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Abstract. Weakly nonlinear reflection of internal waves lyzed for single plane internal waves in a rotating stably strat-
from uniform slopes produces higher harmonics and mearified fluid by Thorpe (1987, and for general internal-wave
fields; the expressions are here derived for constant stratififorms (including beams), but without rotation, Bwabaei
cation and with Coriolis effects fully included, i.e. the hori- et al. (2005. In the former case, gravity and the Coriolis
zontal componenf of the earth rotation vector (referred to force act as restoring forces; in the latter case, only grav-
as “non-traditional”) is taken into account. Uniformity in one ity. A vivid illustration of second harmonics, generated by
of the horizontal directions is assumed. It is shown that soreflecting internal waves, was recently produced in labora-
lutions can be as readily derived with as withglithence  tory experimentsReacock and Tabgae2005; experiments
there is no need to make the so-called Traditional Approxi-on near-critical reflection are presented Ggstiaux et al.
mation. Examples of reflecting internal-wave beams are pre{2006. Numerical experiments on internal tides too pro-
sented for super-inertial, inertial and sub-inertial frequenciesvide examples of generation of higher harmonics by reflect-
The problem of resonant and non-resonant forcing of the secing beams l(amh, 2004 Gerkema et a].20063. These re-
ond harmonic is studied for single plane waves; unlike un-sults are, qualitatively at least, supported by internal-wave
der the Traditional Approximation, the problem of reflection spectra deduced from oceanic observatimas Haren et aJ.
from a horizontal bottom no longer forms a singular case.2002), in which higher harmonics of the semi-diurnal inter-
Non-traditional effects are favourable to resonant forcing atnal tide were found. We note that these spectra contain also
near-tidal rather than near-inertial frequencies, and generalla strong peak at the inertial frequency, which however does
increase the intensity of the second harmonic. Strong stratinot seem to be accompanied by higher harmonics; we put
fication tends to suppress non-traditional effects, but a nearforward a possible explanation in Sect. 6.3.

total suppression is only attained for high values of stratifi- | the above-mentioned studies, the rotation vector (if in-
cation that are characteristic of the seasonal thermocline; ijuded at all) was assumed to be parallel to gravity, hence
most parts of the ocean, non-traditional effects can thereforgertical. This amounts to making the so-called Traditional
be expected to be important. Approximation. If one abandons this approximation, a hor-
izontal componenyf =2 cos¢ (2 the earth angular veloc-
ity, ¢ latitude) comes into play, which produces additional
terms in the Coriolis force. This component was recently
shown to be important for low-frequency internal waves in
Interaction of monochromatic internal waves can produce in-Weakly stratified fluids Gerkema and Shrir2003. Since
ternal waves whose frequencies are double, triple etc. tha'€ deep ocean, where much of the internal-wave reflection
of the primary wave; they are called higher harmonics. A takes plac_e, is indeed W_eakly stratified (|._e. the buoyancy fre-
straightforward example of interaction is when an internal QUENCYN is not much higher thae), we include the hori-

wave reflects from a (sloping) bottom: nonlinear effects areZ0ntal component in the present study, thereby generalizing
then at work at the junction of the incident and reflected the earlier studies on internal-wave reflection. One of its ef-

waves. This mechanism of generation was previously anaf€cts is to increase the range of allowable internal-wave fre-
guencies (see, e.d.eBlond and Mysak1978. In particular,

Correspondence tol. Gerkema internal waves can now exist at sub-inertial frequencies (i.e.

(gerk@nioz.nl) wave frequency <| f1, with f=2Qsin¢g). An example of

1 Introduction
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266 T. Gerkema: Internal-wave reflection from uniform slopes

second harmonics generated by reflecting sub-inertial waves v+ J(, ¥) + fs¥x + fY, =0 )

will be given in Sect. 6.2. Another effect is the change in by + J (b, ¥) — N2y, =0, ®)

steepness at which energy propagates. This steepness more-

over depends on the horizontal orientation of the waves inwith the Jacobian defined ag(a, b)=a,b.—a.b,, and

the geographical plane. It will be shown that this anisotropyv2=a§_|_az2_ Note that the terms involving, cancelled.

affects also the generation of second harmonics, for examplgjon-traditional effects, now present only vig,, are

the loci at which resonant forcing occurs (Sect. 6.3). strongest ifx (i.e. wave-energy propagation) is meridional
It was aIready pointed out yaines and Mile$2000 that (v=#£ 7/2). For zonal propagation0, =), on the other

the componeny (hereafter referred to as “non-traditional”) hand, non-traditional effects are absent from EG3-(g)

can be easily included in internal-tide generation problemsbut not from Eqs1 and3!).

The same conclusion was reached Ggrkema and Shrira

(2009 regarding the linear theory of internal-wave propa-

gation in general. This will now be taken one step further,3  Expansion

into nonlinear internal-wave dynamics, specifically the gen-

eration of higher harmonics. We proceed by using an expanwe consider weakly nonlinear waves, monochromatic (with
sion similar to the one used Bybaei et al(2009. The prin-  frequencyo) at lowest order, and write the fields in a formal

Cipal differences from their StUdy are that we include Coriolis expansion in whicla, a measure of the intensity of the wave,
effects (in their full form, moreover), and that we introduce serves as the small parameter:

the bottom slope (Sect. 5) only after we have first solved the
general problem (Sects. 2 to 4); this actually simplifies the y = e(w exp—ior) + c.c} + €2(Wo + [Woexp(—2ict) + c.cl} + - (9)
derivation. Examples and an analysis of non-traditional ef-
fects, with a view to applications in the deep ocean, are then
given in Sect. 6. v = eV exp(—iot) +c.c} + e2(Vo + [Vaexp(—2iar) + ccl} +--- (10)

2 Basic equations b = e{T exp(—iot) + C.C} + €2{To + [Taexp(—2ior) + c.cl} +---  (11)

We adopt a coordinate system in which thexis is rotated  where we anticipate that mean fields (with index 0) and sec-
by an anglev (anticlockwise) with respect to the west-east ond harmonics (with index 2) will appear at ordér the for-

direction, and define the Coriolis parameters mer is time-independent, the latter has frequeney Rote
) i that no complex conjugates are added to the mean fields; they
(fe. f5, f) = 282 (cosv oS, Sinv COSP, SiNG) . will be found to be real by themselves.

We assume latitudg to be fixed (f-plane). The components e follow the procedure ofabaei et al(2009, but with

f. and f, are proportional tof (i.e. to cosine of latitude), Coriolis effects now included. A further distinction is that we
and would both be absent under the Traditional Approxima—f”St derive the general solution, irrespective of the presence
tion. In this coordinate system, the nonlinear equations in arPf topography. In principle, one can continue the expansion

incompressible fluid read.€Blond and Mysak1979: (9)—(11) to any order (note, however, the caveat mentioned at
the end of Sect. 4.2), but we will only consider the problem
ur+ @-Vyu— fv+ fow=—px (1)  upto order?.
v+ (- Vyv+ fu— fiw=—p, 2
wr+ @ -Vw+ fov— fou=—p:+b 3 .
4 General solution
Mx+vy+wz:O (4)
by + (u-V)b+ N*w =0, (5) For later convenience, we introduce abbreviatiapsB and

_ ) C, for the coefficients of the governing partial differential

Whgreu_, vandw are the vglocny components in they and equations, to be found at subsequent orders, as well as the
z direction, respectivelyp is the departure of pressure from corresponding characteristic coordinatggnd,:
its hydrostatic value (divided by a constant reference density,
px); b is the buoyancy, i.e—gp/ps, Wherep is the depar- An:NZ—(no)Z—I—sz; B=ffi: Cu=f?—(mo)? (12)
ture of density from its hydrostatic valug(z). Hereafter we B4 (B2 — A.CHY2
assumeV?=—(g/ps)dpo/dz to be constant. Yn + = ( nCn) (13)

We consider plane waves travelling in thalirection, so ’ An
thatd/dy=0. This allows us to introduce a stream function & = Un+X =25 fn = Un,—X — 2, (14)
¥ (u=y, , w=—1,), in terms of which Eqs.1)—(5) become

where it will be understood that the subscrigs dropped if
V2, + J(V2Y, ) — fivy — fu, +by =0 (6) n=1 (i.e. at ordek).

Nonlin. Processes Geophys., 13, 2833 2006 www.nonlin-processes-geophys.net/13/265/2006/



T. Gerkema: Internal-wave reflection from uniform slopes

4.1 Ordere; primary wave

By substituting Eqs.9)—(11) into Egs. 6)—(8), we obtain, at
lowest order,

—ioV2W — (fydy + f8,)V + T, =0 (15)
—ioV 4 (fidy + f3.)¥ =0 (16)
—iol = N°y, =0, (17)

implying
AV, + 2BV, + CV,, =0, (18)

as obtained earlier bgerkema and Shrirg2005. (Note that

267

resolved either by adding friction, or by changing the setting
to an initial-value problem\(isser, 1994. We do not pur-
sue this point further, because the residual fields play no role
in finding the second harmonics, the primary aspect of this
study. (The geostropic fields would however start to play a
role at order?, and from then on solutions involve an inde-
terminacy.)

4.3 Ordere?; second harmonic

Gathering the second harmonics éxRio ) resulting from
the substitution of Eqs9§—(11) in Egs. 6)—(8), we find

the term with the mixed derivative would disappear under the_o; ;v 2y, 1 7(V2W, W)—( f,3,+ f0.)Vo+To, =0  (26)

Traditional ApproximationB=0.) In terms of the character-

istic coordinateg andn, Eq. (18) becomes¥g, =0, whose
general solution is

V=FE&+Gm, (19)

for arbitrary functionsF' andG, each describing propagation
of wave-energy along one of the two characteristic coordi-

nates. The other fields can be expressed in ternis as

iN? i
I'=—W,,; V=—=(fs¥:+ f¥). (20)
(o2 o
With this, the lowest-order problem has been fully solved.

4.2 Ordere?; mean field

Gathering the time-independent terms resulting from the sub¥2 = F2(§2) + G2(n2) + V2,

stitution of Egs. 9)—(11) in Egs. 6)—(8), we find

[J(V2W, W*) 4+ c.c]l — (fidx + f0)Vo+Tor =0 (21)
[(J(V,¥¥)+c.cl+ (fsdr + f0)W0 =0 (22)
[J(T,¥*) 4+ c.c]— N?Wg, =0. (23)

We can use Eq2(Q) to rewrite the Jacobian in ERJ), and
then use the general identity (P, P*) + c.c=iJ (P, P*),
to obtain

Wy = i/(xv, W) (24)
o

Specifically, substitution of the lowest-order general solution

(19) yields

2
Yo = —(us = n)IMEF ()G ()] (25)

—2ic Vot J (V, W)+ (fi 0+ f0.)¥2 =0 (27)
—2ioTo+J (I, W)—N?Wy , =0, (28)

implying
AW +2BW;  +CoW . =2i0 T (V2U, W)~ (fydx+f8,) I (V, W)+ J (T, ¥),.

The last two terms on the right-hand side can be simplified
using the lowest-order Eqsl})—(17), giving

AW o + 2BWy . + CoWs . = Bic J(V?W, W).  (29)

The general solution to this equation reads
(30)

where F> and G, are arbitrary functions, representing so-
lutions in the absence of forcingz andn, are the charac-
teristic coordinates defined in EdL4). The forcing, on the
right-hand side of Eq.29), is taken into account vi&; ,,
a particular solution to Eq.20); an expression fod; , is
derived below.

For later reference, we note that the right-hand side of
Eqg. @29) can be written in a more explicit form by using the
lowest-order general solutiod9):

TV, 9) = ~(u = )|+ D F'O6 () - L+ 126" ) F'©)] (31)

Again we see that only products 6fandG contribute.

(Primes denote derivatives with respect to the characteristi® Solution for reflection from a uniform slope
coordinates.) This expression confirms the well-known fact
that no nonlinear contributions arise from an interaction of We now introduce a uniform slope=yx, at which we re-

one plane internal wave |, say) with itself; only junctions of

quire Y +yy,=0 (i.e. w=yu). In the following sections

plane waves having different directions provide such terms. we derive the solution for internal-wave reflection from the
Equation 22) is now automatically satisfied, too. The re- slope. The procedure is straightforward: we use the general
maining fieldsVp andI"g cannot be uniquely determined be- solution obtained at first and second order, viz. EG9),(

cause of geostropic degeneracy, as is clear from Ef. (

(25) and @0), and impose the boundary condition at each

This is a common problem in rectification studies; it can beorder.

www.nonlin-processes-geophys.net/13/265/2006/
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5.1 Ordere; primary wave

We use the general solutiod9), and require¥=0 at the
slope (thereby satisfying the boundary condition). This pro-
vides a coupling betweef andG:

F(lut —y10) + G(u- —ylx) =0 forallx,

as is natural since one of ther@ (say) now results from a
reflection of the otherK). Hence, for ally,

Gn) =—-Fn), (32)

with

P A (33)
K=y

(Critical reflection occurs ifk— o0, i.e. if the angle of the re-
flected wave coincides with that of the slope:=y.) With-
out loss of generality, we may writé as

0 .
F&) = / dka(k) e'™ . (34)

0
As pointed out byTabaei et al(2005), it is crucial thatk
be either exclusively positive or exclusively negative, since
otherwiseF cannot represent a purely incident wave. (We
can ensure later thad (&) actually does describe an incident
wave by giving the frequency the appropriate sign.) The
reflected wave is then represented®yin Eq. 32), so the
total solution (L9) becomes
o0 . .
W= FE) +Gap) = [ dka®)[et — ] (35)
0

Hereafter it will be understood that integrals are taken from
zero to infinity without explicitly stating so.

5.2 Ordere?; mean field

From Eq. @5), with Egs. 84) and 32), we obtain:

\Do:—z—k(u+—u,) /dkdk/a(k)a(k/)kk/ sin(ké —k'xn). (36)
o

The boundary condition is automatically satisfied. (This can

be seen by splitting the sine into the sum of its two halves,

and interchanging andk’ in the second term; one then finds
that the two terms cancel at the slope.)

5.3 Ordere?; second harmonic

The right-hand side Eq3@) can now be written
J(V2W, w) =

Mg —p) /dkdk’a(k)a(k’)kk’[(1+M2+)k2—(1+u2_)k’2;\2}e”k“k’"w).
Hence a particular solution to EQ9) is

W, = 3ioA(pg — i) / dkdk'S(k, k')e! *E+K ) (37

Nonlin. Processes Geophys., 13, 2833 2006
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with
Sk, k') =

a(k)a(k/)kk/[(1+M§r)k2—(l+u2_)k/2k2]
 Ag(kpy kA )2=2B (kK A ) (kK 0+ Co(k+k'2)2
However, Eq. 87) does not by itself satisfy the boundary
condition at the slope. We must add a solution of the ho-
mogeneous part of Eq29), which is given byF>+G3 in
Eq. 30). Moreover, it must be associated with the reflected

wave, so we takdé»>=0, and select the appropriate form of
G2(n2). We thus arrive at

(38)

Wo=3ioA(jty—1i_) / f dkdk'S(k, k') [ei“‘“k"‘")—e" R”‘”’”ﬂ], (39)

wheren; is defined in Eq.14), and

Rk.K)y =" (k1 1y,
H2, - —VY

5.4 Expressions for single plane waves

The simplest choice far(k) is as-distribution,a (k)=68 (k —
ko), so that the incident wave becomgss)= expikoé, to
which we refer as aingle plane waveThe complete lowest-
order solution 85), representing the superposition of the in-
cident and reflected primary waves, now becomes

v = eikof _ gikokn ) (40)

At the following order, the mean field6) and second har-
monic 39) are given by

2\ 2 o
Yo = _;(M+ — n-)kg Sinko(§ — An) (41)

Wo=3i A (1 — 1) (Ko, ko) !0+ Rlbokomz]  (42)
with
S(ko, ko) =
@ (I+u%)—(14u2))?
0 Ao(ps+Ap—)2—=2B(pty +Ap—) (14+2)+C2(1+1)
R(ko. ko)=2ko—+—Y_
n2,——vy

Note that the denominator in Eg43) may vanish for cer-
tain parameter values, in which case the second harmonic is
resonantly forced (see Sect. 6.3.1).

5 (43)

(44)

6 Analysis of reflection

We will consider two cases: (i) a single plane wave, for
which the expressions are given in Sect. 5.4, and (i) a
“beam”, which arises if one takes for example a Gaussian
profile for a(k), thus creating a plane-wave packet whose
amplitude falls off in the transverse direction. In the latter
case, the integral expressions in Eg6)(and @9) have to

be solved numerically, in general.

www.nonlin-processes-geophys.net/13/265/2006/
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6.1 Special case: horizontal bottom @ ®) ©

1 m 03
‘/

0.06

The second harmonic is generated by the forcing term on thu
righthand side of Eq.31), in which the reflected wavéj, is
given by Eg. 82). Here we consider the special case of re-
flection from ahorizontalbottom, i.e.y=0. Under the Tradi-

0.04 m

i

%‘ 0.1
0.02 |
I

%

ok N w b~ o«

tional Approximation, we havg ,=—u_=u (i.e. the char- fave” o e o lnamonc 6
acteristics are equally steep). With=0, this givesh=—1 in @ ) © o 0

Eq. (33), and the forcing term in Eg3(Q) reduces to ° ' 03
—2u+ W[ F"®G ) - G F )], CORNS . .
with G (n)=—F(—n). This term does not, in general, vanish. ] 01
For example, if we take a Gaussian be#m exp(—£2) we 0 prinary \ mean s

f 0 0 0
obtain -20 0 X 20 -20 0o X 20 -20 0o X 20

2 2 2.2 .2 2.2, .2
128u°(1 4 p)xz(uxc — z9) exp{—2(ux“ 4+ z°)} . Fig. 1. Reflection of a super-inertial beam from a sloping bot-

(From this expression the localized character of the forcing iso™: the incident wave enters from the upper right4corner in (a) and
evident; it acts only where the incident and reflected beamd®)- Parameter values age=—0.1 (slope) N =310 " rad/s (strat-
interact.) AccordinglyTabaei et al(2005 find a non-zero ~ 'cation), ¢=45"N (latitude), v=r/2 (i.e. meridional propaga-

tion), o =1.4x 10~ *rad/s (semidiurnal tidal frequency), aht=8,

second harmonic for reflection from a horizontal bottom (seekz:10 kmL. Panels(a){c) show the solution under the Tradi-

their Fig. 11). Furthermore, numerical experiments on inter-o. Approximation (i.e.f;=0): panels(d)~(f) show the non-
nal tides too reveal the generation of higher harmonics foragitional results (i.ef; included). Panels (a) and (d) shewd|;
such a reflectionGerkema et a] 20063. (b) and (€)£2|Wol; (c) and (f),e2| 5.

The situation is altogether different for a single plane
wave, F=expikoé, in which case45) vanishes and no sec-
ond harmonic is generated, as was pointed out already b
Thorpe(1987). This can also be seen directly from E43),
where we findS=0 if 42 =42 andi=—1 (Traditional Ap-

¥alculated with and without the Traditional Approximation
(upper and lower panels, respectively). In panels (a) and (d),

) ) ) ) the incident primary wave enters from the right. In (d), the
proximation, horizontal bottom). Thorpe cajts=0 a “singu- P y g ()

| » indeed. hi its show that f bitraril I(reflected beam is less steep than the incident one, an imme-
;rtcase ok _eel_, tls resu i)s OVI attoran arol r};«_’:\rg Weakyiate consequence of the fact that |<|u4|, unlike under

utnhonzero inciination (ie. V< ) one may eVenlintes-  the Traditional Approximation (panel (a)), where the two are
onantforcing of second harmonics for certain wave frequen-

. harol trasti ith the total ab ¢ toreing f equal. Furthermore, the second harmonic in (f) is less steep
C|eso, sharply contrasting wi € totalabsence ottorcing 1ofyh an that in (c); the effect of; is to decreasguz, _|. Thein-
y=0.

. " . tensity of the interaction is also changed Ry as is clearly
. Hoyvever, this result hangs on the. Traditional Approxima- visible when one compares the mean fields. Due the rela-
tion: if we abandon the approximation, we have #—u_

i e the ch teristi iated with the incident and tively short wavelengths involved, the figures give an (opti-
g'e't de characteris Kt:S asslclmate Wi | € Incl eﬂ an :e— al) illusion suggesting variations along the beam; a zoom
ected waves are not equally steep). Imposing a horizonta f the beam (not shown) demonstrates however that lines of

_bottom =0, A=ps /1) now no longer giyes avanishirg equal phase follow the characteristics, i.e. are aligned to the
in Eq. @3). In other words, higher harmonics are now gener- beam, as they should

ated if a single plane wave reflects from a horizontal bottom; , )
The frequency range of internal waves is enlarged by the

the non-traditional terms remove the singular behaviour as- =
sociated with a horizontal bottom. non-traditional termslLeBlond and Mysak1978 Gerkema

and Shrira2005, allowing waves to exist also for slightly
6.2 Examples of beams sub-inertial frequencies(<| f|); moreover, the group veloc-

ity remains finite at the inertial frequeney=| f|. This means
We show examples of beams, obtained by numerical evaluthere are now two cases of reflection that do not exist under
ation of the integrals35), (36) and @9), with a(k)=1ina  the Traditional Approximation. They are shown in R2qup-
certain rangék1, k2), and zero elsewhere. To properly eval- per panels, inertial frequency; lower panels, sub-inertial). In
uate the integrals in Eq39), care must be taken thatcon- panel (a), the inertial wave enters as a steep beam (associated
tain no singularities. This can be verified numerically, and if with &), while the reflected beam is purely horizontg); the
necessary the domain of integration, k2) can be adjusted second harmonigpg) is super-inertial, and directed leftward.
such that the denominator §fchanges its sign nowhere. In the sub-inertial case (panel d), the reflected beam is also

For super-inertial waves (i.e.>| f|), Fig. 1 shows exam- less steep than the incident one, and the second harmonic is

ples of the primary wave, mean field and second harmonicagain super-inertial (panel f). In panels (c) and (f) one clearly

www.nonlin-processes-geophys.net/13/265/2006/ Nonlin. Processes Geophys., 23328606
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max

(a) (b) (© Oin Il M
) )
T

4 t
0.12 0.06 0.151

N/2 o [2
i
T I

2 0.08 0.04 0.1F
N 0.5
! / 0.04 | 0.02 0.05§
W
O {primary @ mean O 2nd 3 I.IT
wave 0 field 0 harmonic % 0
pur}
(C)] N ©) ® 012 n
4 018 ' -0.05
3
0.12 0.08 -0.1
~ 2 05
1 0.06 0.04 -0.15
= 2 - 12 1.2 1.4 1.6 1.8 2 2.2 2.4

O Tpri 2nd -
Wave " 0 fieid " harmonic 0 FREQUENCY o x10™*

-20 0 x 20 -20 o x 20 -20 0 x 20

] ) ] ) ] ) Fig. 3. The loci at which the second harmonic is resonantly forced.
Fig. 2. Reflection of inertial and sub-inertial beams (upper and 1, jine: under the Traditional Approximation; thick line: non-
lower panels, respectively), both non-tradltlonall. Parameterg traditional. Horizontal dashed lines indicate the range of val-
andv as in the previous figures1=2, kp=6km™". In the upper o5 covering 67% of the slopes in the ocean. Parameter values
panelsy=-0.1 ando=/; in the lower panely =0 ando =0.97f.  4re: y—5x10~4rad/s (a value typical of the deep ocean), latitude

In (a) and(d), the incident beam enters the domain from the UpPer s_ 450 N andv=r/2 (propagation in the meridional direction).
right corner.

1 1/2\1/
sees a signal transverse to the principal beam in the region of/3 ([N2+f2+f32] + {[N2+f2+fs2]2_(2fN)2} ) - (46)
interaction, this is because the second harmonic contains the . o _ .
particular solution 7), which involves both characteristic An example of the loci is shown in Fig. As discussed in
coordinates (i.e5 andn) and produces a signal in the region Sect. 6.1, the horizontal bottom (i.e=0) forms a singular

of interaction. The free second harmonic, on the other handé@se under the Traditional Approximation in that no harmon-
involves only one coordinateyg). ics are generated at all; the pointjat=0 is thus excluded

from resonant generation. This is no longer the case if the
6.3 Further analysis of single plane waves Traditional Approximation is abandoned; then resonant forc-
ing occurs even for reflection from a horizontal bottom.
We recall the expressions for a single plane wave given in - Another difference is the anisotropy in the horizontal plane
Sect. 5.4. They are used in the remainder of this section, t@reated by non-traditional effects, here visible ag<a—y

analyse various dependences. asymmetry. In the non-traditional case, resonance at near-
. inertial frequenciesd~| f|) requires relatively steep slopes
6.3.1 Resonantforcing ~0.04 (Fig.3, thick line). Slopes in the deep ocean are

. : . : . however predominantly less than 0.@zetkema and Shrira
Following Thorpe(1987), we consider the loci of points, in 2006, as indicated by horizontal dashed lines in RAgThis

the slope vs. wave frequency plane, at which the second har- : . .
o . : range of slopes is covered rather by higher frequencies, up to
monic is resonantly forced, i.e. where the denominator of

Eq. @3) vanishes. The difference frofthorpe(1987) is that the seml-dlgrna[ t|_dal frequency ). Und'er the Traditional
. " Approximation, it is the other way round: the range of abun-
we here include non-traditional effects.

Under the Traditional Approximation, the frequency range dﬁg:};'gg;i |k}e|)re|r??r']?§'riis g;':'tthl til?r:li)r/ezijiﬂert-:)nr?&fltg;-
for the primary wave (i.e. at orde) is given by| f|<o <N. 9 ~ pect, 9

For the second harmonic (whose frequencydd  prop- a marked contrast is found in oceanic internal-wave spectra
: € Treq Y brop such as byan Haren et al(2002: while higher harmonics
agate as a free wave, it must similarly satisfif<20 <N,

hence| f|/2<o <N /2. The two requirements together give of the sem|-d|.urna'l internal tld'e are clearly present, none is
: L ; seen of near-inertial frequencies, even though the latter too
| fl<o <N /2 for the range of frequencies in which a propa-

gating second harmonic can be generated contains much energy. The above finding may provide a par-

: : . o tial but perhaps not a full explanation of this fact, since the
By the same reasoning, one finds with non-traditional ef- o .
: . strength of non-traditional effects depends on the horizontal
fects included a rangemin<o <omax for the primary wave,

: . k L direction of wave propagation), and for propagation in the
and possible forcing of propagating second harmonics in the oo

. west-east direction, the result would be the same as under the
rangeomin<o <omax/2. Hereomin and omax are given by

: Traditional Approximation.
(see, e.gGerkema and Shrir2009. We finally note that the effect of changing is straight-
Omin,max = forward: for largerN the difference between the traditional
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Fig. 4. The ratio of energies of the second harmonic and the incidentFig. 5. Parameters as in Fig, but now with stronger stratification:
primary waves, as a function of latitude. Thin line: under the Tradi- N=2x10-3 rad/s.

tional Approximation; thick line: non-traditional. For better visibil-

ity, the thin line shows the ratio artificially multiplied by 1000. Pa-

rameter values arer=1.4x10~4rad/s,N=5x10"*rad/s,v=x/2 , Xx10° ‘
(meridional propagation) and slope=0.001. The solution for —traditional
single plane waves from Sect. 5.4 is used, wiga=1m~1 and ——non-traditional

€=1075. 0.81

0.6+
and non-traditional curves becomes smaller; strong stratificaw
tion generally suppresses vertical movements and hence nor* , , |
traditional effects, since the latter are associated with vertical
velocity or vertical acceleration, see Eq¥H(3). (We note,

. . . . 0.24
however, that the Traditional Approximation forms a singu-
lar limit, as is discussed b§erkema and Shrir2005 im-
plying that some effects may remain present even for strong ~ °o 10 20 30 40 50 60 70
stratification.) latitude @
6.3.2 Non-resonant forcing Fig. 6. Parameters as in Fi§, but with a still stronger stratifica-

tion: N=1x10"2 rad/s, a value representative of the seasonal ther-
In this section we consider the energy rafie/E; of the ~ mocline.
second harmonicK?>) to that of the incident primary wave
(E1), as a function of various parameters. Energy density is

defined as onant forcing occurs precisely at Fhe inertial Iati.tude' 7MN5
(i.e. whereo=| f|) under the Traditional Approximation, as
E — %p* u? + v? + w? + b?/N?). is easily seen from inspection of the denominator in Eg).(

Notice that the traditional rati&,/E1 has been artificially

The components and w follow direcﬂy from the stream- multiplied by a factor 1000 for better visibility; its real value
function, whilev andb are obtained from Eqs16), (17) at is thus much smaller than the non-traditional one. This re-
lowest order, and from Eqs27), (28), but without the Jaco-  inforces the conclusion from Sect. 6.3.1 that non-traditional
bians, for the second harmonic. Only part of the streamfunceffects are favourable to generation of higher harmonics at
tion is to be used: at lowest orddf(&) (the incident wave), the tidal frequency.
and at second orde€2(i2) (the freely propagating part of For comparison, we show two plots for the same param-
the second harmonic). eters as in Fig4, except that stratification is taken stronger.

First we consider the dependence on latitude (Ejgfor The traditional signal is nowot multiplied by an artificial
semidiurnal internal tides (M2 frequency). We choose a veryfactor. The curves are indeed closer, but still clearly differ-
mild near-zero slopey=0.001), but not exactly zero since ent in Fig.5, where N=2x10"3rad/s. It is only for high
otherwise no meaningful comparison would be possible bevalues ofN, such asvV=1x10"2rad/s in Fig.6 (a value rep-
tween the traditional and non-traditional cases (see Sect. 6.1)esentative of the seasonal thermocline), that the traditional
In Fig. 4, resonant forcing occurs at 58 (non-traditional)  and non-traditional curves become very similar. By com-
and at 78N (traditional). We note thatin the limjt—0, res-  paring Figs.4, 5 and®6, it is clear that the intensity of the
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Fig. 7. The ratio of energies of the second harmonic and the in-Fig. 8. As in Fig. 7, but now for near-inertial waves,

cident primary waves, as a function of slope Thin line: under a:l.OSf:1.083x1(T4 rad/s. Here the traditional result (thin line)

the Traditional Approximation; thick line: non-traditional. For bet- shows the proper outcome (i.e. no artificial multiplication factor is

ter visibility, the thin line show the ratio artificially multiplied by  used).

100. Parameter values are=1.4x10"*rad/s (semidiurnal tidal

frequency) N=5x10"*rad/s$p=45° N, v=r /2 (meridional prop-

agation). The solution for single plane waves from Sect. 5.4 is used, Note that there is now an asymmetryjoé>—y even un-

with ko=1m~* ande=10"°. der the Traditional Approximation, in contrast to the sym-
metry in the loci for resonant forcing in Fi@ (thin line).
This means that for a given incident wave and given slope

second harmonic decreases with increasin(note the dif-  steepness, the intensity of the second harmonic generally de-

ferent scalings used on the vertical axes). pends on the slope orientation, while the valugdfat which

In the traditional case (thin line) in Fi, there isonly a  resonance occurs does not. The origin lies in Bg):(un-
weak variation ofE,/E1 with latitude below mid-latitudes. der the Traditional Approximation one has =—u_=u by
This is in agreement with results from numerical experi- Eq. (13), and hencé=(y —u)/(y +u) by Eqg. 83), implying
ments on internal tidesGerkema et al.2006h, where the  A(—y)=1/A(y). The expression fof reduces to
same stratification was used, although there is some ambi-
guity in their interpretation, partly due the unresolved issueS o ko) — —k2(1 2 1-— 22
of whether the attainable horizontal resolution is sufficient (ko. ko) = —ko(1 + 1t )Amz(l — )2+ Co(1+ 2)2
(Gerkema et a]2006ab). Further ambiguities arise from the (Traditional Approximation)
fact that the generation of the internal tide is itself affected by
the Coriolis parameter: the intensity and width of the beamNow, if the denominator vanishes for a certaiaa,., it van-
change, not only its angle of propagation, so it is not obviousishes also foh=1/1. (as can be seen by multiplying the de-
how a “proper” evaluation of the Coriolis effect can be made. nominator byr2). This explains the symmetry with respect
Notice in particular that the ratifio/ E1 depends strongly on  to y <>—y in the thin resonance curve in Fig. However, the
wavenumbetkg because of the quadratic dependence,in  expression fol§ as a whole changes ifis replaced by 1x,
see Eqg.43). In any case, the results from Figsuggest that  which explains the asymmetry in the thin lines in Figss.

a much stronger dependence on latitude would be found if
non-traditional effects were included. (The terms witban

in fact be easily included in internal-tide generation studies,7 Discussion
as was noticed bBaines and Miles200Q)

Finally, we consider the dependence f/E; on slope  Inthe preceding sections we have generalized the theoretical
steepnesy, for semi-diurnal tides (Fig7), and for near-  work of Tabaei et al(2005 on internal-wave reflection and
inertial waves (Fig8). The range of prevailing (67%) val- the generation of higher harmonics; we included Coriolis ef-
ues ofy is shown. Parameters are identical in both figures,fects, and in particular also the non-traditional effects associ-
except for the wave-frequenay. The first thing to note ated with the horizontal component of the earth rotation vec-
is that the second harmonic is generally much stronger fotor. The derivation and resulting expressions show that the
tidal than for near-inertial frequencies, by about one ordertheory does not become fundamentally more complicated by
of magnitude. Moreover, the intensity is generally higher if this generalization; in other words, there is no practical need
non-traditional effects are included (thick lines), except in thehere to ignore Coriolis effects or make the Traditional Ap-
immediate vicinity of resonant peaks in the traditional case. proximation.
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