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Abstract. The flicker noise spectroscopy which is a new phe-
nomenological method for the retrieval of information con-
tained in chaotic time signals, is based on the analysis of rec-
ognizable irregularities (pulse, jumps, and discontinuities of
derivatives of various order). This method is applied to the
ULF (ultra-low-frequency) data observed at Guam in 1992–
1994, in order to study the temporal nonlinear behavior of the
lithospheric activity prior to the large 1993 Guam earthquake
(8 August 1993). We have found that the lithosphere must
have exhibited the step-like discontinuous behaviors in the
lithosphere 101, 78, 54, 31 and 8 days before the main shock.
This kind of nonlinear temporal behavior can be tracked by
means of our flicker noise spectroscopy.

1 Introduction

We understand that when a heterogeneous material is
strained, its evolution toward the final rupture is character-
ized by the nucleation and coalescence of microcracks be-
fore the final rupture. The two physical quantities are rec-
ognized as being most indicative of microfracturing process
in the focal zone; (1) ULF electromagnetic emissions and
(2) acoustic emissions (Hayakawa, 2001, 2004; Hayakawa et
al., 2004). Though there have recently been found a lot of
convincing evidence on the electromagnetic emissions in a
wide frequency range from DC, ULF to VHF associated with
earthquakes (e.g. Hayakawa and Fujinawa, 1994; Hayakawa,
1999; Hayakawa and Molchanov, 2002), but our main tool in
this paper is to monitor such microfractures which are known
to occur before the final breakup in the focal zone of an earth-
quake, by recording the ULF emissions. The presence of pre-
cursory signature of earthquakes is clearly identified in the
ULF range for large (magnitude greater than 7) earthquakes

Correspondence to:M. Hayakawa
(hayakawa@whistler.ee.uec.ac.jp)

such as Spitak, Loma Prieta, Guam, Biak etc. (Fraser-Smith
et al., 1990; Molchanov et al., 1992; Kopytenko et al., 1993;
Hayakawa et al., 1996, 1999, 2000).

The ULF emissions are found to take place from a few
weeks to a few days prior to large destructive earthquakes
(including Spitak, Loma Prieta, Guam etc.), which are con-
sidered as the so-called precursors of the general fracture.
The emissions in higher frequency range (like VLF and
HF/VHF) (Kapiris et al., 2004) are likely to be occurring in
the focal zone of an earthquake, but they cannot be detected
on the Earth’s surface because of their extremely severe at-
tenuation in the crust. So, those higher frequency emissions
might be generated as secondary effect near the Earth’s sur-
face, and their generation mechanism is poorly understood
at the moment. In comparision with this, the ULF emissions
are believed to be definitely generated in the focal zone and to
have propagated up to the subsurface ULF sensors. Dynamic
process in seismo-active areas can produce current systems
of different kind (see e.g. Molchanov and Hayakawa, 1995;
Vallianatos and Tzanis, 1999, and references therein), which
can be local source for electromagnetic waves at different
frequencies. The ULF range is the most possible to come
from the source region with the least attenuation. Based
on these arguments, we can consider that those ULF emis-
sions would carry the information on the microfracturing tak-
ing place near the focal zone. Molchanov and Hayakawa
(1995) proposed the generation mechanism of seismogenic
ULF emissions on the basis of microfracturing.

Because the dynamics of earthquakes is well known to
exhibit properties which are characteristics for the self-
organized criticality (SOC) state (e.g. Bak et al., 1987; Bak,
1997), we have made the first attempt to use the fractal analy-
sis to the seismogenic ULF emissions as a nonlinear process
for the Guam earthquake (Hayakawa et al., 1999). Because
the principal feature of the SOC state is a fractal organization
of the output parameters both in space (scale-invariant struc-
ture) and in time (flicker noise or 1/f noise). If the time series

Published by Copernicus GmbH on behalf of the European Geosciences Union and the American Geophysical Union.



256 M. Hayakawa and S. F. Timashev: Flicker noise spectroscopy for ULF geomagnetic data

 

 

 

 

Fig.1 

 

 

 

 

 

 

 

Fig. 1. Location of epicenters of earthquakes taken place close to
the ULF observing station. No. 10 earthquake is the one we pay
particular attention in this paper, and others (Nos. 11–19) are its
aftershocks. The number in this figure is corresponding to that in
Table 1.

of ULF data is a temporal fractal, we expect a power-law
spectral density of the recorded time series:S(f )∝f −β(β:
spectral exponent). Hayakawa et al. (1999) have found a sig-
nificant change in this spectral exponent (β) just before the
Guam earthquake in such a way that the value ofβ is ap-
proaching unity (becoming flicker noise) before the rupture,
and later the similar behavior has also been confirmed for
another large earthquake at Biak (Hayakawa et al., 2000).
This estimation of fractal dimension was based on the spec-
tral slope,β in the spectral analysis, but later Smirnova et
al. (2001) and Gotoh et al. (2003, 2004) have compared dif-
ferent analysis methods in estimating the fractal dimension
(spectral slope, Burlaga and Klein (1986) and Higuchi (1988)
methods). The seismicity spatial and temporal distribution is
known to reveal statistically self-similar properties in a wide
range of scales and can be treated as multifractal (e.g. Tur-
cotte, 1997). Our previous studies are just based on mono-
fractal analysis, and the multi-fractal analysis for the same
Guam earthquake has yielded that multi-fractal parameters
would bring us a lot of precursory signatures of an earth-
quake (Ida et al., 2005).

In this paper we propose a new method of flicker noise
spectroscopy (FNS) (Timashev, 2001; Timashev and Vs-
tovsky, 2003) to be used for the detection of possible precur-
sors of catastrophic events on the basis of analysis of experi-
mentally measured time series of dynamic variables charac-
terizing the crustal activity of the geological medium. The

capabilities of this method make it possible to transfer the
general ideas formulated by Erokhin and Moiseev (2003) to
the level of general phenomenology. As distinct from all
available methods of time series analysis, new understanding
of the information carried by chaotic signals is introduced
in the FNS approach. Irregularities of measured signals at
all levels of the space-time hierarchy of the system are car-
riers of such information. Among the arguments favoring
such a representation of the information carrier, we can men-
tion the success of numerous computer model calculations
implemented within the framework of the SOC paradigm
(Bak, 1997). This method is applied to the ULF data dur-
ing the 1993 Guam earthquake for which the previous stud-
ies have already confirmed the precursory signatures of the
earthquake (Hayakawa, et al., 1996, 1999; Smirnova et al.,
2001; Gotoh et al., 2003, 2004; Ida et al., 2005).

2 Experimental ULF data and Guam earthquake

The details of the ULF data for the Guam earthquake have
already been given in Hayakawa et al. (1999), but we have
to repeat only the important points as follows. The period of
data analysis is from January 1992 to the end of 1994 (to-
tal three years). During this 3-years period, we could iden-
tify many earthquakes in the latitude range from 10◦ to 16◦

and in the longitude range from 140◦ to 147◦ just around
the Guam ULF observatory (which is indicated as a star in
Fig. 1). The total number of earthquakes with magnitude
greater than 5.5 is found to be 21. Table 1 is the list of all of
those earthquakes. The numbering of earthquake is given ac-
cording to the time of occurrence. Figure 1 illustrates the epi-
centers of ten earthquakes among 21, which took place very
close to the ULF station (with distance less than 100 km).
As seen from the table, No. 10 is our target earthquake, and
this Guam earthquake with magnitude Ms=8.2, occurred on
8 August 1993 at 08:34 UT suddenly and without any fore
shocks. Its epicenter was located in the sea near the Guam
island (geographic coordinates: 12.89 N, 1444.80 E), and its
depth was 60 km. The Guam observatory where the ULF
data were recorded, is located at∼65 km from the epicen-
ter. As seen from the table, the earthquakes with Nos. 2∼9
did not take place within the distance of 100 km from the
ULF observatory. This is the reason why we can say that this
earthquake appeared as an extremely isolated event. We here
comment on the sensitivity distance of seismogenic ULF
emissions. Hayakawa and Hattori (2000) have summarized
all of the previous ULF emissions, who have concluded that
the distance of sensitivity of VLF emissions is approximately
100 km even for an earthquake with magnitude 7.0.

Figure 1 illustrates the relative location of our ULF ob-
servatory with respect to the epicenter. A regular magnetic
observation is maintained there using a three-axis ring-core-
type fluxgate magnetometer (Hayakawa et al., 1996). Three
components of magnetic variations are usually recorded on
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a digital cassette tape with a sampling rate of 1 s. We ana-
lyze the data during the whole period, and we analyze the
data during daytime (LT=14:00–15:00), because Gotoh et
al. (2004) have found that the most significant change in the
mono-fractal dimension was observed for the Guam earth-
quake during daytime. One hour data are treated, so that the
number of data is 3600 point per day.

3 Basic FNS relations for stationary processes

A new type of information contained in chaotic time series
V (t) (t is time), is introduced in the frame of FNS (Tima-
shev, 2001). According to this phenomenological approach,
the main information hidden in a chaotic signal at an interval
T is provided by sequences of distinguishing types of irregu-
larities – spikes, jumps, and discontinuities of derivatives of
different orders at all space-time hierarchical levels of sys-
tems. In this case it is possible to introduce different types
of information. The ability to distinguish the irregularities
means that the parameters or patterns characterizing the to-
tality of properties of the irregularity sequences, are extracted
from the following power spectraS(f ) (f , frequency).

S(f ) =

∣∣∣∣∣∣∣
T /2∫

−T /2

〈V (t)V (t + t1)〉 · exp(2πif t1)dt1

∣∣∣∣∣∣∣ ,
〈(...)〉 =

1

T

T /2∫
−T /2

(...)dt, (1)

and the difference moments8(2)(τ ) of the 2nd order,

8(2)(τ )=
〈
[V (t)−V (t+τ)]2

〉
=

〈 t+τ∫
t

dV (x)

dx
dx

2〉
, (2)

whereτ is time delay.
In this case,8(2)(τ ) is formed exclusively by jumps of

the dynamic variable at different space-time hierarchical lev-
els of the system under consideration, andS(f ) is formed
by spikes and jumps. In other words, the power spectra
and difference moments of the 2nd order carry different in-
formation, which complement each other. The characteris-
tic information extracted from theS(f ) and8(2)(τ ) depen-
dencies are the “passport parameters”, which are the cor-
relation times, parameters characterizing the loss of “mem-
ory” for these correlation times, characterizing the sequences
of “spikes”, “jumps” and discontinuities of derivatives of
different orders (in the latter case, time series for “quasi-
derivatives” are formed).

In the case of “stationary” processes the “passport param-
eters” do not depend on the position of theT interval at the
time axis as well as on the frequency. The contributions
SS(f ) andSR (f ) due only to the spike-type and jump-type

irregularities corresponding to the power spectrumS(f ), are
presented as:

SS(f ) ≈
SS(0)

1 + (2πf T0)n0

,

SR(f ) =

∞∫
0

cos(2πf τ)
[
8(2)(∞) − 8(2)(τ )

]
dτ. (3)

HereSS(0) is an effective phenomenological parameter;n0
is the rate of “memory (correlation) loss” in a sequence of
spikes within time intervals shorter than the correlation time
T0, T −1

0 ≡K0. The contributionSR (f ) can be found using
the expression for8(2)(τ ).

8(2)(τ ) = 2σ p
·

[
1 − 0 −1(H) · 0 (H, τ/T1)

]2
,

0(s, x) =

∞∫
x

exp(−t) · t s−1dt,0 (s) = 0(s, 0). (4)

Here σ is the variance of the measured dynamic variable;
the parameterH has the sense of the Hurst constant which
characterizes the rate at which the dynamic variable “forgets”
its value within time intervals shorter thanT1; 0(s) and0(s,
x) are the gamma and incomplete gamma functions (x≥0 and
s>0), respectively. The introduced parameterSS(0), n0, T0,
H , T1 andσ can be considered as “passport” parameters of
the stationary process under consideration.

The termSR(f ) can be expressed by the interpolation
equation:

SR(f ) ≈ SR(0)
1

1 + (2πf T1)2H+1
,

SR(0) = 4σ 2T01H ·

1 −
1

2H 2
0(H)

∞∫
0

02(H, ξ)dξ

 . (5)

It is important to note that both the contributionsSS(f ) and
SR (f ) to the power spectrumS(f ) are similar, although the
corresponding parameters in Eqs. (3) and (5) generally differ
from each other:SR(0)6=SS(0), T1 6=T0 and 2H 6=n0−1. It
is possible to separate both contributions (3) and (5) in the
“experimental” power spectra using the known parameters
H andT1.

However, in the most real cases,S(f ) and8(2)(τ ) depen-
dences manifest their complexity and non-stationary behav-
ior. Then, the introduction of “passport parameters” to de-
scribe the temporal evolution is useless. At the same time,
the behavior of the realS(f ) and8(2)(τ ) is very specific and
individual to each study case. These dependences have a def-
inite physical sense and characterize the sequences of spikes,
jumps and discontinuities of derivatives of different orders
(in the latter case the time series for “quasi-derivatives” are
analyzed). That is why these dependences can be consid-
ered as “characteristic passport patterns” of the evolution
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Table 1. List of earthquakes in the vicinity of the Guam observatory.

Number Date (1992–1994) Time (UT)
Epicenter Geomagnetic

Magnitude (M>5.5) Depth (km)Latitude (◦ N) Longitude (◦ E)

1 20 Feb 1992 17:47:20 12.91 145.24 5.6 44
2 29 Feb 1992 05:42:45 12.27 141.24 5.5 32
3 22 June 1992 15:17:43 16.87 147.01 5.7 65
4 24 Oct 1992 22:16:07 11.83 142.05 5.5 43
5 4 Feb 1993 16:28:32 12.49 141.92 5.7 27
6 5 Feb 1993 06:37:23 12.54 141.99 5.5 50
7 5 Feb 1993 07:15:21 12.57 141.88 5.9 27
8 4 June 1993 03:06:35 11.8 142.49 5.6 24
9 6 June 1993 13:23:20 15.82 146.6 6.6 13
10 8 Aug 1993 08:34:24 12.98 144.8 8.2 59
11 8 Aug 1993 20:03:14 13.48 145.66 5.7 56
12 9 Aug 1993 09:15:16 13.38 145.66 5.7 61
13 11 Aug 1993 14:17:37 13.18 145.65 6.2 21
14 16 Aug 1993 04:33:48 12.97 144.97 6 18
15 19 Aug 1993 08:03:22 13.17 145.53 5.5 60
16 4 Sep 1993 06:11:37 13.86 145 5.5 25
17 26 Sep 1993 11:55:52 13.01 145.02 5.8 63
18 7 March 1994 04:44:57 11.74 140.1 5.6 25
19 15 April 1994 19:41:07 12.99 144.56 5.5 33
20 13 Aug 1994 22:07:09 15.17 145.84 5.5 87
21 5 Nov 1994 10:52:15 10.72 141.31 5.6 31

under study. For raising the pattern specificity we split the
considered signal into “low frequency”VR(t) and “high fre-
quency”VF (t) components. The introduced decomposition
VG(t)=VR(t)+VF (t) gives a possibility to find new charac-
teristic features of the signals studied. TheVR(t) term is
obtained by using a relaxation (“diffusive” or “heat conduc-
tivity”) procedure for the total set of the initial time series
readings:

∂V

∂τ
= χ

∂2V

∂t2
, (6)

is given by that in the form of a finite difference equation

V
j+1
k − V

j
k

1τ
= χ

V
j

k+1 + V
j

k−1 − 2V
j
k

(1t)2
. (7)

or

V
j+1
k = V

j
k +

χ1τ

(1t)2

(
V

j

k+1 + V
j

k−1 − 2V
j
k

)
. (8)

Assumingω=
χ1τ

(1t)2 , the latter equation can be rewritten as

V
j+1
k = ωV

j

k+1 + ωV
j

k−1 + (1 − 2ω)V
j
k , (9)

which is absolutely stable forω<1/2. The boundary condi-
tions of Eq. (7) (k=1 andk=N, whereN is the length of the
time series) are calculated by

V
j+1
1 = (1 − 2ω) V

j

1 + 2ωV
j

2 ,

V
j+1
M = (1 − 2ω) V

j
M + 2ωV

j

M−1. (10)

Therefore, by calculating iterativelyV j+1
k from V

j
k , we ob-

tain the low frequency componentVR. The high frequency
componentVF is simply obtained by subtractingVR from
the original signal. We can calculateS(f ) and8(2)(τ ) for
each of the functionsVJ (t) (J=R, F or G), where the sub-
scriptsR,F andG refer toVR(t), VF (t) andV (t), respec-
tively. In these cases the corresponding subscripts forS(f )

and8(2)(τ ) will be used.

4 Analysis of non-stationary processes

While studying non-stationary processes, dynamics of the
S(f ) and8(2)(τ ) variations is being analyzed at sequential
shift of the averaging interval [k1T , tk] with the extension
T , wherek=0,1,2,3,... andtk=T +k1T , for the value1T

along the whole time intervalTtot (T +1T <Ttot) of the avail-
able experimental data. The time intervalsT and1T should
be selected as based on the physical sense of the considered
problem – revealing the typical time of a process which de-
termines the most important internal structural reconstruc-
tion of the studied evolution. So, if some “secondary” pro-
cesses with typical timesτ i slightly affecting the main non-
stationary process of the structure reconstruction occur, the
conditionτ i�T should be observed when selecting an in-
terval T . It is obvious that a problem of identification of
typical time of the “main” process is oriented at a solution
of a problem of prediction of the complex system evolution
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and first and foremost – at determination of “precursors”
of catastrophic changes in the system. In the conditions of
“non-stationary” evolution, a system is characterized by a set
of typical timesTsr “structural reconstructions” for a corre-
sponding set of scales of the system’s spatial organization,
and a problem of prognosis in a general case becomes multi-
parametrical being oriented at a search, at least, for several
time “precursors” of a catastrophic event scattered by the
time scale. Each of these “precursors” can be revealed by
the analysis of the dynamic variables’ time series with a se-
lection of a certain interval of averagingT , which does not
exceed the valueTsr being identified.

It is obviously natural to associate a phenomenon of “pre-
cursor” occurrence with the sharper variations of the rela-
tionsS(f ) and8(2)(τ ) at the approach of the upper bound-
ary of the time interval of averagingtk to a momenttc of a
catastrophic event when reconstruction takes place at all the
possible spatial scales in the system. It is also natural to ex-
pect (in this case we may speak about a “precursor”) that the
time of the “precursor’s” manifestationtk should stand from
the momenttc not less than at an interval1T , i.e.1Tcn=tc
– tK≥1T , at realization of the inequality1Tcn�Ttot. When
revealing a ”precursor”, it is important to distinguish cases
when sharp variations inS(f ) and8(2)(τ ) at averaging inter-
val T shift are caused by significant signal variations on the
“front” or “back” boundary of the intervalT by approach-
ing the “front” boundarytk to a momenttc of the expected
event. A given problem is being solved by the analysis of
the time behavior of the corresponding criteria at theT vari-
ations: it is obvious that whenT increases in a value1T1 the
non-stationary effects associated with the signal behavior at
the “back” boundary should be displayed with the same time
delay1T1, when the factor display caused by sharp signal
variations in the area of the front boundary does not depend
so strong on the averaged interval value. Next we consider
the “precursors” that are defined by the difference moments
8(2)(τ ). These functions can be reliably calculated only for
a delayτ in the range [0,αT] with α≤0.5. Let us introduce
the dimensionless quantities:

C(tk+1) = 2 ·
Qk+1 − Qk

Qk+1 + Qk

/
1T

T
;

Qk =

αT∫
0

[
8(2)(τ )

]
k
dτ. (11)

Here tk+1=k1T (k=0, 1, 2, . . . ) and subscripts of square
brackets show that8(2)(τ ) dependence was calculated for
time interval [k1T , k1T +T ]. The introduced quantities
characterize a measure or factor of non-stationarity of the
signals, as the averaging intervalT moves along time axis
by a step1T , in particular, when the “forward” boundary of
the averaging intervaltk approaches the catastrophic event at
time tc. EvidentlyC(tk+1) = 0 for the stationary processes

at T →∞. Note the8(2)(τ ) dependence may be calculated
with using the functionsVJ (t) (J=R, F).

5 Analysis results for the guam data by using FNS (z-
component)

We have used the ULF data during three years from 1 January
1992 to the end of 1994.

The results of calculation of the non-stationary factor
CF (tk) with using different values ofT (value of the averag-
ing window interval) and1T (value of the window shifts) for
the Z component of ULF time series are presented. We know
that Z components is much more sensitive to the crustal activ-
ity than the horizontal ones (Hayakawa et al., 1996), so that
we have paid particular attention to this Z component. Note
that Eq. (1) can be used to find a factor of non-stationarity in
the cases when there are gaps in the set of analyzing data. In
these cases, the sets of time intervals under calculation of the
8(2)(τ ) function for every delay parameterτ can be differ-
ent. If one or both ends of the intervals fall within the gap, the
contribution of the interval under the calculation of8(2)(τ ) is
equal zero, and we call such intervals the “empty intervals”.
It means that the statistics could be different for calculation
of the mean values, which are the8(2)(τ ) functions for dif-
ferentτ . To be specific, we will choose a maximal partb(%)
of the empty intervals as a parameter. If the percentage of the
empty intervals exceedsb, we will omit calculating the factor
of non-stationarity, and substituteC(tk+1)=0. In other words,
we have “empty intervals” for theC(tk+1) dependence. We
will choose belowb=20%.

We use the “high-frequency” components of the signals,
because the criterion factorsCF (tk) demonstrated clearer re-
sults as compared toCG(tk). The problem is to reveal the
FNS non-stationary factors and to understand whether these
factors could be considered as precursors of the earthquake,
which appeared in this region during the observed time.
There was the largest event during the 1992–1994 years at the
Guam region att* c=585d, which corresponded to the event
on 8 August 1993 (M=8.2) as indicated by No. 10 earth-
quake in Table 1. As already shown in Table 1, there have
been no earthquake before this extremely large earthquake,
though there have been taking place some earthquakes in the
area away from the ULF observatory as seen in Table 1. The
main idea here is to understand whether theT -value varia-
tions can help in distinguishing significant precursors to the
earthquake.

The initial second data were ued to get the initial minute
data; every 60th second data were taken. Then we formed the
hourly data (every 60th reading of the minute time series) as
well as the daily time series (formed by every 24th reading of
the hour time series). At first, we began to analyze the daily
data. It is well known that large earthquakes are prepared
during several years. That is why we began our analysis by
considering large T-intervals for finding a precursor for the

www.nonlin-processes-geophys.net/13/255/2006/ Nonlin. Processes Geophys., 13, 255–263, 2006
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Table 2. Peak values for several peaks before the Guam earthquake.

ti*, days T=100 days T=200 days T=300 days T=400 days T=500 days T=550 days

484 28.9 24.4 23.7 22.6
508 24.9 29.5 29.5 29.6 31.3
531 21.9 33.1 34.6 35.5 37.9
554 22.0 37.1 43.1 47.4 51.1 53.0
577 8.5 15.1 19.1 21.6 23.0 24.3

Fig. 2. The temporal evolution of CF factor during the whole period
(3 years) of observation.
The vertical dotted line indicates the Guam earthquake occurred at
the date of 585d with magnitude of 8.2.T =300 days and1T =1
day.

case of M=8.2. In this case we processed the daily time se-
ries and calculated theCF (tk) factors by choosing T=550,
500, 400, 300, 200 and 100 days as well as1T =1 day for all
cases. The results are calculated for T=550 (500,400, 300,
200, and 100) days, and1T =1 day, but we present only one
example among them in Fig. 1 with T=300 days and1T=1
day. Many large peaks are found to be present in the cal-
culated dependences as in Fig. 2. The appearance of every
peak at different meanings of the current time means that the
state of the geophysical medium is changed at these times. If
anyone considers an ordinary time series (for the Z or other
components) the appearance of any peak means that the mea-
sured value drops after rising. That is all. But in the case
of the FNS non-stationary criteria the appearance of every
peak means that the state of the medium is different before
and after the peak. It means that the seismo-active medium
could be reconstructed (changes its state) several times be-
fore the earthquake. It is interesting to study the dynamics

of the realized peaks during the whole time (3 years in our
case). At first, several large peaks which appear after the
main events,t>t* c, are not connected with large events (see
the earthquake catalog in Table 1). At the same time the rel-
ative large non-stationarity factors before relative small (M
∼5.5–5.8) earthquakes may indicate that the medium was re-
constructed (rearrangements happened) strongly. It means
the medium has become more volatile after the very large
earthquake M=8.2. We can notice five significant peaks in
CF in Fig. 2 before the large earthquake at 585 day (Guam
earthquake), which will be our greatest concern below.

We consider the averaging intervalT as an “active” pa-
rameter, which helps us to extract some additional informa-
tion. Let us consider the dynamics (the value changes) of
the 5 peaks atti* before the largest eventt<t* c by monitor-
ing the value in CF with changing the value ofT . A seen
from Fig. 2, we understand that 4 peaks occurred on 484,
508, 531 and 554 d are more enhanced than the 5th one on
the day of 577th. TheT interval was changed from 550, 500,
400, 300, 200 and 100 days, and the corresponding values
of peaks in CF are summarized in Table 2. It is seen from
the table that these peaks become increased in their values
when theT value is increased. Their values are found to
become more enhanced in values, as compared with those
at t>t* c for large T (thought the figures are not shown).
This fact gives a strong ground to suppose that these peaks
could be regarded as precursors to the large event (M=8.2) at
t* c=585d. Indeed, when the earthquake magnitude is larger,
we expect more time interval for the event to be prepared
and correspondingly for the seismo-active medium to rear-
range its structure. It is possible to think that the 5 peaks
many reflect the 5 stages of the complex processes of the
medium rearrangement before the coming catastrophic earth-
quake. These precursors appeared at 101, 78, 54, 31 and 8
days before the event. It means that an appearance of a large
value of the non-stationarity factor as a result of the FNS pro-
cessing of observed data does not mean that the earthquake
will come soon.

It follows from the previous figures (Fig. 2 as an exam-
ple) that the CF dependences for the averaging interval T
more than 100 days cannot be used for looking for precur-
sors for smaller events. Such precursors could be found if
we use T<100 days. Then we analyzed the hourly time
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Fig. 3. The temporal evolution of CF factor with T=21 600 m (=3600 h=150 days) and1T=60 m (=1 h) for three different time intervals.(a)
11 June 1992 to 26 June 1992,(b) 24 January 1993 to 8 February 1993 and(c) 27 July 1993 to 11 August 1993.

series. At first, we compared the CF criterion for T=100 and
200 days, which were obtained by using the daily and corre-
sponding hour time series: 100 days = 2400 h, and 200 days
= 4800 h. We chose1T=24 h=1 day and 6 h=0.25 day. Then
some other cases with T=50 days,1T=6 h and T=25 days,
1T=6 h were considered. However, this analysis (though not
shown) gave the similar results (as for daily analysis) for the
main event precursors. We could observe several new peaks,
which could be considered as precursors to smaller events.
At the same time it is necessary to fulfill a special analysis
for every event, including analysis of the minute data to say
about it. It is possible to do, but we would like to discuss
the problem in general sense at first. In these cases we must
choose smaller time series fragments in the interval around
the considered event.

We illustrate the corresponding results by considering 3
time intervals for T=21 600 min (=3600 h=150 days):a)

11 June 1992–26 June 1992 (Fig. 3a);b) 24 January 1993–
8 February 1993 (Fig. 3b);c) 27 July 1993–11 August 1993
(around M=8.2; Fig. 3c). There were relatively a large earth-
quake in Fig. 3a (M=5.7 on 22 June 1992 (No. 3 in Table 1))
and in Fig. 3b (M=5.9 on 5 February 1993 (No. 7 in Ta-
ble 1)). Unfortunately, there were many gaps in any case,
especially in Fig. 3c. Figures 3a–c demonstrate that the ULF
signals can be used effectively for finding short-term precur-
sors of earthquakes. Of course, these results must be tested
by analyzing some other data, which do not contain any gaps.
Furthermore, these two earthquakes (Nos. 3 and 7) are lo-
cated about 300 km away from the ULF observatory, so that
we wonder whether this FNS analysis would be able to de-
tect far-distance earthquakes because Hayakawa and Hattori
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(2004) have concluded that the sensitive area for seismogenic
emissions is about 100 km from the observatory.

Note that the obtained results are not changed drastically
if we chooseb=80%. The positions of the most parts of the
non-stationary peaks remain the same. However, we find that
a small part of the peaks disappear: the “empty intervals” for
the C(tk+1) dependence increase. In the case of the daily
data, the differences betweenb=50 and 80% are substantial
for theT =100 and 200d in the intervalstk+1∼600–800 days.
However, for theT ∼300 d and more, these differences are
small. If we chooseb = 95%, these “empty intervals” spread
significantly. It means there is some optimal meaning of the
b parameter for every set of experimental data with gaps. We
believe that the optimal valueb is between 50 and 80% in
our case.

6 Conclusion

We have presented a new method of FNS for the analysis
of nonlinear process in any field. This method has been ap-
plied to the ULF data during the Guam earthquake on 8 Au-
gust 1993, and we have been successful in finding out the
detailed temporal evolution of the nonlinear process taking
place in the lithosphere before the earthquake. That is, there
must have taken place significant changes in the Earth’s curst
101, 78, 54, 31 and 8 days before the Guam earthquake. The
lithosphere must have exhibited the step-like discontinuous
changes in the focal zone. We do hope that this new method
would be of great help in studying nonlinear process includ-
ing the seismogenic ULF emissions.
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