. Solar cycles on the decadal scale (as with a
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period around 11 years or the Gleisberg cycle with an av-
erage period length of 88 years) are known to drive climate
variations (Lean et al., 1995). Centennial scale solar oscil-
lations affect ocean circulation. The orbital dynamics of the
Sun/Earth system are responsible for climate variations on
millenial scales and in particular for glaciation/deglaciation
cycles (Paillard, 2001). Plate tectonics, leading to an opening
and closure of oceanic gateways and the formation of moun-
tain belts due to continental collisions, directly influence the
atmospheric and oceanic circulation on very long time scales
(Hay, 1996; Florindo et al., 2005).

Variations of environmental conditions are reflected by
variations of parameters obtained from palaeoclimatic proxy
data such as physical or chemical properties of sediment and
ice cores, or tree rings. Depending on the particular site
and measurement, paleoclimatic proxy data are tracers of lo-
cal or global climate conditions. To achieve an overall pic-
ture of the information included in the geological source un-
der investigation, complementary measurements and analy-
ses need to be performed. These analyses involve measure-
ments of physical, chemical, and (in the case of sedimen-
tary sequences) biological or sedimentological parameters.
Furthermore, age models that quantify the age-depth rela-
tionship of a sediment or ice core incorporating information
about their uncertainties must be developed (Buck and Mil-
lard, 2004; Telford et al., 2004).

The intention of geological studies is to identify signatures
of climate change and relate them to the variability of cli-
matologically meaningful quantities. A direct interpretation
in terms of meteorological parameters from the individually
measured series is often not possible. Therefore, it is a stan-
dard approach to derive variability patterns from multivariate
geological time series (Bradley, 1999). These patterns can be
associated with changes of climatic observables like temper-
ature, moisture conditions (i.e., seasonal precipitation, snow
volumes), vegetation cover, or the strength and location of
different atmospheric oscillatory patterns. For this purpose,
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Fig. 1. Map of the Antarctic continent including the locations of
the Cape Roberts project drill sites and the preceeding MSSTS-1
and CIROS-1 drillings. In addition, the location of ODP site 1165
(Williams and Handwerger, 2005), the site of collection of what
is probably the best studied Antarctic offshore marine core, is dis-
played.

transfer functions are frequently applied (Sachs et al., 1977;
Fischer et al., 2004), which may be a potential matter of crit-
icism (Telford and Birks, 2005).

Most palaeoclimatic time series are the result of exten-
sive and expensive measurement campaigns. Surprisingly, it
was typically not discussed which complementary informa-
tion can be extracted from the resultant multivariate records.
In our paper, we address this problem and propose the con-
sideration of dimension densities of multivariate records as a
measure of the information content. For this purpose, we de-
rive appropriate quantities and describe their major strengths
and weaknesses by applying them to data sets generated by
stationary model systems. For the considered paleoclimate
proxy data, an age-dependent calculation of these measures
(i.e., a separate computation for different parts of the climate
history) allows one to infer the variability of the appropri-
ately quantified information content.

In this paper, we illustrate the considered problem for data
obtained from marine sediment cores collected off the shore
of the East Antarctic coast (see Fig.1). The first data set com-
prises the abundances of 32 trace elements that are measured
for 60 time slices, the second data set contains grain size
histograms with respect to 23 size classes which are mea-
sured for 129 time horizons. The number of measurement
points is too low to apply one of the numerous approaches
from nonlinear time series analysis (see the text books of,

e.g., Priestley, 1988; Tong, 1990; Abarbanel, 1996; Kantz
and Schreiber, 1997; Diks, 1999, or the specific references
given in Sect. 3). To treat such short multivariate data appro-
priately, we have recently proposed (Donner and Witt, 2006)
that one measures the strength of the interrelationships of the
individual univariate measurements series of the multivariate
record. Our method is based on a statistical decomposition
of the covariance matrix of time windows of the related data.
In particular, we have studied the remaining variances as a
function of the number of eigenmodes and assumed an ex-
ponential decay model. We demonstrated that this approach
leads to qualitatively robust results even for very short data
sets.

This manuscript presents a detailed discussion about the
general strengths and weaknesses of the considered approach
and its application to a particular palaeoclimatic example.
It is organised as follows: In Sect.3, we review the ap-
poach of estimating the dimension density by characteris-
ing the decay of eigenvalues of the covariance matrix us-
ing Karhunen-Lòeve decomposition (KLD). This idea was
already proposed byZoldi and Greenside(1997) for estimat-
ing the so-called KLD dimension of spatio-temporal chaotic
systems. Then, the linear variance decay (LVD) dimension
is introduced as a more sensitive estimate. The LVD dimen-
sion is, in contrast to the KLD dimension, defined as a con-
tinuous measure. The corresponding advantages and disad-
vantages are discussed in Sect.4 by comparing the perfor-
mance of both characteristics for uncorrelated data and for a
model system of spatio-temporal chaos. In Sect.5, we apply
our method to real-world geological data sets. Our findings
are discussed from a palaeoclimatic point of view. Finally, a
brief outlook of possible generalisations and further fields of
application is given.

2 Description of the data

We analyse data from marine sediments obtained within the
framework of the Cape Roberts project off the shore of the
East Antarctic coast. This campaign consisted of three sci-
entific drillings at slightly different locations. The main ob-
jective of the Cape Roberts project was to carry out a de-
tailed study of glaciation and deglaciation intervals in the
Antarctic region in a time interval of between about 17 to
34 million years Before Present (BP). During this time in-
terval, the global mean temperature was significantly higher
than today with long-term temperature fluctuations caused by
orbital cycles (for more details and a list of references, see
Naish et al., 2001). During the same period, tectonic activity
caused openings and closures of ocean passages. The resul-
tant dramatic changes in ocean circulation are responsible for
changing atmospheric dynamics. In addition to the related
signal, the variability on time scales associated to variations
of orbital parameters is also preserved in the data.
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In the sediment core CRP-2/2A (see Fig.1), the
Oligocene-Miocene transition (OMT), the probably most re-
markable climatic transition in the considered time interval,
is well resolved. The OMT is characterised by an opening of
the Drake passage between South America and the Antarc-
tic continent, which led to an intensification of the Antarc-
tic circumpolar current and a successive thermic isolation
of the continent. These effects finally caused an enhanced
glacial variability in the high latitudes of the Southern hemi-
sphere. Although the core does resolve the OMT well, the
data of palaeoclimatic proxies like trace element abundances
or grain-size distributions have only been obtained for a very
small number of time slices. Thus, the actual mechanism
of the transition is not well resolved in the corresponding
component time series. In this paper, we aim to improve the
explanatory power of the considered data set by considering
all components instantanously. In particular, we focus on
the question of whether the different climatic conditions in
the older and the younger part of these records (Naish et al.,
2001) are reflected by varying strength and changing patterns
of the interrelationships between the different palaeoclimatic
observables.

In our recent paper (Donner and Witt, 2006), we already
started to study a record of trace element abundances from
the CRP-2A core (Krissek and Kyle, 2000; Krissek, 2004).
The analysed data set consists of 46 parameters measured
within 104 slices of the sedimentary core. Due to gaps in the
measurement series, we have analysed a homogeneous sub-
set of records of 32 trace elements from 60 time slices. The
trace element abundances were measured by X-ray fluores-
cence (XRF, 19 elements) and instrumental neutron activa-
tion analysis (INAA, 13 elements)1. As the absolute abun-
dances of these elements (given in parts per million (ppm))
cover several orders of magnitude, we first standardised all
component time series to unit variance before subjecting the
data set to further analysis.

Complementary information is provided by studying an
independent paleoclimatic proxy: a record of grain size dis-
tributions. Grain-size distributions can be obtained by siev-
ing (mass-frequency distributions) or more advanced opti-
cal measurement techniques applied to the suspended ma-
terial (number-frequency distributions). For the CRP-2/2A
core, the corresponding data were obtained using a SEDI-
GRAPH 5100 which measures the absorption of x-rays dur-
ing the sedimentation of the material. The data (Barrett and
Anderson, 2000, 2003) consist of relative frequencies of par-
ticles in 23 different size classes, which are equally spaced
on a logarithmic scale (phi-scale). In total, measurements
have been performed on 119 different time slices.

On the one hand, trace element abundances give important
information about the mineralogical composition and, hence,
the origin of the sedimented material. On the other hand,

1Among the 32 parameters, the abundances of arsenic, thorium
and uranium have been measured twice with both methods.

Fig. 2. Palaeoclimatic data sets used in this study. Upper panel:
Abundances (normalised to zero mean and unit variance) of the 32
trace elements S, Sc, V, Cr, Ni, Cu, Zn, Ga, As (twice), Rb, Sr,
Y, Zr, Nb, Sb, Cs, Ba, La, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Pb, Th
(twice) and U (twice) (from left to right). Lower panel: Frequencies
of grains with sizes between about 1 and 1000µm.

grain-size distributions are related to the mode of transporta-
tion of the material from its source to the final debris and may
be modified by different erosional mechanisms. Hence, this
proxy may provide insights into the dominating transport and
deposition mechanisms of the sediment (McBride, 1971).

All data sets used in this study are publically available
from the PANGAEA data base (http://www.pangaea.de). In
addition, a complete list of all measurements and some in-
formation about possible climatic implications can be found
in Krissek and Kyle(2000) (trace element abundances) and
Barrett and Anderson(2000) (grain-size distributions), re-
spectively. To get an impression of the contained variability,
both data sets are displayed in Fig.2.
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3 Methodology

For analysing univariate time series, a number of nonlinear
techniques can be applied to characterise the complexity of
the data. However, it is awkward to work with palaeocli-
matic data. Due to their usually rather coarse temporal reso-
lution with an uneven sampling and the uncertainties of both
the measured data and the applied age model, an appropri-
ate analysis requires some especially sophisticated methods.
Traditional approaches of time series analysis can thus hardly
be applied to such data, which was demonstrated for frac-
tal dimensions estimated with the Grassberger-Procaccia al-
gorithm (Grassberger and Procaccia, 1983) for some marine
isotopic records (Mudelsee and Stattegger, 1994).

In the case of multivariate data, several nonlinear meth-
ods originally developed for univariate data may be gener-
alised, including the Lyapunov spectrum (Bünner and Heg-
ger, 1999), the scaling of fractal dimensions (Politi and
Witt, 1999), or dimension densities based on a normalised
Grassberger-Procaccia algorithm (Bauer et al., 1993). How-
ever, as shown byOlbrich et al.(1998), the dimensions cal-
culated from data sets depend crucially on the resolution of
the observations. To overcome the corresponding difficul-
ties,Raab and Kurths(2001) have proposed a normalisation
for approaching large-scale correlation dimension densities.

A multivariate time series can be statistically decom-
posed by a variety of different approaches: by purely lin-
ear methods like the Karhunen-Loève decomposition (KLD)
(which is also known as Empirical Orthogonal Function
(EOF) method or Principal Component Analysis (PCA) (Jo-
liffe , 1986; Preisendorfer, 1988)) or by nonlinear approaches
like Nonlinear Principal Component Analysis (NLPCA)
(Kramer, 1991), Locally Linear Embedding (LLE) (Roweis
and Saul, 2000), Isometric Feature Mapping (ISOMAP)
(Tenenbaum et al., 2000), or Independent Component Anal-
ysis (ICA) (Hyvärinen et al., 2001). All mentioned nonlin-
ear methods require sufficiently long stationary time series
and, therefore, they cannot appropriately applied to the con-
sidered palaeoclimatic data sets. That is the reason why we
hark back to linear statistical decomposition.

In this work, we restrict our considerations to the case of
Karhunen-Lòeve decomposition (KLD). These days, KLD is
a standard method for compressing spatiotemporal data by
finding the largest linear subspace that contains substantial
statistical variations of the data. In the case of observations
with N simultaneously measured variables andM points
in time, theM×N -dimensional data matrixA (rescaled to
zero means for any component time series) is used to de-
fine anN×N -dimensional symmetric and positive semidefi-
nite scatter matrixS=AT A. The matrixS can be completely
described by its non-negative eigenvaluesσ 2

i (i=1, . . ., N )
and their corresponding eigenvectors, which in the geosci-
entific community are called empirical orthogonal functions
(EOF). Without loss of generality, we consider theσ 2

i of S in
decreasing orderσ 2

1 ≥. . .≥σ 2
N≥0. In addition, we will nor-

malise the eigenvalues to unit sum
∑N

i=1 σ 2
i =1 wherever ap-

propriate.

3.1 KLD dimension density

By definition, the KLD is a purely linear method because
it characterises the covariance matrix.Zoldi and Greenside
(1997) have extended the range of applicability to a quanti-
tative characterisation of spatio-temporal chaotic systems by
introducing the KLD dimension. Meanwhile, this approach
is commonly applied to quantify the degree of complexity of
high-dimensional nonlinear systems (Meixner et al., 2000;
Varela et al., 2005).

In this paper, we define the KLD dimension as the num-
ber of eigenvalues needed to capture some specified fraction
0≤f ≤1 of the total variance

∑N
i=1 σ 2

i of the data:

DKLD (f ) = min

{
p :

p∑
i=1

σ 2
i

/
N∑

i=1

σ 2
i ≥ f

}
. (1)

The limiting cases areDKLD (0)=0 andDKLD (1)=N . This
is a modified version of the original definition of the KLD
dimension used byZoldi and Greenside(1997) andMeixner
et al.(2000) who definedDKLD as the maximum number of
eigenmodes describing less than a fraction off of the to-
tal variance. The advantage of our version of the definition
concerns the limiting casesf =0 andf =1.

In the case of simulations of spatio-temporally chaotic
systems, Zoldi and co-workers observed a linear scaling of
DKLD with the system sizeN for any f . This finding jus-
tifies the normalisation of the KLD dimension to the KLD
dimension densityδKLD=DKLD/N (Meixner et al., 2000),
which has values within the unit interval.

So far, the KLD dimension has been mainly determined
for simulated data of idealised model systems. Recently,
Varela et al.(2005) have appliedDKLD in an investigation of
spatiotemporal data from electrochemical oscillator experi-
ments (withM≥6000 andN=50) and the authors demon-
strated that this measure is well suited for quantifying differ-
ences between regular and turbulent states.

To adapt the concept of KLD dimension density to non-
stationary systems, we propose to analyse the temporal vari-
ability of δKLD . If δKLD is derived from the scatter matrixS
with respect to the complete data set, it quantifies the tempo-
ral average of the complexity of interrelationships between
the different components. A separate computation of the
KLD dimension density,δKLD , for sliding temporal windows
(Meixner et al., 2000), however, gives a resolution of the
varying complexity down to the scale ofN points in time
or even below.

3.2 LVD dimension density

The KLD dimension can be widely applied to large data sets
from spatio-temporally chaotic systems. Its direct applica-
tion to an observational record with rather few observables
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(i.e., smallN ) or a low number of measurement points along
the time axis (smallM) is problematic for the following rea-
sons:

1. δKLD has a range ofN+1 different, equally spaced
values. As a consequence, this measure cannot respond to
small changes of the structure of the interrelationships be-
tween the component time series. IfN is rather small, only
strong changes within the data lead to a (dramatically) differ-
entδKLD .

2. δKLD depends on the choice of the cutoff parameterf .
For a fixed cutofff , δKLD must be considered to be arelative
rather than anabsolutedimension density. For applications
where only a qualitative detection and description of changes
of the complexity of interrelationships within a multivariate
data set is requested, this subtle difference is negligible.

3. Due to the small amount of observational data in time,
certain finite-size effects have to be expected which may
cause any quantitative interpretation ofδKLD to fail.

These arguments call for further modifications of the orig-
inal concept. As one possibility, we recently introduced the
linear variance decay (LVD) dimension densityδLVD (Don-
ner and Witt, 2006) that leads even in the case of small data
sets to reliable results. This measure can be obtained by con-
sidering the scaling ofδKLD with the cutoff parameterf and
fitting a suitable parametric function to the resultant curve.

Now, an appropriate model function for the scaling of
δKLD must be introduced. The scaling of the component
variances,σi, i=1, . . . , N , have been investigated for ran-
dom matricesA (Farmer, 1971; Probert-Jones, 1973) as well
as real-world geoscientific data (Craddock and Flood, 1969)
in terms of logarithmic eigenvalue (LEV) curves (for an
overview, seePreisendorfer, 1988). In contrast to the com-
ponent variances, there are no studies investigating the scal-
ing of the remaining variances. To expoit the scaling be-
haviour of the remaining variances, one has to be aware
that for a given value ofδKLD (f )=p/N (p=0, . . . , N ),
1−f plays the role of the remaining variances defined
as Vr(p/N)=1−

∑p

i=1 σ 2
i for p=1, . . . , N (Vr(0)=1.0),

wherep/N is the relative number of components considered.
An inspection of the corresponding values for both random
matrices as well as observational data, shows that the decay
that corresponds to the components’ largest variances can be
well described by an exponential decay (see Fig.3). As a
consequence, we make the following ansatz:

Vr(p/N) = 10−
p
N

/δLVD for p ≤ pmax < N. (2)

The corresponding value forδLVD can be computed by a sim-
ple linear least squares approach. However, ifN is rather
small, there are only a few points to which the model function
can be fitted. And again, we find onlyN possible choices of
the thresholdpmax for fitting this function: SinceVr(N)=0.0
by definition, an exponential decay law must be subjected to
a certain cutoff atpmax<N . To overcome this difficulty and
define the model function with respect to a continuous cut-
off parameterf , we make use of the relationship between
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Fig. 3. Scaling of the component variancesσ2
p (left panel) and the

corresponding remaining variancesVr (p) (right panel) for the trace
element abundance data (M=60 andN=32, red crosses) discussed
in Sect.5. For comparing the results with those of finite-size ran-
dom matrices, we additionally computedVr (p) for ensembles of
1000 multivariate (N=32) surrogate data sets consisting of nor-
mally distributed data (with prescribed component variances equal
to those of the original data) with lengthM=60 (gray line) and
M=1000 (black line) points in time. The displayed error bars cor-
respond to the standard deviations of the values from the respective
surrogates. The deviation between the black and the gray curve is
mainly explained by the small number and non-Gaussian distribu-
tion of the observed time series values.
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Fig. 4. Scaling of the KLD dimension densityδKLD (f ) with
log(1−f ) (black line) for the trace element abundance data dis-
cussed in Sect.5. Vertical gray lines indicate the cutoff values of
f =0.5 (solid), 0.9 (dotted), 0.95 (dashed), and 0.99 (dash-dotted),
whereas the slope of the associated gray diagonal lines correspond
to the respective values ofδLVD (f ).

Vr(p) and 1−f which is illustrated in Figs.3 and 4: re-
versing the axes in Fig.4 and multiplyingδKLD by N(=32),

www.nonlin-processes-geophys.net/13/485/2006/ Nonlin. Processes Geophys., 13, 485–497, 2006



490 R. Donner and A. Witt: Dimension estimates of multivariate palaeoclimatic proxy data

0 10 20 30
−3

−2.5

−2

−1.5

−1

−0.5

0

Component Order p

lo
g 10

(σ
p2 )

0 10 20 30
−3

−2.5

−2

−1.5

−1

−0.5

0

Component Order p

lo
g 10

(V
r(p

))

Fig. 5. Scaling of the component variancesσ2
p (left panel) (LEV

curve) and the corresponding remaining variancesVr (p) (right
panel) for multivariate Gaussian distributed white noises with
N=32 andM=60 (gray lines) as well asM=1000 (black lines)
points in time, resp. The displayed error bars correspond to the
standard deviations of the values from 100 realisations.

one approaches a continuously defined equivalent of the right
panel in Fig.3 (where the illustrated function is defined only
for integer values ofp). Thus, we consider a scaling law
of the KLD dimension density corresponding to that of the
remaining variances as

δKLD (φ) = −δLVD (f ) log(1 − φ) for φ ∈ [0, f ]. (3)

The value ofδLVD (f ) is called thelinear variance decay
(LVD) dimension density. AsδKLD (f ) is well-defined for
f ∈[0, 1], this expression allows to calculateδLVD (f ) for any
f ∈(0, 1). The values ofδLVD are calculated by minimising
the functional

Fα(f ) =

∫ 0

log(1−f )

(δKLD (x) + αx)210xdx (4)

with respect toα (here, we have made use of the transforma-
tion x= log(1−φ)). Fα(f ) has (for any value off ) a unique
global minimum at

αmin(f ) = −

∫ 0
log(1−f )

δKLD (x)x10xdx∫ 0
log(1−f )

x210xdx
(5)

which can be computed easily. This minimum,αmin(f ), cor-
responds to the LVD dimension densityδLVD (f ).

The LVD dimension density still depends on the cut-
off parameterf , i.e., gives only a qualitative dimension
density estimate. The appealing alternative to obtain a
parameter-free measure by, for example, taking the mini-
mum or maximum ofδLVD over all values off has severe
disadvantages: there is only a local minimum and maxi-
mum ofδLVD (f ) for f within the open interval(0, 1) since

log(1−f )→0 asf →0 (δLVD→+∞) and log(1−f )→−∞

asf →1 (δLVD→0). Moreover, the local minimum ofδLVD
taken over allf ∈(0, fmax) always occurs atf =1−Vr(p) for
a suitablep∈{1, . . . , N−1}. Thus, a dynamic characterisa-
tion of the record by this local minimum LVD dimension
density is not suitable as it may occur at completely different
values off (possibly even changing discontinuously if the
associated value ofp changes with time).

As a consequence, we propose thatδLVD is always con-
sidered as a qualitative dimension estimate corresponding to
a fixed value off ∈(0, 1). Although it still shares this disad-
vantage with the KLD dimension density,δLVD is much more
sensitive with respect to minor changes in the correlations of
the component time series and simultaneously applicable to
very small data sets. We will demonstrate this in more detail
in the following section.

4 Application to model systems

Before we are able to apply our approach to measured
palaeoclimatic time series, it is necessary to discuss the per-
formance ofδKLD andδLVD for short and noisy multivariate
data sets. For this purpose, we study both measures for dif-
ferent synthetic data sets in the limit of small data sets (i.e.,
eitherN or M is comparable to typical geological time se-
ries).

4.1 Independent stochastic data

Spectra of eigenvalues of covariance matrices of multivari-
ate Gaussian distributed white noise (i.e., there are no tem-
poral correlations and the components are statistically non-
correlated) with a limited length have been extensively stud-
ied both, analytically and numerically (for an overview and
further references, see chapter 5 ofPreisendorfer, 1988).
In particular, there are analytic expressions for the eigen-
value spectra of such matrices. The resulting logarithmic
eigenvector curves show a quasi-exponential decay of values
steepening towards the major components as well as towards
the components with the smallest variances. Our numerical
calculations of covariance matrices of Gaussian distributed
white noise, which are displayed in Fig.5, resemble the re-
sults ofPreisendorfer, 1988, p. 240. In addition, we show
the corresponding decay curves of the remaining variances
Vr(p) which start to significantly deviate from an exponen-
tial decay for lower numbers of considered components than
the corresponding LEV curve. Nonetheless, for the high am-
plitude components, the exponential model appears to be a
good approximation.

As a next step, we study the influence of additive Gaus-
sian white noise on the eigenvalues and remaining vari-
ances of the covariance matrices. For this purpose, we
modify the above setting by considering Gaussian dis-
tributed white noise with a component dependent standard
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Fig. 6. Color-coded representations ofδKLD (upper panel) and
δLVD (lower panel) for Gaussian distributed white noise withN=32
andM=60 and with component variancesσ2

p= exp( p
N

/δ) (δ=0.2)
as a function of the cutoff levelf for different additive noise am-
plitudesσ2 (mean values from 100 realisations). White areas cor-
respond to parameters whereδLVD either could not be computed
(very largef ) or gave artificially high values>1 (very smallf ).

deviation (i.e.,σ 2
p 6=1). As an example, we prescribe the

component variances to have exponentially decaying values
σ 2

p= exp(− p
N

/δ). In this case, additive noise dominates the

decay of the eigenvalues only on scales whereσ 2
p is some-

what smaller than the noise varianceσ 2 (which is in this
example related to the fact that both, signal and noise, are
the same kind of process). In contrast to the eigenvalues
themselves, the remaining variances are much more sensi-
tive to the noise and show remarkable deviations already for
(Vr(p)/σ )2

∼1. For component ordersp where the eigenval-
ues and remaining variances are smaller than these thresholds
(whose values are closely related to the specific setting), the
noise leads to a significant change of the slope of the cor-
responding decay curves. Hence, the decay at these minor
components is mainly described by the noise.

The different sensitivity of the eigenvalues of the covari-
ance matrix and the corresponding remaining variances is
reflected by a larger sensitivity of the LVD dimension den-
sity to additive noise compared to that of the KLD dimension
which is – as a coarse-grained estimate – much more robust
to reasonably small changes of the covariance structure of
the data. In Fig.6, the behaviour of the two measures is
systematically studied as a function of both, the cutoff value
f and the noise amplitudeσ 2. In particular, one observes
thatδKLD generally increases withf , whereas its values in-
crease relatively slowly as noise amplitude grows. In con-
trast,δLVD changes (for sufficiently largef ) moderately as
the cutoff valuef increases, but is still sensitive to changes
in the amplitude of the applied noise. Note that in the case
of δLVD , the cutoff valuef has to be chosen large enough to
avoid the strong and unbounded increase in the values of this
measure forf →0. Concerning the uncertainty of both di-
mension estimates, it is found that these are of similar orders
of magnitude with maximum values at parameters where the
corresponding measures have a large gradient.

4.2 Subsets of large-scale systems

The case of temporarily and spatially uncorrelated compo-
nent time series discussed so far is rather generic. Obser-
vational data from geoscientific systems are likely to have
some deterministic, or even high-dimensional chaotic com-
ponents. To demonstrate the power of KLD-based dimen-
sion estimates for such data sets, we propose studying their
performance for systems that model the behaviour of spatio-
temporal chaos. We utilise a computationally efficient model
(Politi and Witt, 1999) of spatio-temporal chaotic dynamics
that is constructed for a prescribed value of the dimension
densityd∈[0, 1]. This model is based on the Fourier ba-
sis vectors{F1, . . . , Fn} of a sufficiently high-dimensional
space (i.e.,n is large, in our casen=1000):

Fkj =


1/

√
n, if k = 1,

√
2/n cos

(
2π
n

[
k
2

]
j
)

, if k > 1 and odd,
√

2/n sin
(

2π
n

[
k
2

]
j
)

, if k even,

(6)

(where[·] denotes the integer part, andj=1, . . . , N≤n gives
the “spatial” position on a regular one-dimensional lattice).
These vectors are used to construct component time series of
the multivariate data set as

xij =

dn∑
k=1

ξikFkj . (7)

Here,ξik (with i=1, . . . , M corresponding to the position in
time) is a set of random numbers taken from an appropriate
distribution. If |ξik|<1, the valuesxij (that form theM×N -
dimensional data matrix) are located in adn-dimensional hy-
percube. IfM is sufficiently large, the eigenvaluesσ 2

p of
the associated covariance matrix show an abrupt decay at the

www.nonlin-processes-geophys.net/13/485/2006/ Nonlin. Processes Geophys., 13, 485–497, 2006



492 R. Donner and A. Witt: Dimension estimates of multivariate palaeoclimatic proxy data

0 10 20 30
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Component Order p

lo
g 10

(σ
p2 )

0 10 20 30
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Component Order p

lo
g 10

(V
r(p

))

Fig. 7. Scaling of the component variancesσ2
p (left panel) (LEV

curve) and the corresponding remaining variancesVr (p) (right
panel) for the model system for spatio-temporal chaos (d=0.5) with
N=32 andM=60 (gray lines) as well asM=1000 (black lines)
points in time, resp. The displayed error bars correspond to the
standard deviations of the values from 100 realisations.

component indexdn, corresponding to the dimension of the
underlying hypercube (see Fig.7).

In our recent paper (Donner and Witt, 2006), we already
used this system withξik taken from a uniform distribution
on [−31/3, 31/3

] to demonstrate the power of the KLD-based
dimension estimates. By studying several simulations, we
could show thatδKLD aproaches the true dimension of the
system better thanδLVD . For this system, the LVD dimension
density shows a different behaviour compared to the case of
random matrices: WhereasδKLD increases with increasing
f by definition,δLVD decreases for this particular example.
Now, we investigate the dependence of the two measures on
the size of the system and on the true (prescribed) dimension
densityd.

Figure8 presents simulations of the two quantities for dif-
ferent length of the multivariate time seriesM. We find that
for suitably long time series (M≤n=1000), the KLD dimen-
sion density approaches constant values. Short time series
cause poor estimates of the correlation matrix and, conse-
quently,δKLD is biased and has rather large confidence in-
tervals. The LVD dimension densityδLVD is even more sen-
sitive to small changes of the length of the time series: an
increasing size of the record leads to a gradually increasing
estimate of the dimension. Only for very long time series
M≥n do the computed values saturate. For both dimension
estimates, it is found that saturation occurs for shorter time
series iff is close to 1. Furthermore, iff andM are both
chosen sufficiently large, bothδKLD andδLVD approach the
prescribed dimension densityd of the system.

The sensitivity of KLD-based dimension estimates on the
observational length allows a comparison of different data
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Fig. 8. Scaling of the dimension estimatesδKLD (left panel) and
δLVD (right panel) for the model system of spatio-temporal chaos
(d=0.5) with N=32 components as a function of the lengthM of
the record forf =0.5 (black),f =0.9 (dark gray) andf =0.95 (light
gray). The displayed error bars correspond to the standard devia-
tions of the values from 100 realisations.

sets only if they have the same length. This restricts the ap-
plicability to geoscientific data sets: Sedimentary records are
often unevenly sampled in time (age). Instead of compar-
ing time windows of equal length, windows that are related
to the same number of measurement data points have to be
compared.

When considering variations of the true system dimension
d, the “optimum” truncation levelf to identify d with the
considered technique increases with increasingd in the case
of the KLD dimension densityδKLD , whereas forδLVD , the
opposite behaviour is found. The results shown in Fig.9
underline our earlier findings (Donner and Witt, 2006) (note
that the number values of both dimension density estimates
differ from those in the reference due to a modified setting,
i.e., a different choice ofN andM). As our study presented
here is more systematic, we additionally find that the discrete
values ofδKLD lead to oscillations of the optimum truncation
levelf for changes ind. In contrast,δLVD changes withd in
a smooth way, but leads (for our specific setting and “typical”
values off ) to a clearly worse quantitative estimate ofd. In
general, for fixedf , both dimension density estimates detect
changes in the true dimension of the system. As the associ-
ated changes of their related values are discrete in the case
of δKLD but continuous forδLVD , the latter measure is better
suited for qualitatively detecting and describing changes of
the correlation structure in multivariate data sets.

5 Palaeoclimatic example: Cape Roberts Project

We start our analysis by considering the trace element record
of the CRP-2/2A sediment core. Because onlyδLVD is suffi-
ciently sensitive to small changes of the correlation structure
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Fig. 9. Color-coded representations ofδKLD (upper panel) and
δLVD (lower panel) for data from the space-time chaos model with
N=32 andM=60 as a function of the cutoff levelf for differ-
ent prescribed dimension densitiesd of the system. The values are
averages from 100 realisations of the respective system for each pa-
rameter. Black lines correspond to cutoff levelsf for which the
prescribed dimension densityd is recovered by the respective di-
mension estimates. White areas correspond to parameters where
δLVD either could not be computed (very largef ) or gave artifi-
cially high values>1 (very smallf ).

of the data, we calculate this measure to understand tempo-
ral variations in the strength of correlation within the pale-
oclimate records. Significant changes ofδLVD occur when
sediments with contributions from below 400 m b.s.f. (me-
ters beyond sea floor) maximum depth or above 130 m b.s.f.
minimum depth is considered (see Fig.10). The interval be-
tween these two horizons covers a relatively small time win-
dow between about 24.3 and 23.8 Myr BP, which includes
the Oligocene-Miocene transition (OMT) that was explained
in Sect. 2. The qualitative changes recorded in the trace ele-
ment data are associated with a change of the provenance of
the material (Krissek and Kyle, 2000) and an enhanced vari-
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Fig. 10. Sum of the first two eigenvaluesσ2
1+σ2

2 (left panels), and
the corresponding LVD dimension densityδLVD (right panels) for
the normalised trace element abundances from the CRP-2A core.
Sliding windows ofM=20 (black),M=30 (dark gray) andM=40
(light gray) points in time are considered. The results are presented
as a function of the minimum (upper panels) and maximum (lower
panels) depth (m b.s.f.) of the sediment layer associated to the re-
spective data subsets. Vertical dotted lines indicate the major tran-
sitions recorded in the data.

ability of the sedimentation. The two effects together result
in a decrease of the interrelationships between the variability
of different trace elements and, consequently, an increase of
the dimension of the record.

Although a significant number of components are required
to explain a certain fraction of total variance, the tempo-
ral variation of the first two leading eigenvalues already
shows a pattern similar to the LVD dimension density2. For

2One can easily show that the corresponding variations are sig-
nificant by considering the results for different values ofM (cf.
Fig. 10). To study the robustness of the measure against small
perturbations of the data, we considered small windows with only
M=20 points in time, substituted randomly chosen measurement
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Fig. 11.The first two eigenvaluesσ2
i

(i=1, 2) (left panels) and their
associated eigenvectors (color-coded representation in right panels)
for the normalised trace element abundances from the CRP-2A core
as a function of the minimum core depth for sliding windows of
M=20 points in time.

time windows containingM=20 points, Fig.11 shows these
eigenvalues and the corresponding eigenvectors. One ob-
serves that the behaviour of the first two eigenvalues is com-
pletely different. For the older part of the record, the first
eigenmode clearly dominates the record, whereas the second
one becomes increasingly important when considering data
resulting from the time interval associated with the OMT.
The corresponding changes in the first eigenvector are mainly
reflected by the components associated to the trace elements
scandium (element number 2), vanadium (3), strontium (12),
and barium (18). The last two are also the main recorders of
the increase of the first eigenvalue when younger sediment
(≤23.8 Myr BP) from above 130 m b.s.f. is considered. The
onset of the increase of the second eigenvalue is reflected by
the eigenvector component associated with sulfur (element

horizons by stochastic data, and computedδLVD for the perturbed
data set (seeDonner and Witt, 2006).

number 1), whereas a number of other components start to
change later. These results apparently indicate that the cli-
mate change associated with the OMT is particularly pro-
nounced in three elements of the record (S, Sr, Ba), which
are also the trace elements with the highest absolut abun-
dances in the record. This result is particularly remarkable
as all component time series were standardised to unit vari-
ance before our analysis.

Apart from the climate change associated with the OMT,
the eigenvector analysis seems to indicate further transitions
in the climate system. For example, a qualitative change of
the second eigenvector in the youngest part of the sediment
is found. To gain a deeper insight into the corresponding age
interval, one has to consider data from other sources, e.g.,
the CRP-1 and CIROS-1 cores. For these locations, however,
there are no comparable records of trace element abundances
available.

The grain-size distributions that we use as a complemen-
tary source of information belong to the class of composi-
tional data which require a specific statistical treatment. In
general, for an arbitrary multivariate data set, a transforma-
tion dividing the original data by their respective sum at ev-
ery point in time leads to a set of compositional data. This
situation is present in the case of grain-size distributions: As
there are no absolute, but rather relative values, the statis-
tically relevant quantities are no longer the component data
themselves, but appropriate ratios thereof, as these ratios are
invariant under the respective transformation.

Aitchinson (1986) has demonstrated that there are three
equivalent ways of considering either pairwise or centred
ratios within a compositional vector. Among these, for a
data vector(x1, . . . , xN ), theN centred ratios are defined as
x∗

i =xi/g(x1, . . . , xN ), whereg(x1, . . . , xN ) is the geomet-
ric mean of the vector. We will consider these centred ratios
as they do not give particular weight to any fixed component
of the original data set. Typically, one uses the correspond-
ing log-ratio transformed data instead of the centred ratios
themselves (i.e., logx∗

i ). Because zero “counts” occur fre-
quently in typical grain size histograms, the consideration of
logarithms leads to numerical instabilities, and thus, we use
the original data.

Considering the results displayed in Fig.12, one firstly ob-
serves a much more detailed variability pattern when com-
pared to the trace element data discussed above, which is an
effect of the higher total number of observations. Secondly,
the non-transformed data give a more diffuse pattern com-
pared to the transformed ones, which underlines the necessity
of a transformation to obtain statistically meaningful results
on compositional data. Thirdly, the recorded transitions in
the climate system associated with the OMT are consistent
with the results from the trace element record, but are better
resolved due to the larger number of data. In particular, one
observes that the pattern corresponding to the Oligocene is
reflected by a strong successive decrease of the LVD dimen-
sion, which is followed by an increase when sediment from
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between 350 and 400 m b.s.f. is considered. We attribute the
corresponding layer to the onset of the OMT. Furthermore,
the decrease of dimension above 130 m b.s.f. is resolved as in
the case of the trace elements, which probably determines the
end of the transition with a full development of the Antarctic
circumpolar current and a resulting provenance change.

A further decrease of the complexity of interrelationships
is observed when sediment from above 50 m b.s.f. is con-
sidered. This confirms the findings from the geochemical
data and proves their actual relevance. The age associated
to the corresponding layer is about 20.3 to 20.4 Myr BP. In
another study from Prydz Bay (ODP Site 1165) (Williams
and Handwerger, 2005), this age interval was found to corre-
spond to the probably most pronounced layer of ice-rafted
debris during the Early Miocene, which indicates that the
transition found in the Cape Roberts data is probably related
to a major deglaciation event on the Antarctic continent.

6 Conclusions

We have introduced a novel method to quantify the com-
plexity of interrelationships of the components from short
and noisy multivariate data sets by considering the scaling of
component variances gained by an appropriate statistical de-
composition of the record. In particular, we have shown that
the LVD dimension densityδLVD , defined as the exponential
decay rate of the remaining variances, serves as a suitable
estimate for the fractal dimension of certain model systems
and qualitatively detects even weak changes in the correla-
tion structure of the data. Our approach allows one to deter-
mine an “optimum” cutoff for dimension reduction because
it is related to the number of significant components of a mul-
tivariate record. Also, the method of KLD-based dimension
estimates yields additional information about the dynamics
and the temporal variations of the recorded system.

In this paper, we have characterised multivariate records
of chemical and sedimentological properties of marine sed-
iments collected off the shore of the East Antarctic coast in
terms ofδLVD . In particular, we found evidence that the ma-
jor climate change associated with the Oligocene-Miocene
transition is reflected by significant changes of the interre-
lationships between the contents of different trace elements
in the sediment. A corresponding eigenvector analysis indi-
cated that these changes are mainly associated to the major
trace elements sulfur, strontium, and barium. The observed
variability pattern is even more pronounced when studying
grain-size distributions from the same location. The grain-
size distributions resolve another climatic event at about
20.3 Myr BP which is probably related to a major deglacia-
tion of the ice shield on the Antarctic continent.

The eigenvalues of the covariance matrix of the data (com-
puted for small sliding windows in time) yield important
information about changes of the correlations between the
component time series of the record.δLVD is an aggregated
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Fig. 12. δLVD computed for grain-size distributions from the CRP-
2/2A core without (upper panel) and with (lower panel) a transfor-
mation of the data to centred ratios. The results are displayed as a
function of both, the minimum (left) and maximum (right) depth
of the sediment layer considered for sliding windows ofM=20
(black),M=30 (dark gray) andM=40 (light gray) points in time.
Vertical dotted lines correspond to common features of the three set-
tings representing major climatic transitions recorded in the data.

parameter which qualitatively indicates long-term climate
change. Instead of considering single observables (or heuris-
tically defined parameters derived from), one can useδLVD
as a measure of the density of the extended system. Sin-
gle observables, that are often easily interpretable in terms
of meteorological parameters, respond to changes of envi-
ronmental conditions in different ways, sometimes even with
different time lags. So, it may be a promising approach to
apply the proposed method to dynamically define new aggre-
gated variables which are related to a single meteorological
or hydrological parameter.

The method described in this paper is not restricted to
palaeoclimatic studies of records from geological sequences.
Under rather general conditions, it is applicable to a wide
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range of potential problems in the geosciences, including the
characterisation of seismic or hydro-meteorological time se-
ries. The proposed technique allows one to assess temporal
variations of different spatio-temporally recorded parameters
and predict their behaviour in the near future (i.e., in terms
of forecasting of weather, floods, or earthquakes).

As a major limitation, our method implicitly requires time
windows with a fixed number of data points. Even for an
exactly known system with a prescribed correlation structure,
the estimated dimension densities depend on the size of the
data set, given in terms of both the number of component
time seriesN and the number of points in timeM.

Possible generalisations of our approach with respect to
other methods of statistical decomposition can be considered
by using nonlinear techniques instead of the standard linear
KLD method. An application of the proposed technique to
univariate time series is possible after an appropriate embed-
ding. In particular, we propose the use of Singular System
Analysis (SSA) (Vautard and Ghil, 1989) as a straighforward
modification of the method presented here for multivariate
data.
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