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Abstract. The objective of the present paper is to develop
a theoretical model describing the evolution of a turbulent
wake behind a towed sphere in a stably stratified fluid at large
Froude and Reynolds numbers. The wake flow is considered
as a quasi two-dimensional (2-D) turbulent jet flow whose
dynamics is governed by the momentum transfer from the
mean flow to a quasi-2-D sinuous mode growing due to hy-
drodynamic instability. The model employs a quasi-linear
approximation to describe this momentum transfer. The
model scaling coefficients are defined with the use of avail-
able experimental data, and the performance of the model is
verified by comparison with the results of a direct numerical
simulation of a 2-D turbulent jet flow. The model prediction
for the temporal development of the wake axis mean velocity
is found to be in good agreement with the experimental data
obtained by Spedding (1997).

1 Introduction

Laboratory studies of turbulent stratified wakes have been
carried out since late 1960s (Lin and Pao, 1979; Boyer
and Srdic-Mitrovic, 2001; Sysoeva and Chashechkin, 1991;
Chomaz et al., 1993; Lin et al., 1992; Bonneton et al., 1993;
Lin et al., 19993; Hopfinger et al., 1991; Robey, 1997; Sped-
ding et al., 1996; Spedding, 1997; Bonnier and Eiff, 2002;
Riley and Lelong, 2000; Lilly , 1983; Embid and Majda,
1998; Fincham and Spedding, 1997; Spedding, 2001, 2002;
Gourlay et al., 2001). The results of these studies show that
there are three distinct regimes of the wake evolution which
are defined with respect to the productNt, whereN is the
characteristic value of the buoyancy frequency at the level
of towing andt is the time elapsed from the moment of the
body pass at a given point. In the near wake, at timesNt ∼1,
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the fluid motion is three dimensional and there occurs a col-
lapse of the vertical velocity pulsations due to the action of
the buoyancy forces. The regime of the far wake takes place
at large enough times (forNt>>1), when the fluid motion
becomes quasi two-dimensional. In the latter regime, the
fluid motion occurs mostly in the horizontal layers so that
the horizontal velocity component is larger then the vertical
component. In this case, the viscous dissipation due to the
large vertical velocity gradients becomes considerable. At
intermediate times, there occurs also an intermediate stage
of the wake evolution, where the wake flow is qualitatively
changed due to transition from 3-D to the quasi-2-D motion.

Experimental results (Spedding et al., 1996; Sped-
ding, 1997; Bonnier and Eiff, 2002) show that at large
enough Froude and Reynolds numbers of the towed sphere,
Fr=2Ut

/
ND andRe=UtD

/
ν (whereD is the sphere diame-

ter,Ut the towing speed, andν the fluid molecular viscosity)
the temporal development of the mean velocity maximum at
the wake axisU0(t) depends on time as:U0(t)∼t

−2/3 in the
three-dimensional near wake region; asU0(t)∼t

−0.25 (Sped-
ding, 1997) or U0(t)∼t

−0.38 (Bonnier and Eiff, 2002) in the
transitional region; and asU0(t)∼t

−0.76 (Spedding, 1997) or
U0(t)∼t

−0.9 (Bonnier and Eiff, 2002) in the far wake region.
The experimental results also show that the fluid flow in the
far wake is confined to a horizontal plane and consists of flat
vortices of different polarity arranged in a “chess” order in
the vicinity of the wake axis.

Although there has been a considerable progress in exper-
imental and numerical studies of the far stratified wakes, a
theoretical model is still needed to explain the properties of
the wake evolution. An important role of the hydrodynamic
instability in the wake dynamics was pointed out bySped-
ding(2002) who studied the streamlines patterns of the wake
flow. His experimental results show that the wake evolution
is accompanied by the growth of a quasi-2-D instability mode
of the flow. This growth leads to the development of a sinous
2-D structure of flow streamlines in the plane of towing at
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sufficiently large times. The objective of the present paper is
to employ these experimental observation by Spedding and
develop a theoretical model, describing the the wake evolu-
tion at the intermediate stage, i.e. forNt<50. We assume
that at this stage the wake dynamics is governed by the de-
velopment of a quasi-2-D hydrodynamic instability mode.
We neglect the effect of internal waves on the wake evolu-
tion (which is known to be insignificant at timesNt�1) and
consider the wake as a jet-like flow subject to quasi-2-D dis-
turbances. Thus the reduction of the wake mean axis velocity
is caused by the momentum transfer from the mean flow to
the disturbances. The model also neglects the viscous dissi-
pation associated with the vertical shear. Thus, the model is
not applicable in the far wake region [forNt=O(100)], where
this dissipation is known to be significant (Riley and Lelong,
2000).

The paper is organized as follows. In Sect. 2 the model
equations are presented. In Sect. 3 we verify the performance
of the model by comparison of the model predictions with
results of a direct numerical simulation of a 2-D turbulent
jet flow. Finally, we compare the model predictions with the
available experimental results in Sect. 4.

2 A theoretical model of the evolution of a quasi-two di-
mensional wake in a stratified fluid

Let us consider the far wake evolution taking into account
only quasi two-dimensional (2-D) vorticity mode and ne-
glecting its interaction with the internal-waves mode. As
it was shown inLilly (1983); Embid and Majda(1998), at
large Richardson numbers the horizontal velocity field in the
vortex mode is governed by a set of quasi-2-D hydrodynam-
ics equations. When averaged over an ensemble of turbu-
lent wake flow realizations, these equations can be written
in terms of the mean stream functionψ and vorticity� as
follows:

∂�

∂ t
+
∂ψ

∂y

∂�

∂x
−
∂ψ

∂ x

∂�

∂y
=

(
∂2

∂ x2
+
∂2

∂y2

)
KT�+

+ 2

(
2
∂ 2KT

∂ x ∂ y

∂ 2ψ

∂ x ∂ y
−
∂ 2KT

∂ x2

∂ 2ψ

∂ y2
−
∂ 2KT

∂ y2

∂ 2ψ

∂ x2

)
,(1a)

∂2ψ

∂ x2
+
∂2ψ

∂ y2
= −�, (1b)

whereKT is the eddy viscosity coefficient. Note that in
Eq. (1a) we neglect the vertical turbulent momentum transfer
since the vertical velocity fluctuation component is known to
be negligible compared to the horizontal component (Sped-
ding, 2001, 2002).

Since the velocity of the sphere is typically much larger
then the defect velocity in the wake, the statistical properties
of the wake flow can be considered as homogeneous with
respect to the longitudinal (x) coordinate. Thus we consider

the wake mean flow velocity to be a function ofy, z and t .
The eddy viscosity coefficient also can be supposed to be
independent ofx.

We consider the wake flow as a quasi-2-D turbulent jet
flow which is subject to a quasi-2-D disturbance. The growth
of the disturbance occurs via hydrodynamic instability and
is accompanied by a momentum exchange with the mean
flow. We employ a quasi-linear approximation (Galeev and
Sagdeev, 1973) and seek the solution to the set of Eqs. (1a,
b) as a sum of a mean flow which does not depend onx co-
ordinate, and the disturbance which is presented as a sum of
harmonics in the form:

ψ(x, y, t) = ψ0(y, t)

+ Re
∑
k

a(k, t)ψ1(y, t, k) exp(ik x+iϕk), (2a)

� (x, y, t) = � 0(y, t)

+ Re
∑
k

a(k, t)�1(y, t, k) exp(ik x+iϕk),(2b)

wherek is the wave number of thek-th harmonics, and the
harmonics phasesϕk are random numbers.

The system of equations derived within the framework of
the quasi-linear approximation includes firstly the equation
for the mean flow velocityU(y, t)= ∂ψ0

∂y
. This equation is

obtained by averaging Eq. (1a) overx in the form:

∂U

∂t
−

∂

∂y

1

2

∑
k

k |a(k, t)|2 Im

(
ψ1(y, t, k)

∂ψ1

∂y

)
=

∂

∂y

(
KT

∂U

∂y

)
. (3)

We assume further that the characteristic time scale of the
disturbance is much less than the characteristic time scale
of the mean flow, so that the dependence of the com-
plex amplitudesψ1(y, t, k) on time can be described in the
WKB-approximation (Galeev and Sagdeev, 1973). Then

ψ1 (y, t, k)=80 (y, t, k) e
−i

t∫
0
ω(t,k)dt

and in the zero-th or-
der of the WKB-approximation we obtain an eigenvalue
boundary problem for amplitude80 and frequencyω in the
form:

80|y→±∞ = 0. (4)

The 1-st order of the WKB-approximation yields also the fol-
lowing equation for the amplitudea:

∞∫
−∞

ψ
∂

∂t

(
a

(
∂280

∂y2
− k280

))
dy = 0, (5)

where functionψ (k, y) is the solution to the equation conju-
gated to Eq. (4). A more detailed derivation of the Eqs. (3–6)
is provided inBalandina et al.(2004).
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The model Eqs. (3–6) are solved numerically. Equation (3)
for the mean velocity is solved by the Gauss method. The
boundary problem Eqs. (4) and (5) is also solved at each time
step for each spectral harmonics, whereby the eigenvalues
c (k) and eigenfunctions80(k, y) are evaluated. Coeffcient
a (k, t) is obtained from Eq. (6) in the form:

a (k, t) = a0 (k) exp


t∫

0

∞∫
−∞

ψ
∂χ0
∂t
dy

∞∫
−∞

ψχ0dy

dt

 ,
whereχ0=

∂280
∂y2 −k280.

Thus functionsa (k, t),80 and eigenvalueω are computed
and the equation for the mean velocity is solved numerically
at each time step. At the initial time moment we prescribe a
Gaussian profile of the mean velocity in the form:

U(y, 0) = U00 exp
(
−y

2
/
δ2

0

)
(6)

and the disturbance spectrum in the form:

a0 (k) = ε00δ
2
0ke

−kδ0/K0 (7)

where U00 is the initial mean velocity,ε00 the spectral
amplitude,δ0 the initial wake width, and wave numberK0
defines the initial location of the spectrum maximum. Pa-
rametersε00 andK0 as well as the eddy viscosity coefficient
KT are defined further to match the numerical and experi-
mental data.

3 Numerical simulation of a temporally-developing 2-D
turbulent jet flow

In order to verify the theoretical model discussed above, we
perform direct numerical simulation (DNS) of a 2-D turbu-
lent jet flow. We consider a flow with reference profile of
the longitudinal (x) velocity component in the dimensionless
form:

Uref = − exp(−4y2), (8)

wherey is the lateral coordinate. The flow is assumed to
be periodic in the x-direction. The initial fluid velocity is
prescribed as a sum of the reference velocity (Eq. 9) and a
fluctuation velocity component. The latter is given by the
sum of independent Fourier harmonics with random phases
and a power spectrum [E(k)∼E0k

4 exp(−2k)] wherek is the
wave number modulus (k2

=k2
x+k

2
y). Thus, spectrumE(k)

has a maximum atk=2 which corresponds to the most un-
stable mode of the flow. The velocity fluctuation distribution
is made proportional to the reference profile (Eq. 9), and its
amplitude is prescribed to be of the order of 20% of the ref-
erence velocity maximum which is in accordance with the
experimentally observed value of the velocity fluctuation in
the wake flow.
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Fig.1 Profiles of the rms deviation of the stream function in DNS. 
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Fig.2 Temporal development of the mean velocity at the axis of the 2D turbulent jet. 

Symbols represent the DNS results averaged over 10 different runs. Solid curve 

corresponds to the model prediction. 

Fig. 1. Profiles of the rms deviation of the stream function in DNS.

The 2-D Navier-Stokes equations and the incompressibil-
ity condition for the fluid velocity are discretized and solved
in a rectangular domain with the use of a pseudo-spectral
method on a staggered grid consisting of 1200×320 nodes
in the x- and y-directions, respectively. The grid is uniform
in the x-direction and non-uniform in the y-direction, so that
the grid is isotropic in the vicinity of the jet axis and the grid
spacing increases towards the domain boundaries in the y-
direction. The integration is advanced in time with the use
of the Adams-Bashforth method with time step1t=0.0075,
and the grid spacing equals1x=0.075. The shear-free (Neu-
mann) boundary condition is prescribed over the lateral co-
ordinate. The flow Reynolds number Re is prescribed to
be equal to Re=400, so that the effects of fluid molecu-
lar viscosity remain sufficiently small during the simulation
time. More details of the numerical algorithm are provided
in Druzhinin(2003).

The DNS was performed for 10 different initial distribu-
tions of the fluid velocity fluctuation field. Figure 1 shows the
profiles of the rms deviation of the stream function from its
mean value evaluated at consequent time moments for each
y as:

ψ ′ (y, t) =

〈
(ψ (x, y, t)− 〈ψ (y, t)〉)2

〉1/2
. (9)

Here the averaging is first performed over 10 different real-
izations of the flow field and then thex-averaged value is
computed, so that:

〈· · ·〉 =
1

10Lx

10∑
i=1

∫
· · · dx. (10)
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Fig.2 Temporal development of the mean velocity at the axis of the 2D turbulent jet. 
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corresponds to the model prediction. 

Fig. 2. Temporal development of the mean velocity at the axis of the
2-D turbulent jet. Symbols represent the DNS results averaged over
10 different runs. Solid curve corresponds to the model prediction.

In the case of a sinuous mode, the stream function distur-
bance is an even function ofy whose maximum is aty=0,
and for the “varicose“ mode it is an odd function with zero
aty=0. Figure 1 shows that initially atT =0 functionψ ′ has
its maximum aty=0, and later (forT=18) a local minimum
of ψ ′ appears aty=0. Therefore, the figure shows that the
sinuous mode is mainly exited and prevails over the varicose
mode.

In order to compare the DNS results and the model predic-
tion we prescribed the initial spectraε(i)0 (K) in accordance
with the initial spectra of the flow disturbance in each DNS
run and evaluated the wake axis velocity and spectra of the
disturbance at different time moments. Figure 2 shows the
temporal development of the wake axis velocity averaged
over the solutions provided by the model for each initial spec-
trum ε

(i)
0 (K) and eddy viscosity coefficientKT =200. The

figure shows that the model prediction is in good agreement
with the DNS results.

Figure 3 shows the spectra of the stream function obtained
in DNS at different time moments and averaged over 10 runs
and the corresponding model solution. The figure shows that
there is a difference between the model prediction and the
DNS results in that the model spectra grow more rapidly in
the regions of small and large wave numbers. The latter dif-
ference can be explained by the nonlinear harmonics interac-
tion which is not taken into account by the model. However,
the figure shows that the model solution correctly describes
the main features of the temporal evolution of the energy
peak wave number and the amplitude of the peak.

We should point out that the good agreement of the quasi-
linear model and DNS results can be explained also by the

properties of the interaction of the harmonics with random
phases. Indeed, in this case, the harmonics interact on a
slower timescale, which results in a relatively small nonlinear
effects, even if the flow Reynolds number is comparatively
large.

4 Comparison of the model prediction for the wake axis
velocity with the experimental data

As follows from the discussion in Sect. 2, the theoretical
model provides a solution for the wake axis velocity in the

form U(t)=U00θ
(
U00t
δ0

)
. On the other hand, the results of

the laboratory studies of the wake of a sphere towed in a
stratified fluid at different Froude (Fr ) numbers (Spedding,
1997) show that the temporal development of the wake axis
velocity can be represented in the form:

U0(t) = γUtFr
−2/38(Nt) (11)

whereUt is the towing speed,N the buoyancy frequency,
andγ is a constant factor. Since dimensionless timeT≡

U00t
δ0

is proportional toNt , so thatT=αNt, whereα is a constant
factor, Eq. (11) can be rewritten in the following equivalent
form:

U0(t)

UtFr−2/3
= γ θ(αNt). (12)

Equation (12) shows that in order to compare the model pre-
diction for the wake axis velocity with the experimental re-
sults (Spedding, 1997) we need to define constant factorsα
and γ . Therefore, we performed a laboratory experiment
where we studied the flow field in the wake of a sphere
and ellipsoid towed in a salt-stratified fluid at large Froude
and Reynolds numbers which enabled us to determine fac-
torsα andγ (Balandina et al., 2004). In these experiments,
the body diameter was varied in the range from 0.8 cm to
1.3 cm, and towing speed was in the interval from 34 cm/s to
98 cm/s. Thus the Froude number varied from 17 to 88, and
the Reynolds number varied from 3760 to 8000, respectively.
The velocity field was measured in the horizontal plane at the
level of towing with the use of the PIV method. More details
of the description of the experimental setup are provided in
Balandina et al.(2004).

The mean velocity profile obtained in the experiment at
a given time momentt was evaluated by spatial averaging
over the longitudinal coordinatex and was approximated by
a Gaussian curve. Thus, the temporal development of the
wake axis velocityU0 was obtained both as a function ofNt
and a function ofT=t

U00
δ0

.
Figure 4a shows the temporal development of the wake

mean axis velocity obtained in the experiment for different
Froude numbers (in symbols) and the model solution for
U0(T ) (solid curve) normalized by the initial velocity. The
model parameterε00=0.106 in accordance with the veloc-
ity fluctuations spectra measured in the experiment. The
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Fig. 4. (a)experimental data (symbols) and model solution (soluid curve) for the wake axis velocity; the approximation of the velocity by
functionθ(T ) (Eq.13) is shown in dash-dotted curve;(b) temporal development of the productU0(T )δ(T ) in the experiment.

figure shows a good agreement between the model predic-
tion and our experimental results at timesT<20. However,
the model over predicts the mean velocity at later times.
This can be explained by the assumption of the model to

neglect vertical diffusion of the vorticity. In consequence,
the wake momentum integral is conserved and the prod-
uct U0(T )δ(T )=const. The temporal development of this
product is shown in Fig. 4b. The figure shows that for
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Fig. 5. Approximation of the experimental points by the function
θ(T ) (Eq.13).

T>20the productU0(t)δ(t) decreases substantially. There-
fore, at this stage the vertical diffusion effects become essen-
tial and needs to be taken into account.

For convenience we employ the following approximation
function for the normalized wake axis velocityU0(T )/U00:

θ(T ) =
1 + 0.018T

1 + 0.0989T
(13)

This function is shown in Fig. 4a in dashed-dotted curve.
This function is employed further to approximate the experi-
mental data and determine coefficientsγ, α.

In order to determine coefficientsγ, α in Eq. (12) we
represent the experimental data for the velocity obtained for
differentReandFr numbers as a function of dimensionless
time Nt in Fig. 5. The figure shows that experimental data
points are collapsed by scaling Eq. (12) for α=3.6±0.5 and
γ=0.23±0.04.

Figure 6 compares the prediction of the model (in solid
curve) with experimental results obtained bySpedding
(1997) (symbols). The figure shows also the asymptotics
U0(t)∼t

−0.25 and U0(t)∼t
−0.76 introduced bySpedding

(1997) to describe the temporal development of the wake axis
velocity in the transitional and far-wake regions. The figure
shows that the model results agree well with both the exper-
imental data and the asympotics.

5 Conclusion

We have developed a theoretical model describing the evo-
lution of a turbulent wake behind a towed sphere in a stably
stratified fluid at large Froude and Reynolds numbers. The
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Fig. 6. The temporal development of the wake axis velocity accord-
ing to the experimental data (Spedding, 1997) (crosses), asymp-
toticsU0(t)∼t

−0.25 andU0(t)∼t
−0.76 (bullets) and the model pre-

diction (solid curve). Vertical bars show the accuracy of the asymp-
totics introduced inSpedding(1997).

model assumption is that the wake flow dynamics in the tran-
sitional region (i.e. forNt<50) is similar to the dynamics of
as a quasi two-dimensional (2-D) turbulent jet flow and is
governed by the momentum transfer from the mean flow to
a quasi-2-D sinuous mode growing due to hydrodynamic in-
stability. The model employs a quasi-linear approximation
to describe this momentum transfer. The model scaling co-
efficients are defined with the use of available experimental
data, and the performance of the model is verified by com-
parison with the results of a direct numerical simulation of a
2-D turbulent jet flow. The model prediction for the tempo-
ral development of the wake axis mean velocity is found to
be in good agreement with the experimental data obtained by
Spedding(1997).
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