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Abstract. Weakly nonlinear reflection of internal waves
from uniform slopes produces higher harmonics and mean
fields; the expressions are here derived for constant stratifi-
cation and with Coriolis effects fully included, i.e. the hori-
zontal component̃f of the earth rotation vector (referred to
as “non-traditional”) is taken into account. Uniformity in one
of the horizontal directions is assumed. It is shown that so-
lutions can be as readily derived with as withoutf̃ ; hence
there is no need to make the so-called Traditional Approxi-
mation. Examples of reflecting internal-wave beams are pre-
sented for super-inertial, inertial and sub-inertial frequencies.
The problem of resonant and non-resonant forcing of the sec-
ond harmonic is studied for single plane waves; unlike un-
der the Traditional Approximation, the problem of reflection
from a horizontal bottom no longer forms a singular case.
Non-traditional effects are favourable to resonant forcing at
near-tidal rather than near-inertial frequencies, and generally
increase the intensity of the second harmonic. Strong strati-
fication tends to suppress non-traditional effects, but a near-
total suppression is only attained for high values of stratifi-
cation that are characteristic of the seasonal thermocline; in
most parts of the ocean, non-traditional effects can therefore
be expected to be important.

1 Introduction

Interaction of monochromatic internal waves can produce in-
ternal waves whose frequencies are double, triple etc. that
of the primary wave; they are called higher harmonics. A
straightforward example of interaction is when an internal
wave reflects from a (sloping) bottom: nonlinear effects are
then at work at the junction of the incident and reflected
waves. This mechanism of generation was previously ana-
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lyzed for single plane internal waves in a rotating stably strat-
ified fluid by Thorpe(1987), and for general internal-wave
forms (including beams), but without rotation, byTabaei
et al. (2005). In the former case, gravity and the Coriolis
force act as restoring forces; in the latter case, only grav-
ity. A vivid illustration of second harmonics, generated by
reflecting internal waves, was recently produced in labora-
tory experiments (Peacock and Tabaei, 2005); experiments
on near-critical reflection are presented byGostiaux et al.
(2006). Numerical experiments on internal tides too pro-
vide examples of generation of higher harmonics by reflect-
ing beams (Lamb, 2004; Gerkema et al., 2006a). These re-
sults are, qualitatively at least, supported by internal-wave
spectra deduced from oceanic observations (van Haren et al.,
2002), in which higher harmonics of the semi-diurnal inter-
nal tide were found. We note that these spectra contain also
a strong peak at the inertial frequency, which however does
not seem to be accompanied by higher harmonics; we put
forward a possible explanation in Sect. 6.3.

In the above-mentioned studies, the rotation vector (if in-
cluded at all) was assumed to be parallel to gravity, hence
vertical. This amounts to making the so-called Traditional
Approximation. If one abandons this approximation, a hor-
izontal componentf̃=2� cosφ (� the earth angular veloc-
ity, φ latitude) comes into play, which produces additional
terms in the Coriolis force. This component was recently
shown to be important for low-frequency internal waves in
weakly stratified fluids (Gerkema and Shrira, 2005). Since
the deep ocean, where much of the internal-wave reflection
takes place, is indeed weakly stratified (i.e. the buoyancy fre-
quencyN is not much higher than�), we include the hori-
zontal component in the present study, thereby generalizing
the earlier studies on internal-wave reflection. One of its ef-
fects is to increase the range of allowable internal-wave fre-
quencies (see, e.g.,LeBlond and Mysak, 1978). In particular,
internal waves can now exist at sub-inertial frequencies (i.e.
wave frequencyσ<|f |, with f=2� sinφ). An example of
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266 T. Gerkema: Internal-wave reflection from uniform slopes

second harmonics generated by reflecting sub-inertial waves
will be given in Sect. 6.2. Another effect is the change in
steepness at which energy propagates. This steepness more-
over depends on the horizontal orientation of the waves in
the geographical plane. It will be shown that this anisotropy
affects also the generation of second harmonics, for example
the loci at which resonant forcing occurs (Sect. 6.3).

It was already pointed out byBaines and Miles(2000) that
the componentf̃ (hereafter referred to as “non-traditional”)
can be easily included in internal-tide generation problems.
The same conclusion was reached byGerkema and Shrira
(2005) regarding the linear theory of internal-wave propa-
gation in general. This will now be taken one step further,
into nonlinear internal-wave dynamics, specifically the gen-
eration of higher harmonics. We proceed by using an expan-
sion similar to the one used byTabaei et al.(2005). The prin-
cipal differences from their study are that we include Coriolis
effects (in their full form, moreover), and that we introduce
the bottom slope (Sect. 5) only after we have first solved the
general problem (Sects. 2 to 4); this actually simplifies the
derivation. Examples and an analysis of non-traditional ef-
fects, with a view to applications in the deep ocean, are then
given in Sect. 6.

2 Basic equations

We adopt a coordinate system in which thex-axis is rotated
by an angleν (anticlockwise) with respect to the west-east
direction, and define the Coriolis parameters

(fc, fs, f ) = 2�(cosν cosφ, sinν cosφ, sinφ) .

We assume latitudeφ to be fixed (f -plane). The components
fc andfs are proportional tof̃ (i.e. to cosine of latitude),
and would both be absent under the Traditional Approxima-
tion. In this coordinate system, the nonlinear equations in an
incompressible fluid read (LeBlond and Mysak, 1978):

ut + (u · ∇)u− f v + fcw = −px (1)

vt + (u · ∇)v + f u− fsw = −py (2)

wt + (u · ∇)w + fsv − fcu = −pz + b (3)

ux + vy + wz = 0 (4)

bt + (u · ∇)b +N2w = 0 , (5)

whereu, v andw are the velocity components in thex, y and
z direction, respectively;p is the departure of pressure from
its hydrostatic value (divided by a constant reference density,
ρ∗); b is the buoyancy, i.e.−gρ/ρ∗, whereρ is the depar-
ture of density from its hydrostatic valueρ0(z). Hereafter we
assumeN2

=−(g/ρ∗)dρ0/dz to be constant.
We consider plane waves travelling in thex-direction, so

that∂/∂y=0. This allows us to introduce a stream function
ψ (u=ψz , w=−ψx), in terms of which Eqs. (1)–(5) become

∇
2ψt + J (∇2ψ,ψ)− fsvx − f vz + bx = 0 (6)

vt + J (v, ψ)+ fsψx + fψz = 0 (7)

bt + J (b, ψ)−N2ψx = 0 , (8)

with the Jacobian defined asJ (a, b)=axbz−azbx , and
∇

2
=∂2

x+∂
2
z . Note that the terms involvingfc cancelled.

Non-traditional effects, now present only viafs , are
strongest ifx (i.e. wave-energy propagation) is meridional
(ν= ± π/2). For zonal propagation (ν=0 , π ), on the other
hand, non-traditional effects are absent from Eqs. (6)–(8)
(but not from Eqs.1 and3!).

3 Expansion

We consider weakly nonlinear waves, monochromatic (with
frequencyσ ) at lowest order, and write the fields in a formal
expansion in whichε, a measure of the intensity of the wave,
serves as the small parameter:

ψ = ε{9 exp(−iσ t)+ c.c.} + ε2
{90 + [92 exp(−2iσ t)+ c.c.]} + · · · (9)

v = ε{V exp(−iσ t)+ c.c.} + ε2
{V0 + [V2 exp(−2iσ t)+ c.c.]} + · · · (10)

b = ε{0 exp(−iσ t)+ c.c.} + ε2
{00 + [02 exp(−2iσ t)+ c.c.]} + · · · (11)

where we anticipate that mean fields (with index 0) and sec-
ond harmonics (with index 2) will appear at orderε2; the for-
mer is time-independent, the latter has frequency 2σ . Note
that no complex conjugates are added to the mean fields; they
will be found to be real by themselves.

We follow the procedure ofTabaei et al.(2005), but with
Coriolis effects now included. A further distinction is that we
first derive the general solution, irrespective of the presence
of topography. In principle, one can continue the expansion
(9)–(11) to any order (note, however, the caveat mentioned at
the end of Sect. 4.2), but we will only consider the problem
up to orderε2.

4 General solution

For later convenience, we introduce abbreviationsAn, B and
Cn for the coefficients of the governing partial differential
equations, to be found at subsequent orders, as well as the
corresponding characteristic coordinatesξn andηn:

An=N
2
−(nσ)2+f 2

s ; B=ffs ; Cn=f
2
−(nσ)2 (12)

µn,± =
B ± (B2

− AnCn)
1/2

An
(13)

ξn = µn,+x − z ; ηn = µn,−x − z , (14)

where it will be understood that the subscriptn is dropped if
n=1 (i.e. at orderε).
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4.1 Orderε; primary wave

By substituting Eqs. (9)–(11) into Eqs. (6)–(8), we obtain, at
lowest order,

− iσ∇
29 − (fs∂x + f ∂z)V + 0x = 0 (15)

− iσV + (fs∂x + f ∂z)9 = 0 (16)

− iσ0 −N29x = 0 , (17)

implying

A9xx + 2B9xz + C9zz = 0 , (18)

as obtained earlier byGerkema and Shrira(2005). (Note that
the term with the mixed derivative would disappear under the
Traditional Approximation,B=0.) In terms of the character-
istic coordinatesξ andη, Eq. (18) becomes9ξη=0, whose
general solution is

9 = F(ξ)+G(η) , (19)

for arbitrary functionsF andG, each describing propagation
of wave-energy along one of the two characteristic coordi-
nates. The other fields can be expressed in terms of9 as

0 =
iN2

σ
9x ; V = −

i

σ
(fs9x + f9z) . (20)

With this, the lowest-order problem has been fully solved.

4.2 Orderε2; mean field

Gathering the time-independent terms resulting from the sub-
stitution of Eqs. (9)–(11) in Eqs. (6)–(8), we find

[J (∇29,9∗)+ c.c.] − (fs∂x + f ∂z)V0 + 00,x = 0 (21)

[J (V,9∗)+ c.c.] + (fs∂x + f ∂z)90 = 0 (22)

[J (0,9∗)+ c.c.] −N290,x = 0 . (23)

We can use Eq. (20) to rewrite the Jacobian in Eq. (23), and
then use the general identityiJ (Px, P ∗)+ c.c.=iJ (P, P ∗)x
to obtain

90 =
i

σ
J (9,9∗) . (24)

Specifically, substitution of the lowest-order general solution
(19) yields

90 =
2

σ
(µ+ − µ−)Im[F ′(ξ)G′(η)∗] . (25)

(Primes denote derivatives with respect to the characteristic
coordinates.) This expression confirms the well-known fact
that no nonlinear contributions arise from an interaction of
one plane internal wave (F , say) with itself; only junctions of
plane waves having different directions provide such terms.

Equation (22) is now automatically satisfied, too. The re-
maining fieldsV0 and00 cannot be uniquely determined be-
cause of geostropic degeneracy, as is clear from Eq. (21).
This is a common problem in rectification studies; it can be

resolved either by adding friction, or by changing the setting
to an initial-value problem (Visser, 1994). We do not pur-
sue this point further, because the residual fields play no role
in finding the second harmonics, the primary aspect of this
study. (The geostropic fields would however start to play a
role at orderε3, and from then on solutions involve an inde-
terminacy.)

4.3 Orderε2; second harmonic

Gathering the second harmonics exp(−2iσ t) resulting from
the substitution of Eqs. (9)–(11) in Eqs. (6)–(8), we find

−2iσ∇
292+J (∇

29,9)−(fs∂x+f ∂z)V2+02,x = 0 (26)

−2iσV2+J (V,9)+(fs∂x+f ∂z)92 = 0 (27)

−2iσ02+J (0,9)−N
292,x = 0 , (28)

implying

A292,xx+2B92,xz+C292,zz=2iσJ (∇29,9)−(fs∂x+f ∂z)J (V,9)+J (0,9)x .

The last two terms on the right-hand side can be simplified
using the lowest-order Eqs. (15)–(17), giving

A292,xx + 2B92,xz + C292,zz = 3iσJ (∇29,9) . (29)

The general solution to this equation reads

92 = F2(ξ2)+G2(η2)+92,p , (30)

whereF2 andG2 are arbitrary functions, representing so-
lutions in the absence of forcing;ξ2 andη2 are the charac-
teristic coordinates defined in Eq. (14). The forcing, on the
right-hand side of Eq. (29), is taken into account via92,p,
a particular solution to Eq. (29); an expression for92,p is
derived below.

For later reference, we note that the right-hand side of
Eq. (29) can be written in a more explicit form by using the
lowest-order general solution (19):

J (∇29,9) = −(µ+ − µ−)
[
(1 + µ2

+)F
′′′(ξ)G′(η)− (1 + µ2

−)G
′′′(η)F ′(ξ)

]
. (31)

Again we see that only products ofF andG contribute.

5 Solution for reflection from a uniform slope

We now introduce a uniform slopez=γ x, at which we re-
quire ψx+γψz=0 (i.e. w=γ u). In the following sections
we derive the solution for internal-wave reflection from the
slope. The procedure is straightforward: we use the general
solution obtained at first and second order, viz. Eqs. (19),
(25) and (30), and impose the boundary condition at each
order.
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268 T. Gerkema: Internal-wave reflection from uniform slopes

5.1 Orderε; primary wave

We use the general solution (19), and require9=0 at the
slope (thereby satisfying the boundary condition). This pro-
vides a coupling betweenF andG:

F([µ+ − γ ]x)+G([µ− − γ ]x) = 0 for all x ,

as is natural since one of them (G, say) now results from a
reflection of the other (F ). Hence, for allη,

G(η) = −F(λη) , (32)

with

λ =
µ+ − γ

µ− − γ
. (33)

(Critical reflection occurs ifλ→∞, i.e. if the angle of the re-
flected wave coincides with that of the slope:µ−=γ .) With-
out loss of generality, we may writeF as

F(ξ) =

∫
∞

0
dk a(k) eikξ . (34)

As pointed out byTabaei et al.(2005), it is crucial thatk
be either exclusively positive or exclusively negative, since
otherwiseF cannot represent a purely incident wave. (We
can ensure later thatF(ξ) actually does describe an incident
wave by giving the frequencyσ the appropriate sign.) The
reflected wave is then represented byG in Eq. (32), so the
total solution (19) becomes

9 = F(ξ)+G(η) =

∫
∞

0
dk a(k)

[
eikξ − eikλη

]
. (35)

Hereafter it will be understood that integrals are taken from
zero to infinity without explicitly stating so.

5.2 Orderε2; mean field

From Eq. (25), with Eqs. (34) and (32), we obtain:

90=−
2λ

σ
(µ+−µ−)

∫ ∫
dkdk′a(k)a(k′)kk′ sin(kξ−k′λη). (36)

The boundary condition is automatically satisfied. (This can
be seen by splitting the sine into the sum of its two halves,
and interchangingk andk′ in the second term; one then finds
that the two terms cancel at the slope.)

5.3 Orderε2; second harmonic

The right-hand side Eq. (31) can now be written

J (∇29,9) =

λ(µ+−µ−)

∫∫
dkdk′a(k)a(k′)kk′

[
(1+µ2

+)k
2
−(1+µ2

−)k
′2λ2

]
ei(kξ+k

′λη).

Hence a particular solution to Eq. (29) is

92,p = 3iσλ(µ+ − µ−)

∫ ∫
dkdk′S(k, k′)ei(kξ+k

′λη) , (37)

with

S(k, k′) =

−

a(k)a(k′)kk′

[
(1+µ2

+)k
2
−(1+µ2

−)k
′2λ2

]
A2(kµ++k′λµ−)2−2B(kµ++k′λµ−)(k+k′λ)+C2(k+k′λ)2

. (38)

However, Eq. (37) does not by itself satisfy the boundary
condition at the slope. We must add a solution of the ho-
mogeneous part of Eq. (29), which is given byF2+G2 in
Eq. (30). Moreover, it must be associated with the reflected
wave, so we takeF2=0, and select the appropriate form of
G2(η2). We thus arrive at

92=3iσλ(µ+−µ−)

∫∫
dkdk′S(k, k′)

[
ei(kξ+k

′λη)
−eiR(k,k

′)η2
]
, (39)

whereη2 is defined in Eq. (14), and

R(k, k′) =
µ+ − γ

µ2,− − γ
(k + k′) .

5.4 Expressions for single plane waves

The simplest choice fora(k) is aδ-distribution,a(k)=δ(k −

k0), so that the incident wave becomesF(ξ)= expik0ξ , to
which we refer as asingle plane wave. The complete lowest-
order solution (35), representing the superposition of the in-
cident and reflected primary waves, now becomes

9 = eik0ξ − eik0λη . (40)

At the following order, the mean field (36) and second har-
monic (39) are given by

90 = −
2λ

σ
(µ+ − µ−)k

2
0 sink0(ξ − λη) (41)

92=3iσλ(µ+−µ−)S(k0, k0)
[
eik0(ξ+λη)−eiR(k0,k0)η2

]
. (42)

with

S(k0, k0) =

−k2
0

(1+µ2
+)−(1+µ2

−)λ
2

A2(µ++λµ−)2−2B(µ++λµ−)(1+λ)+C2(1+λ)2
(43)

R(k0, k0)=2k0
µ+−γ

µ2,−−γ
. (44)

Note that the denominator in Eq. (43) may vanish for cer-
tain parameter values, in which case the second harmonic is
resonantly forced (see Sect. 6.3.1).

6 Analysis of reflection

We will consider two cases: (i) a single plane wave, for
which the expressions are given in Sect. 5.4, and (ii) a
“beam”, which arises if one takes for example a Gaussian
profile for a(k), thus creating a plane-wave packet whose
amplitude falls off in the transverse direction. In the latter
case, the integral expressions in Eqs. (36) and (39) have to
be solved numerically, in general.
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T. Gerkema: Internal-wave reflection from uniform slopes 269

6.1 Special case: horizontal bottom

The second harmonic is generated by the forcing term on the
righthand side of Eq. (31), in which the reflected wave,G, is
given by Eq. (32). Here we consider the special case of re-
flection from ahorizontalbottom, i.e.γ=0. Under the Tradi-
tional Approximation, we haveµ+=−µ−≡µ (i.e. the char-
acteristics are equally steep). Withγ=0, this givesλ=−1 in
Eq. (33), and the forcing term in Eq. (31) reduces to

− 2µ(1 + µ2)
[
F ′′′(ξ)G′(η)−G′′′(η)F ′(ξ)

]
, (45)

withG(η)=−F(−η). This term does not, in general, vanish.
For example, if we take a Gaussian beamF= exp(−ξ2) we
obtain

128µ2(1 + µ2)xz(µ2x2
− z2)exp{−2(µ2x2

+ z2)} .

(From this expression the localized character of the forcing is
evident; it acts only where the incident and reflected beams
interact.) Accordingly,Tabaei et al.(2005) find a non-zero
second harmonic for reflection from a horizontal bottom (see
their Fig. 11). Furthermore, numerical experiments on inter-
nal tides too reveal the generation of higher harmonics for
such a reflection (Gerkema et al., 2006a).

The situation is altogether different for a single plane
wave,F= expik0ξ , in which case (45) vanishes and no sec-
ond harmonic is generated, as was pointed out already by
Thorpe(1987). This can also be seen directly from Eq. (43),
where we findS=0 if µ2

+=µ2
− andλ=−1 (Traditional Ap-

proximation, horizontal bottom). Thorpe callsγ=0 a “singu-
lar case”; indeed, his results show that for an arbitrarily weak
but nonzero inclination (i.e. 0<γ�1) one may even findres-
onantforcing of second harmonics for certain wave frequen-
cies, sharply contrasting with the total absence of forcing for
γ=0.

However, this result hangs on the Traditional Approxima-
tion: if we abandon the approximation, we haveµ+ 6=−µ−

(i.e. the characteristics associated with the incident and re-
flected waves are not equally steep). Imposing a horizontal
bottom (γ=0,λ=µ+/µ−) now no longer gives a vanishingS
in Eq. (43). In other words, higher harmonics are now gener-
ated if a single plane wave reflects from a horizontal bottom;
the non-traditional terms remove the singular behaviour as-
sociated with a horizontal bottom.

6.2 Examples of beams

We show examples of beams, obtained by numerical evalu-
ation of the integrals (35), (36) and (39), with a(k)=1 in a
certain range(k1, k2), and zero elsewhere. To properly eval-
uate the integrals in Eq. (39), care must be taken thatS con-
tain no singularities. This can be verified numerically, and if
necessary the domain of integration(k1, k2) can be adjusted
such that the denominator ofS changes its sign nowhere.

For super-inertial waves (i.e.σ>|f |), Fig. 1 shows exam-
ples of the primary wave, mean field and second harmonic,
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Fig. 1. Reflection of a super-inertial beam from a sloping bottom; the incident wave enters from the upper right corner in
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16

Fig. 1. Reflection of a super-inertial beam from a sloping bot-
tom; the incident wave enters from the upper right corner in (a) and
(d). Parameter values areγ=−0.1 (slope),N=3×10−4 rad/s (strat-
ification), φ=45◦ N (latitude), ν=π/2 (i.e. meridional propaga-
tion), σ=1.4×10−4 rad/s (semidiurnal tidal frequency), andk1=8,
k2=10 km−1. Panels(a)–(c) show the solution under the Tradi-
tional Approximation (i.e.fs=0); panels(d)–(f) show the non-
traditional results (i.e.fs included). Panels (a) and (d) showε|9|;
(b) and (e),ε2

|90|; (c) and (f),ε2
|92|.

calculated with and without the Traditional Approximation
(upper and lower panels, respectively). In panels (a) and (d),
the incident primary wave enters from the right. In (d), the
reflected beam is less steep than the incident one, an imme-
diate consequence of the fact that|µ−|<|µ+|, unlike under
the Traditional Approximation (panel (a)), where the two are
equal. Furthermore, the second harmonic in (f) is less steep
than that in (c); the effect offs is to decrease|µ2,−|. The in-
tensity of the interaction is also changed byfs , as is clearly
visible when one compares the mean fields. Due the rela-
tively short wavelengths involved, the figures give an (opti-
cal) illusion suggesting variations along the beam; a zoom
of the beam (not shown) demonstrates however that lines of
equal phase follow the characteristics, i.e. are aligned to the
beam, as they should.

The frequency range of internal waves is enlarged by the
non-traditional terms (LeBlond and Mysak, 1978; Gerkema
and Shrira, 2005), allowing waves to exist also for slightly
sub-inertial frequencies (σ<|f |); moreover, the group veloc-
ity remains finite at the inertial frequencyσ=|f |. This means
there are now two cases of reflection that do not exist under
the Traditional Approximation. They are shown in Fig.2 (up-
per panels, inertial frequency; lower panels, sub-inertial). In
panel (a), the inertial wave enters as a steep beam (associated
with ξ ), while the reflected beam is purely horizontal (η); the
second harmonic (η2) is super-inertial, and directed leftward.
In the sub-inertial case (panel d), the reflected beam is also
less steep than the incident one, and the second harmonic is
again super-inertial (panel f). In panels (c) and (f) one clearly
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Fig. 2. Reflection of inertial and sub-inertial beams (upper and
lower panels, respectively), both non-traditional. ParametersN , φ
andν as in the previous figure;k1=2, k2=6 km−1. In the upper
panelsγ=−0.1 andσ=f ; in the lower panelsγ=0 andσ=0.97f .
In (a) and(d), the incident beam enters the domain from the upper
right corner.

sees a signal transverse to the principal beam in the region of
interaction; this is because the second harmonic contains the
particular solution (37), which involves both characteristic
coordinates (i.e.ξ andη) and produces a signal in the region
of interaction. The free second harmonic, on the other hand,
involves only one coordinate (η2).

6.3 Further analysis of single plane waves

We recall the expressions for a single plane wave given in
Sect. 5.4. They are used in the remainder of this section, to
analyse various dependences.

6.3.1 Resonant forcing

Following Thorpe(1987), we consider the loci of points, in
the slope vs. wave frequency plane, at which the second har-
monic is resonantly forced, i.e. where the denominator of
Eq. (43) vanishes. The difference fromThorpe(1987) is that
we here include non-traditional effects.

Under the Traditional Approximation, the frequency range
for the primary wave (i.e. at orderε) is given by|f |<σ<N .
For the second harmonic (whose frequency is 2σ ) to prop-
agate as a free wave, it must similarly satisfy|f |<2σ<N ,
hence|f |/2<σ<N/2. The two requirements together give
|f |<σ<N/2 for the range of frequencies in which a propa-
gating second harmonic can be generated.

By the same reasoning, one finds with non-traditional ef-
fects included a rangeσmin<σ<σmax for the primary wave,
and possible forcing of propagating second harmonics in the
rangeσmin<σ<σmax/2. Hereσmin and σmax are given by
(see, e.g.Gerkema and Shrira, 2005).

σmin,max =
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Fig. 3. The loci at which the second harmonic is resonantly forced. Thin line: under the Traditional Approximation;
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ocean. Parameter values are: é ã�ð�ë9è"æ�ìjí rad/s (a value typical of the deep ocean), latitude îäã¼ï�ð7ñ N and òuã�ó.ô3õ
(propagation in the meridional direction).
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Fig. 3. The loci at which the second harmonic is resonantly forced.
Thin line: under the Traditional Approximation; thick line: non-
traditional. Horizontal dashed lines indicate the range of val-
ues covering 67% of the slopes in the ocean. Parameter values
are:N=5×10−4 rad/s (a value typical of the deep ocean), latitude
φ=45◦ N andν=π/2 (propagation in the meridional direction).

1
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An example of the loci is shown in Fig.3. As discussed in
Sect. 6.1, the horizontal bottom (i.e.γ=0) forms a singular
case under the Traditional Approximation in that no harmon-
ics are generated at all; the point atγ=0 is thus excluded
from resonant generation. This is no longer the case if the
Traditional Approximation is abandoned; then resonant forc-
ing occurs even for reflection from a horizontal bottom.

Another difference is the anisotropy in the horizontal plane
created by non-traditional effects, here visible as aγ↔−γ

asymmetry. In the non-traditional case, resonance at near-
inertial frequencies (σ≈|f |) requires relatively steep slopes
∼0.04 (Fig. 3, thick line). Slopes in the deep ocean are
however predominantly less than 0.02 (Gerkema and Shrira,
2006), as indicated by horizontal dashed lines in Fig.3. This
range of slopes is covered rather by higher frequencies, up to
the semi-diurnal tidal frequency (M2). Under the Traditional
Approximation, it is the other way round: the range of abun-
dant slopes here coincides with slightly super-inertial fre-
quencies (σ.|f |). In this respect, it is interesting to note that
a marked contrast is found in oceanic internal-wave spectra
such as byvan Haren et al.(2002): while higher harmonics
of the semi-diurnal internal tide are clearly present, none is
seen of near-inertial frequencies, even though the latter too
contains much energy. The above finding may provide a par-
tial but perhaps not a full explanation of this fact, since the
strength of non-traditional effects depends on the horizontal
direction of wave propagation (ν), and for propagation in the
west-east direction, the result would be the same as under the
Traditional Approximation.

We finally note that the effect of changingN is straight-
forward: for largerN the difference between the traditional
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Fig. 4. The ratio of energies of the second harmonic and the incident
primary waves, as a function of latitude. Thin line: under the Tradi-
tional Approximation; thick line: non-traditional. For better visibil-
ity, the thin line shows the ratio artificially multiplied by 1000. Pa-
rameter values are:σ=1.4×10−4 rad/s,N=5×10−4 rad/s,ν=π/2
(meridional propagation) and slopeγ=0.001. The solution for
single plane waves from Sect. 5.4 is used, withk0=1 m−1 and
ε=10−5.

and non-traditional curves becomes smaller; strong stratifica-
tion generally suppresses vertical movements and hence non-
traditional effects, since the latter are associated with vertical
velocity or vertical acceleration, see Eqs. (1)–(3). (We note,
however, that the Traditional Approximation forms a singu-
lar limit, as is discussed byGerkema and Shrira, 2005, im-
plying that some effects may remain present even for strong
stratification.)

6.3.2 Non-resonant forcing

In this section we consider the energy ratioE2/E1 of the
second harmonic (E2) to that of the incident primary wave
(E1), as a function of various parameters. Energy density is
defined as

E =
1

2
ρ∗(u

2
+ v2

+ w2
+ b2/N2) .

The componentsu andw follow directly from the stream-
function, whilev andb are obtained from Eqs. (16), (17) at
lowest order, and from Eqs. (27), (28), but without the Jaco-
bians, for the second harmonic. Only part of the streamfunc-
tion is to be used: at lowest order,F(ξ) (the incident wave),
and at second order,G2(η2) (the freely propagating part of
the second harmonic).

First we consider the dependence on latitude (Fig.4), for
semidiurnal internal tides (M2 frequency). We choose a very
mild near-zero slope (γ=0.001), but not exactly zero since
otherwise no meaningful comparison would be possible be-
tween the traditional and non-traditional cases (see Sect. 6.1).
In Fig. 4, resonant forcing occurs at 55◦ N (non-traditional)
and at 73◦ N (traditional). We note that in the limitγ→0, res-
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Fig. 5. Parameters as in Fig.4, but now with stronger stratification:
N=2×10−3 rad/s.
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Fig. 6. Parameters as in Fig. 5, but with a still stronger stratification: éYã]èMëBè"æaì ù rad/s, a value representative of the

seasonal thermocline.
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Fig. 6. Parameters as in Fig.5, but with a still stronger stratifica-
tion: N=1×10−2 rad/s, a value representative of the seasonal ther-
mocline.

onant forcing occurs precisely at the inertial latitude 74.5◦ N
(i.e. whereσ=|f |) under the Traditional Approximation, as
is easily seen from inspection of the denominator in Eq. (43).
Notice that the traditional ratioE2/E1 has been artificially
multiplied by a factor 1000 for better visibility; its real value
is thus much smaller than the non-traditional one. This re-
inforces the conclusion from Sect. 6.3.1 that non-traditional
effects are favourable to generation of higher harmonics at
the tidal frequency.

For comparison, we show two plots for the same param-
eters as in Fig.4, except that stratification is taken stronger.
The traditional signal is nownot multiplied by an artificial
factor. The curves are indeed closer, but still clearly differ-
ent in Fig.5, whereN=2×10−3 rad/s. It is only for high
values ofN , such asN=1×10−2 rad/s in Fig.6 (a value rep-
resentative of the seasonal thermocline), that the traditional
and non-traditional curves become very similar. By com-
paring Figs.4, 5 and 6, it is clear that the intensity of the
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Fig. 7. The ratio of energies of the second harmonic and the in-
cident primary waves, as a function of slopeγ . Thin line: under
the Traditional Approximation; thick line: non-traditional. For bet-
ter visibility, the thin line show the ratio artificially multiplied by
100. Parameter values are:σ=1.4×10−4 rad/s (semidiurnal tidal
frequency),N=5×10−4 rad/s,φ=45◦ N, ν=π/2 (meridional prop-
agation). The solution for single plane waves from Sect. 5.4 is used,
with k0=1 m−1 andε=10−5.

second harmonic decreases with increasingN (note the dif-
ferent scalings used on the vertical axes).

In the traditional case (thin line) in Fig.5, there is only a
weak variation ofE2/E1 with latitude below mid-latitudes.
This is in agreement with results from numerical experi-
ments on internal tides (Gerkema et al., 2006b), where the
same stratification was used, although there is some ambi-
guity in their interpretation, partly due the unresolved issue
of whether the attainable horizontal resolution is sufficient
(Gerkema et al., 2006a,b). Further ambiguities arise from the
fact that the generation of the internal tide is itself affected by
the Coriolis parameter: the intensity and width of the beam
change, not only its angle of propagation, so it is not obvious
how a “proper” evaluation of the Coriolis effect can be made.
Notice in particular that the ratioE2/E1 depends strongly on
wavenumberk0 because of the quadratic dependence inS,
see Eq. (43). In any case, the results from Fig.5 suggest that
a much stronger dependence on latitude would be found if
non-traditional effects were included. (The terms withf̃ can
in fact be easily included in internal-tide generation studies,
as was noticed byBaines and Miles, 2000.)

Finally, we consider the dependence ofE2/E1 on slope
steepnessγ , for semi-diurnal tides (Fig.7), and for near-
inertial waves (Fig.8). The range of prevailing (67%) val-
ues ofγ is shown. Parameters are identical in both figures,
except for the wave-frequencyσ . The first thing to note
is that the second harmonic is generally much stronger for
tidal than for near-inertial frequencies, by about one order
of magnitude. Moreover, the intensity is generally higher if
non-traditional effects are included (thick lines), except in the
immediate vicinity of resonant peaks in the traditional case.
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Fig. 8. As in Fig. 7, but now for near-inertial waves,
σ=1.05f=1.083×10−4 rad/s. Here the traditional result (thin line)
shows the proper outcome (i.e. no artificial multiplication factor is
used).

Note that there is now an asymmetry ofγ↔−γ even un-
der the Traditional Approximation, in contrast to the sym-
metry in the loci for resonant forcing in Fig.3 (thin line).
This means that for a given incident wave and given slope
steepness, the intensity of the second harmonic generally de-
pends on the slope orientation, while the value of|γ | at which
resonance occurs does not. The origin lies in Eq. (43): un-
der the Traditional Approximation one hasµ+=−µ−≡µ by
Eq. (13), and henceλ=(γ−µ)/(γ+µ) by Eq. (33), implying
λ(−γ )=1/λ(γ ). The expression forS reduces to

S(k0, k0) = −k2
0(1 + µ2)

1 − λ2

A2µ2(1 − λ)2 + C2(1 + λ)2

(Traditional Approximation).

Now, if the denominator vanishes for a certainλ=λc, it van-
ishes also forλ=1/λc (as can be seen by multiplying the de-
nominator byλ2

c). This explains the symmetry with respect
toγ↔−γ in the thin resonance curve in Fig.3. However, the
expression forS as a whole changes ifλ is replaced by 1/λ,
which explains the asymmetry in the thin lines in Figs.7, 8.

7 Discussion

In the preceding sections we have generalized the theoretical
work of Tabaei et al.(2005) on internal-wave reflection and
the generation of higher harmonics; we included Coriolis ef-
fects, and in particular also the non-traditional effects associ-
ated with the horizontal component of the earth rotation vec-
tor. The derivation and resulting expressions show that the
theory does not become fundamentally more complicated by
this generalization; in other words, there is no practical need
here to ignore Coriolis effects or make the Traditional Ap-
proximation.
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Non-traditional effects were found to bring about two ma-
jor changes. First, if one considers single plane waves, higher
harmonics are generated by reflection from a horizontal bot-
tom, in contrast to the traditional case, where no genera-
tion takes place at all (Sect. 6.1). The singularity associ-
ated with the horizontal bottom (Thorpe, 1987) is thus re-
moved by non-traditional effects. A second change is related
to the inertial vs. tidal preference. Under the Traditional Ap-
proximation, resonant forcing occurs for near-inertial waves
if one considers the range of slope tangents that prevail in
the ocean. With non-traditional effects included, however,
the favourable frequencies lie higher, near semi-diurnal tides.
The latter situation explains better some oceanic internal-
wave spectra, as discussed in Sect. 6.3.1. Moreover, the
intensity of the second harmonic is generally increased by
non-traditional effects, and is usually higher for tidal than
for near-inertial frequencies (Sect. 6.3.2). It was shown in
Figs. 4–6 that, as expected, strong stratification suppresses
non-traditional effects; at the same time, these figures illus-
trate that the values ofN required for a near-total suppres-
sion are very high, typically those encountered in the sea-
sonal thermocline, which of course forms only a small part
of the vertical column in the ocean. This demonstrates that
non-traditional effects are important in internal-wave reflec-
tion almost everywhere in the ocean.

In the analysis carried out here we assumed (implicitly)
that the reflection of the primary wave is not close to critical;
otherwise a different kind of expansion should be made, with
frictional effects included (Dauxois and Young, 1999). In
fact, strong nonlinearities and overturning may then occur, as
was shown in laboratory experiments (Dauxois et al., 2004).
In the reflection problem considered here, uniformity was
assumed in one of the horizontal directions. The full three
dimensional problem for general internal-wave forms has, to
our knowledge, not yet been dealt with in the literature. How-
ever, for single plane waves (i.e. expi[kx + ly +mz+ σ t]),
the problem was treated byThorpe(2000), with emphasis on
the induced mean flows, while a new non-traditional crite-
rion for critical reflection was recently derived byGerkema
and Shrira(2006).
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