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Abstract. Time-dependent dynamical simulations related tothe preparatory work for an experimental set-up: the convec-
convective motion in a spherical gap under a central forcetive motion in a spherical gap under the influence of an ar-
field due to the dielectrophoretic effect are discussed. Thidificial central force field. This experiment is planned to run
work is part of the preparation of the GEOFLOW-experiment on the ISS (International Space Station) under microgravity
which is planned to run in a microgravity environment. The conditions. Experimental details can be foun&gbers et al.
goal of this experiment is the simulation of large-scale con-(2003. The experimental cell is formed by an outer glass
vective motion in a geophysical or astrophysical framework.sphere, which can be cooled, and an inner sphere, which can
This problem is new because of, on the one hand, the naturaniformly heated within (Figl). The temperature difference
of the force field (dielectrophoretic effect) and, on anotheris maintained constant withy >7>. The central force field is
hand, the high degree of symmetries of the system, e.g. thgenerated by applying a high voltage10 kV) between in-
top-bottom reflection. Thus, the validation of this simulation ner and outer sphere. Using a dielectric fluid (silicon oil), the
with well-known results is not possible. The questions con-resulting central dielectrophoretic force field is proportional
cerning the influence of the dielectrophoretic force and theto 1/r°. Currently, three different viscosities of fluid silicone
possibility to reproduce the theoretically expected motionsoils and three different inner radiRf) are available for the
in the astrophysical framework, are open. In the first part, weexperiment (Tabld), resulting in three values of the Prandtl
study the system in terrestrial conditions: the unidirectionalnumber,Pr, and also three aspect ratigsyespectively. The
Earth’s force is superimposed on the central dielectrophoreti¢central” Rayleigh numbeRa,. can vary over a large range
force field to compare with the laboratory experiments dur-by varying the voltage (Tablg).
ing the development of the equipment. In the second part, The possible nondimensional parameters have similar val-
the GEOFLOW-experiment simulations in weightless condi- ues to the Earth’s mantle ones, in particular the aspect ra-
tions are compared with theoretical studies in the astrophystio, the Rayleigh number and, in both cases (GEOFLOW and
ical framework’s, in the first instance a fluid under a self- Earth’s mantle) Pr>>1. The aspect ratio of the Earth’s outer
gravitating force field. We present complex time-dependentcore ,.=0.34) is close to the GEOFLOW's ratio too. But the
dynamics, where the dielectrophoretic force field causes sigPrandtl number (A< Pr<10) is smaller than for the experi-
nificant differences in the flow compared to the case that doesnent and the very large Rayleigh numbRe(>10°5) cannot
not involve this force field. be achieved in the experiment. However, the rapid decay of
the dielectrophoretic force field (&° variations) can better
represent the gravity field of the outer corg 4 variations)
than the linear variation of the Earth’s mantle gravity field.
Although the GEOFLOW-experiment allows the system
. I .. to rotate, we consider here the non-rotating case in contrast
The present paper shows results of investigations of the influ- ;
X . : . to the Earth’s case where the Taylor number plays a relevant
ence of a radial force field, produced by the dielectrophoretic

effect (Pohl, 1978 in spherical Rayleigh-Bnard convection role. Th|s limiting case is motivated, on one hand, by the.”?.h
. . : , ) : . dynamics expected and, on another hand, by the possibility
using a three-dimensional code and bifurcation analysis. Iti

Yo interpret the results in theoretical way using group theory
Correspondence tdP. Beltrame for the spherical symmetry: th@(3) group.
(beltrame@mpipks-dresden.mpg.de)

1 Introduction
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7 netic field reversal. Becaughossat and Guyafd996 have
pointed out that these reversal motions (or heteroclinic cy-
gﬁiliﬂfg”‘*““h g cles) are due to the spherical symmetry, we expect such dy-
gla;.s S'hE”S namics for the 1> field force too. The requirements on the
— GEOFLOW parameters which lead to possible heteroclinic
LT cycles, are determined iBeltrame et al(20033 and Bel-
high volia ge ! trame and Egber(‘§2004).2 The expected dynamics can be the
connector 3 same type as for the/1“ case Beltrame and Egber2009
or can be new types of dynamics (Beltrame, 2606k any
cases, the dynamics are poorly known for both astrophysi-
heating fluid cal (1/r?) and dielectrophoretic (°) fields. Beyond these
cooing fluid theoretical results, we will check the range of parameters for
o outer sphere which these dynamics can be observed in GEOFLOW frame-
ceramic insulator RLT work.
Part |

Fig. 1. Set-up of the GEOFLOW-experiment.

Terrestrial conditions

To obtain a perfect spherica] symmetry, we have a|soFOUr main non-dimensional numbers are necessary to de-
neglected the thin axis supporting the inner sphere in thescribe the phenomenon: the radius rafiez’, the Prandtl

. A . . 3
G_Iﬁ(t))FLOQN-e_xpenment as s?own in Fllg;. The thin at>)<|s_ number Pr=_, the Rayleigh numbeRagzagATRz mea-

will be taken Into account in future works as a perturbation g, jng the gravity force and the central Rayleigh number
of the perfect case. Besides theoretical aspects, without this,  2¢e,»

2 . . B
a.= V<AT measuring the dielectrophoretic foreg (
- POVK . . .
symm(_etry we could rjot use a pseudo sp.ectral method for. th?s the vacuum dielectric constant.) The notations are as fol-
numerical computation, and the CPU time would then in-

crease dramatically lows: R1 andR> are the radii of both spheres,is the coeffi-
' cient of volume expansiom,the viscosityx the thermal con-
First results of numerical investigations, corresponding toductivity andpo the density. Furthermore, is the dielectric
convection in the rotating or non-rotating spherical gap underconstanty the effective voltage ang the dielectric variabil-
weightlessness conditions are publishedavnikov et al.  jty This last constant is related to the dielectric constant lin-
(2003 and Travnikov (2004. These papers deal with the o5 dependence on the temperaturezge, (1—y (T1—T2)).
calculation of the basic flow, stability analysis and point out The investigation is performed foj=0.5, Pr=42.81 (sil-
that the GEOFLOW-experiment can reproduce the differ-jcone oil M1). The temperature difference varies between

ent steady-states and rotating waves, which arise for a selfa7_2 and AT=8K. The flow structure then depends on
gravitating case (42 force field). Nevertheless, it is very e voltageV for fixed AT (Ray).

difficult to validate these results with terrestrial experiments The goal of this part is to perform a numerical investiga-

or well-known results, because the Earth's gravity field hasijg of the influence of a fast oscillating electric field on the

a non-negligible influence, in particular for the non-rotating ¢onyective flow in the spherical gap in a terrestrial laboratory.
case where a lot of symmetry is broken. That is why we aim

at simulating the system under two forces: the axial gravity

force and the central dielectrophoretic force. Furthermore, \athematical background
we take the opportunity to point out the effect of the di-

electrophoretic force compared with experimental/numericaly 1  Basic equations

work without this field Futterer et al.2004).

The second part of this paper considers the weightlessnest/e consider an incompressible, Newtonian fluid under the
case and it focuses on the comparison between the motioBoussinesq approximation. The force acting on the vol-
due to the dielectrophoretic field (1° radial dependence) ume element of the dielectric medium, consists of three
and the central gravity field (2 radial dependence), which parts: Coulomb forcé.=ps.E (os free charge density),
corresponds, for example, to the Earth's outer core. Thé 1 dielectrophoretic forcé,=—3E2Ve and the gradient part
case has shown very rich dynamics, in particular the occur-
rence of motion reversal§ijedrich and Hakerl98§. This 1Beltrame, P.: Intermittency between the Modes 3 and 4 near
motion has astrophysical relevance because it can help téhe onset of convection in a spherical shell under dielectrophoretic
understand quasi-periodic phenomena such the Earth’s magderce, J. Adv. Space Res., in review, 2006a.

Nonlin. Processes Geophys., 13, 4433 2006 www.nonlin-processes-geophys.net/13/413/2006/
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Table 1. Mean physical and nondimensional parameters of GEOFLOW-experiment.

Experiment parameters

Inner radius Ry 8.1-135 mm

Outer radius Ry 27 mm
Temperature Difference AT 2—-6 K

Voltage difference \% 612 kv

Fluid properties (at 25C) M1 M2 M3

Density 00 0.90 0.92 0.94 gcm3
Kinematic viscosity v 3 5 10 mnfs 1
Volume expansion coeff. o 1.11 1.08 1.03 103K
Thermal diffusivity K 77x1073 mmé s~1
Relative dielectric constant €r 2.6 (at 800 Hz)

Adimensional parameters

Prandtl No. Pr 42(M1) 107(M2) 205(M3)
Aspect ratio n 0.3 0.4 0.5
Rayleigh No. (axisymmetric) Ra 4x100

Rayleigh No. (central electric field) Ra 103-107

%V(,og—;Ez . The last term can be combined with the pres- 2.2 Numerical method

sure gradient. It can be shown that if the period of the Al-

ternate Current (a.c.) electric field is much smaller than the/*S mentioned in the introduction, the axis present in the ex-
relaxation time of free charge, the Coulomb force can be nePeriment s neglected and then the domain is a perfect spher-

glected. The detailed theory of the electrodynamics for this'cal shel_l. Thus the potentials of the polgidql-toroidal rep-
problem can be found iMavorskaya et al(1984). resentations of the divergence-free velocity field (Bqto-

The basic equations are the Navier-Stokes and Energ ether with the temperature are expanded in spherical har-

. : . . : . onics:
equations for an incompressible fluid, used here in a dimen-
sionless version based on the following scaling:Ror* for LU M m
length, T —T,=ATT* for temperaturel=4-U* for veloc- S, 9) =Y Y am(MP}(cos)e™, (4)

£=1m=0

2
ity andr="2¢* for time. i i
The res’l(JItin system of non-dimensional equations (theWlth P?" the Legendre polynomials aritian unknown scalar
g sy q function. Each radiad,m(r) function is discretized using the

superscript stars have been dropped) first kind Chebyshev polynomials,T

_1| 0U KU+-2
Pro= o=+ (UWU = = VPert + RgyTe; am( = Y biemTk-1(0). ()
k=1
RClC T 2
+ 52 r—59r + VU (1) The numbers KU, LU and M are cut off parameters.
The differentiation operators and the non-linear terms are
3T computed using the well-known pseudo spectral method
3 +U-VT = V2T 2 (Canuto et al.1987. Its principle is to switch back and

forth between spectral and real space: spectral space to do
the derivatives and collocation points in real space to do the
V-Uu=0 ®3) multiplications of the non-linear terms. The time-stepping

is implemented using a second-order Runge-Kutta method,
with ﬁ:RZR;l’h together with no-slip boundary conditions for modified to treat diffusive terms implicitly. The detail of
velocity components and constant temperatures on surfacahe numerical scheme is described in paper ftéofierbach
(T1>T>) needs to be solved. (2000.

www.nonlin-processes-geophys.net/13/413/2006/ Nonlin. Processes Geophys., 22342666
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Amara et al.(200]) the frequency depends slightly on the
voltage V (Fig.5).

Noticing that the criticalRag of the oscillations onset is a
decreasing function oRa., we can thus conclude th&a,
plays a relevant role for this instability but the frequency de-
pends essentially on Ra

Finally, let us mention another study simulating the super-
position of vertical and central force fields using magnetic
fluids as described ifriih (2005. The magnetic field pro-
duced approximatively a central/A°>-dependent field and
in terrestrial conditions, the simulation resulted in regular
oscillations where two kinds of vortices were in competi-
tion. The dynamics are more complex than our case and
the geometry of vortices is not similar. These differences
are expected since many differences exist between both ex-

Fig. 2. Stationary flow: stream function foPr—4281, j=05 periments: among others no perfect central-symmetry of the

Rag=40x10F (AT=4K), Rac=0 (left) and Rao—4.0x10% field in Fruh (?003 .ano'l different Raylelgh nu'm.ber values.
(right). However, their oscillating dynamics are reminiscent of our

results, indicating that such an instability seems a robust phe-
nomenon.

The simulations, in this part, are undertaken with-K&0
(number of collocation points of the radial variable), Part Il
LU=280 (number of the spherical harmonics) and=0/ ar
(since the problem is axisymmetric.) The time step is aroundp A; : :
5x10~7. In this framework, we have needed several hoursl\/I |CrograV|ty enVIronment
on a PowerPC (IBM F7040-671) CPU to obtain periodic so-
|utions. One important aspect of the GEOFLOW-experiment is the
utilisation of a central force field, thus the spherical sym-
metry is respected. In the non-rotating case, the system
is paradigmatic for the (3)-equivariant bifurcation theory.
The advantage to consider a perfect symmetry is that it gives
a rich structure to the bifurcation problem. Furthermore, as
Porter and Knoblocli2001) have pointed out, a lot of inter-
esting dynamics are the consequence of symmetry imperfec-

4 . . . ﬁ_ons and can be treated as a perturbation of the perfect sym-
tors are not parallel in comparison with the classical plane ) :
metry using so-called perturbation theory. In our case, the

or spherical Rayleigh-8nard convection without rotation. If imperfections can be due to the non-uniformity of the force

the electric field is applied, the flow remains stationary as_ . . i
. o : field, or the presence of the thin axis in the experimental set-
long as one is below a critical voltage for the fixad". . : !
up (Fig.1). Also small rotation rates can be interpreted as

For valugs larger than the critical voltagé Fhe flow be- a symmetry breaking frond (3) to SO (2)@®Z5 (P. Chossat,
comes oscillatory. An example of the oscillating state can be

o> : . ersonal communicatiéh
seen in Fig3 which shows the behaviour of the temperature P : .
spectral coefficient and the kinetic energy. Figdrehows However, there is a difference between GEOFLOW and

the time development of the stream function. This motion iSthe astrophysical framework: the variation of the simulated

. ; force field (1/r°) is different from the encountered force
characterized by the formation and decay of a vortex near th%eld variations:r dependence for high-density domain (e.g
north pole of the spherical system. . e

Earth’s mantle) and /-2 dependence for low-density fluid
These results can be compared with the experimental re; ) ol P Y

surrounding a high density (e.g. Earth’s outer core). Of
sults fromAmara et aI(ZOO]_) who ha\{e found that the flow course, this difference does not break the symmetry of the
“becomes unstable to toroidal or spiral rolls that form near

X ) system, but the so-called “self-adjoint” degeneracy — respon-
the inner sphere and travel vertically upwards wheh and y ) g y P

- N i . sible for the existence of reversal motions — no longer occurs
AV are sufficiently large.” They have performed investiga- (Chossat and Guyard996. Indeed, this degeneracy comes
tions for the silicon oil DC-200 withPr=10.5 (we have

from the anti-symmetry between the competing forces, i.e.
Pr=4281) andn=0.37 (we havey=0.5). The comparison y 4 peting

with the experimental results shows the similar monotoni-  2Chossat, P.: Intermittency at onset of convection in a slowly
cally increasing of the frequency withT, but in contrast to  rotating self-rotating spherical shell, private communication, 1999.

3 Results

In the case without an electric field a stationary flow of natu-

Nonlin. Processes Geophys., 13, 4433 2006 www.nonlin-processes-geophys.net/13/413/2006/
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Fig. 3. Time dependent flow: spectral coefficients for the temperature (top left), kinetic energy (top right) and power spector for the
spectral coefficient for the temperature (bottom left) and the kinetic energy (bottom Figh#2.81, n=0.5, Rag=4.0x 108 (AT=4K),
Rac=16x10°.

t=0g t=1.04s t=1.568 t=2.08s t=2.65 t=3.12s 3.43s 3.74s t=4.056s t=4.37s t=4.89s

Fig. 4. Time dependent flow: Stream function fBr=42.81,=0.5, Rag=4.0x 10° (AT=4K), Ra,=1.6x10°. The interval between two
consecutive contours is 5.

the gravity force and the buoyancy gradient, both of which Because of experimental requirements, we have restricted the
have 12 variations in that case. For that reason, we chosestudy to aspect ratiog>0.3 but have covered a large range
to compare the dynamics under dielectrophoretic force fieldof Prandtl number.

with the dynamics under/t2 field which is known to lead to

the heteroclinic cycles. We aim at answering the questions:

— can the dielectrophoretic force field reproduce such4 Bifurcation analysis method
complex dynamics?

The mathematical modeling of the problem is the same as the
— How do the dynamics differ between both cases? system of Egs.1—2-3) by removing theRa, contribution in

www.nonlin-processes-geophys.net/13/413/2006/ Nonlin. Processes Geophys., 22342666
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Fig. 5. Dependence of frequency akT" for V=7.9KkV (left) and onAV for Ra;=4.0x 108 (AT=4K) (right) in both caser=4281,
n=0.5.

Eq. (1). To simulate the Ar2 gravity field, the ¥r° term fields, namely+1/r2. The physical anti-symmetry “forces”
associated witlRa, in Eq. (1) has to be replaced by/ 2. an anti-symmetry of the pure even modes in the amplitude
Beltrame et al(20033 have undertaken the linear stability Eq. (7) since, if the couple(xo=0, Xe) is a solution then
analysis of the pure diffuse state (without convection) com-(xo,=0, —Xe) is a solution too. Recently, it was shown, that
puting the critical Rayleigh number Raf the onset of con- this anti-symmetry can be interpreted as a time-reversal sym-
vection for a fixed aspect ratio. The bifurcated dynamicsmetry: a transformation of spatial variables and a simul-
are explored using the center manifold reductidander-  taneous inversion of time——r (Buono et al. 2009. In
bauwhede and 100s$992) in the parameter space 8 and  the same way as the geometrical symmetries, this physical
n. This center manifold is spanned by thepherical eigen-  anti-symmetry leads to a degeneracy in the amplitude equa-
modes, and leads to a finite dimensional system of ODEstions. In the GEOFLOW framework, we will observe an-
The problem is intrinsically nonlinear and the ODE system other degeneracy which also leads to anti-symmetry. Even
can be computed using the first terms of a Taylor series exif the following bifurcation analysis will point out the influ-
pansion Beltrame et a].20033, which results in so-called ence of this anti-symmetry, the group-theoretical aspect of
amplitude equations. We do not write these equations bethis “time-reversal” symmetry is beyond the scope of this pa-
cause they are already obtained in literature and the precisper.
references are given in the following for each case. However,
in order to better understand the role of degeneracy, we recall
the general form of these amplitude equations for the more  The Taylor series expansion is undertaken at the third or-
complicated case of this study corresponding to interactioner, or if necessary, at the fourth order. Solving the re-
between the odd and even modesand’. , respectively: sulting amplitude equations, 3-D time-dependent dynamics
6) can be obtained near the bifurcation paiREE, n). Further-
. more, the analysis is supplemented by the knowledge of the
Xe = CeXe + CoPoo(Xo, Xo) + cecPeelXe, Xe) +NOL (7)  isotropy lattice which gives the different invariant sub-spaces
The odd and even amplitudes, and xe, are Z,+1- and  ©Of the phase space and classifies all the possible steady-
2¢.+1-dimensional vectors, respectively. The polynomials State by their symmetry (isotropy subgroup.) This method
P. are O(3)-equivariant and are determined using an alge-takes place in the equivariant bifurcation thed@¢ssat and
braic algorithm, but the . coefficients in front of the poly- ~Lauterbach2000.
nomials are numerically computed and they depend, in par-
ticular, on the Prandtl number. First let us remark that some

Xo = CpXo + CoePoe(Xo, Xe) + h.0.L.

possible quadratic polynomials of the variablgs x, van- Near the onset, only oné spherical mode is generically
ish in the equations. These well-known degeneracies are anstable. We recall briefly the known results for this codi-
consequence of the (3) symmetry Chossat et al1990). mension 1 case in Se&. More interesting is the case where

The self-adjoint degeneracy is a supplementary degenertwo consecutive moded, £+1) interact, which is obtained
acy which leads te..=0 in Eq. (7). This degeneracy comes for some critical aspect ratiog. This codimension 2 bifur-
from the physical anti-symmetry of the two competing force cation is explored in théRa, n) parameters plane in Seét.

Nonlin. Processes Geophys., 13, 4433 2006 www.nonlin-processes-geophys.net/13/413/2006/
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5 Codimension 1 bifurcation i i e
- -
In this section, the generic codimension 1 bifurcations for the A ‘J »
two central force fields, the/1? gravity field and the Ar° o b @ N
dielectrophoretic field are discussed in turn. I — / v = ’
o B Y

5.1 1/r2 Gravity field
Fig. 6. Radial velocity distribution (dark is the down-welling mo-

. o . tion) of the (left to right)x, 8 andy respectively, stable bifurcated
If we consider the central self-gravitation field/¢®) only,  pranches fon=0.3, 0.4 and 05 respectively.

the non-dimensional buoyancy force of the basic state (with-

out convection) is exactly the opposite of the gravitating

force: it is the “self-adjoint” degeneracyChossat(1979 6 Codimension 2 bifurcation

gives the consequences on the coefficients of the amplitude

equations: the third-order coefficients are negative and thé@he codimension 2 bifurcation occurs for some critical cou-
even-order coefficient of the even mode vanish <0 of ple (Rac, n.) where two consecutive modeg, ¢+1) inter-

Eqg. 7). Then we deduce that the bifurcated branches withact. In the GEOFLOW framework we found that the (2,3)

maximal isotropy subgroup are supercritical pitchforks. and the (3,4) mode interaction can be reached for a critical

For the odd mode, the action of the central symmetry alone2SPect ratio).=0.33 andn.=0.45, respectively Reltrame
forces the pitchfork bifurcation. Then, the opposite solutions€t &l, 20033 Beltrame and Egber2004). It is well known
are in the same (3)-orbit, i.e. they are physically identi- that rlgh dynamics app_earlnthe neighborhood of the bifurca-
cal solutions applying @ (3) transformation. This is not tion with complex spatiotemporal structure. One noteworthy
the case for the even modes, where the two branches of th¥Pe of dynamics are structurally stable heteroclinic cycles

pitchfork bifurcation correspond to two different physical so- (Guckenheimer and Holmed98§. Indeed, on one hand,
lutions. such complex phenomena raise interesting theoretical ques-

. tions since they are “forced” by thé (3) symmetry group,

tiv-erl?/ecclj:?égpg;Eijsiﬁgt?ot?ri ' S’i e:r(];i ’;t;r;n%rf]e:)’d;srggg'e_ but also, on the other hand, they occur in different domains of

(02®Z). tetrahedral mode-3((-), and cubic mode-4 2physics. For example, they are reminiscent of the aperiodic

o 2 ” : ) Earth’s magnetic field. In-depth analysis was undertaken to

(O.EBZZ)' Itis cllear that the opposite SQIUt'On.ﬁf'S ob- point out the role of thed(3) group Chossat and Guyayd

tained by a rotation af /2 around the vertical axis. 1996, but very little attention has been given to date to the
role of the self-adjoint degeneracy. In the following we focus

5.2 Dielectrophoretic field on the (2,3) and (3,4) interactions and explain the underlying
dynamics in more detail.

Let us consider the central dielectrophoretic fieldr) in

a microgravity environment. The “self-adjoint” degeneracy
no longer occurs and there is no analytical result. Accordingg 1 1 gelt-
to the computation of the amplitude equations coefficients

(Beltrame et a].2003a Beltrame and Egber2004), the bi- | this section, we assume that the “self-adjoint” degener-
furcations are supercritical. However, the even branches argcy occurs in the amplitude equations. Although, it is not
slightly different from the self-adjoint case, since the even-ihe generic case in the GEOFLOW framework, we have
order terms are not negligible. Then, the bifurcation is a per-shown that for a critical Prandtl number valBe,.~0.2365,
turbed pitchfork one: two asymmetric branches with a hys-the same conditions for self-adjoint degeneracy are satisfied
teresis effect. The details of the bifurcated branches and thei(fBeItrame et al.20033. Considering that the criticaj, and
stability are presented ifravnikov et al.(2004. The stable  p, numpers are close to the aspect ratio and Prandtl num-
steady-states for different aspect ratips0.3,0.4 and 05 per of the Earth’s outer core, our study is relevant within a
are presented in Fig. geophysical framework.

As already pointed out ifiravnikov et al.(2004), the re- The numerical results corroborate the theoretical analysis
sults are similar to the gravity force: the selected branchedor a self-gravitating case developed@mossat and Guyard
near the onset are qualitatively equivalent to the gravity force(1996. The cycles connect opposite axisymmetric solutions
field case. However, for codimension 2 dynamics, the bifur-«+ of the mode 2, where two different cases occur.
cation is more complex and the influence of the bifurcation The first, and more simple, case is when the steady-states
type is more important, because heteroclinic cycles appeaare on the same axi8éltrame et a].2003h. This is the so-
due to this anti-symmetry of the even pitchfork bifurcation. called type | heteroclinic cycle. The connections are in the

6.1 Interaction of (2,3) modes

adjoint degeneracy

www.nonlin-processes-geophys.net/13/413/2006/ Nonlin. Processes Geophys., 22342606
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3
to+T to+5T to+2T
additional connection 0 0T?2 0

Fig. 9. Radial velocity distribution oscillations during th& Deriod

. . L . for: Ra=16545, n=0.3308 andPr=0.2365.
Fig. 7. Additional connection in the Type-I heteroclinic cycle for

Ra=1656,7=0.3310 andPr=0.2365.

variant space associated with tlg symmetry (reflections
of two planes). IfT designates the period of the energy tra-

osf 1 jectory loop (Fig.8), the period of the motion isR2 (two
loops). Indeed, the motion at the instart7 is deduced
085t 8 from the one at the instanby a geometrical transformation:
equatorial reflection followed by & rotation of axeq0z)
o8r 1 (Fig. 9).
3 orsl | The second case are cycles called type Il heteroclinic cy-
2 cles, and they involve four axisymmetric solutions with two

orthogonal axesBeltrame and Egber2005. The trajecto-
ries, that connect solutions with two different axes, arise in

071 q

05| , the Fix(DzeaZS) invariant plane of mode 2, note®s. The
other trajectories (involving the same axis) arePinor Ps.
06f 8 When the region of existence of the cycle Il coexists with a
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ \ type I, then the cycle Il is broken and the dynamics tends to a
or 00 0m et e e e type | cycle. Indeed, the expanding and contracting eigenval-

ues of the connections iAs are very small and of the same
Fig. 8. Trajectories in the energy of the mode 2 and 3 plane for aorder as the vanishing quadratic coefficiebbfssat and Gu-
periodic motion:Ra=16545, n=0.3308 andPr=0.2365. yard, 1996. Thus, the type | cycle is preferred during numer-

ical simulations. Then, takinggr <Pr, and|Pr—Pr.|<1,

a cycle Il is observed in a very narrow domain of existence
invariant planesP;=Fix (0(2)7) and P,=Fix (Dg), which in the parameter plane distinct from the cycle | domain. That
correspond to the axial symmetr@(2)~) and to the equi- IS most certainly a reason whyhossat and Guyar1999
lateral triangle symmetry added to the equatorial symmetrywere not able to observe it.

(Dg), respectively. The heteroclinic cycle is stable and at- Increasing the differencgPr—Pr.|, the competition be-
tractive, i.e. the dynamics tend to the limit heteroclinic cycle. tween type-l and Il cycles can lead to a complex quasi-
This last property implies that the dynamics take place neaperiodic motion (Fig.10). As in the heteroclinic cycles,
the fixed-point and, due to limitations of numerical accuracy, plateaus close to equilibria appear but they are shorter, and
the trajectory can “jump” to a connection of another cycle. it is difficult to distinguish transitions and equilibria. All
For example, in Fig7 the trajectory crosses th® invari- steady states involve both modes but we found states, which
ant plane (theoretically impossible) and we observe an additook like mode 2 axisymmetrie+ states: see panels (a), (e)
tional connection in the plang;. This phenomenon is not and (f) of Fig.11. The transition (e) to (f) is similar to the
only possible in a numerical situation but can also arise inone in P,, and the transition (d) to (e) is a part of the tra-
the experiment, since small imperfections can produce suclectory in theP; plane. The transition from the state (a) to

a jump. There is another unstable manifold of both steady(d) is due to the expanding value #s, but it does not stay
statesgr4, which leads to oscillations in a 4-dimensional in- in this plane. It occurs in the 7-dimensional invariant space

Nonlin. Processes Geophys., 13, 4433 2006 www.nonlin-processes-geophys.net/13/413/2006/
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Fig. 10. Evolution of the mode 2 (plain) and mode 3 (dotted) mod-

ules during a Generalized Heteroclinic Cycle (GHC) Rar=1654, . . .
1=0.3306 andPr—=0.22. petition does not lead to time-dependent dynamics and we

observe only steady-states.

associated with th&, symmetry, noted” (one reflection of ~ 6.2 Interaction of the (3,4) modes

plane, Figl1c). It leads to theP; connection with axial sym- . . o . )

metry, but the axis of the axisymmetric steady-staiesand For the (3,4) interaction, the situation is quite different be-
4(d) differs (Fig.11). Furthermore, contrary to the type-Il cause we have pro_ved that the heteroclinic cygle_ does not ex-
cycle, both axes are not orthogonal. The evolution of the axidSt for the self-adjoint caségltrame 2006h. This is a con-
seems to be random. Indeed, these dynamics are due to tifgduence of th&(3) symmetry. More precisely, invariant
existence of Generalized Heteroclinic Cycles (GHC) found planes break the possible connections between steady states.
for the (1,2) interaction b hossat et a(1999. Because of However, we have shown that another degeneracy can oc-
the 0(3)-symmetry, there exist multi-dimensional trajecto- CUr for the experimental fluidBeltrame and Egber2004:

ries deduced from those of “simple” heteroclinic cycles and¢eo=0 in the even amplitude Eq7). The consequence is
connecting the group orbit of the steady-states. Using théh_e eX|st_ence of pure mode 3 branches Whlch_are generically
same remarks ofhossat et al(1999, the existence of the ~Mixed with the mode 4Beltrame 2006h. In this way, the
invariant sphere can be proved in our present caisd degeneracy induces d_egenerated |sqtropy subgroups. Inthese
1986. The simulation shows that actually the trajectories SUPgroups the dynamics have an anti-symmetry property: the

occur on an invariant sphere I, which is 6-dimensional. solution is exactly the opposite by a geometrical transforma-
tion. The simulation of the amplitude equations developed
6.1.2 Generic case up to third order shows complex and stable heteroclinic cy-

cles (Beltrame, 20063 We can distinguish a heteroclinic
For the silicone oil in the GEOFLOW-experiment, the cycle and homoclinic cycle. The first one involves the cu-
Prandtl number (see Tablg is far from the critical value  bic solution of the mode 4){) and the tetrahedral solution
Pr.~0.2365. As expected, the coefficient for the quadratic of the mode-3 §) and the second one connects the solu-
polynomial is not negligible. The coefficients of the ampli- tions of the orbit ofg. According to the simulation these
tude equations do not vary much between the different fluidscycles alternate indefinitely but not periodically (Beltrame,
and, as a result, the bifurcated dynamics do not present im2006&). Nevertherless, the direct simulation with the nu-
portant differences. Both axisymmetric soluticms with merical code used in the first part only lets the homoclinic
different sense of convection still exist but there is a factorcycle appear. The dynamics after some cycles tend to the
10 between their amplitudes. The greater amplitude solutiony solution which seems to be stable (Fig). Indeed, the
herea_, is stable versus the mode 2. Furthermore the conamplitude ofy, due to the hysteresis, is not very small at
nection in P3 from o to a copy ofw_ still exists. However,  the onset of bifurcation0.3). Then, the fourth order terms
the back connection i3 is broken and the trajectory tends can have a non-negligible influence on the bifurcation dia-
to a mixed-modes equilibrium. Thus, there is no longer a het-gram. The computation at the fourth order in the amplitude
eroclinic cycle. The selected bifurcated branch depends omquations shows that the solution is actually stable in the
the«_ stability versus the isotypic components of the mode supercritical region. Hence the heteroclinic cycle previously
3. Eithera_ is stable o1 of the mode 3 is stable. This com- mentioned cannot occur.

www.nonlin-processes-geophys.net/13/413/2006/ Nonlin. Processes Geophys., 22342666
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Fig. 12. Evolution of the mode 3 (plain) and mode 4 (dotted)
amplitudes during a homoclinic cycle f®a=2205, =0.45 and
Pr=107.22.

However, this homoclinic cycle remains interesting be-
cause the symmetry is completely broken during the tran
sition (Fig.13c ). The time spent near th& equilibrium is
short and the dynamics seem to slide ontogherbit show-
ing a slight rotation (Figsl3a and b). The axis of the differ-
ent 8 equilibria connected in the cycle seem to be random

Nevertheless, this behavior is different to the GHC of the
(2,3) interaction because it does not derive from a simple cy-

cle. Furthermore, an invariant sphere does not exist, which i
an important key of the GHC.

The amplitude of the mode 4 for the last equilibrium be-

1z !
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Fig. 13. Radial velocity distribution for the different states of the
Fig. 12 during a homoclinic cycle.

7 Conclusions

The specific features of the central force field due to the di-
electrophoretic effect is studied using a pseudospectral nu-
merical code and a bifurcation analysis near the onset of con-
vection. In terrestrial conditions as well as in a microgravity
environment, the codimension 1 bifurcation which presents
only steady-states or rotating waves, is only slightly modified
from the case with another force field. On the contrary, the
complex time-dependent dynamics show a significant differ-
ence. For the terrestrial conditions with a dielectrophoretic
field, oscillations appear for relative small Rayleigh numbers
‘compared to the case without dielectrophoretic force. In the
microgravity environment within the dielectrophoretic field,
§he dynamics depend strongly on the Prandtl number in con-
trast to the self-gravitating force field. For a critical Prandtl
number Pr.~0.24), the simulation of the GEOFLOW ex-
periment presented a rich variety of heteroclinic cycles of
the (2,3) mode interactions, which can also occur in the as-

fore the final transition tgr is smaller than for the other equi- trophysical framework. Unfortunately, for the experiment
libria of the cycle (Fig.12). Indeed, there exist two equilib- such low Prandtl number values cannot be reached. However,
ria, B andp’, very near to each other, which are almost purewe have observed a complex homoclinic cycle, which satis-
mode 3 with theD ~ tetrahedral symmetry. Taking the small fies the requirements on the Prandtl number. These dynam-
amplitude of the mode 4 into account, the analytical resolu-ics do not arise within the astrophysical framework. Thus

tion of the amplitude equations show thfats actually in the
mixed-modes FigD~) plane andd’ is in the 3-dimensional
space Fi)@Dﬂ). This last invariant space contains FX),
hencep’ has less symmetry thaf. According to the nu-
merical results, the homoclinic cycle involves thgorbit,
while the heteroclinic cycle in Beltrame (2006@)volvess.
When theg equilibrium is present in the homoclinic cycle,
then the same transition as in Beltrame (20b6@ads to the
stabley equilibria and ends the cycle. Although the homo-

the dielectrophoretic force leads to a rich variety of time-
dependent dynamics, which are not always present for grav-
ity forces. Finally, these simulations point out the limit of the
geometrical symmetries as bifurcation mechanisms, since the
presence of the dielectrophoretic force field does not break
the symmetry of the other case. The anti-symmetry plays
a relevant role for the existence of the heteroclinic cycles.
It would be interesting to take into account this invariant to
better understand the mechanism of such dynamics.

clinic connections disappear after some cycles, the duration Beyond these theoretical aspects, there are many outlooks

of this transition is large enough to be observable during theof geophysical interest.

Firstly, the study ofdependent

experiment. Furthermore, they persist far away from the on-gravity fields is relevant for the Earth’s mantle. Recently,

set of convection, contrary to the other studied cycles.

Nonlin. Processes Geophys., 13, 4433 2006

Frih (2005 has compared different central force fields of
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the form g=Cr" wheren=5 to n=-5 for an axisymmet- Chossat, P., Guyard, F., and Lauterbach, R.: Generalized Hetero-
ric case. Fih has shown that the convection rolls are qual- clinic Cycles in Spherically Invariant Systems and Their Pertur-
itatively similar for all the values ofi according to our re- bations, J. Nonlin. Sci., 9, 479-524, 1999.

sult of the Sect5. But as we have undertaken for thér? Chossat, P. and Lauterbach, R.: Methods in Equivariant Bifur-
and ],/r5-dependent force fields, it would be interesting to cations and Dynamical Systems, World Scientific, Singapore,

. . . 2000.
look at possible 3 D-time-dependent dynamics under-an Egbers, C., Beyer, W., Bonhage, A., Hollerbach, R., and Beltrame,
dependent force field.

dlv. alth h th . lead ich P.: The GEOFLOW — experiment on ISS (Part I): Experimental
Secondly, although the non-rotating case leads to very ric preparation and design, Adv. Space Res., 32/2, 171-180, 2003.

kind of dynamips, the rotating case is, of course, relevantgigiq m.: Equivariant bifurcation and symmetry breaking, J. Dyn.
future work which has to be exploited for the GEOFLOW-  piff. Eq., 1, 369-421, 1986.

experiment as underlined by the results Gellert et al.  Friedrich, R. and Haken, H.: Static, wavelike, and chaotic thermal

(2005. convection in spherical geometries, The American Physical So-
ciety, 34(3), 2100-2120, 1986.

Edited by: W.-G. Fith Frih, W.-G.: Using magnetic fluids to simulate convection in a cen-
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