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Abstract. A numerical approach is substantiated for search-
ing for the large-scale alpha-like instability in thermoconvec-
tive turbulence. The main idea of the search strategy is the
application of a forcing function which can have a physical
interpretation. The forcing simulates the influence of small-
scale helical turbulence generated in a rotating fluid with in-
ternal heat sources and is applied to naturally induced fully
developed convective flows. The strategy is tested using the
Rayleigh-B́enard convection in an extended horizontal layer
of incompressible fluid heated from below. The most im-
portant finding is an enlargement of the typical horizontal
scale of the forming helical convective structures accompa-
nied by a cells merging, an essential increase in the kinetic
energy of flows and intensification of heat transfer. The re-
sults of modeling allow explaining how the helical feedback
can work providing the non-zero mean helicity generation
and the mutual intensification of horizontal and vertical cir-
culation, and demonstrate how the energy of the additional
helical source can be effectively converted into the energy of
intensive large-scale vortex flow.

1 Introduction

Thermal convection driven by a temperature non-
homogeneity is one of the most common modes of
fluid and gas flow. In the atmosphere non-uniform heat-
ing results in the formation of convective circulations of
different scale and frequently serves as a source of turbu-
lence. Turbulent convective motions in rotating systems
such as planet atmospheres become helical and mirror
non-symmetrical (Moffatt, 1978; Parker, 1979). Small-scale
helical turbulence has a number of special features and under
certain conditions is capable of intensifying and sustaining
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large-scale vortex disturbances by means of energy transfer
from small to large scales. The generating properties of
small-scale helical turbulence leading to the large-scale
structure formation were first discovered in magnetohydro-
dynamics bySteenbeck et al.(1966); Krause and R̈adler
(1980). This phenomenon is known as the alpha-effect.
The discovery of theα-effect paved the way towards a
vigorous development of MHD-dynamo theory. The formal
similarity of equations describing the magnetic field in a
moving electrically-conducting medium and vorticity in
non-conducting fluids gave an impetus to an intensive search
for analogs to this phenomenon in general hydrodynamics.

The first evidence supporting the existence of similar phe-
nomenon for a non-conducting medium was found by Moi-
seev et al. who discovered the hydrodynamic alpha-effect
(Hα-effect) in compressible fluid for isothermal conditions
(Moiseev et al., 1983b) and incompressible convectively un-
stable fluid (Moiseev et al., 1988). Based on the results (Moi-
seev et al., 1983b) a physical mechanism was proposed for
enhancing large-scale vortex disturbances in the atmosphere
using the energy of small-scale helical turbulence (Moiseev
et al., 1983a). In further works they extended this idea and
developed a theory of the turbulent vortex dynamo in hydro-
dynamics of non-conducting fluid.

Frisch et al.(1987) provided not only theoretical grounds
for the existence of the anisotropic kinetic alpha-effect
(AKA-effect), but supported their finding by full simula-
tions of the three-dimensional Navier-Stokes equations. This
kinetic (non-MHD) large-scale instability may develop in
incompressible three-dimensional anisotropic flows lacking
parity-invariance. In the last decade a number of interest-
ing studies have dealt with the application of the AKA-effect
to describe the processes occurring in density-stratified dif-
ferentially rotating astrophysical bodies:Kitchatinov et al.
(1994), Pipin et al.(1996), and some others cited byBran-
denburg and v. Rekowski(2001) who discussed the astro-
physical significance of the AKA-effect.
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The early model (Moiseev et al., 1988) of the large-scale
alpha-like instability generated by the interaction between
the convective flow in an extended horizontal layer heated
from below and prescribed external small-scale helical turbu-
lence of non-convective origin was generalized byRutkevich
(1993) to a natural case of convective turbulence in a rotating
layer heated from below and by internal heat sources. This
was a demonstration that the concept of helical turbulence
suggests a parameterization of the combined effect of the
Coriolis force and the additional to the heating from below
energy flux generated, for example, by internal heat release
due to vapor condensation.

In the field of atmospheric research Kurgansky reached
the same conclusion independently (Kurgansky, 1993, 1998,
1999). These investigations are summarized in Sect. 4.1 of
Kurgansky’s recent book (Kurgansky, 2002). This was prob-
ably one of the very first attempts to introduce the most ex-
tensive theories regarding helicity into meteorological mono-
graphs and giving the most general helicity balance equation
in a rotating compressible fluid. Kurgansky showed that un-
der moist convection in a rotating fluid an additional energy
release due to phase transition of moisture is just the condi-
tion required to achieve the non-zero dynamo-effect and de-
veloped a theoretical model for the turbulent vortex dynamo
(Kurgansky, 1998, 1999). Kurgansky’s model contained the
helicity balance equation for the small-scale turbulent veloc-
ity field in addition to a linear equation for the mean vorticity
generation on large scales similar to theHα-effect equation
in Moiseev et al.(1988). This allowed the restriction of the
growth of large-scale instability and achieved saturated i.e.
stationary states what could be considered as further progress
towards a more realistic dynamo model.

Thus, a number of factors have been defined which are
found to be necessary for the existence of the hydrodynamic
α-effect in conditions of non-uniformly heated medium:
thermoconvective turbulence, rotation, internal heat sources.
In the authors’ opinion, it is worthy of note that the energy
release in water phase transitions may not be the only in-
ternal source of heat. In nature, the formation of helical
atmospheric vortices can be sustained by the additional en-
ergy of both heat release due to condensation of vapor (cloud
vortices-tornadoes, waterspouts and tropical cyclones) and
intensely heated solid particles in conditions of dry convec-
tion (dust devils). We expect that the Hα-effect in thermo-
convective turbulence may result in a large-scale hydrody-
namic (non-MHD) instability of a new type that may re-
ally exist in Nature, namely, helical-vortex instability (Lev-
ina et al., 2000).

To support the theoretical hypothesis on generating prop-
erties of small-scale helical turbulence a series of laboratory
experiments started at the Institute of Continuous Media Me-
chanics and Perm State University in the late 1980s. Some
of them resulted in promising findings surveyed inLevina
et al. (2000), amongst which a laboratory large-scale inten-
sive spiral vortex generated from a localized heat source in a

rotating turbulent fluid is of particular interest (Bogatyryov,
1990; Bogatyryov and Smorodin, 1996). When interpreting
the discovered effect an idea was advanced that the small-
scale helicity of the rising thermals from the temperature
boundary layer might be responsible for the onset of crisis
situation favoring the development of large-scale disturbance
with a structure of helical vortex. A thorough investigation of
the velocity field of this laboratory vortex (Bogatyryov and
Smorodin, 1996) revealed a similarity to the velocity field of
tropical cyclones. These experiments were restarted at our
laboratory recently (Kolesnichenko et al., 2002; Bogatyryov
et al., 2006). They are focused on the modeling of physical
mechanisms and conditions leading to the formation of inten-
sive atmospheric vortices and aimed at obtaining the quanti-
tative results by means of modern Particle Image Velocime-
try technique. This is giving us an additional impetus to de-
velop the appropriate numerical approach for comprehensive
studying the helical-vortex phenomena in thermoconvective
turbulence.

The paper is organized as follows. In Sect. 2 a way to
simulate the large-scale helical-vortex instability in a con-
vectively unstable fluid is proposed, a forcing function to in-
troduce into the Boussinesq equations is derived and result-
ing balance equations for energy and helicity are examined.
In Sect. 3 the governing equations are given, in Sect. 4 they
are adapted for numerical modeling, and the numerical real-
ization is discussed. The numerical results are described in
details in Sect. 5. Section 6 offers our two-stages strategy
for numerical simulation of the helical-vortex instability and
conclusions concerning the results obtained at the first stage.
Two appendices are included: (A) to describe the mean-field
equation with the alpha-term generating the vortex dynamo
effect and (B) to discuss the results of the linear stability anal-
ysis.

2 Helical-vortex convection: problem formulation and
conservation laws

The first mean-field equation of the Hα-effect in a convec-
tive system was obtained by the statistical averaging method
(Moiseev et al., 1988). It described the influence of small-
scale helical turbulence on the classical Rayleigh-Bénard
convection in a plane infinite horizontal layer of incompress-
ible liquid heated from below.

The most demonstrative physical interpretation of the ob-
tained effect can be given in terms of toroidal and poloidal
component of the vectorial velocity field (Moffatt, 1978), i.e.
in the form of representation that is frequently used in mag-
netohydrodynamics and is well suited for transformation of
corresponding vector equations to the system of equations
for scalar functions. Let us chooseV for denoting the mean
velocity field〈vi〉 and express it in the following form:

V = V T + V P ,V T = curl(eψ) ,V P = curl curl(e φ) .

Nonlin. Processes Geophys., 13, 205–222, 2006 www.nonlin-processes-geophys.net/13/205/2006/
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Now a mathematical model of helical-vortex convection in
the simplest representation allowing for the new large-scale
instability can be written as (Levina et al., 2000, 2001, 2004):(
Pr

∂

∂t
−1

)
T = −1⊥φ ,(

∂

∂t
−1

)
1φ = Ra T + S

[
(e ∇)2 −1⊥

]
ψ , (1)

(
∂

∂t
−1

)
ψ = −S(e ∇)2φ ,

P r =
ν

χ
, Ra =

gβAh4

νχ
, e = {0, 0, 1} .

Here, T is the temperature,ψ and φ are the toroidal
and poloidal potentials of the velocity field, and
1⊥=∂2/∂x2

+∂2/∂y2 is the two-dimensional Laplace
operator.Pr andRa are the Prandtl and Rayleigh numbers,
e the unit vector directed vertically upward,A the uniform
temperature gradient between the horizontal boundaries of
the layer,g the gravity acceleration,β the coefficient of
thermal expansion,h the layer height. The dimensionless
parameterS characterizing the small-scale turbulence is
related in a rather complicated manner to the coefficients of
kinematic viscosityν and thermal diffusivityχ , the turbu-
lence characteristics such as the most energetic scaleλ and
characteristic timeτ of the turbulent velocity correlation. Of
fundamental importance is its proportionality to the mean
value of the scalar product of the turbulent velocityv T

by the vorticity – S∼〈v T · curlv T 〉, what owes its origin
to the assumption of the prescribed helicity of turbulence.
The explicit representation of the parameterS is given in
Moiseev et al.(1988).

The system of dynamic linear equations (Eq.1) for three
large-scale fields includes two different positive feedbacks.
One of them acts between the poloidalφ-component of the
velocity field and the field of temperature disturbanceT . It
links the first and the second equations in system (1) and
leads to natural convective instability. The other directly
links the solenoidal componentsφ andψ of the velocity field,
i.e. the second and the third equations from system (1). This
feedback, being related to specific properties of small-scale
helical turbulence, is sustained only through the parameterS.
Therefore, let us name it the helical feedback. IfS 6=0, then
flow V shows a new topological property – the linkage of the
vortex lines of toroidal and poloidal flow component. The
positive helical feedback would be expected to cause a new
type of instability.

Within the model (1), the large-scale instability in the layer
with free boundaries was discovered in the same work (Moi-
seev et al., 1988) whilst for other types of boundary con-
ditions it was found slightly later (Lyubimov and Smorodin,
1989; Berezin and Zhukov, 1990). Those investigations were

carried out within the framework of the linear and nonlinear
theory of hydrodynamic stability. They have demonstrated
that the intensification of the helical feedback (an increase
of the helicity parameterS) causes a decrease in the thresh-
old of convective instability and enlargement of the charac-
teristic horizontal scale of arising convective motions. As
soon as the helicity parameter reaches critical value,Scr, the
wave number vanishes. Formally, this corresponds to an infi-
nite horizontal dimension of a supercritical flow and suggests
qualitative changes in the flow pattern: the system of small
cells with a characteristic horizontal scale of order of layer
height, normally observed as Rayleigh-Bénard convection,
should be rearranged into a single large vortex, which tends
to occupy the entire available space. According to Eq. (1),
the toroidal and poloidal components of the large-scale ve-
locity field in such vortices should be linked, forming thereby
a helical structure of large-scale circulation.

Thus, it has been demonstrated that the action of small-
scale helical turbulence within the Rayleigh-Bénard convec-
tion may initiate a new large-scale instability – the helical-
vortex.

The analysis of investigations on helical-vortex instabil-
ity in a convective system carried out in review byLevina
et al. (2000) has revealed a number of crucial points which
are specified below.

All currently available mean-field models of Hα-effect in
a convectively unstable fluid are found to include linear evo-
lution equations for the large-scale velocity field and have
exponentially growing solutions. At this stage no one pre-
senting this way of theoretical research (Moiseev et al., 1988;
Rutkevich, 1993; Levina et al., 2000) has obtained any non-
linear terms for the mean-field velocity equation capable of
restricting the instability growth within these models. This
makes them inapplicable to simulate any steady mean flow
by numerical calculations.

On the other hand, review (Levina et al., 2000) outlined
a clear sign indicating the onset of helical-vortex instabil-
ity: the initiation of positive helical feedback between the
toroidal and poloidal components of the vector velocity field.
Such feedback may be generated in a helical eddy cell in
which the velocity field is characterized by a linkage of the
vortex lines of toroidal and poloidal flow components, i.e. by
non-zero helicityv·curlv 6=0.

It has served as a basic idea for developing a numerical
approach byLevina et al.(2001, 2004) to study the evolution
of helical-vortex instability in conditions of turbulent thermal
convection. A key to the approach is the addition of a model
force to the convection equations.

It is widespread in turbulence modeling to have a forcing
function driving a turbulent flow. However, the forcing term
in our simulation is not assigned to be a driving force. It
is applied to naturally induced, fully developed convective
flows and is assumed to be responsible for the generation of
a helical flow structure withv·curlv 6=0 and positive helical
feedback. Probably, the best forcing for this purpose is the
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generatingα-term from the mean-field velocity equation de-
scribing the Hα-effect in a convective system (Moiseev et al.,
1988; Rutkevich, 1993; Levina et al., 2000).

2.1 Forcing term to generate the positive helical feedback

Numerical simulation based on the nonlinear Boussinesq
equations has been suggested. Within this approach the mo-
mentum equation is additionally supplied with a model force.
The computational algorithm will be discussed in detail in
the corresponding section of this work.

The model force is assumed to be a variable whose tensor
structure is identical to that of the generating alpha-term (the
corresponding mean-field Eq. (A2) is given and discussed in
Appendix A). Indeed, in physical terms the alpha-term rep-
resents a force, whose explicit form can be obtained by a few
manipulations on the right of expression (A2):

f = s1{e (curlV )z − ∂(e × V )/∂z} , (2)

whereV is the vector notation for the mean velocity field
〈vi〉, e is the unit vector along the vertical axisz.

In Moiseev et al.(1988); Rutkevich(1993), the mean field
equation was derived whilst being subject to a great num-
ber of simplifying and limiting assumptions resulting in the
variety of physical and geometrical parameters entering the
coefficient s1. In order to avoid an over complication we
may deduce that the variablef in our numerical approach is
a model force. Bearing in mind that the basic intent of model
force is to generate helical structure of the flow with positive
helical feedback, it seems to be natural to interpret this coef-
ficient as an intensity of the initiated feedback. Deriving the
explicit form of this coefficient is based on the following.

Indeed, the correct introduction of a new term in an equa-
tion suggests the conservation of symmetry and dimension
properties of the initial equation.

All terms entering the momentum equation from the
Boussinesq system are the polar vectors (Chandrasekhar,
1961; Gershuni and Zhukhovitsky, 1972) whereas both terms
in expression (2) are pseudo vectors. Therefore, to conserve
the symmetry, one should introduce a pseudo scalar variable
into the coefficient in front of the model forcing function.
Physical formulation of the problem and the results ofRutke-
vich (1993) indicate that the angular velocity of liquid rota-
tion � is an adequate variable. In correspondence with the
dimension requirement this quantity should be multiplied by
characteristic length which is assumed to be the layer height
h. An additional point to be remembered is that to describe
the geophysical flow in a rotating layer one usually takes the
Coriolis parameter which is equal to twice the angular veloc-
ity 2�.

Now the model forcing function may be written in dimen-
sional form as

f = 2�h {e (curlV )z − ∂(e × V )/∂z} . (3)

The model force is similar to the Coriolis force in that they
are both the functions of velocity, i.e. dependent on the flow
to which they are applied. It might be helpful to present
here the expressions describing the components of the model
force f and the Coriolis forcef Cor along the correspond-
ing directions(x, y, z) in order to demonstrate the difference
between these functions

f = 2�h

{
∂v

∂z
, −

∂u

∂z
,
∂v

∂x
−
∂u

∂y

}
; (4)

f Cor
= 2� {v,−u, 0},

where the velocity vectorV has three componentsu, v,w
along the directions(x, y, z), respectively.

An essential feature of the model forcef is its dependence
not simply on velocity but on its spatial derivatives. The latter
implies that the model force, unlike the Coriolis force, works
and can pump an additional energy into the system under ex-
amination. It is also evident that thez-component absent in
the Coriolis force is the necessary element to close the feed-
back loop between the components of the velocity field. The
way in which the forcing functionf is involved in genera-
tion of positive feedback between the poloidal and toroidal
velocity field will be explained in detail and illustrated by
numerical results.

2.2 Energy and helicity balance in helical-vortex convec-
tion

It seems useful to write down the energy and helicity bal-
ance equations in these new conditions in view of the helical
feedback will pump an additional energy into the system and
should also generate the non-zero mean helicity.

Following the similar way as inGolitsyn (1979); Busse
(1981); Frisch(1995) the appropriate balance equations for
convection in a horizontal layer of incompressible fluid based
on the Boussinesq approximation can be obtained in the fol-
lowing form:

d

dt

〈
V · V

2

〉
= gβ 〈w T 〉 − ν

〈
|ω|

2
〉
+

+ 2�h

(
〈wωz〉 +

〈
(e × V ) ·

∂V

∂z

〉)
,

d

dt

〈
T · T

2

〉
= 〈w T 〉 − χ

〈
|∇T |

2
〉
, (5)

d

dt

〈
V · ω

2

〉
= gβ 〈ωz T 〉 − ν 〈ω · curlω〉 +

+ 2�h

(
〈ω2
z〉 −

〈(
∂V

∂z

)2
〉)

,

ω = curlV , V = {u, v,w} , ω = {ωx, ωy, ωz} ,

where:ω is the vorticity and angular brackets denote spatial
averaging.

Nonlin. Processes Geophys., 13, 205–222, 2006 www.nonlin-processes-geophys.net/13/205/2006/



G. V. Levina and I. A. Burylov: Num. simulation of helical-vortex effects in R.-B. convection 209

For stationary flows the expressions on the left of balance
equations are equal to zero. Thus, for stationary free convec-
tion without any forcing the energy balance is described by
the first two terms on the right of the velocity and tempera-
ture equations (Golitsyn, 1979; Busse, 1981): this implies a
balance of buoyancy and viscosity forces in the first case and
a balance of convective heat transfer and entropy production
in thermal convection in the second equation. No helicity
generation takes place in free convection without rotating ef-
fects.

As it follows from the above equations, model forcing
function (3) does operate contributing to both the energy and
helicity balances. However, in both cases we cannot make
any definite estimations based only on balance equation anal-
ysis. A contribution to the energy balance is described as a
sum of two alternating-sign terms, and to the helicity bal-
ance the forcing function contributes two terms of constant
but different signs. Although the forcing does not contribute
explicitly to the temperature equation, yet it should influence
the convective heat transfer via affecting the velocity field.
Therefore, a numerical analysis seems to be the most effec-
tive way to clear up this question. In fact, we will give some
estimations for different terms in balance equations (Eq.5)
in due course.

3 The governing equations

We investigate helical convective flows initiated in an ex-
tended horizontal layer of incompressible fluid which is
bounded above and below by surfaces sustained at constant
and different temperatures.

A mathematical model involves the nonlinear Boussinesq
equations, in which the momentum equation in addition in-
cludes forcing function (3) (Levina et al., 2001, 2004):

∂V

∂t
+

1

Pr
V ∇V = −∇p + 4V + RaT e + Re�f ,

P r
∂T

∂t
+ V ∇T = 4T , divV = 0,

(6)

f = e · (curlV )z −
∂(e × V )

∂z
, e = {0, 0, 1},

Ra =
gβ(T1 − T2)h

3

νχ
, P r =

ν

χ
, Re� =

2�h2

ν
.

Here:p is the pressure, (T1−T2) the typical temperature dif-
ference between horizontal boundaries of the layer, We have
chosen the layer heighth, the typical temperature difference
(T1−T2), the combinationsh2/ν , χ/h and ρ0νχ/h

2 as the
units to measure length, temperature, time, velocity and pres-
sure, respectively.

The dimensionless criterion in front of the model forcing
function f is found to be exactly equal to that before the

Coriolis force in the momentum equation describing convec-
tion in rotating fluid, i.e. the Taylor number –T a1/2. How-
ever, allowing for the difference between two above men-
tioned forces (Eq.4) in order to avoid any tanglement, we
denote this numberRe� – the Reynolds number defined by
a characteristic value of the angular velocity�. This new di-
mensionless parameter characterizes the intensity of the he-
lical feedback between the toroidal and poloidal component
of the velocity field.

Equations (6) describe a mixed convection flow atRa 6=0
andRe� 6=0. The special caseRe�=0 corresponds to that the
helical feedback is absent, and system (6) is reduced to the
Boussinesq equations describing free convection. Another
possibility is connected with vortex flows driven by the heli-
cal forcing atRe� 6=0 in an isothermal situation atT=const
and consequently,Ra=0.

New theoretical model (Eq.6) was first analyzed in terms
of the linear theory of hydrodynamic stability (see Ap-
pendix B).

The linear stability analysis showed that the positive heli-
cal feedback introduced into the convective system can initi-
ate a long wave instability appearing at much lower Rayleigh
numbers than the natural convective instability. The analy-
sis also resulted in preliminary estimations for the range of
parameter variations to use in numerical calculations.

4 Numerical implementation

The proposed approach for searching for the large-scale
alpha-like instability is first applied to the 3-D laminar
Rayleigh-B́enard convection in an incompressible fluid layer
extended in horizontal directions and heated from below. A
remarkable feature of the Rayleigh-Bénard problem is that
its solution for a laminar state represents a great number of
similar convective cells. In our approach they can be con-
sidered as structures of an intermediate scale. The forcing
term making the flow helical and pumping the energy into
the system simulates the influence of small-scale helical tur-
bulence. Thus, a contribution of different scale flows is taken
into consideration. Further, in the context of the global alpha-
effect hypothesis, an intriguing question arises: is it possible
to simulate some signs of large-scale helical-vortex instabil-
ity whilst operating in these relatively simple conditions?

Initially, we are trying to discover the phenomena related
to an excitation of the helical-vortex instability by using the
most accessible computational techniques with a minimum
expenditure of time. The simplest mathematical formulation
of the problem involving helical-vortex effects is obtained for
the flow in the cylindrical geometry domain with axial sym-
metry. In this case, all three components of the velocity vec-
tor are retained ensuring the non-zero helicityV ·curlV 6=0,
whereas all physical fields become dependent on only two
spatial variables.

www.nonlin-processes-geophys.net/13/205/2006/ Nonlin. Processes Geophys., 13, 205–222, 2006
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Bearing in mind the predictions of the linear stability anal-
ysis, we allow for the possibility of the existence of supercrit-
ical motions with the horizontal scale much greater than the
vertical. We choose for our simulation a bounded flow do-
main extended in horizontal directions, with an aspect ratio
of 10.

The numerical experiment was carried out using the fol-
lowing scheme.

At our first stage the convective instability for low super-
critical Rayleigh numbers andRe�=0 was initiated by speci-
fying a point vortex disturbance in the center of the computa-
tion domain at the initial time. The characteristic horizontal
scale of the resulting supercritical mode and, respectively,
the structure numbers in the layer (if we are dealing with the
bounded region as it is in our case) are determined by a com-
bination of the prescribed values of the parametersPr, Ra
andRe�.

At the second stage when convective instability evolution
resulted in a developed steady-state convective flow, the he-
lical feedback was excited on this background by setting
Re� 6=0.

In this way we expect to observe a drastic rearrangement
in the flow structure and discover how a broadening of con-
vective cells may be realized. Flow evolution of this kind
may simulate a similar process in turbulent flows.

4.1 Problem formulation for a cylindrical domain

Numerical realization is described in detail inLevina et al.
(2004) which includes a mathematical statement of the prob-
lem in a closed form with initial and boundary conditions.
We introduce the cylindrical coordinates{ρ, ϕ, z} and con-
sider only axially symmetrical flows (∂/∂ϕ=0). Thus, whilst
maintaining the equation for azimuthal velocityv in model
(6), the pressure can be eliminated from the equations by
introducing the stream function9 and theϕ-component of
vorticity ωϕ :

u = −
∂9

∂z
, w =

1

r

∂

∂r
(r9) , ωϕ =

∂u

∂z
−
∂w

∂r
, (7)

whereu andw are the radial and vertical velocity compo-
nents.

After the above transformation, mathematical model (6)
written in terms of stream function, vorticity, azimuthal ve-
locity and temperature is found to be included three evolu-
tionary equations and the Poisson equation for the stream
function. In the set of three velocity-related variables cho-
sen for calculation,v describes the toroidal field (horizontal
circulation) whilst9 andωϕ characterize the poloidal field
(vertical circulation).

All the bounding surfaces of the cylinder were assumed
to be impermeable, rigid, and non-slip. Thermal conditions
included fixed temperatures at the lower and upper surfaces
corresponding to the heating from below, whereas the lateral
surface was adiabatic.

The numerical investigation was carried out by the method
of finite differences using an explicit scheme. The Poisson
equation for the stream function was solved by the successive
over-relaxation method. When searching for steady flows we
used a pseudo-unsteady method to solve the evolution prob-
lem in order to obtain the steady solution ast→∞.

The flow domain was assumed to have the aspect ratio of
the cylinder radius to the heightR : h for all calculation re-
sults equal to 10:1. Thus, under the constraint of axial sym-
metry ∂/∂ϕ=0, the computational domain represented the
R×h=10×1 rectangle.

In methodical calculations the discretization of computa-
tional domain varied broadly, while for obtaining basic re-
sults we used the grid 200×60 along the radius and height
respectively.

4.2 Integral characteristics

To represent the results manifesting the helical-vortex in-
stability evolution a set of characteristics have been noted
which best illustrate the distinguishing features of this phe-
nomenon.

We can anticipate that forRe� 6=0 the helical forcingf
is to make the flow helical. The forcing should also provide
the positive feedback between the toroidal and poloidal com-
ponent of velocity and pump some kinetic energy into the
convective system in addition to the thermal energy ensured
by the heating from below. That is why the following integral
characteristics were introduced and analyzed:

SQ =

∫
Q

V · curlV dQ , Ek =
1

2

∫
Q

V 2 dQ ,

(8)

ETk =
1

2

∫
Q

v2 dQ , EPk =
1

2

∫
Q

(u2
+ w2) dQ .

The velocity field characteristicSQ can be called the total
flow helicity integrated over the examined computational do-
main. This value specifies the motion with linked vortex lines
of horizontal and vertical circulation, and its sign depends on
the circulation direction in the forming vortex structures. We
were also examining attentively the evolution of three other
velocity-related quantities characterizing the flow energetics:
the total kinetic energyEk and separately the kinetic energy
of the toroidalETk (horizontal circulation) and poloidalEPk
(vertical circulation) velocity fields.

As a quantitative measure of convective heat transfer
through the layer one usually takes the Nusselt numberNu.
This is the ratio of the dimensional heat transfer through the
fluid layer3 to the heat fluxκ(T1−T2) that can only be pro-
duced (at the same temperature difference) due to the molec-
ular heat conductivity (Gershuni and Zhukhovitsky, 1972;
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Fig. 1. Isoline maps for the stationary free convection flow at
Re�=0, Pr=1 andRa=3000: (a) stream function,(b) tempera-
ture;r=0 corresponds to the axis of symmetry location.

Golitsyn, 1979; Busse, 1981) so that:

Nu =
3

κ(T1 − T2)
, 3 = κ

∫
0

∂T

∂n
d` . (9)

In these formulae∂T /∂n is the normal component of the
temperature gradient, and the integration is performed over
the upper boundary0. Being a characteristic of the intensity
of convective heat transfer the Nusselt number also allows
the estimation of the intensity of convective motion.

The maximum and minimum values of all physical vari-
ables over all internal nodes of the computational domain
were also found and analyzed.

In numerical experiments the Prandtl number was as-
sumed equal toPr=1 throughout the calculations, the
Rayleigh number and the Reynolds number varied widely.

5 Basic steady-state free convective flow

Let us begin with discussing the steady-state natural convec-
tive flow to which we apply the helical forcing.

For the problem under consideration computations were
carried out to define the threshold of natural convection at
Re�=0 in the horizontally extended (with aspect ratio of
10) yet bounded layer of the cylindrical geometry. They
yielded the critical Rayleigh numberRacr

≈1724. It proves
to be rather close to the critical Rayleigh number for a plane
infinite horizontal layer with rigid boundaries,Racr

≈1708,
given by the linear stability theory (Gershuni and Zhukhovit-
sky, 1972). This is a good reason to believe that numerical
simulation of helical convection(Re� 6=0) in the extended
cylindrical layer may also rely on the linear analysis estima-
tions for a plane infinite horizontal layer discussed in Ap-
pendix B.

In cylindrical geometry using the axial symmetry condi-
tion the stationary convective motions are realized as axially

Table 1. Integral characteristic values for the stationary free con-
vection flow atRe�=0,Pr=1 andRa=3000.

Ek ET
k

EP
k

S� Nu Um Vm Wm

245 0 245 0 1.586 11.3 0.0 11.1

symmetrical annular rolls. Figure1 presents, for example,
isoline maps for a fully steady-state free convective flow at
Re�=0,Pr=1 andRa=3000.

In the projection onto the calculation domain within the
plane (r,z), the convective rolls look like the system of cells
with vertical circulation. Such typical free convection circu-
lation is created only by the poloidal velocity field which is
described in our numerical approach by two scalar functions
– the stream function,9, andϕ-component of vorticity,ωϕ ,
introduced by Eqs. (7). Resulting structures in the velocity
field are well represented in the stream function map, Fig.1a.
The poloidal velocity field in the circulation cells alternates
its direction from structure to structure. Indications “+” and
“−” in the cell centers correspond to positive and negative
values of the stream function. The number of these cells lo-
cated along the radius appears to be nine here and within
the whole range of the Rayleigh number 1800≤Ra≤4000.
Their horizontal scale, as expected (Chandrasekhar, 1961;
Gershuni and Zhukhovitsky, 1972), is comparable with the
cylindrical layer height. Cursors in Fig.1a as well as temper-
ature field isolines in Fig.1b clearly indicate areas of upward
and downward flow. For the obtained state, as is usual with
natural convection flows, the azimuthal velocity component
is absent,v=0.

Integral characteristic values for this stationary free con-
vection flow are given in Table1, whereUm, Vm andWm are
used for denoting the maximum absolute values of the radial,
azimuthal and vertical velocity component, respectively. Un-
der typical conditions of free convection, horizontal circula-
tion (toroidal field) is not formed because ofv=0, and no
helicity generation takes place. This results in thatVm, ETk
andSQ are found to be equal to zero in this case.

Between a number of natural convection flows, which have
been obtained and examined for use as initial distributions,
we are choosing one atRa=3000 to apply the helical forcing
and discuss new effects.

6 Structure dynamics, energetics and heat transfer in
helical-vortex convection

For the purpose of the current examination some data con-
cerning the linear stability analysis of the plane infinite layer,
heated from below and with boundaries that are both rigid,
are given for the fundamental mode of instability (n=1) in
Fig. 2.
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Fig. 2. Minimal critical Rayleigh numbers and corresponding wave
numbers versusRe� atPr=1, n=1.

Figure 2 shows the curvesRam(Re�) and km(Re�).
On both plots one can readily differentiate two regions
of quite different response of the examined characteristics:
0<Re�<4 andRe�>4. With a smooth increase in the inten-
sity of helical feedback from 0 to 4,Ram andkm vary rather
slowly. Further movement into the regionRe�>4 causes the
dramatic changes in theRam andkm behavior. Evidently, in
this area one may expect the appearance of some new effects
and essential rearrangement in the flow pattern.

These data supply us with estimations for the range of pa-
rameterRe� variation to use in numerical simulation as well
as for projected dimensions of arising helical structures.

By varying the Rayleigh and Reynolds numbers widely,
400≤Ra≤4000 and 0≤Re�≤6.5, and using various ini-
tial distributions, a few stationary helical-vortex convective
states have been obtained.

Applying the helical forcing to the steady-state convection
flow assumes the maintenance of the same heating that gener-
ates a convective instability and using all the physical fields
calculated atRe�=0 as initial distributions. Thus, in our
simulation the forcing function is not a stirring force but the
opposite: helical forcing Eq. (3) is applied to a formed free
convection flow and operates further under conditions of ex-
isting convective instability. As it is dependent on the veloc-
ity field via its spatial derivatives, the forcing is initiated by
the same flow that it then affects fairly softly still making the
flow helical and supplying it with an additional energy.

Let us examine how the free convection flow is modified
under the helical forcing.

6.1 Helicity generation

The analysis of helicity balance equation from Eq. (5) shows
that the use of forcing function (3) should result in helicity
generation.

The first sign indicating the helical feedback introduced
into the convective system is the generation of the toroidal
velocity field. Such planar circulation formed by the az-
imuthal component of velocity is non-typical for natural con-
vection without any complicated factors. Here it is generated
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Fig. 3. Isoline maps for the stationary helical convection flow at
Re�=3, Pr=1 andRa=3000: (a) stream function;(b) azimuthal
velocity; (c) temperature;r=0 corresponds to the axis of symmetry
location.

from the poloidal field of convective circulation due to the
helical feedback.

A set of isoline maps including two velocity-related fields
and a temperature field atRa=3000 andRe�=3 is presented
in Fig. 3.

The isoline map of the azimuthal velocity in the plane
(r, z) in Fig. 3b is similar in structure to the corresponding
stream function field in Fig.3a, and the planar circulation
also changes its direction from cell to cell. Positive val-
ues in Fig.3b correspond to the counterclockwise circula-
tion seen from the top, whilst the negative azimuthal velocity
represents the clockwise circulation in a horizontal plane at
z=const. Thus, despite the alternating signs of both poloidal
and toroidal circulation from cell to cell, they correlate in that
way a superposition of themselves within each convective
cell results in the left-handed spiral flow. The examined sam-
ple gives us nine left-handed spiral structures within the com-
putational domain. This type of motion should possess some
non-zero helicity of the identical sign over the whole flow do-
main. As a result of the pseudo-scalar nature of this quantity,
its sign depends on a frame of reference introduced for the
problem under consideration. In the right frame, chosen for
the present investigation, the left-handed flow is described by
the negative value of helicity. Consequently, the total helicity
integrated over the computational domain should be negative
as well.

Our numerical problem formulation developed for a con-
fined cylindrical box cannot be valid for any immediate cal-
culation to make a correct and accurate comparison between
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Fig. 4. Isoline maps for the stationary convection flow under the
Coriolis force atRe�=3, Pr=1 andRa=3000: (a) stream func-
tion; (b) azimuthal velocity;(c) temperature;r=0 corresponds to
the axis of symmetry location.

the terms in balance Eqs. (5), which have been derived un-
der assumption of periodic functions and periodic boundary
conditions (Frisch, 1995). Nevertheless, we calculated these
terms in order to have some qualitative estimations. Indeed,
the total helicity of flow found to be negative for all the cases
considered in this study. The biggest negative helicity contri-
bution is made by the second term of forcing function, whilst
its first term contributes positively. In these conditions the
buoyancy force generates negative helicity, and the viscous
force participates with positive contribution.

It is appropriate at this stage to compare the effects of ap-
plying the helical forcing with the Coriolis force. With this
in mind we solved the same equations from system (6) but
did so with the Coriolis force introduced into the momentum
equation. In this case the dimensionless parameter charac-
terizing the intensity of the Coriolis force was found to be
exactly the same,Re�, as for the helical forcing. Similar
isoline maps atRa=3000 andRe�=3 are shown in Fig.4.

It may be noted that one velocity-related field in Fig.4a
and the temperature field in Fig.4c look absolutely identi-
cal with the corresponding fields in Fig.3. However, the
azimuthal velocity pattern in Fig.4b is drastically different
from that in Fig.3b. The azimuthal velocity field generated
by the Coriolis force changes its sign along the layer height
within each cell of poloidal circulation. The intensity of pla-
nar circulation is gradually increased in direction from ei-
ther boundary where all velocity components vanish. It has
a maximum value of a definite sign approximately at half the
distance between each boundary and the middle of the layer,

Table 2. Integral characteristic values for the stationary convec-
tion flow atRe�=3,Pr=1 andRa=3000: under the Coriolis force
(CF) and the helical forcing (HF)

Force Ek ET
k

EP
k

S� Nu Um Vm Wm

CF 244 1 243 22 1.584 11.2 1.1 11.0
HF 299 34 265 −1793 1.621 11.3 6.4 14.8

then, decreasing, reaches zero and changes its sign, and be-
gins increasing again towards the opposite layer boundary.
Superposing on poloidal circulation it results in a motion of
fluid particles along conical surfaces. Rotation signs are the
opposite in the upper and lower cones. This proves to be
in good agreement with Chandrasekhar’s theoretical results
(Chandrasekhar, 1961) and Boubnov and Golitsyn’s experi-
ments on rotating convection when they observed cone-like
shapes at an initial stage of instability evolution and in the
parameter space close to a critical curve (Boubnov and Golit-
syn, 1986, 1990). Since the flow helicity in cones from each
pair within the same poloidal cell has the opposite signs, the
total helicity of the pair may be insignificant. Therefore, for
the flow under consideration representing a number of coni-
cal pairs, even the appearing flow helicity for a separate pair
may be considerably compensated by helicity values in other
pairs. As far as we could expect in this case, the flow he-
licity over the whole computational domain should be close
to zero. Indeed, it appears to be insignificant in compari-
son with the corresponding magnitude for the helical mode
given in the lower line in Table 2, and its non-zero value may
originate either from the boundary conditions asymmetry or
a finite-difference error.

To describe helical convection flow we follow an evolution
of the total flow helicitySQ (Eqs.8) in addition to other in-
tegral characteristics of natural convection. In order to have
some more detailed information on the helicity field, it might
also be useful to estimate its spatial distribution density. This
can be readily accomplished by decomposing the flow area
into a few sublayers. In the present study this approach
is applied for three horizontal sublayers of equal thickness.
In designation the sublayers are counted off from the lower
layer boundary (SQ1, SQ2, SQ3), and the absence of the fig-
ure in the index denotes a total value of this quantity for the
whole flow domain.

Indeed, as far as we could expect from analysis of stream
function and azimuthal velocity isoline maps, the flow he-
licity generated by the helical forcing proves to be negative
over the whole computational domain – Fig.5a. Figure5b
presents another possibility of helicity generation of differ-
ent signs within the computational domain. This is found to
be realized applying the Coriolis force with the sameRe�=3
to the same initial flow.

The corresponding integral characteristics for both cases
can be found in Table2.
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(a) (b)

Fig. 5. Helicity evolution atRe�=3, Ra=3000 andPr=1: (a)
under the helical forcing;(b) under the Coriolis force.

Some more interesting results based on these data should
be also pointed out. Integral characteristics for the convec-
tion generated under the Coriolis force are extremely close
to the corresponding values given for the free convection
flow in Table1. Since the Coriolis force does not work, it
cannot pump an additional energy into the system. That is
why, a toroidal field generation results in a redistribution of
the velocity component intensity: an appearance of weak az-
imuthal velocity leads to a slight decrease of the radial and
vertical velocity values. Helical forcing generates a more in-
tensive flow as an examination of all characteristics in Ta-
ble 2 shows. Though the velocity components,Um andWm,
forming the poloidal circulation, have fairly close maximum
values for both cases, the azimuthal component,Vm, is much
greater when generated by the helical forcing. The results
also correspond with the values of the kinetic energy – the he-
lical forcing generates a much more intensive toroidal field.
The intensity of heat transfer across the layer characterized
by the Nusselt number,Nu, is also appreciably higher under
the helical forcing. Evidently, to explain these differences in
the flow characteristics we have to remember the most essen-
tial feature of the helical forcing. Unlike the Coriolis force
it creates the positive feedback loop linking the poloidal and
toroidal velocity field. To maintain this new feedback the
forcing should pump some mechanical energy into the con-
vective system in addition to the heating from below.

As it follows from the kinetic energy balance equation
from Eq. (5), this is the case, indeed. However, similarly, to
the earlier analysis of helicity balance we can only give some
qualitative evaluation based on our rapid calculation. Contri-
butions of buoyancy and viscosity forces are of fixed signs.
Evidently, the first of them is positive, and the second is neg-
ative. The forcing function contributes in a former manner,
i.e. its first and second term generates the energy of oppo-
site sign. However, in this balance equation the first term
contributes negatively, and the second does positively. It is
very important to note that the positive energy value is sev-
eral times greater than negative for all examined flows. The
positive contribution of forcing increases with increase of the
Reynolds number. Thus, forRe�=3 the energy pumped by
the forcing function into the convective system is found to
be five times less than the buoyancy energy. However, at

(a) (b)

Fig. 6. Flow energetics evolution under the helical forcing at
Re�=6,Ra=3000 andPr=1.

Re�=6 quite a different situation takes place: the energy
generated by forcing becomes twice as large as the buoyancy
energy.

6.2 Positive feedback loop

In order to understand the way the positive helical feedback
acts providing a mutual intensification of the velocity com-
ponents we applied a quantitative analysis of both toroidal
and poloidal field evolution using separate variables for the
kinetic energyETk andEPk , respectively.

Table3 contains integral characteristics for a number of
steady-state helical-vortex convective flows calculated for
differentRe�, and for comparison purposes it begins with
the initial distribution data for the free convection flow at
Re�=0.

As a representative sample that can clearly show the in-
fluence of the helical feedback, let us consider, for example,
the flow atRe�=6. Flow energetics evolution can be traced
following Fig. 6 which showsETk andEPk as well as total ki-
netic energyEk of developing helical convection flow versus
time while reaching a steady state.

Kinetic energy values at initial timet=0 are those corre-
sponding to the initial distribution atRa=3000 andRe�=0
which is given in Table3.

The helical forcing introduced into the system, begins with
immediate generation of the toroidal velocity field, and it is
this field that appears to be the most responsive to its influ-
ence. Figure6a shows an abrupt increase of the toroidal field
energy fromETk =0 up to approximatelyETk =250 within the
first two–three time units, and Fig.6b demonstrates a narrow
initial time interval enlarged. The growing toroidal field can
be the only reason for changes in the poloidal field intensity.
These changes soon become appreciable, although less im-
pressive: the poloidal field is fast growing fromEPk =245 for
initial distribution att=0 up toEPk ≈330 within the very first
time interval 0<t≤0.1, and later changes more smoothly. As
the helical forcing is the only source of mechanical energy
in this system, one can consider the increasing poloidal field
as a catalyst for further growth in the toroidal field, thereby
closing the positive helical feedback loop. Such mutual in-
tensification of velocity components through the feedback
loop is observed until the flow reaches a stationary state, as
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Table 3. Integral characteristic values for the stationary helical convection flows atPr=1 andRa=3000.

Re� Ek ET
k

EP
k

S� Nu Um Vm Wm

0.0 245 0 245 0 1.586 11.3 0.0 11.1
1.0 251 4 247 -558 1.590 11.3 2.0 11.5
2.0 268 14 254 -1147 1.601 11.4 4.0 12.7
3.0 299 34 265 -1793 1.621 11.3 6.4 14.8
4.0 365 83 282 -2809 1.728 12.7 10.0 10.6
5.0 474 149 325 -4034 1.761 13.1 13.2 14.2
6.0 796 367 429 -7029 1.688 17.0 22.4 13.3
6.3 903 437 466 -8009 1.733 16.4 22.5 15.4
6.5 1422 806 616 -11973 1.959 23.2 37.3 15.7

illustrated by Fig.6 and Table3. As one can see by compar-
ing initial (corresponding toRe�=0) and final (atRe�=6)
values of kinetic energy,Ek=245 andEk=796, this process
proves to be very effective: the total kinetic energyEk of the
flow has become more than three times as large.

6.3 Cells merging

Figure 6 demonstrates two well-marked kinks of energy
curves corresponding to time valuest≈3 andt≈17. Simi-
lar qualitative results have been obtained for other flows but
only those characterized by Reynolds numberRe�>3.5−4.
To explain this peculiarity we examined the whole set of flow
characteristics used in this study as well as referring to the
results of linear stability analysis. The theoretical curve in
Fig. 2b indicates that one should expect dramatic changes
in the typical horizontal scale of structure for Reynolds num-
bers close toRe�=4: this curve shows a considerable broad-
ening of structures. As a result of numerical simulation an
enlargement of structure scale by cells merging has been dis-
covered.

It seems to be appropriate to base the search for an ex-
planation of this new phenomenon on other peculiarities of
helical convection.

Probably, the most important dynamic feature of convec-
tion flow formed under the helical forcing is a generation
of the intensive toroidal field. One can find two variables
characterizing the toroidal circulation in Table3: maximum
valueVm of the azimuthal velocity and kinetic energyETk .
As the corresponding data show this velocity field grows
very quickly, far quicker than the poloidal field, with an in-
crease in the Reynolds number. At Reynolds numberRe�=3
the azimuthal component of velocityVm=6.4 is still much
lower than two other velocity components,Um=11.3 and
Wm=14.8, forming the poloidal field which is usually con-
nected with the thermal convection circulation. At Reynolds
numberRe�=4 the azimuthal velocityVm=10.0 is found to
be extremely close to the maximum value of the vertical ve-
locity Wm=10.6. This means that the azimuthal transfer be-
comes strong enough to compete against the vertical one. It

Table 4. Number of cells versusRe� in the steady states atPr=1.

Re� = 0 3.5 4 4.5 5 5.5 6 6.5

Ra=2000 9 9 8 8 8 7 6 5
Ra=2500 9 9 8 8 8 7 7 6
Ra=3000 9 9 8 8 8 7 7 6

points out the beginning of a drastic rearrangement in the
flow structure and energetics revealing itself at first in the
cells merging.

Table4 contains calculation results regarding a number of
structures within the computational domain for a few values
of Rayleigh number. It is evident that instead of nine struc-
tures in the initial free convection distribution atRe�=0, a
resulting helical flow, for example atRe�=4, proves to pos-
sess eight circulation cells continuously filling up the compu-
tational domain. This value of the Reynolds number marks
a starting point for the cells merging within a wide range of
the Rayleigh number variation up toRa≤4000 used in our
calculations.

The data in Table4 also illustrate a possibility of a few
cells mergers in a developing helical flow. For the flow at
Re�=6 andRa=3000 whose energetics evolution is shown
in Fig. 6 the number of cells is equal to seven unlike nine
cells in the initial distribution. It allows us to interpret two
kinks of curves in Fig.6 as two successive cells merging. In
both cases, as the kinetic energy values demonstrate, the cells
merging leads to a considerable increase in the flow intensity.

By varying the Reynolds number one can observe up to
four merging atRa=2000 and three merging atRa=2500
andRa=3000.

At the Reynolds numberRe�=4 marking the initiation of
cells merging, the total poloidal circulation formed by the
vertical and radial velocity components possesses the kinetic
energy that is still much greater than the kinetic energy of
the toroidal circulation – as Table3 shows, forRa=3000
they areEPk =282 andETk =83. Table3 also illustrates the
point at which intensities of two velocity fields may become
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Fig. 7. Scheme of flow intensification through the helical feedback
linking the toroidalV T and poloidalV P circulation,Ra=3000.

identical at a Reynolds number a little larger thanRe�=6.3.
This value is close to the critical Reynolds numberRe�cr≈2π
given by the stability analysis for a fluid layer bounded by
two rigid surfaces. As a result, we can propose a quantita-
tive physical interpretation to this special critical value of
the Reynolds number: it seems to point out a balance of
the poloidal and toroidal velocity field. The larger Reynolds
numbers correspond to forced flows under the dominant ef-
fect of helical forcing.

6.4 Forced flow

The numerical approach used in the present study allowed us
to accurately calculate steady state flows for 0≤Re�≤6.5.
The obtained results of theoretical and numerical inves-
tigation discussed above demonstrate that the range of
0<Re�<6.3 just corresponds to mixed helical-vortex con-
vection flows. In numerical experiments forRe�>6.3 we
could observe a few more stationary states untilRe�=7
which were of forced origin. ForRe�>6.6 the flow intensity
increases sharply, and in the flow domain there appear clearly
pronounced velocity and temperature boundary layers. Stud-
ies of these phenomena require the higher spatial resolution,
and different numerical and computing techniques.

However, at this point it is worth discussing an example
of pronounced forced flow to present the peculiarities of the
developing helical-vortex instability and compare it with the
mixed flow in which the effects of both helical-vortex and
convective instability are strong. To this end let us choose
flows characterized by the Reynolds numberRe�=6.4. In
this case atRa=3000 we still have a good sample of the con-
vection effects. On the other hand, it is already, at this point,
in no need of any heating (i.e.Ra=0) to generate an inten-
sive stationary vortex flow, whilst slightly lower Reynolds
numbersRe�<6.4 did not give any instability in isother-
mal conditions. In addition to the two afore-mentioned flows
it seemed useful to examine an intermediate example. We
chose a flow atRa=1100. This value is slightly higher than

the Rayleigh numberRa∗

3≈1071 given by the stability anal-
ysis in Appendix B for the wave number tending to zero at
Re�cr≈2π . Characteristics of the chosen flows are given in
Table5, wheren denotes the number of cells.

Qualitative data from Table5 as well as a number of others
which were presented early are interpreted and summarized
in the next section.

6.5 Peculiarities of energetics and heat transfer

The new effects found in the flow structure and dynamics can
be explained on the basis of flow energetics.

In free convection flow without any complicated effects
there is a single energy source which is the layer heating.
The existence of a stationary convective regime, for example
as it is forRa=3000 andRe�=0 in our study, corresponds
to the energy balance: the energy supplied into the system
by the layer heating from below is transformed into the ki-
netic energy of convective motions, and the remaining part
dissipates due to viscosity and boundary friction.

The situation is changed when the helical forcing is intro-
duced into the convective system. This initiates an additional
energy source simulating an energy flux from the small-scale
helical turbulence. Certainly, its energy also scatters a lit-
tle but the greater part is contributed to the kinetic flow en-
ergy. This contribution is effectively made through a positive
feedback loop and results in a very impressive flow intensi-
fication. This is well illustrated by the quantitative data in
Table3 and Fig.6 as well as by Fig.7 presenting a scheme
of helical convective flow intensification:

An intrinsic feature of helical-vortex convective flow is a
powerful toroidal circulation. Immediately the helical forc-
ing intensity reaches some critical level at the Reynolds num-
berRe�≈4, this velocity field begins to contribute signifi-
cantly to the flow structure and energetics by merging con-
vective cells and thereby breaking down the typical convec-
tive circulation. This process results not only in the increase
of kinetic energy but also in the marked intensification of the
heat transfer. When analyzing data from both Table3 and
Table4 one can first find a very smooth growing of heat flux,
Nu. It concerns the nine-cells flow structure existing within
0<Re�<4. A transition to the eight-cells pattern atRe�≈4
is accompanied by a marked increase in the Nusselt num-
ber. This can only mean that a new flow pattern proves to
be the more optimal means of heat transfer. Data in Table4
also show that the intensification of convection impedes the
cells merging: the flow pattern forRe�=6.5 consists of five
helical vortex convective cells atRa=2000 whilst at higher
Rayleigh numbers,Ra=2500 andRa=3000, one can ob-
serve the six-cells flow structure.

Let us now refer to Table5 containing data for three sta-
tionary flows generated under the dominant effect of helical
forcing at the same Reynolds numberRe�=6.4. This im-
plies the identical power of the helical energy source. Thus,
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Table 5. Integral characteristic values versusRa for the stationary helical flows atRe�=6.4 andPr = 1.

Ra Ek ET
k

EP
k

S� Nu Um Vm Wm n

0 1007 751 256 −6440 0 14.9 29.2 3.6 1
1100 4335 3229 1106 −27981 1.646 30.6 58.6 11.1 1
3000 1380 785 595 −11525 1.729 22.6 37.1 15.1 6

we can compare the efficiency of energetics processes in
three different cases.

In the first case the helical forcing as a single energy source
generates an intensive isothermal helical-vortex flow. In this
state the energy of poloidal circulationEPk =256 is three
times as weak as that ofETk =751 of the toroidal field. In the
second and the third example the flows result from a com-
bined situation of two energy sources: heating from below
and helical forcing.

Without doubt, the second regime demonstrates the high-
est efficiency in that it concerns the helical source energy
transformation into the kinetic energy of vortex flow. When
giving an explanation of this phenomenon, the particular em-
phasis should be placed on the cell numbern in the compared
flows. In the first and the second example the flow pattern
consists of a single large vortex cell occupying the whole
computational domain whilst in the third case one can ob-
serve the six-cells flow structure. The total kinetic energy
at Ra=1100 is much larger than that forRa=3000. Evi-
dently, in the system with helical-vortex instability, the flow
structure in the form of a single large-scale helical vortex is
optimal from the energetics point of view. From the very be-
ginning this instability evolution is accompanied by the de-
velopment of the azimuthal flow. This flow generates the
cells merging which suppresses free convection heat transfer
through the layer. Typical natural convection flow structure
realized as a multitude of small circulation cells with up- and
downward flows is changed by a single helical vortex cell. As
a result, it decreases energy losses due to dissipation. The lat-
ter is well illustrated by comparing the second and third flow
characteristics. It is only worth comparing their total kinetic
energy values,Ek=4335 andEk=1380, bearing in mind that
the second energy value corresponds to much more intensive
heating from below.

Introduction of the helical forcing into the system qualita-
tively changes the heat transfer. Free convection heat transfer
realized atRe�=0 by the poloidal circulation is replaced by
the mixed convection with pronounced azimuthal circulation.
Thus, the helical forcing effect results in the more compli-
cated trajectories of fluid particles compared with the natural
convective flow: both rising of the warm and lowering of the
cold fluid within every vortex cell follow helical paths.

Comparing free convection heat fluxNu=1.586 at
Ra=3000 (nine-cells flow pattern) with data within the six-
cells helical flow structure at the sameRa=3000 one can find

the more intensive heat transferNu=1.729 (Table5). More-
over, even at the far lower Rayleigh number ofRa=1100
(single helical vortex) the heat flux,Nu=1.646, exceeds its
free convection value. Therefore, we can conclude that the
observed rearrangement in the flow structure and dynamics
intensifies the heat transfer through the layer.

7 Conclusion

Our two-stages strategy for numerical simulation of helical-
vortex effects in Rayleigh-B́enard convection with a large as-
pect ratio includes:

– forcing simulation of helical-vortex laminar and turbu-
lent convection by introducing the model force into the
Boussinesq equations;

– direct numerical simulation (DNS) of developed tur-
bulent convection in a rotating fluid with internal heat
sources.

The main idea of the search strategy is the application of a
forcing function which can have a physical interpretation. As
a result of averaging under developing the mean-field equa-
tion for the hydrodynamic alpha-effect, this function param-
eterizes the influence of small-scale helical turbulence gen-
erated in a rotating fluid with internal heat sources.

It is worth particular note that persistent efforts were nec-
essary to achieve this result in helical term of this kind in
the mean-field velocity equation. Constant temperature dif-
ference or constant heat flux could not produce a sufficient
temperature inhomogeneity. Additional heat generation by
internal sources throughout the rotating fluid layer proved to
be a necessary condition to initiate the helical-vortex instabil-
ity. This may well explain why no sign of large-scale helical-
vortex instability has been discovered in numerous studies
on rotating turbulent convection which were without inter-
nal heat release. Comparing the effects of the Coriolis force
and the helical forcing carried out by numerical simulation
in the present investigation also gives convincing arguments
that support this view.

Unlike the Coriolis force, the helical forcing can initiate a
positive feedback between the poloidal and toroidal compo-
nents of the vector velocity field and maintain it by ensuring
an additional energy influx. This feedback is responsible for
the generation of large-scale helical-vortex instability result-
ing in the new effects shown and discussed in this paper.
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The results of the first step in modeling are presented in
this study. The application of the forcing initially to a nu-
merical simulation of laminar helical convection allowed us
to obtain new effects in the flow structure and energetics,
which might be of immediate relevance to the initiation of
large-scale instability in turbulent states. The most important
finding is an enlargement of the typical horizontal scale of the
forming helical convective structures accompanied by a cells
merging, an essential increase in the kinetic energy of flows
and intensification of heat transfer. The results of modeling
allow explaining how the helical feedback can work provid-
ing the non-zero mean helicity generation and the mutual in-
tensification of poloidal and toroidal circulation, and demon-
strate how the energy of the additional helical source can be
effectively converted into the energy of intensive large-scale
vortex flow. Direct numerical simulation has started with us-
ing the helical forcing (Burylov et al., 2004).

It seems interesting to try the inclusion of the proposed
helical forcing in mathematical models describing the devel-
opment of tropical depressions to evaluate the possible effect
of helical feedback linking the horizontal and vertical circu-
lation and compare it with contributions of significant mech-
anisms involved in this early stage of the cyclogenesis. An-
other important application may be found in investigations
of magneto-convection processes in atmospheres of Sun and
stars.

Appendix A

The mean-field equation for the turbulent vortex
dynamo in a convectively unstable rotating fluid

The first example of large-scale alpha-like instability in hy-
drodynamics of non-conducting fluid was discovered by
Moiseev et al.(1983b) for homogeneous isotropic helical
turbulence in a compressible medium. Moreover, further in-
vestigations have demonstrated that this example is the sim-
plest in the sense of mathematical description. Indeed, he-
licity of the velocity field is mathematically represented by
nonzero pseudoscalarα∼〈<v·curlv〉> 6=0. For a compress-
ible fluid due to asymmetry of the Reynolds stress tensor this
has found to be sufficient to obtain after averaging the gen-
erating alpha-term, curl(αω), describing the mean vorticity
of the large-scale flow. It is precisely this term that allows
us to obtain the solution ensuring an exponential growth of
vorticity.

For an incompressible medium the situation is quite dif-
ferent. If the turbulence is homogeneous and isotropic, the
break of reflection symmetry generating nonzero helicity of
the small-scale velocity field is not a sufficient condition for
the existence ofHα-effect. This is attributed to the fact that
in incompressible flows the Reynolds stress tensor is sym-
metrical. Therefore, when developing an equation for mean
vorticity of the velocity field the pseudoscalar coefficientα

must necessarily vanish. This implies that some additional
factors are needed for the symmetry break enabling us to con-
struct a generating term in the averaged equations.

The first example of a vortex dynamo for homogeneous
isotropic helical turbulence in an incompressible fluid was
discovered byMoiseev et al.(1988). In this case, the addi-
tional factors breaking the symmetry were the gravity force
and the temperature gradient. A mathematical description of
Hα-effect developed in this work is more sophisticated than
for a compressible medium. In their mathematical model of
theHα-effect Moiseev et al.(1988) postulated the helical
turbulence existence directly at the very initial step of the
problem formulation. This suggests that such a break of re-
flection invariance of small-scale turbulence can be produced
by a combined action of vertical inhomogeneity (for exam-
ple, by stratification sufficiently unstable for convection ini-
tiation) and the Coriolis force.

An attempt to incorporate these factors explicitly into the
mean-field model by parameterizing the process of helicity
generation on small scales was made byRutkevich(1993).
To this end, turbulent convection was considered in a rotating
horizontal layer of incompressible liquid.Rutkevich(1993)
did not postulate turbulence helicity in the initial problem
formulation. Small-scale turbulence was modeled as that
driven by a random external force and considered as highly
anisotropic. The inverse influence of small-scale convection
on the temperature gradient was taken into account what re-
sulted in a large-scale temperature profile which was closer
to a neutral one.

Assuming that the linear temperature gradient generated
by uniform temperature difference between the layer bound-
aries is unable to ensure vertical inhomogeneity necessary
for initiating a large-scale instability,Rutkevich(1993) sug-
gested the inclusion of additional inhomogeneity in the prob-
lem formulation. Volumetric heating of the layer by internal
sources was taken into account providing a temperature pro-
file in the form of square parabola. Convective flow was con-
sidered in a layer of thicknessλ bounded above and below
by a fluid with slightly stable stratification. Unstable strati-
fication within the layer was provided by both heating from
below and uniformly distributed internal heat sources. Tem-
perature profile was specified as a Taylor expansion along the
vertical directionz, and its curvature assumed to be insignif-
icant:

T0(z) = const− Az−
B

2
z2

+ ..., (A1)

A,B > 0, A �
B

2
λ.

Convection of this kind was considered byGribov and Gure-
vich (1956) and byJulien et al.(1996) for a rotating layer.
The convection threshold for these conditions was found to
be lower than for a layer bounded from above and below,
and convective flows were found to be elongated along the
vertical direction due to the effect of penetrative convection.
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The efforts made in this direction led to the following
mean-field equation (Rutkevich, 1993):(
∂

∂t
−1

)
〈vi〉 + T a1/2Pimεmsj es〈vj 〉 = (A2)

= s1Pim∇k (emεkra + ekεmra) er 〈va〉

Here,〈vi〉 is the mean velocity field,Pim is a projection op-
erator eliminating a potential part of the velocity field,ei the
unit vector directed vertically upward,εijk the antisymmet-
rical Levi-Chivita tensor. As investigations on helical turbu-
lence in magnetohydrodynamics (Krause and R̈adler, 1980)
have shown, the terms with tensorεijk are responsible for
initiating large-scale instability. By analogy with the hy-
dromagnetic equation for alpha-effect, the expression on the
right of Eq. (A2) involving helicity of the velocity field can
be named the alpha-term. Equation (A2) differs from the
early model (Eq.1) by the Taylor numberT a term charac-
terizing the fluid layer rotation. Another difference is an ab-
sence of the Rayleigh number term describing convection on
large scales that is a result of taking into account the influ-
ence of small-scale convection on the temperature gradient
over the whole layer height. The expression on the right of
Eq. (A2) involves the Reynolds stresses with helical terms.
This indicates that under examined conditions a homoge-
neous small-scale anisotropic turbulence becomes helical.

The governing parameters in Eq. (A2) are the Taylor num-
ber T a1/2

=2�h2/νT and the coefficients1 in front of the
alpha-term. This coefficient depends on physical parameters
of fluid and turbulence characteristics in a rather complicated
manner (Rutkevich, 1993):

s1 = 2�τη2Eτ
2

λ2

h

λ

ν

νT

Bλ

A
, (A3)

where� is the angular velocity of fluid layer rotation,E is
the density of turbulence energy,λ andτ are the most ener-
getic scale and characteristic time of the turbulent velocity
correlation,A is the constant temperature gradient between
the horizontal boundaries of the layer,B is a coefficient char-
acterizing the power of internal heat sources,h is the layer
height,ν is the molecular coefficient of kinematic viscosity,
νT is the coefficient of turbulent viscosity on the large scale,
η is a dimensionless parameter specifying the aspect ratio (of
typical vertical to horizontal dimension) for small-scale con-
vective structures.

It should be noted that here the coefficient before the
alpha-term does not contain the prescribed helicity of small-
scale turbulence. Now the parameters1 is found to be depen-
dent on the density of turbulence energy, the Coriolis force
and the measure of nonlinearity of the temperature gradient.

The most important achievement reached as a result of
analysis of Eq. (A2) and having considerable significance in
the development of the hydrodynamic alpha-effect theory is
that which concerns the effect of internal heat release. Pa-
rameters1 includes a ratioB/A formed by coefficients de-

scribing the temperature profile in expression (A1) for ini-
tial problem formulation (Rutkevich, 1993). In the absence
of internal heat release (B=0) the excitation of large-scale
instability is impossible since heating from below (A6=0) is
not a sufficient condition for generating the vortex dynamo
effect.

Therefore, followingRutkevich(1993), we may conclude
that in the case of convectively unstable fluid the concept of
turbulence helicity suggests a parameterization of the com-
bined effect of the Coriolis force and internal heat release.
The obtained result provides every reason to consider the
process of free convection under the above conditions as an
effective mechanism for turbulence helicity generation on
small scales.

Appendix B

Linear stability analysis: plane horizontal layer

Let us consider a horizontal fluid layer 0<z<h bounded be-
low and above by two parallel planes and infinite in thex
andy directions. Its lower and upper boundaries are main-
tained at constant and different temperatures,T1 andT2, re-
spectively, so that the positive Rayleigh numberRa>0 cor-
responds to the heating from below whilstRa<0 is for the
above heated layer. The hydrodynamic boundary conditions
include three cases: both lower and upper surfaces are free
or rigid, and the mixed situation consisting of their combina-
tion.

In the limiting caseRe�=0 system (Eq.6) is reduced
to the Boussinesq equations whose solutions for differ-
ent boundary conditions were carefully analyzed inChan-
drasekhar(1961); Gershuni and Zhukhovitsky(1972) by
both the methods of linear and nonlinear theory of hydro-
dynamic stability. The convective instability only arises after
exceeding some critical Rayleigh number and evolves into a
flow pattern consisting of numerous small cells. The cells are
created by poloidal circulation, each having the characteris-
tic horizontal dimension of the order of layer height. This
corresponds to the well-known Rayleigh-Bénard convection
(Chandrasekhar, 1961; Gershuni and Zhukhovitsky, 1972).

Equations (6) at Ra 6=0 andRe� 6=0 have the steady so-
lution corresponding to a mechanical equilibrium which we
consider as a basic state.

We examine the conditions under which the quiescent so-
lution is unstable against small non-stationary disturbances
depending exponentially on time and periodic in thex andy
directions.

Thermal and hydrodynamic boundary conditions for the
disturbance amplitudes in the case of both isothermal bound-
ing surfaces can be written in dimensionless form as

T = 0, at z = 0; 1,

rigid boundary: V = 0, (B1)
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(a) (b)

Fig. B1. (a)Neutral curvesRa(k) for Re� (1) 0.0; (2) 2.0; (3) 3.0;
(4) π ; (5) 4.0; (6) 5.0; (7) 6.0; and(b) minimal critical Rayleigh
number versus helical feedback intensityRe� atPr=1, n=1.

free boundary: w = 0,
∂u

∂z
=
∂v

∂z
= 0.

The analysis of stability has been accomplished following
the standard procedure discussed in detail inChandrasekhar
(1961); Gershuni and Zhukhovitsky(1972). For the prob-
lem under consideration describing the helical convection,
the spectrum of disturbances is found to be dependent on
three parameters:Ra, Pr andRe�.

In the general case the spectral problem for the disturbance
amplitudes can be solved numerically, for example, by the
Runge-Kutta method with an automatic step selection.

Specifying Pr=1 we could considerably simplify the
spectral problem formulation and analytically obtain its ex-
act solution in the case of the fluid layer bounded by two free
surfaces.

B1 Instability of fluid layer with free boundaries

In the caseRe�=0, we obtain the classical Rayleigh prob-
lem which has an analytical solution given, for example, in
monograph (Gershuni and Zhukhovitsky, 1972): the mini-
mal (i.e. lowest from the possible ones for disturbances of
different scale) critical Rayleigh number marking the onset
of convection isRam=657.511, and the corresponding wave
number iskm=2.221. Our numerical method applied to this
problem yields the highly close valuesRam=657.512 and
km=2.221.

To trace the effect of the helical feedback introduced into
the system atRe� 6=0, the following formula was obtained
for the neutral curve:

Ra =
(n2π2

+ k2)3 − (Re�)2n2π2(n2π2
− k2)

k2
(B2)

which decides the critical Rayleigh number marking the in-
stability onset against the disturbance with the prescribedk

andn. Here,k andn define the horizontal and vertical scale
of the disturbance, respectively. The lowest critical Rayleigh
number can be found for a fundamental mode of instability
characterized byn=1. By changingRe� one can obtain the
neutral curves located in the plane (Ra, k).

FigureB1 demonstrates the neutral stability curves atn=1
for a number of parameterRe�, including Re�=0 – left
panel, whilst in the right panel the minimal critical Rayleigh
numberRam versusRe� is presented.

The minimum of neutral curve 1 forRe�=0, marking the
natural convection onset at some threshold valueRam≈658,
is located within a medium wave number area atkm≈2.2 –
Fig. 7a.

The effect of the helical feedback generation(Re� 6=0) re-
sults in reduction of the threshold of convective instability:
the critical Rayleigh number decreases with the increase of
the parameterRe� – Fig. 7b. It means that this new factor
appeared in the system, in addition to the buoyancy affects
a warmer and lighter fluid causing it to rise from the heated
lower boundary.

The minimum of neutral stability curves is shifted to
small wave numbers (long wave domain), implying the
growth of typical horizontal scale of arising structures.
With the parameterRe� approaching some critical value
Re�cr=π , the threshold Rayleigh number tends to a limit
valueRa∗

=4π4
≈390 whilst the wave number tends to zero.

Formally, this corresponds to an infinite horizontal dimen-
sion of a supercritical flow and suggests profound changes
in the flow pattern compared with the natural convection: in-
stead of a set of relatively small cells there appears a large
scale structure that occupies the whole available space.

The curveRa(k) at Re�cr=π also serves as a boundary
separating two domains within which the solutions display
a quite different behavior. Above it the neutral curves have
minima, the stability domain is contiguous to the vertical
Ra-axis and contains the solutions with comparably smaller
wave numbers, i.e. corresponding to the longer waves. Below
the separating curveRe�cr=π the picture is just opposite: the
unstable solutions area adjoins theRa-axis whilst the domain
of stability is located to the right from the neutral curves and
towards the larger wave numbers (shorter waves). The lower
neutral curves have no minima and carry on over a domain
of negative Rayleigh numbers.

The helical forcing can generate a vortex flow for
Re�>Re�cr=π in the absence of any temperature inhomo-
geneity (Ra=0).

Moreover, ifRe�>Re�cr=π some instability can be gen-
erated for any Rayleigh number, and even in conditions of
heating from above that is usually impossible in natural con-
vection flows without any complicated factors. This demon-
strates the dominant effect of helical forcing forRe�>π and
corresponds to forced convection flows.
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Thus, important conclusions following from the above
consideration are worth to note particularly: the helical forc-
ing operates favoring the long wave flow generation and de-
creasing the threshold of instability.

B2 Instability of fluid layers with rigid and mixed bound-
aries

In this formulation the full analysis of the corresponding sta-
bility problem even for the natural convection flow atRe�=0
could be carried out only by using some numerical methods
(Gershuni and Zhukhovitsky, 1972).

To investigate the conditions of the onset of helical con-
vection flow we applied the same numerical approach used
and tested for the layer with free boundaries. It resulted in
data that follow.

For the onset of natural convection flow atRe�=0, we
obtained for the fundamental mode of instability (n = 1)
that the critical Rayleigh number with the corresponding
wave number wereRam≈1707.967 andkm≈3.117 (rigid
boundaries);Ram≈1100.777 andkm≈2.682 (mixed bound-
aries). They are found to be in a very good agreement
with the similar values fromGershuni and Zhukhovitsky
(1972): Ram≈1707.762 andkm≈3.116; Ram≈1100.657
andkm≈2.682 for rigid and mixed boundaries, respectively.

For all three types of boundary conditions the neutral
curves display the similar behavior only differing in the in-
stability threshold values as well as in the limit Reynolds
numbers which correspond to a border(Ra, k) separating
the regions of different neutral curve behavior in the plane
(Ra, k). The borders are found to be located atRe�cr≈1.5π
for the mixed boundaries and atRe�cr≈2π for the rigid ones.

According to expectations, the threshold Rayleigh number
at any fixed Reynolds number proves to be the highest for
the fluid layer with both rigid boundaries. The approximate
limit Rayleigh numbers corresponding to the wave number
tending to zero have been also found (n=1) : Ra∗

1≈390 is for
the layer with free boundaries,Ra∗

2≈682 – with the mixed
andRa∗

3≈1071 – with the rigid.
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