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Abstract. In this paper, Multi-Layer Perceptron and Radial-
Basis Function Neural Networks, along with the Nearest
Neighbour approach and linear regression are utilized for
flash-flood forecasting in the mountainous Nysa Klodzka
river catchment. It turned out that the Radial-Basis Func-
tion Neural Network is the best model for 3- and 6-h lead
time prediction and the only reliable one for 9-h lead time
forecasting for the largest flood used as a test case.

1 Introduction

One of the most dangerous flood events which happened
in Poland took place in July 1997, severely affecting the
southern and western part of the country. The small but
densely populated catchment of the Nysa Kłodzka river, a
tributary of the Oder river, suffered tremendously. The area
of the Nysa Kłodzka catchment (described in more detail in
Napiórkowski, 2003) is about 4565 square kilometres, with
mountainous relief, its highest peak reaching 1440 m above
sea level. During events of high precipitation, steep valley
slopes may shorten the catchment response time to hours,
making proper forecasts much more difficult and giving lo-
cal people less time for preparation.

Rainfall-runoff modelling may be performed by means of
data-driven methods, which do not describe physical pro-
cesses (Napiórkowski and Piotrowski, 2005). Among the
most useful techniques are Multi-Layer Perceptron Neural
Networks (MLP), Radial-Basis Function Networks (RBF)
and the Nearest Neighbours approach (NN). In the present
study, these approaches, along with linear regression, are ap-
plied for flash-flood forecasting, based on a small data set of
rainfall and runoff measurements collected during six flood
events that have afflicted the Nysa Kłodzka catchment since
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1965. Although the mentioned techniques are well known
in the hydrological sciences, it is rare that all of them are
applied to the same task, which may help in a comparison
of their applicability to practical problems. Literature exam-
ples comprise of the works of Brath et al. (2002) using MLP
networks and the NN approach for precipitation forecasting,
Jayawardena and Fernando (1998), Dawson et al. (2002),
Moradkhani et al. (2004) and Wang et al. (2006) applying
MLP and RBF networks for flow prediction; and Giustolisi
and Laucelli (2005), who compared different network opti-
misation techniques.

2 Applied models

When dealing with rainfall-runoff modelling, the vector of
input variables may consist ofIP recent precipitation (xp)

andIR runoff (xr) observations, i.e. both autoregressive and
exogenous inputs are included (Ljung, 1999), together giv-
ing the number of input variables (g). The vector of input
variables (Xj ) at thej -th time instant can be presented as

Xj =

(
x

p
j , ..., x

p

j−IP+1, x
r
j , ..., x

r
j−IR+1

)T

= (x1, x2, ..., xg)
T (1)

and corresponds to output variableyj+T – which represents
future river runoff. One can then proceed to the stage of de-
termining the prediction modelF

yj+T = F(Xj ) (2)

whereT is the prediction horizon.
The objective functionJ to be minimized for each model

by proper optimization of parameters (h) is defined in this
paper as:

J = min
h

n∑
j=1

(dj+T − yj+T )2 (3)
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 Fig. 1. Radial-Basis Function (left) and Multi-Layer Perceptron (right) neural network.

wheren is the number of training or validation set outputs
anddj+T is the measured value of flow corresponding to the
j -th input vector.

2.1 Linear regression

Linear regression is the well known technique (Box and
Jenkins, 1970) enabling one to compute the value of pre-
dicted output variable (yj+T ) as the weighted sum ofg input
variables (xi) and a bias (w0)

yj+T = w0 +

g∑
i=1

wixi (4)

This approach is obviously not suitable for non-linear rela-
tionship modelling, as is necessary in the case of river runoff
prediction, and will be used only as a reference model.

2.2 Nearest Neighbours approach (NN)

For the Nearest Neighbours approach, one searches for the
K points, representing cases from historical data, that are
the most similar (the smallest Euclidean distance in the in-
put space) to the point representing the current situation and
applying only these selected parts of the data set for forecast-
ing the unknown output value (Karlsson and Yakowitz, 1987;
Shamseldin and O’Connor, 1996; Brath at al., 2002). Data
are standardized to the range of [0,1] to obtain the identical
scale along each axis ing-dimensional input space. In addi-
tion, instead of computing the simple mean of future runoffs
of the K data points, it is assumed herein that the function
F in Eq. (2) takes the form of a linear regression (Wang et
al., 2006), i.e.g+1 parameters are to be determined by the
least squares method, based on only theK nearest neigh-
bours data. The number of pointsK, was evaluated by a
trial and error procedure, but results differ only slightly for
K varying in the range of about 50–100.

2.3 Multi-Layer Perceptron neural networks (MLP)

MLP networks, probably the most popular neural network
type in the hydrological sciences, are usually composed of
three layers (Fig. 1) comprising several nodes. The number
of input and output nodes is equal to the number of input and
output variables, but the quantity of hidden nodes is evalu-
ated empirically. The MLP nodes in neighbouring layers are
linked via weighted connections.

After being normalized to [0,1], input signals at thej -th
time instant from the input nodes are multiplied by proper
weights wil , corresponding to connections between input
neurons, from which the signal has been dispatched, and neu-
rons in the hidden layer. In each of them hidden nodes, the
weighted sum of all the incoming signals and threshold val-
ues (w0l) is computed and then transformed by – in case of
this study – the logistic function, giving the value ofal dis-
patched byl-th neuron

al =

[
1+exp

(
-w0l -

g∑
i=1

wil xi

)]−1

(5)

Afterwards, the signalsal , multiplied by proper weightsvl ,
are transferred to the neuron of the third layer. In this final
stage, the new weighted sum is computed

yj+T = v0 +

m∑
l=1

alvl (6)

and after de-normalization of the output, the sought (fore-
casted) valueyj+T is determined. The values of weightswil

andvl are adaptively modified during the process of train-
ing according to the training examples. In the present pa-
per, many models with different numbers of hidden nodes
were created and optimized. To avoid stopping in local min-
ima of the objective function, the learning processes used a
gradient-based Levenberg-Marquardt optimization algorithm
(Haykin, 1994) with the multi start approach from different
initial parameter values.
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Table 1. Flood periods.

Wave name Period of data collection Forecasting period Number of input vectors Maximum runoff recorded
(m3/s)

97a 08:00 30 June 1997 –
14:00 13 July 1997

05:00 1 July 1997 –
14:00 13 July 1997

100 1718

97b 20:00 12 July 1997 –
23:00 31 July 1997

17:00 13 July 1997 –
23:00 31 July 1997

147 451

79 08:00 10 June 1979 –
23:00 25 June 1979

05:00 11 June 1979 –
23:00 25 June 1979

119 598

77a 23:00 25 July 1977 –
20:00 10 Aug 1977

20:00 26 July 1977 –
20:00 10 Aug 1977

121 488

77b 11:00 15 Aug 1977 –
20:00 31 Aug 1977

08:00 16 Aug 1977 –
20:00 31 Aug 1977

125 423

65 07:00 23 May 1965 –
22:00 15 June 1965

04:00 24 May 1965 –
22:00 15 June 1965

183 823

Table 2. Correlation coefficients between river runoff and aggregated rainfall with varying time lag (t).

t 0 3 6 9 12 15 18 21 24

R(y(i): xp(i − t)) 0,37 0,48 0,57 0,60 0,59 0,56 0,54 0,54 0,53

2.4 Radial-Basis Function neural networks (RBF)

The RBF network, depicted in Fig. 1, differs from the MLP
one and includes one hidden layer of special units that pre-
process the input and feed a single-layer perceptron. There
are different algorithms available when deciding how to opti-
mize the RBF network, and some of them enable each of the
three kinds of parameters to be estimated separately.

Each of them units (the numberm is evaluated empiri-
cally) in the hidden layer contains centrecl of the given re-
gion of the input space. The corresponding non-linear func-
tion ϕl expresses, by means of a distance measure, the simi-
larity between any vectorX of input variables and the centre
cl . The most commonly adopted Radial-Basis Function is
the Gaussian

ϕl = exp

(
−

‖X − cl‖
2

σ

)
(7)

Parameter valuescl , σ andvl (Eq. 9) are to be optimised.
The self-organized selection ofcl by theK-means approach
is applied in this paper. To obtain theσ parameter value – in
this paper assumed to be the same for eachcl – the heuristic
rule was applied

σ = b ·
r

√
2m

(8)

wherer is the maximum value of the Euclidean norm be-
tween the two centres,m is the number of centres, andb is

an unknown value, which in each case was found empirically.
The linear weightsvl in the output layer were optimized by
using the pseudoinverse method (Haykin, 1994). The full
RBF network gives a model structure with the form

yj+T = v0 +

m∑
l=1

ϕlvl (9)

As in the MLP case, different numbers of hidden units were
chosen and optimized a number of times with different initial
locations ofcl .

3 Data preparation, results and discussion

At the Bardo gauge station, located in the Nysa Kłodzka
river, six significant flood periods have been recorded since
1965 (Table 1). The data exploited in this paper consists of
runoff measurements, collected every 3 h at the Bardo gauge,
and rainfall measurements, aggregated – which reduced sig-
nificantly the number of parameters to be optimized for each
model – by Thiessen polygons method, from 5 stations, lo-
cated in the Nysa Kłodzka catchment, namely Miȩdzylesie,
Kłodzko, La̧dek, Słosźow and Mierosźow.

The proper choice of the lag time of runoff and rainfall
measurements is very important. Based on the correlation co-
efficients between rainfall and runoff (Table 2), which show
the largest correlation for only 9–12 h and quite slowly di-
minishes for higher time lags, the maximum lag time of rain-
fall measurements was limited to 21 h for all versions and
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Table 3. Model structure description.

Version Input nodes Output nodes Hidden nodes (MLP) Centres (RBF)K-nearest neighbours

V1-3 10 1 5 20 80
V2-3 10 1 5 24 80
V2-6 10 1 7 24 80
V2-9 10 1 7 18 80

Table 4. Root mean square errors and standard deviation ratio computed for each model case for all versions.

Version Set Wave MLP RBF Lin. reg. NN MLP RBF Lin. reg. NN
RMSE SDR

V1-3 training 97a 8,85 14,60 26,67 25,31 0,024 0,040 0,073 0,070
V1-3 training 97b 8,29 8,99 9,38 7,86 0,074 0,080 0,084 0,070
V1-3 training 79 5,13 13,14 21,50 30,31 0,053 0,137 0,223 0,315
V1-3 validation 77a 7,05 6,41 9,01 5,82 0,058 0,053 0,074 0,048
V1-3 validation 77b 8,57 8,53 10,07 9,23 0,101 0,101 0,119 0,109
V1-3 test 65 16,84 11,63 13,26 10,11 0,130 0,089 0,102 0,075

V2-3 test 97a 29,15 15,13 29,44 26,29 0,079 0,042 0,081 0,073
V2-3 validation 97b 7,89 7,76 7,90 7,16 0,070 0,069 0,071 0,064
V2-3 validation 79 24,22 24,07 24,29 19,30 0,252 0,251 0,252 0,201
V2-3 training 77a 5,65 5,59 7,17 6,06 0,046 0,045 0,059 0,050
V2-3 training 77b 8,04 7,67 8,61 8,46 0,095 0,091 0,102 0,100
V2-3 training 65 6,90 6,63 10,75 12,56 0,053 0,051 0,083 0,097

V2-6 test 97a 108,83 30,79 70,36 61,92 0,293 0,084 0,195 0,171
V2-6 validation 97b 15,37 17,07 16,92 14,44 0,136 0,150 0,151 0,129
V2-6 validation 79 33,17 45,41 48,41 36,96 0,346 0,473 0,499 0,385
V2-6 training 77a 9,49 9,99 16,53 12,49 0,077 0,080 0,135 0,102
V2-6 training 77b 13,53 13,89 17,04 14,46 0,160 0,162 0,201 0,171
V2-6 training 65 13,16 13,22 22,56 21,17 0,101 0,099 0,174 0,163

V2-9 test 97a 142,01 71,88 121,28 109,96 0,378 0,188 0,336 0,303
V2-9 validation 97b 26,47 27,30 24,32 21,46 0,229 0,239 0,217 0,191
V2-9 validation 79 40,12 58,16 58,26 40,45 0,418 0,606 0,591 0,421
V2-9 training 77a 13,40 15,97 24,96 17,65 0,106 0,126 0,204 0,143
V2-9 training 77b 17,58 20,55 24,72 20,09 0,205 0,238 0,291 0,238
V2-9 training 65 26,62 24,91 38,76 36,75 0,203 0,187 0,298 0,283

lead times. The same number of inputs for each lead time
forecast was taken (including at least 3 last runoff measure-
ments).

In a study with a small data set, the way of separating the
data into a training set used to evaluate parameter values, a
validation set used to determine stopping criteria for the algo-
rithm and to choose the best model of a particular type, and,
if possible, a fully optimization-independent test set, may be
crucial. In the present paper, it was decided that all observa-
tions collected during a particular storm event should belong
to the same data set. This way, some flood waves may be con-
sidered as independent and become a basis for the appraisal

of individual model performance. To perform the forecast
in a more convenient way, the largest flood should be made
part of the training set. On the other hand, it is especially
important to verify the ability of each model to forecast the
runoff during the severe 1997 flood (called 97a in Table 1).
In the present paper, two versions are analyzed. In version
V1, cases 97a, 97b and 79 compose the training set, 77a and
77b the validation set, and finally 65 – the test set. In version
V2, cases 65, 77a and 77b are included in the training set, 79
and 97b in the validation set, and the highest 97a wave is kept
aside as the test set. 3-h lead time forecasts are considered in
both versions (named V1-3 and V2-3). In the case of version

Nonlin. Processes Geophys., 13, 443–448, 2006 www.nonlin-processes-geophys.net/13/443/2006/
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Fig. 2. Test data cases: 3 h lead time flood forecast for 65 (version V1-3, top left); 3 h (V2-3, top right), 6 h (V2-6, bottom left) and 9 h (V2-9,
bottom right) lead time flood forecast for 97a.

V2, due to its practical importance, also 6- (V2-6) and 9-h
(V2-9) lead time predictions are made. Altogether, there are
four different versions of each model. The final structure of
each model version is presented in Table 3.

Three ways of comparing the results will be used: root
mean square error (RMSE), computed separately for each
wave (n is the number of data points recorded during a storm
event)

RMSE=

√√√√1

n

n∑
j=1

(y
f
i − yi)2 (10)

standard deviation ratio (SDR), evaluated as

SDR=

√√√√ 1
n

n∑
i=1

((
y

f
i − yi

)
−

(
n∑

j=1
y

f
j − yj

)
/n

)2

√√√√ 1
n

n∑
i=1

(
yi −

(
n∑

j=1
yj

)
/n

)2
(11)

and visual comparison.
The obtained results are presented in Table 4 and Fig. 2. In

version V1, only 3-h lead time prediction is performed, show-
ing the surprising result that linear regression turns out to be
only slightly inferior to the other methods. Nevertheless, ac-
cording to the validation and test sets, the RBF and NN ap-
proaches are able to forecast runoff slightly better. In Fig. 2,

one sees that the poorer performance of the MLP network is
due to overestimation of peak flow. The graph confirms that
the difference between the other models is negligible.

In version V2, the forecast for 3- to 9-h lead time are per-
formed. In the case of 3-h forecasts, the 79 storm event is
modeled better by the NN approach than by the other meth-
ods, whereas the crucial 97a flood forecast obtained from the
RBF network significantly outperforms the other techniques.
Both RMSE and SDR are almost 50% lower when using this
approach. In the 97b case, all of the models perform simi-
larly. With lead times of 6 and 9 h, similar behaviour may
be observed: the RBF network outperforms other methods in
the case of the 97a storm event, but results obtained for the
97b and 79 events are slightly better if the NN or the MLP
approach is applied. It is clear that all of the models only
provide reasonable forecasts with a 3-h lead time. The only
6- or 9-h lead time forecasts that are closely related to the
measured runoff values are output by the RBF network.

Both the MLP and NN models outperform linear regres-
sion for the validation cases. But it is worth noticing that
all investigated MLP networks perform significantly worse
when applied to the test data sets.

4 Conclusions

In the present paper, Nysa Kłodzka river rainfall-runoff fore-
casts for flood periods are performed by means of several

www.nonlin-processes-geophys.net/13/443/2006/ Nonlin. Processes Geophys., 13, 443–448, 2006
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data analysis techniques. The obtained results clearly indi-
cate that Radial-Basis Function Neural Networks outperform
the other techniques for testing data. If this model had been
applied during the most severe 1997 flood, it could have pro-
vided useful information about forthcoming events; therefore
it can be recommended for practical applications.
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