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Abstract. A numerical approach is substantiated for search-large-scale vortex disturbances by means of energy transfer
ing for the large-scale alpha-like instability in thermoconvec- from small to large scales. The generating properties of
tive turbulence. The main idea of the search strategy is thesmall-scale helical turbulence leading to the large-scale
application of a forcing function which can have a physical structure formation were first discovered in magnetohydro-
interpretation. The forcing simulates the influence of small-dynamics bySteenbeck et al(1966; Krause and Bdler
scale helical turbulence generated in a rotating fluid with in-(1980. This phenomenon is known as the alpha-effect.
ternal heat sources and is applied to naturally induced fullyThe discovery of thex-effect paved the way towards a
developed convective flows. The strategy is tested using th@igorous development of MHD-dynamo theory. The formal
Rayleigh-Benard convection in an extended horizontal layer similarity of equations describing the magnetic field in a
of incompressible fluid heated from below. The most im- moving electrically-conducting medium and vorticity in
portant finding is an enlargement of the typical horizontal non-conducting fluids gave an impetus to an intensive search
scale of the forming helical convective structures accompafor analogs to this phenomenon in general hydrodynamics.
nied by a cells merging, an essential increase in the kinetic The first evidence supporting the existence of similar phe-
energy of flows and intensification of heat transfer. The re-nomenon for a non-conducting medium was found by Moi-
sults of modeling allow explaining how the helical feedback seev et al. who discovered the hydrodynamic alpha-effect
can work providing the non-zero mean helicity generation (Hu-effect) in compressible fluid for isothermal conditions
and the mutual intensification of horizontal and vertical cir- (Moiseev et al. 1983 and incompressible convectively un-
culation, and demonstrate how the energy of the additionaktable fluid Moiseev et al.1989. Based on the resultdQi-
helical source can be effectively converted into the energy ofseev et al.1983h a physical mechanism was proposed for
intensive large-scale vortex flow. enhancing large-scale vortex disturbances in the atmosphere
using the energy of small-scale helical turbulenmiceev

et al, 19833. In further works they extended this idea and
developed a theory of the turbulent vortex dynamo in hydro-
dynamics of non-conducting fluid.

Thermal convection driven by a temperature non- Frisch et al (1987 provided not only th_eore_tical grounds
homogeneity is one of the most common modes offor the existence of the amsoFroplc.kmetlc alpha—effect
fluid and gas flow. In the atmosphere non-uniform heat-(AKA-effect), but supported their finding by full simula-
ing results in the formation of convective circulations of tions of the three-dimensional Navier-Stokes equations. This
different scale and frequently serves as a source of turbukinetic (non-MHD) large-scale instability may develop in
lence. Turbulent convective motions in rotating systems'nCQmPress_'ble three-dimensional anisotropic flows_lacklng
such as planet atmospheres become helical and mirrdp@rity-invariance. In th(_a last deche a number of interest-
non-symmetricalloffatt, 1978 Parker 1979. Small-scale N9 stud|.es have dealt with the appllce}tmn of t_he AKA-effect
helical turbulence has a number of special features and unddp describe the processes occurring in density-stratified dif-

certain conditions is capable of intensifying and sustainingf€rentially rotating astrophysical bodie&itchatinov et al.
(19949, Pipin et al.(1996, and some others cited Bran-

Correspondence tdG. V. Levina denburg and v. RekowsKP001) who discussed the astro-
(levina@icmm.ru) physical significance of the AKA-effect.

1 Introduction

Published by Copernicus GmbH on behalf of the European Geosciences Union and the American Geophysical Union.



206 G. V. Levina and I. A. Burylov: Num. simulation of helical-vortex effects in R.-B. convection

The early modelloiseev et al. 1988 of the large-scale rotating turbulent fluid is of particular intereddgatyryovy
alpha-like instability generated by the interaction between199Q Bogatyryov and Smorodjri996. When interpreting
the convective flow in an extended horizontal layer heatedthe discovered effect an idea was advanced that the small-
from below and prescribed external small-scale helical turbu-scale helicity of the rising thermals from the temperature
lence of non-convective origin was generalizedatkevich ~ boundary layer might be responsible for the onset of crisis
(1993 to a natural case of convective turbulence in a rotatingsituation favoring the development of large-scale disturbance
layer heated from below and by internal heat sources. Thiswith a structure of helical vortex. A thorough investigation of
was a demonstration that the concept of helical turbulencahe velocity field of this laboratory vortexBpgatyryov and
suggests a parameterization of the combined effect of th&&morodin 1996 revealed a similarity to the velocity field of
Coriolis force and the additional to the heating from below tropical cyclones. These experiments were restarted at our
energy flux generated, for example, by internal heat releaséboratory recentlyKolesnichenko et al2002 Bogatyryov
due to vapor condensation. et al, 2006. They are focused on the modeling of physical

In the field of atmospheric research Kurgansky reachedmechanisms and conditions leading to the formation of inten-
the same conclusion independent§u¢gansky 1993 1998 sive atmospheric vortices and aimed at obtaining the quanti-
1999. These investigations are summarized in Sect. 4.1 otative results by means of modern Particle Image Velocime-
Kurgansky’s recent boolurgansky 2002. This was prob-  try technique. This is giving us an additional impetus to de-
ably one of the very first attempts to introduce the most ex-velop the appropriate numerical approach for comprehensive
tensive theories regarding helicity into meteorological mono-studying the helical-vortex phenomena in thermoconvective
graphs and giving the most general helicity balance equatioturbulence.
in a rotating compressible fluid. Kurgansky showed that un- The paper is organized as follows. In Sect. 2 a way to
der moist convection in a rotating fluid an additional energy simulate the large-scale helical-vortex instability in a con-
release due to phase transition of moisture is just the condivectively unstable fluid is proposed, a forcing function to in-
tion required to achieve the non-zero dynamo-effect and detroduce into the Boussinesq equations is derived and result-
veloped a theoretical model for the turbulent vortex dynamoing balance equations for energy and helicity are examined.
(Kurgansky 1998 1999. Kurgansky’s model contained the In Sect. 3 the governing equations are given, in Sect. 4 they
helicity balance equation for the small-scale turbulent veloc-are adapted for numerical modeling, and the numerical real-
ity field in addition to a linear equation for the mean vorticity ization is discussed. The numerical results are described in
generation on large scales similar to tHe-effect equation  details in Sect. 5. Section 6 offers our two-stages strategy
in Moiseev et al(1988. This allowed the restriction of the for numerical simulation of the helical-vortex instability and
growth of large-scale instability and achieved saturated i.econclusions concerning the results obtained at the first stage.
stationary states what could be considered as further progresvo appendices are included: (A) to describe the mean-field
towards a more realistic dynamo model. equation with the alpha-term generating the vortex dynamo

Thus, a number of factors have been defined which areeffect and (B) to discuss the results of the linear stability anal-
found to be necessary for the existence of the hydrodynamigsis.
a-effect in conditions of non-uniformly heated medium:
thermoconvective turbulence, rotation, internal heat sources.

In the authors’ opinion, it is worthy of note that the energy 2  Helical-vortex convection: problem formulation and
release in water phase transitions may not be the only in- conservation laws

ternal source of heat. In nature, the formation of helical

atmospheric vortices can be sustained by the additional enfhe first mean-field equation of theseffect in a convec-
ergy of both heat release due to condensation of vapor (cloutive system was obtained by the statistical averaging method
vortices-tornadoes, waterspouts and tropical cyclones) an@Moiseev et al. 1988. It described the influence of small-
intensely heated solid particles in conditions of dry convec-scale helical turbulence on the classical Rayleigm&d
tion (dust devils). We expect that thexkeffect in thermo-  convection in a plane infinite horizontal layer of incompress-
convective turbulence may result in a large-scale hydrody-ible liquid heated from below.

namic (non-MHD) instability of a new type that may re-  The most demonstrative physical interpretation of the ob-
ally exist in Nature, namely, helical-vortex instabilitygv- tained effect can be given in terms of toroidal and poloidal
ina et al, 2000. component of the vectorial velocity fiel§ipffatt, 1978, i.e.

To support the theoretical hypothesis on generating propin the form of representation that is frequently used in mag-
erties of small-scale helical turbulence a series of laboratorynetohydrodynamics and is well suited for transformation of
experiments started at the Institute of Continuous Media Me-corresponding vector equations to the system of equations
chanics and Perm State University in the late 1980s. Soméor scalar functions. Let us choo3efor denoting the mean
of them resulted in promising findings surveyedlievina  velocity field (v;) and express it in the following form:
et al. (2000, amongst which a laboratory large-scale inten-
sive spiral vortex generated from a localized heat sourceinaV =Vy +Vp,Vy =curl(ey), Vp = curlcurl(e ¢) .
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Now a mathematical model of helical-vortex convection in carried out within the framework of the linear and nonlinear
the simplest representation allowing for the new large-scalegheory of hydrodynamic stability. They have demonstrated

instability can be written ad.evina et al, 2000 2001, 2004):

0
Pr——A)T=-AL16,
<r8t ) 10

<i—A>A¢=RaT+S[(8V)2—AL]1/fa 1)

ot

(3 A) = —S(eV)?
a7 Y =-S(eV)e,

Ah*
Pr = i , Ra= sp ,
X VX

e=1{0,0,1}.

Here, T is the temperatureys and ¢ are the toroidal
and poloidal potentials of the velocity field, and
A1 =03%/0x24+0°%/3y? is the two-dimensional Laplace
operator.Pr and Ra are the Prandtl and Rayleigh numbers,
e the unit vector directed vertically upward, the uniform

that the intensification of the helical feedback (an increase
of the helicity paramete§) causes a decrease in the thresh-
old of convective instability and enlargement of the charac-
teristic horizontal scale of arising convective motions. As
soon as the helicity parameter reaches critical vaiie the
wave number vanishes. Formally, this corresponds to an infi-
nite horizontal dimension of a supercritical flow and suggests
qualitative changes in the flow pattern: the system of small
cells with a characteristic horizontal scale of order of layer
height, normally observed as Rayleiglgéard convection,
should be rearranged into a single large vortex, which tends
to occupy the entire available space. According to Bj. (
the toroidal and poloidal components of the large-scale ve-
locity field in such vortices should be linked, forming thereby
a helical structure of large-scale circulation.

Thus, it has been demonstrated that the action of small-
scale helical turbulence within the RayleigterBard convec-
tion may initiate a new large-scale instability — the helical-
vortex.

temperature gradient between the horizontal boundaries of The analysis of investigations on helical-vortex instabil-

the layer, g the gravity accelerationg the coefficient of
thermal expansion; the layer height. The dimensionless

ity in a convective system carried out in review bgvina
et al. (2000 has revealed a number of crucial points which

parameterS characterizing the small-scale turbulence is are specified below.
related in a rather complicated manner to the coefficients of All currently available mean-field models ofu=effect in

kinematic viscosityy and thermal diffusivityy, the turbu-
lence characteristics such as the most energetic acaiwl
characteristic time of the turbulent velocity correlation. Of

a convectively unstable fluid are found to include linear evo-
lution equations for the large-scale velocity field and have
exponentially growing solutions. At this stage no one pre-

fundamental importance is its proportionality to the meansenting this way of theoretical researdhqjseev et al.1988

value of the scalar product of the turbulent velocity
by the vorticity —S~(v”-curlv”), what owes its origin

Rutkevich 1993 Levina et al, 2000 has obtained any non-
linear terms for the mean-field velocity equation capable of

to the assumption of the prescribed helicity of turbulence.restricting the instability growth within these models. This

The explicit representation of the paramefers given in
Moiseev et al(1988.
The system of dynamic linear equations (Ejfor three

makes them inapplicable to simulate any steady mean flow
by numerical calculations.
On the other hand, review.¢vina et al, 2000 outlined

large-scale fields includes two different positive feedbacks.a clear sign indicating the onset of helical-vortex instabil-

One of them acts between the poloigatomponent of the
velocity field and the field of temperature disturbartelt
links the first and the second equations in systéjnapd

ity: the initiation of positive helical feedback between the
toroidal and poloidal components of the vector velocity field.
Such feedback may be generated in a helical eddy cell in

leads to natural convective instability. The other directly which the velocity field is characterized by a linkage of the

links the solenoidal componengsandy of the velocity field,
i.e. the second and the third equations from syst®mThis

vortex lines of toroidal and poloidal flow components, i.e. by
non-zero helicity-curl v£0.

feedback, being related to specific properties of small-scale It has served as a basic idea for developing a numerical

helical turbulence, is sustained only through the paranseter
Therefore, let us name it the helical feedbackS#0, then

approach by.evina et al (2001, 2004 to study the evolution
of helical-vortex instability in conditions of turbulent thermal

flow V shows a new topological property — the linkage of the convection. A key to the approach is the addition of a model

vortex lines of toroidal and poloidal flow component. The

force to the convection equations.

positive helical feedback would be expected to cause a new It is widespread in turbulence modeling to have a forcing

type of instability.

Within the model ), the large-scale instability in the layer
with free boundaries was discovered in the same wighi{
seev et al.1988 whilst for other types of boundary con-
ditions it was found slightly laterlffubimov and Smorodin
1989 Berezin and Zhukav1990. Those investigations were

www.nonlin-processes-geophys.net/13/205/2006/

function driving a turbulent flow. However, the forcing term

in our simulation is not assigned to be a driving force. It
is applied to naturally induced, fully developed convective
flows and is assumed to be responsible for the generation of
a helical flow structure with-curlv£0 and positive helical
feedback. Probably, the best forcing for this purpose is the

Nonlin. Processes Geophys., 22220666
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generatingx-term from the mean-field velocity equation de- The model force is similar to the Coriolis force in that they
scribing the H-effect in a convective systerivipiseev et al. are both the functions of velocity, i.e. dependent on the flow
1988 Rutkevich 1993 Levina et al, 2000. to which they are applied. It might be helpful to present
here the expressions describing the components of the model
2.1 Forcing term to generate the positive helical feedback force f and the Coriolis forcef ©°" along the correspond-
ing directions(x, y, z) in order to demonstrate the difference
Numerical simulation based on the nonlinear Boussineschetween these functions
equations has been suggested. Within this approach the mo- v ou 9v  ou
mentum equation is additionally supplied with a model force.  f = 2Qh {—, - — = —}
The computational algorithm will be discussed in detail in 0z o0z ox  dy
the corresponding section of this work. fO=2Q v, —u, 0},

The qugl forge Is assumed to be a va_riable whose eNSQLhere the velocity vectoV has three components v, w
structure is _|dent|cal to. that of thg geperatmg aI_pha-term _(thealong the directiongr, y, z), respectively.
correqundlng mean-f!eld EqA.Z) is given and discussed in An essential feature of the model for¢ds its dependence
Appendix A). Indeed, in physical terms the alpha-term rep-,

tsaf h licit be obtained by a f ot simply on velocity but on its spatial derivatives. The latter
resents a force, whose explicit form can be obtaned by a evYmplies that the model force, unlike the Coriolis force, works
manipulations on the right of expressioh):

and can pump an additional energy into the system under ex-
amination. It is also evident that thecomponent absent in
the Coriolis force is the necessary element to close the feed-
back loop between the components of the velocity field. The
way in which the forcing functiory is involved in genera-
tion of positive feedback between the poloidal and toroidal
velocity field will be explained in detail and illustrated by
numerical results.

; (4)

f=s1{e(curl V), —d(e x V)/az}, (2)

whereV is the vector notation for the mean velocity field
(v;), eisthe unit vector along the vertical axis
In Moiseev et al(1988; Rutkevich(1993, the mean field

equation was derived whilst being subject to a great num
ber of simplifying and limiting assumptions resulting in the
variety of physical and geometrical parameters entering th
coefficients;. In order to avoid an over complication we
may deduce that the variabjein our numerical approach is

amodel force. Bearing in mind that the basic intent of model; seems useful to write down the energy and helicity bal-

force is to generate helical structure of the flow with positive gpce equations in these new conditions in view of the helical

helical feedback, it seems to be natural to interpret this coefteedpack will pump an additional energy into the system and

ficient as an intensity of the initiated feedback. Deriving the gpould also generate the non-zero mean helicity.

explicit form of this coefficient is based on the following. Following the similar way as ifGolitsyn (1979; Busse
Indeed, the correct introduction of a new term in an equa-(1981); Frisch (1995 the appropriate balance equations for

tion suggests the conservation of symmetry and dimensiozonvection in a horizontal layer of incompressible fluid based

properties of the initial equation. on the Boussinesq approximation can be obtained in the fol-
All terms entering the momentum equation from the |owing form:

Boussinesq system are the polar vectathgndrasekhar

1961, Gershuni and Zhukhovitsk{ 972 whereas both terms 4 <u> —gB(wT) —v <|w|2> +

in expressionZ) are pseudo vectors. Therefore, to conserve df\ 2

the symmetry, one should introduce a pseudo scalar variable v

into the coefficient in front of the model forcing function. +2Gh ((w @z) + <(e x V) a_z>> ’

Physical formulation of the problem and the resultRatke-

vich (1993 indicate that the angular velocity of liquid rota- ¢ <u> —wT) - <|VT|2> ®)

tion Q is an adequate variable. In correspondence with the dt '

dimension requirement this quantity should be multiplied by Voo

characteristic length which is assumed to be the layer height — <_> =gB(w, T) —v(w-curlw) +

%2 Energy and helicity balance in helical-vortex convec-
tion

h. An additional point to be remembered is that to describe dr\ 2
the geophysical flow in a rotating layer one usually takes the 5 AV \?2
Coriolis parameter which is equal to twice the angular veloc- +2Qh | (wf) — <8—2> )
ity 2Q. '
Now the model forcing function may be written in dimen-  , — cyrjv | V= {u,v, w}, ® = {0y, 0y, 0.},

sional form as
where:w is the vorticity and angular brackets denote spatial
f=2Qnh{e(curl V), —d(e x V)/dz}. 3) averaging.

Nonlin. Processes Geophys., 13, 2082 2006 www.nonlin-processes-geophys.net/13/205/2006/
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For stationary flows the expressions on the left of balanceCoriolis force in the momentum equation describing convec-
equations are equal to zero. Thus, for stationary free convedion in rotating fluid, i.e. the Taylor numberZa/2. How-
tion without any forcing the energy balance is described byever, allowing for the difference between two above men-
the first two terms on the right of the velocity and tempera-tioned forces (Eg4) in order to avoid any tanglement, we
ture equations@olitsyn, 1979 Busse 1981]): this implies a  denote this numbeRe? — the Reynolds number defined by
balance of buoyancy and viscosity forces in the first case an@ characteristic value of the angular velodity This new di-
a balance of convective heat transfer and entropy productiomensionless parameter characterizes the intensity of the he-
in thermal convection in the second equation. No helicity lical feedback between the toroidal and poloidal component
generation takes place in free convection without rotating ef-of the velocity field.
fects. Equations §) describe a mixed convection flow Ru#0

As it follows from the above equations, model forcing andRe®#0. The special caske*=0 corresponds to that the
function @) does operate contributing to both the energy andnelical feedback is absent, and systéi¢ reduced to the
helicity balances. However, in both cases we cannot makd&oussinesq equations describing free convection. Another
any definite estimations based only on balance equation anapossibility is connected with vortex flows driven by the heli-
ysis. A contribution to the energy balance is described as &al forcing atRe*=£0 in an isothermal situation gt=const
sum of two alternating-sign terms, and to the helicity bal- and consequentiyga=0.
ance the forcing function contributes two terms of constant New theoretical model (E@) was first analyzed in terms
but different signs. Although the forcing does not contribute of the linear theory of hydrodynamic stability (see Ap-
explicitly to the temperature equation, yet it should influence pengix B).
the convective heat_ transfer via affecting the velocity field.  11q jinear stability analysis showed that the positive heli-
Therefore, a numerical analysis seems to be the most effeGs,) feedback introduced into the convective system can initi-
tive way to clear up this question. In fact, we will give some 40 4 |ong wave instability appearing at much lower Rayleigh
estimations for different terms in balance equations @d. ympers than the natural convective instability. The analy-
in due course. sis also resulted in preliminary estimations for the range of

parameter variations to use in numerical calculations.

3 The governing equations

We investigate helical convective flows initiated in an ex- 4 Numerical implementation

tended horizontal layer of incompressible fluid which is

bounded above and below by surfaces sustained at constafihe proposed approach for searching for the large-scale

and different temperatures. alpha-like instability is first applied to the 3-D laminar
A mathematical model involves the nonlinear BoussinesgRayleigh-Benard convection in an incompressible fluid layer

equations, in which the momentum equation in addition in-extended in horizontal directions and heated from below. A

cludes forcing function3) (Levina et al, 2001, 2004): remarkable feature of the RayleigleBard problem is that
its solution for a laminar state represents a great number of
v + iVVV =—Vp+ AV + RaTe + Re® f, similar convective cells. In our approach they can be con-
ot Pr sidered as structures of an intermediate scale. The forcing
3T term making the flow helical and pumping the energy into
Prﬁ +VVT = AT, divV =0, the system simulates the influence of small-scale helical tur-

(6) bulence. Thus, a contribution of different scale flows is taken
into consideration. Further, in the context of the global alpha-

f=e-(curlV), — M, e=1{0,0,1}, effect hypothesis, an intriguing question arises: is it possible
0z to simulate some signs of large-scale helical-vortex instabil-

9B(T1 — To)h® v o 2042 ity whilst operating in these relatively simple conditions?
Ra = T Pr = L Re™ = ——. Initially, we are trying to discover the phenomena related

to an excitation of the helical-vortex instability by using the
Here: p is the pressure 7§ —T>) the typical temperature dif- most accessible computational techniques with a minimum
ference between horizontal boundaries of the layer, We havexpenditure of time. The simplest mathematical formulation
chosen the layer height the typical temperature difference of the problem involving helical-vortex effects is obtained for
(T1—T3), the combination&?/v, x/h and povy /h? asthe  the flow in the cylindrical geometry domain with axial sym-
units to measure length, temperature, time, velocity and presmetry. In this case, all three components of the velocity vec-
sure, respectively. tor are retained ensuring the non-zero heliditycurlV 0,

The dimensionless criterion in front of the model forcing whereas all physical fields become dependent on only two
function f is found to be exactly equal to that before the spatial variables.

www.nonlin-processes-geophys.net/13/205/2006/ Nonlin. Processes Geophys., 22220666
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Bearing in mind the predictions of the linear stability anal- The numerical investigation was carried out by the method
ysis, we allow for the possibility of the existence of supercrit- of finite differences using an explicit scheme. The Poisson
ical motions with the horizontal scale much greater than theequation for the stream function was solved by the successive
vertical. We choose for our simulation a bounded flow do- over-relaxation method. When searching for steady flows we
main extended in horizontal directions, with an aspect ratioused a pseudo-unsteady method to solve the evolution prob-

of 10. lem in order to obtain the steady solutionras cc.
The numerical experiment was carried out using the fol-  The flow domain was assumed to have the aspect ratio of
lowing scheme. the cylinder radius to the heigl® :  for all calculation re-

Atoour first stage the convective instability for low super- sults equal to 10:1. Thus, under the constraint of axial sym-
critical Rayleigh numbers angle®*=0 was initiated by speci- metry 3/9¢=0, the computational domain represented the
fying a point vortex disturbance in the center of the computa-g x 1=10x 1 rectangle.
tion domain at the initial time. The characteristic horizontal In methodical calculations the discretization of computa-
scale of the resulting supercritical mode and, respectivelygona| domain varied broadly, while for obtaining basic re-

the structure numbers in the layer (if we are dealing with theg ,ts we used the grid 260 along the radius and height
bounded region as it is in our case) are determined by a COMpegpectively.

bination of the prescribed values of the paramefers Ra
andRe“.

At the second stage when convective instability evolution
resulted in a developed steady-state convective flow, the he- L , )
lical feedback was excited on this background by settingTO r.e'present t.he results manlfestmg t.he helical-vortex in-
Re2£0. stability evolution a set of characteristics have been noted

In this way we expect to observe a drastic rearrangemenYVhiCh best illustrate the distinguishing features of this phe-

in the flow structure and discover how a broadening of con-"0Menon. . _ .
vective cells may be realized. Flow evolution of this kihnd ~We can anticipate that foke*7£0 the helical forcingf

4.2 Integral characteristics

may simulate a similar process in turbulent flows. is to make the flow helical. The forcing should also provide
the positive feedback between the toroidal and poloidal com-
4.1 Problem formulation for a cylindrical domain ponent of velocity and pump some kinetic energy into the

convective system in addition to the thermal energy ensured
Numerical realization is described in detaillievina et al. by the heating from below. That is why the following integral
(2004 which includes a mathematical statement of the prob-characteristics were introduced and analyzed:
lem in a closed form with initial and boundary conditions.

We introduce the cylindrical coordinatés, ¢, z} and con- 1 )
sider only axially symmetrical flow$(d¢=0). Thus, whilst S0 = / V-curlvdQ, Ex = 5/ g,
maintaining the equation for azimuthal velocityin model 0 0
(6), the pressure can be eliminated from the equations by (8)
introducing the stream functiow and theyp-component of
vorticitwaz seom Eg:%/UZdQ, E/f=%/(uz+w2)dQ-

ow 10 ou Jw ¢ ©
u=——, w=-—0w¥Y), w,=—-——, @)

9z ror 9z or The velocity field characteristi§, can be called the total
whereu andw are the radial and vertical velocity compo- flow helicity integrated over the examined computational do-
nents. main. This value specifies the motion with linked vortex lines

After the above transformation, mathematical mo®| ( of horizontal and vertical circulation, and its Sign depends on
written in terms of stream function, vorticity, azimuthal ve- the circulation direction in the forming vortex structures. We
locity and temperature is found to be included three evolu-were also examining attentively the evolution of three other
tionary equations and the Poisson equation for the streanfelocity-related quantities characterizing the flow energetics:
function. In the set of three velocity-related variables cho-the total kinetic energyt, and separately the kinetic energy
sen for calculationy describes the toroidal field (horizontal Of the toroidalE] (horizontal circulation) and poloidat;”
circulation) whilst¥ andw, characterize the poloidal field (vertical circulation) velocity fields.

(vertical circulation). As a quantitative measure of convective heat transfer

All the bounding surfaces of the cylinder were assumedthrough the layer one usually takes the Nusselt numbher
to be impermeable, rigid, and non-slip. Thermal conditionsThis is the ratio of the dimensional heat transfer through the
included fixed temperatures at the lower and upper surfacefuid layer A to the heat flux (71—T7») that can only be pro-
corresponding to the heating from below, whereas the lateratiuced (at the same temperature difference) due to the molec-
surface was adiabatic. ular heat conductivity Gershuni and Zhukhovitskyl972
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Table 1. Integral characteristic values for the stationary free con-

1 T T T T
vection flow atRe$®=0, Pr=1 andRa=3000.
z [@elelelelelelel)
Ex El Ef So Nu Un Vi Wn
0 1 1 1 1
0 2 4 r 6 8 1

0 245 0 245 0 1586 11.3 0.0 111
1
Z W (b) symmetrical annular rolls. Figurk presents, for example,
MJUU isoline maps for a fully steady-state free convective flow at
0 I h L ReQ:O, Pr=1 andRa=3000.
0 2 4 r 6 8 10 In the projection onto the calculation domain within the

plane ¢,z), the convective rolls look like the system of cells
Fig. 1. Isoline maps for the stationary free convection flow at with vertical circulation. Such typical free convection circu-
Re®*=0, Pr=1 and Ra=3000: (a) stream function(b) tempera- lation is created only by the poloidal velocity field which is
ture; =0 corresponds to the axis of symmetry location. described in our numerical approach by two scalar functions

— the stream functiony, andg-component of vorticitygw,,

introduced by Egs.7). Resulting structures in the velocity

Golitsyn, 1979 Busse 1981) so that: field are well represented in the stream function map, Fig.
A 9T The poloidal velocity field in the circulation cells alternates
Nu = (=T A=« / %dﬁ- (9)  its direction from structure to structure. Indications “+” and
r “—"1in the cell centers correspond to positive and negative

n th f | is th | £ th values of the stream function. The number of these cells lo-

n these formu a@T/a" Is the norma 'component ofthe  cated along the radius appears to be nine here and within

temperature gradient, and the integration is performed OVef o whole range of the Rayleigh number 1808 <4000

the upper boundary. Being a characteristic of the intensity Their horizontal scale, as expecte@h(andras_ekha_ll%l

of convective heat transfer the Nusselt number also aIIowsGershuni and Zhukhovitsky972, is comparable with the

the estlmatl.on of the |nt§n§|ty of convective motlon.. . cylindrical layer height. Cursors in Figa as well as temper-
The maximum and minimum values of all physical vari- 46 field isolines in Figlb clearly indicate areas of upward

ables over all internal nodes of the computational domain, 4 qownward flow. For the obtained state. as is usual with

were also fqund and an alyzed. natural convection flows, the azimuthal velocity component
In numerical experiments the Prandtl number was asg absenty=0.

sumeq equal toPr=1 throughout the calcula_\tlons_, the Integral characteristic values for this stationary free con-
Rayleigh number and the Reynolds number varied widely. vection flow are given in Tablé, wherel,,, V,, andW,, are
used for denoting the maximum absolute values of the radial,
azimuthal and vertical velocity component, respectively. Un-
der typical conditions of free convection, horizontal circula-
Let us begin with discussing the steady-state natural convedion (toroidal field) is not formed because 00, and no
tive flow to which we apply the helical forcing. helicity generation takes place. Th|s_ resglts in that E]

For the problem under consideration computations were2ndSo are found to be equal to zero in this case.
carried out to define the threshold of natural convection at Between anumber of natural convection flows, which have
Re®=0 in the horizontally extended (with aspect ratio of Peen obtained and examined for use as initial distributions,

10) yet bounded layer of the cylindrical geometry. They We are choosing one & =3000 to apply the helical forcing

yielded the critical Rayleigh numbeta®~1724. It proves and discuss new effects.

to be rather close to the critical Rayleigh number for a plane

infinite horizontal layer with rigid boundarie®a®~1708,

given by the linear stability theorydershuni and Zhukhovit- 6  Structure dynamics, energetics and heat transfer in

sky, 1972. This is a good reason to believe that numerical  helical-vortex convection

simulation of helical convectioiRe®?s£0) in the extended

cylindrical layer may also rely on the linear analysis estima-For the purpose of the current examination some data con-

tions for a plane infinite horizontal layer discussed in Ap- cerning the linear stability analysis of the plane infinite layer,

pendix B. heated from below and with boundaries that are both rigid,
In cylindrical geometry using the axial symmetry condi- are given for the fundamental mode of instabilig=1) in

tion the stationary convective motions are realized as axiallyFig. 2.

5 Basic steady-state free convective flow
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Fig. 2. Minimal critical Rayleigh numbers and corresponding wave
numbers versuge? at Pr=1,n=1.

Figure 2 shows the curvesRa, (Re®) and k,, (Re®). . W (c)
On both plots one can readily differentiate two regions w
of quite different response of the examined characteristics: A ——a A —4
0<Re® <4 andRe>4. With a smooth increase in the inten- 0 2 4 6 8 10
sity of helical feedback from 0 to &Ra,, andk,, vary rather
slowly. Further movement into the regi®e®* >4 causes the  _. . ) . i
. . . . . Fig. 3. Isoline maps for the stationary helical convection flow at

drgmatlc changes in thea,, andk,, behavior. Evidently, in Re$*=3, Pr=1 andRa=3000: (a) stream function(b) azimuthal
this area one may expect the appearance of some new eﬁe%ﬁlocity; (c) temperature;=0 corresponds to the axis of symmetry
and essential rearrangement in the flow pattern. location.

These data supply us with estimations for the range of pa-
rameterRe? variation to use in numerical simulation as well
as for projected dimensions of arising helical structures.  from the poloidal field of convective circulation due to the

By varying the Rayleigh and Reynolds numbers widely, helical feedback.

400<Ra <4000 and &R€Q§6-5, and using various ini- A set of isoline maps including two velocity-related fields
tial distributions, a few stationary helical-vortex convective gng atemperature field &z=3000 andrRe*=3 is presented
states have been obtained. in Fig. 3.

Applying the helica_l forcing to the steady-state_ convection  The isoline map of the azimuthal velocity in the plane
flow assumes the maintenance of the same heating that genet: ) in Fig. 3b is similar in structure to the corresponding
ates a convectl\éze instability and using all the physical fieldSgiream function field in Fig3a, and the planar circulation
calculated atRe**=0 as initial distributions. Thus, in our 5154 changes its direction from cell to cell. Positive val-
simulation the forcing function is not a stirring force but the |5 in Fig.3b correspond to the counterclockwise circula-
opposite: helical forcing Eq3] is applied to a formed free (o seen from the top, whilst the negative azimuthal velocity
convection flow and operates further under conditions of ex-epresents the clockwise circulation in a horizontal plane at
isting convective instability. As it is dependent on the veloc- . _const. Thus, despite the alternating signs of both poloidal
ity field via its spatial derivatives, the forcing is initiated by 5nq toroidal circulation from cell to cell, they correlate in that
the same flow that it then affects fairly softly still making the \yay a superposition of themselves within each convective
flow helical and supplying it with an additional energy.  cel| results in the left-handed spiral flow. The examined sam-

Let us examine how the free convection flow is modified ple gives us nine left-handed spiral structures within the com-

under the helical forcing. putational domain. This type of motion should possess some
non-zero helicity of the identical sign over the whole flow do-
6.1 Helicity generation main. As a result of the pseudo-scalar nature of this quantity,

its sign depends on a frame of reference introduced for the

The analysis of helicity balance equation from Ef).ghows  problem under consideration. In the right frame, chosen for
that the use of forcing functior8) should result in helicity  the present investigation, the left-handed flow is described by
generation. the negative value of helicity. Consequently, the total helicity

The first sign indicating the helical feedback introduced integrated over the computational domain should be negative
into the convective system is the generation of the toroidal@s well.
velocity field. Such planar circulation formed by the az-  Our numerical problem formulation developed for a con-
imuthal component of velocity is non-typical for natural con- fined cylindrical box cannot be valid for any immediate cal-
vection without any complicated factors. Here it is generatedculation to make a correct and accurate comparison between
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Table 2. Integral characteristic values for the stationary convec-

1 T T T T
tion flow at Re**=3, Pr=1 andRa=3000: under the Coriolis force
z @ (a) (CF) and the helical forcing (HF)
0 1 1 1 1
0 2 4 6 8 1
r

9o 5
ek

CF 244 1 243 22 1584 112 11 110
HF 299 34 265 —-1793 1621 113 6.4 148

4

then, decreasing, reaches zero and changes its sign, and be-
0 gins increasing again towards the opposite layer boundary.
Superposing on poloidal circulation it results in a motion of
‘ fluid particles along conical surfaces. Rotation signs are the
m opposite in the upper and lower cones. This proves to be
z W (c) in good agreement with Chandrasekhar’s theoretical results
MW (Chandrasekhad961) and Boubnov and Golitsyn’s experi-
0 2 4 6 8 10 ments on rotating convection when they observed cone-like
r shapes at an initial stage of instability evolution and in the
parameter space close to a critical cuBebnov and Golit-
Fig. 4. Isoline maps for the stationary convection flow under the syn, 1986 1990. Since the flow helicity in cones from each
Coriolis force atRe’=3, Pr=1 and Ra=3000: (a) stream func-  pair within the same poloidal cell has the opposite signs, the
tion; (b) azimuthal velocity;(c) temperaturer=0 corresponds 10 4t helicity of the pair may be insignificant. Therefore, for
the axis of symmetry location. the flow under consideration representing a number of coni-
cal pairs, even the appearing flow helicity for a separate pair
may be considerably compensated by helicity values in other
the terms in balance Eq)( which have been derived un- pairs. As far as we could expect in this case, the flow he-
der assumption of periodic functions and periodic boundaryjicity over the whole computational domain should be close
conditions Erisch 1995. Nevertheless, we calculated these to zero. Indeed, it appears to be insignificant in compari-
terms in order to have some qualitative estimations. Indeedgon with the corresponding magnitude for the helical mode
the total helicity of flow found to be negative for all the cases gjven in the lower line in Table 2, and its non-zero value may
considered in this study. The biggest negative helicity contri-originate either from the boundary conditions asymmetry or
bution is made by the second term of forcing function, whilst g finite-difference error.
its first term contributes positively. In these conditions the 14 gescribe helical convection flow we follow an evolution
buoyancy force generates negative helicity, and the visCOUgf the total flow helicityS, (Eqs.8) in addition to other in-
force participates with positive contribution. tegral characteristics of natural convection. In order to have
It is appropriate at this stage to compare the effects of apsome more detailed information on the helicity field, it might
plying the helical forcing with the Coriolis force. With this also be useful to estimate its spatial distribution density. This
in mind we solved the same equations from systéjrb(t can be readily accomplished by decomposing the flow area
did so with the Coriolis force introduced into the momentum into a few sublayers. In the present study this approach
equation. In this case the dimensionless parameter charads applied for three horizontal sublayers of equal thickness.
terizing the intensity of the Coriolis force was found to be In designation the sublayers are counted off from the lower
exactly the sameRe®, as for the helical forcing. Similar layer boundary §o1, So2, Sos), and the absence of the fig-

isoline maps aRa=3000 andRe*=3 are shown in Fig4. ure in the index denotes a total value of this quantity for the
It may be noted that one velocity-related field in Fig. ~ Whole flow domain.
and the temperature field in Fidc look absolutely identi- Indeed, as far as we could expect from analysis of stream

cal with the corresponding fields in Fi§. However, the function and azimuthal velocity isoline maps, the flow he-
azimuthal velocity pattern in Figtb is drastically different licity generated by the helical forcing proves to be negative
from that in Fig.3b. The azimuthal velocity field generated over the whole computational domain — Fi. FigureSb

by the Coriolis force changes its sign along the layer heightpresents another possibility of helicity generation of differ-
within each cell of poloidal circulation. The intensity of pla- ent signs within the computational domain. This is found to
nar circulation is gradually increased in direction from ei- be realized applying the Coriolis force with the safmé?=3

ther boundary where all velocity components vanish. It hasto the same initial flow.

a maximum value of a definite sign approximately at half the The corresponding integral characteristics for both cases
distance between each boundary and the middle of the layegan be found in Tabl&.
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Fig. 6. Flow energetics evolution under the helical forcing at
Fig. 5. Helicity evolution atRe?=3, Ra=3000 andPr=1: (a) Re®*=6, Ra=3000 andPr=1.
under the helical forcingb) under the Coriolis force.

Re®=6 quite a different situation takes place: the energy
Some more interesting results based on these data shoulgenerated by forcing becomes twice as large as the buoyancy
be also pointed out. Integral characteristics for the convecenergy.
tion generated under the Coriolis force are extremely close
to the corresponding values given for the free convection6.2 Positive feedback loop
flow in Tablel1. Since the Coriolis force does not work, it
cannot pump an additional energy into the system. That ign order to understand the way the positive helical feedback
why, a toroidal field generation results in a redistribution of acts providing a mutual intensification of the velocity com-
the velocity component intensity: an appearance of weak azPonents we applied a quantitative analysis of both toroidal
imuthal velocity leads to a slight decrease of the radial and@nd poloidal field evolution using separate variables for the
vertical velocity values. Helical forcing generates a more in-kinetic energye/ and £/, respectively.
tensive flow as an examination of all characteristics in Ta- Table3 contains integral characteristics for a number of
ble 2 shows. Though the velocity componentis, and W,,, steady-state helical-vortex convective flows calculated for
forming the poloidal circulation, have fairly close maximum different Re*, and for comparison purposes it begins with
values for both cases, the azimuthal compon®gt,is much the initial distribution data for the free convection flow at
greater when generated by the helical forcing. The resultgRe?=0.
also correspond with the values of the kinetic energy — the he- As a representative sample that can clearly show the in-
lical forcing generates a much more intensive toroidal field.fluence of the helical feedback, let us consider, for example,
The intensity of heat transfer across the layer characterizethe flow atRe*=6. Flow energetics evolution can be traced
by the Nusselt numbeu, is also appreciably higher under following Fig. 6 which showsE andE/ as well as total ki-
the helical forcing. Evidently, to explain these differences in netic energyty of developing helical convection flow versus
the flow characteristics we have to remember the most esseriime while reaching a steady state.
tial feature of the helical forcing. Unlike the Coriolis force  Kinetic energy values at initial time=0 are those corre-
it creates the positive feedback loop linking the poloidal andsponding to the initial distribution aa=3000 andRe?=0
toroidal velocity field. To maintain this new feedback the which is given in Tables.
forcing should pump some mechanical energy into the con- The helical forcing introduced into the system, begins with
vective system in addition to the heating from below. immediate generation of the toroidal velocity field, and it is
As it follows from the kinetic energy balance equation this field that appears to be the most responsive to its influ-
from Eq. 6), this is the case, indeed. However, similarly, to ence. Figuréa shows an abrupt increase of the toroidal field
the earlier analysis of helicity balance we can only give someenergy fromEkTZO up to approximatel;EkT:ZSO within the
qualitative evaluation based on our rapid calculation. Contri-first two—three time units, and Figb demonstrates a narrow
butions of buoyancy and viscosity forces are of fixed signs.initial time interval enlarged. The growing toroidal field can
Evidently, the first of them is positive, and the second is neg-be the only reason for changes in the poloidal field intensity.
ative. The forcing function contributes in a former manner, These changes soon become appreciable, although less im-
i.e. its first and second term generates the energy of oppopressive: the poloidal field is fast growing froff =245 for
site sign. However, in this balance equation the first terminitial distribution atr=0 uptoE,f%33O within the very first
contributes negatively, and the second does positively. It igime interval 0<z<0.1, and later changes more smoothly. As
very important to note that the positive energy value is sev-the helical forcing is the only source of mechanical energy
eral times greater than negative for all examined flows. Then this system, one can consider the increasing poloidal field
positive contribution of forcing increases with increase of theas a catalyst for further growth in the toroidal field, thereby
Reynolds number. Thus, fa&te*=3 the energy pumped by closing the positive helical feedback loop. Such mutual in-
the forcing function into the convective system is found to tensification of velocity components through the feedback
be five times less than the buoyancy energy. However, atoop is observed until the flow reaches a stationary state, as
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Table 3. Integral characteristic values for the stationary helical convection flowsatl and Ra=3000.

R E  El Ef 5o Nu  Un Vo  Wa

0.0 245 0 245 0 1586 11.3 0.0 111

1.0 251 4 247 -558 1590 113 20 115

2.0 268 14 254 -1147 1601 114 40 127
3.0 299 34 265 -1793 1621 113 64 148
4.0 365 83 282 -2809 1.728 127 10.0 10.6
5.0 474 149 325 -4034 1.761 13.1 132 142
6.0 796 367 429 -7029 1688 170 224 133
6.3 903 437 466 -8009 1.733 164 225 154
6.5 1422 806 616 -11973 1959 23.2 373 157

illustrated by Fig6 and Table3. As one can see by compar- Q.
ing initial (corresponding taRe®=0) and final (atRe®=6) Table 4. Number of cells versuge** in the steady states &r=1.

values of kinetic energyk;=245 andE;=796, this process

proves to be very effective: the total kinetic eneffgyof the R*= 0 35 4 45 5 55 6 65
flow has become more than three times as large. Ra=2000 9 9 8 8 8 7 6 5

Ra=2500 9 9 8 8 8 7 7 6
6.3 Cells merging Ra=3000 9 9 8 8 8 7 7 6

Figure 6 demonstrates two well-marked kinks of energy
curves corresponding to time values3 andr~17. Simi-  points out the beginning of a drastic rearrangement in the
lar qualitative results have been obtained for other flows bufflow structure and energetics revealing itself at first in the
only those characterized by Reynolds numRef*>3.5—4. cells merging.
To explain this peculiarity we examined the whole set of flow  Table4 contains calculation results regarding a number of
characteristics used in this study as well as referring to thestructures within the computational domain for a few values
results of linear stability analysis. The theoretical curve in of Rayleigh number. It is evident that instead of nine struc-
Fig. 2b indicates that one should expect dramatic changesures in the initial free convection distribution R£2=0, a
in the typical horizontal scale of structure for Reynolds num-resulting helical flow, for example @e*?=4, proves to pos-
bers close taRe‘?=4: this curve shows a considerable broad- sess eight circulation cells continuously filling up the compu-
ening of structures. As a result of numerical simulation antational domain. This value of the Reynolds number marks
enlargement of structure scale by cells merging has been dis starting point for the cells merging within a wide range of
covered. the Rayleigh number variation up #®a <4000 used in our

It seems to be appropriate to base the search for an exsalculations.
planation of this new phenomenon on other peculiarities of The data in Tablet also illustrate a possibility of a few
helical convection. cells mergers in a developing helical flow. For the flow at

Probably, the most important dynamic feature of convec-Re®=6 and Ra=3000 whose energetics evolution is shown
tion flow formed under the helical forcing is a generation in Fig. 6 the number of cells is equal to seven unlike nine
of the intensive toroidal field. One can find two variables cells in the initial distribution. It allows us to interpret two
characterizing the toroidal circulation in TatBemaximum  kinks of curves in Fig6 as two successive cells merging. In
value V,, of the azimuthal velocity and kinetic energi,{. both cases, as the kinetic energy values demonstrate, the cells
As the corresponding data show this velocity field grows merging leads to a considerable increase in the flow intensity.
very quickly, far quicker than the poloidal field, with an in- By varying the Reynolds number one can observe up to
crease in the Reynolds number. At Reynolds nunitiét=3 four merging atRa=2000 and three merging #&a=2500
the azimuthal component of velocify,,=6.4 is still much  andRa=3000.
lower than two other velocity components,,=11.3 and At the Reynolds numbeRe =4 marking the initiation of
W,,=14.8, forming the poloidal field which is usually con- cells merging, the total poloidal circulation formed by the
nected with the thermal convection circulation. At Reynolds vertical and radial velocity components possesses the kinetic
numberRe‘?=4 the azimuthal velocity,,=10.0 is found to  energy that is still much greater than the kinetic energy of
be extremely close to the maximum value of the vertical ve-the toroidal circulation — as Tabl& shows, for Ra=3000
locity W,,=10.6. This means that the azimuthal transfer be- they areE,f=282 andEkT=83. Table3 also illustrates the
comes strong enough to compete against the vertical one. foint at which intensities of two velocity fields may become
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t=0 the Rayleigh numbeRa3~1071 given by the stability anal-
Stationary free convection Re’=0 | g [ o helial ysis in Appendix B for the wave number tending to zero at
9 cells > feedback Re$¥~2r. Characteristics of the chosen flows are given in

E/=0, E=245

L Table5, wheren denotes the number of cells.

t=10 y Qualitative data from Tablgas well as a number of others
which were presented early are interpreted and summarized

1 |
| |
|
Developing helical convection Re“=6 | ! | A
8 cells b o\ in the next section.
E=262,  E'=395 Ve \
|
\ 1 \
| |
| |
| |

(=20 6.5 Peculiarities of energetics and heat transfer

Stationary hellgaiecﬁ): veetion fte =6 4—{ The new effects found in the flow structure and dynamics can
E/=367,  E'=429 be explained on the basis of flow energetics.
In free convection flow without any complicated effects
Fig. 7. Scheme of flow intensification through the helical feedback there is a single energy source which is the layer heating.
linking the toroidalV 7 and poloidalV' p circulation,Ra=3000. The existence of a stationary convective regime, for example
as it is for Ra=3000 andRe*=0 in our study, corresponds
] ] ] to the energy balance: the energy supplied into the system
identical at a Reynolds number a little larger thiaf?=6.3. by the layer heating from below is transformed into the ki-

This value is close to the critical Reynolds numBegi~27  netic energy of convective motions, and the remaining part
given by the stability analysis for a fluid layer bounded by dissipates due to viscosity and boundary friction.
two rigid surfaces. As a result, we can propose a quantita-

tive physical interpretation to this special critical value of

The situation is changed when the helical forcing is intro-
Fluced into the convective system. This initiates an additional

:Ee Relyglolijsnr&utmrb(iedr: Il\t/ sleeirtnsﬁt? de_Jrlth (I)urt ar bRaIazc:ad Oenergy source simulating an energy flux from the small-scale
€ poloidal and torolaal velocity Tield. The larger REynolas p o) tyrbulence. Certainly, its energy also scatters a lit-

numbers <_:orresp(_)nd fo forced fiows under the dominant ef'tle but the greater part is contributed to the kinetic flow en-
fect of helical forcing.

ergy. This contribution is effectively made through a positive
feedback loop and results in a very impressive flow intensi-
fication. This is well illustrated by the quantitative data in

The numerical approach used in the present study allowed u¥aPle3 and Fig.6 as well as by Fig7 presenting a scheme
to accurately calculate steady state flows ferRe?<6.5.  Of helical convective flow intensification:
The obtained results of theoretical and numerical inves- An intrinsic feature of helical-vortex convective flow is a
tigation discussed above demonstrate that the range dgpowerful toroidal circulation. Immediately the helical forc-
0<Re%<6.3 just corresponds to mixed helical-vortex con- ing intensity reaches some critical level at the Reynolds num-
vection flows. In numerical experiments f&@%>6.3 we  ber Re®~4, this velocity field begins to contribute signifi-
could observe a few more stationary states URHf:=7 cantly to the flow structure and energetics by merging con-
which were of forced origin. FoRe$?>6.6 the flow intensity ~ vective cells and thereby breaking down the typical convec-
increases sharply, and in the flow domain there appear clearlﬁve circulation. This process results not only in the increase
pronounced velocity and temperature boundary layers. Studof kinetic energy but also in the marked intensification of the
ies of these phenomena require the higher spatial resolutiodeat transfer. When analyzing data from both Tebkend
and different numerical and computing techniques. Table4 one can first find a very smooth growing of heat flux,
However, at this point it is worth discussing an example Nu. It concerns the nine-cells flow structure existing within
of pronounced forced flow to present the peculiarities of theO<Re®<4. A transition to the eight-cells pattern R¢%~4
developing helical-vortex instability and compare it with the iS accompanied by a marked increase in the Nusselt num-
mixed flow in which the effects of both helical-vortex and ber. This can only mean that a new flow pattern proves to
convective instability are strong. To this end let us choosebe the more optimal means of heat transfer. Data in Table
flows characterized by the Reynolds numie®*=6.4. In also show that the intensification of convection impedes the
this case aRa=3000 we still have a good sample of the con- cells merging: the flow pattern fate**=6.5 consists of five
vection effects. On the other hand, it is already, at this point,helical vortex convective cells @&a=2000 whilst at higher
in no need of any heating (i.2a=0) to generate an inten- Rayleigh numbersRa=2500 andRa=3000, one can ob-
sive stationary vortex flow, whilst slightly lower Reynolds serve the six-cells flow structure.
numbersRe® <6.4 did not give any instability in isother- Let us now refer to Tabl® containing data for three sta-
mal conditions. In addition to the two afore-mentioned flows tionary flows generated under the dominant effect of helical
it seemed useful to examine an intermediate example. Wédorcing at the same Reynolds numbge?=6.4. This im-
chose a flow aRa=1100. This value is slightly higher than plies the identical power of the helical energy source. Thus,

6.4 Forced flow
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Table 5. Integral characteristic values versRs for the stationary helical flows a&e?=6.4 andPr = 1.

Ra Ej El  EF Sq Nu Upn Vu Wy n

0 1007 751 256 —6440 0 149 292 36 1
1100 4335 3229 1106 —27981 1.646 306 586 111 1
3000 1380 785 595 -11525 1729 226 37.1 151 6

we can compare the efficiency of energetics processes ithe more intensive heat trans®u=1.729 (Table5). More-
three different cases. over, even at the far lower Rayleigh number R§=1100

In the first case the helical forcing as a single energy sourcésingle helical vortex) the heat fluu=1.646, exceeds its
generates an intensive isothermal helical-vortex flow. In thisfree convection value. Therefore, we can conclude that the
state the energy of poloidal circulatioB} =256 is three observed rearrangement in the flow structure and dynamics

times as weak as that & =751 of the toroidal field. Inthe ~ Intensifies the heat transfer through the layer.
second and the third example the flows result from a com-

bined s!tuatlon_of two energy sources: heating from below;  ~gnclusion

and helical forcing.

Without doubt, the second regime demonstrates the high©Our two-stages strategy for numerical simulation of helical-
est efficiency in that it concerns the helical source energyortex effects in Rayleigh-8nard convection with a large as-
transformation into the kinetic energy of vortex flow. When pect ratio includes:
giving an explanation of this phenomenon, the particular em-
phasis should be placed on the cell numbarthe compared
flows. In the first and the second example the flow pattern
consists of a single large vortex cell occupying the whole

— forcing simulation of helical-vortex laminar and turbu-
lent convection by introducing the model force into the
Boussinesq equations;

computational domain whilst in the third case one can ob- — direct numerical simulation (DNS) of developed tur-
serve the six-cells flow structure. The total kinetic energy bulent convection in a rotating fluid with internal heat
at Ra=1100 is much larger than that f&®ea=3000. Evi- sources.

dently, in the SyStem with helical-vortex |nStab||Ity, the ﬂOW The main idea of the search Strategy is the application of a
structure in the form of a smglg Iarge_-scale helical vortex 'Storcing function which can have a physical interpretation. As
OPt'ma' fro_m_the er_1_erget|cs PO'”F of view. From the very be- 5 requit of averaging under developing the mean-field equa-
ginning this instability evolution is accompanied by the de- iy, tor the hydrodynamic alpha-effect, this function param-
velopment of the azimuthal flow. This flow generates the gierizes the influence of small-scale helical turbulence gen-
cells merging which suppresses free convgctlon heat tra”Sfeérated in a rotating fluid with internal heat sources.

through the layer. Typical natural convection flow structure It is worth particular note that persistent efforts were nec-
realized as a multitude of small circulation cells with up- and essary to achieve this result in helical term of this kind in
downward flows is changed by a single helical vortex cell. ASthe mean-field velocity equation. Constant temperature dif-

aresult, it decreases energy losses due to dissipation. The I§srence or constant heat flux could not produce a sufficient
ter is well illustrated by comparing the second and third flow temperature inhomogeneity. Additional heat generation by

characteristics. It is only worth comparing .the!r tot.al kinetic internal sources throughout the rotating fluid layer proved to
energy valuesk=4335 andE,=1380, bearing inmind that o 5 hecessary condition to initiate the helical-vortex instabil-

the second energy value corresponds to much more intensivl?y_ This may well explain why no sign of large-scale helical-

heating from below. vortex instability has been discovered in numerous studies
Introduction of the helical forcing into the system qualita- on rotating turbulent convection which were without inter-

tively changes the heat transfer. Free convection heat transfefa| heat release. Comparing the effects of the Coriolis force

realized atRe=0 by the poloidal circulation is replaced by and the helical forcing carried out by numerical simulation

the mixed convection with pronounced azimuthal circulation. in the present investigation also gives Convincing arguments
Thus, the helical forcing effect results in the more compli- that support this view.

cated trajectories of fluid particles compared with the natural ynlike the Coriolis force, the helical forcing can initiate a
convective flow: both riSing of the warm and |0W€ring of the positive feedback between the po]oida| and toroidal compo-
cold fluid within every vortex cell follow helical paths. nents of the vector velocity field and maintain it by ensuring
Comparing free convection heat fluWu=1586 at an additional energy influx. This feedback is responsible for
Ra=3000 (nine-cells flow pattern) with data within the six- the generation of large-scale helical-vortex instability result-
cells helical flow structure at the sarRe=3000 one can find ing in the new effects shown and discussed in this paper.
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The results of the first step in modeling are presented inmust necessarily vanish. This implies that some additional
this study. The application of the forcing initially to a nu- factors are needed for the symmetry break enabling us to con-
merical simulation of laminar helical convection allowed us struct a generating term in the averaged equations.
to obtain new effects in the flow structure and energetics, The first example of a vortex dynamo for homogeneous
which might be of immediate relevance to the initiation of isotropic helical turbulence in an incompressible fluid was
large-scale instability in turbulent states. The most importantdiscovered byMoiseev et al(1988. In this case, the addi-
finding is an enlargement of the typical horizontal scale of thetional factors breaking the symmetry were the gravity force
forming helical convective structures accompanied by a cellsand the temperature gradient. A mathematical description of
merging, an essential increase in the kinetic energy of flowsH «-effect developed in this work is more sophisticated than
and intensification of heat transfer. The results of modelingfor a compressible medium. In their mathematical model of
allow explaining how the helical feedback can work provid- the Ha-effect Moiseev et al.(1988 postulated the helical
ing the non-zero mean helicity generation and the mutual inturbulence existence directly at the very initial step of the
tensification of poloidal and toroidal circulation, and demon- problem formulation. This suggests that such a break of re-
strate how the energy of the additional helical source can bdlection invariance of small-scale turbulence can be produced
effectively converted into the energy of intensive large-scaleby a combined action of vertical inhomogeneity (for exam-
vortex flow. Direct numerical simulation has started with us- ple, by stratification sufficiently unstable for convection ini-
ing the helical forcingBurylov et al, 2004). tiation) and the Coriolis force.

It seems interesting to try the inclusion of the proposed An attempt to incorporate these factors explicitly into the
helical forcing in mathematical models describing the devel-mean-field model by parameterizing the process of helicity
opment of tropical depressions to evaluate the possible effeggeneration on small scales was madeRatkevich(1993.
of helical feedback linking the horizontal and vertical circu- To this end, turbulent convection was considered in a rotating
lation and compare it with contributions of significant mech- horizontal layer of incompressible liquidRutkevich(1993
anisms involved in this early stage of the cyclogenesis. An-did not postulate turbulence helicity in the initial problem
other important application may be found in investigations formulation. Small-scale turbulence was modeled as that
of magneto-convection processes in atmospheres of Sun ardtiven by a random external force and considered as highly
stars. anisotropic. The inverse influence of small-scale convection

on the temperature gradient was taken into account what re-
sulted in a large-scale temperature profile which was closer

Appendix A to a neutral one.

Assuming that the linear temperature gradient generated
The mean-field equation for the turbulent vortex by uniform temperature difference between the layer bound-
dynamo in a convectively unstable rotating fluid aries is unable to ensure vertical inhomogeneity necessary

for initiating a large-scale instabilityRutkevich(1993 sug-
The first example of large-scale alpha-like instability in hy- gested the inclusion of additional inhomogeneity in the prob-
drodynamics of non-conducting fluid was discovered bylem formulation. Volumetric heating of the layer by internal
Moiseev et al.(1983h for homogeneous isotropic helical sources was taken into account providing a temperature pro-
turbulence in a compressible medium. Moreover, further in-file in the form of square parabola. Convective flow was con-
vestigations have demonstrated that this example is the sinsidered in a layer of thicknessbounded above and below
plest in the sense of mathematical description. Indeed, heby a fluid with slightly stable stratification. Unstable strati-
licity of the velocity field is mathematically represented by fication within the layer was provided by both heating from
nonzero pseudoscalar-(<v-curlv)>#0. For a compress- below and uniformly distributed internal heat sources. Tem-
ible fluid due to asymmetry of the Reynolds stress tensor thisserature profile was specified as a Taylor expansion along the
has found to be sufficient to obtain after averaging the genwvertical directiornz, and its curvature assumed to be insignif-
erating alpha-term, cudtw), describing the mean vorticity jcant:
of the large-scale flow. It is precisely this term that allows

. . B . B 2
us to obtain the solution ensuring an exponential growth of7y(z) = const— Az — 5% + . (A1)
vorticity. B
For an incompressible medium the situation is quite dif- A,B >0, A> EA.

ferent. If the turbulence is homogeneous and isotropic, the

break of reflection symmetry generating nonzero helicity of Convection of this kind was considered Gyibov and Gure-
the small-scale velocity field is not a sufficient condition for vich (1956 and byJulien et al.(1996 for a rotating layer.
the existence of{ a-effect. This is attributed to the fact that The convection threshold for these conditions was found to
in incompressible flows the Reynolds stress tensor is symbe lower than for a layer bounded from above and below,
metrical. Therefore, when developing an equation for mearand convective flows were found to be elongated along the
vorticity of the velocity field the pseudoscalar coefficient  vertical direction due to the effect of penetrative convection.
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The efforts made in this direction led to the following scribing the temperature profile in expressidd) for ini-

mean-field equatiorRutkevich 1993: tial problem formulation Rutkevich 1993. In the absence
of internal heat releaseB&0) the excitation of large-scale
(3 — A) (vi) + Tal/? PimEmsjes(v;) = (A2) instability is impossible since heating from belows£0) is
ot not a sufficient condition for generating the vortex dynamo
= 51 Pim Vi (em&ikra + ekEmra) €r(Va) effect.

Therefore, followingRutkevich(1993, we may conclude
that in the case of convectively unstable fluid the concept of
turbulence helicity suggests a parameterization of the com-
bined effect of the Coriolis force and internal heat release.
The obtained result provides every reason to consider the
process of free convection under the above conditions as an

hg\(e _shown, the te”T‘S W|tr_1.tensg)§-k are resporl5|ble for effective mechanism for turbulence helicity generation on
initiating large-scale instability. By analogy with the hy- small scales

dromagnetic equation for alpha-effect, the expression on the
right of Eq. (A2) involving helicity of the velocity field can
be named the alpha-term. Equatiok2] differs from the
early model (Eql) by the Taylor numbefa term charac-
terizing the fluid layer rotation. Another difference is an ab- | jnear stability analysis: plane horizontal layer
sence of the Rayleigh number term describing convection on
large scales that is a result of taking into account the influ- et us consider a horizontal fluid layex@</ bounded be-
ence of small-scale convection on the temperature gradienty and above by two parallel planes and infinite in the
over the whole layer height. The expression on the right ofand y directions. Its lower and upper boundaries are main-
Eq. (A2) involves the Reynolds stresses with helical terms.tained at constant and different temperatuf@sand 7>, re-
This indicates that under examined conditions a homogespectively, so that the positive Rayleigh numier=0 cor-
neous small-scale anisotropic turbulence becomes helical. responds to the heating from below whikt <0 is for the

The governing parameters in E&2) are the Taylor num-  apove heated layer. The hydrodynamic boundary conditions
ber Ta'/2=2Qh?/vr and the coefficienty in front of the  include three cases: both lower and upper surfaces are free

alpha-term. This coefficient depends on physical parametersy rigid, and the mixed situation consisting of their combina-
of fluid and turbulence characteristics in a rather complicatedijgn.

Here, (v;) is the mean velocity fieldp;,, is a projection op-
erator eliminating a potential part of the velocity fiedd the
unit vector directed vertically upward;;; the antisymmet-
rical Levi-Chivita tensor. As investigations on helical turbu-
lence in magnetohydrodynamidsruse and BRdler, 1980

Appendix B

manner Rutkevich 1993: In the limiting caseRe®=0 system (Eq6) is reduced
E2h v BA to the Boussinesq equations whose solutions for differ-
s1=2Q1 2—2———, (A3) ent boundary conditions were carefully analyzedOhan-
AS dvr A drasekhar(1961); Gershuni and Zhukhovitsky1972 by

whereg is the angular velocity of fluid layer rotatiol; is both the methods of linear and nonlinear theory of hydro-
the density of turbulence energyandr are the most ener- dynamic stability. The convective instability only arises after
getic scale and characteristic time of the turbulent velocityexceeding some critical Rayleigh number and evolves into a
correlation, A is the constant temperature gradient betweenflow pattern consisting of numerous small cells. The cells are
the horizontal boundaries of the lay®rjs a coefficient char- ~ created by poloidal circulation, each having the characteris-
acterizing the power of internal heat sourckss the layer  tic horizontal dimension of the order of layer height. This
height,v is the molecular coefficient of kinematic viscosity, corresponds to the well-known Rayleigtesard convection

vr is the coefficient of turbulent viscosity on the large scale, (Chandrasekhal 961 Gershuni and Zhukhovitskyt972).

n is a dimensionless parameter specifying the aspect ratio (of Equations §) at Ra0 and Re*#0 have the steady so-
typical vertical to horizontal dimension) for small-scale con- lution corresponding to a mechanical equilibrium which we
vective structures. consider as a basic state.

It should be noted that here the coefficient before the We examine the conditions under which the quiescent so-
alpha-term does not contain the prescribed helicity of small-ution is unstable against small non-stationary disturbances
scale turbulence. Now the parameteis found to be depen- depending exponentially on time and periodic in thendy
dent on the density of turbulence energy, the Coriolis forcedirections.
and the measure of nonlinearity of the temperature gradient. Thermal and hydrodynamic boundary conditions for the

The most important achievement reached as a result oflisturbance amplitudes in the case of both isothermal bound-
analysis of Eq.A2) and having considerable significance in ing surfaces can be written in dimensionless form as
the development of the hydrodynamic alpha-effect theory is
that which concerns the effect of internal heat release. Pa- =0 at z=0 1
rameters; includes a ratioB/A formed by coefficients de- rigid boundary: V =0, (B1)
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1500 1T ‘ 700 ‘ ‘ which decides the critical Rayleigh number marking the in-
stability onset against the disturbance with the prescribed
andn. Here,k andn define the horizontal and vertical scale
of the disturbance, respectively. The lowest critical Rayleigh
600 number can be found for a fundamental mode of instability

\

\
2
k % characterized by=1. By changingRe®® one can obtain the
4

1000 \\

neutral curves located in the plankd| k).

FigureB1 demonstrates the neutral stability curves-atl
for a number of parameteRe®, including Re®=0 — left
panel, whilst in the right panel the minimal critical Rayleigh
5 \ numberRa,, versusRe® is presented.

The minimum of neutral curve 1 faRe®*=0, marking the
500 7 400 natural convection onset at some threshold va#tug ~658,
0 1 2 - 0 1 2 n is located within a medium wave number aredg=2.2 —
K Re® Fig. 7a.
(a) (b) The effect of the helical feedback generatide?+0) re-
sults in reduction of the threshold of convective instability:
Fig. B1. (a)Neutral curvesRa(k) for Re? (1) 0.0; (2) 2.0; (3) 3.0, the critical Rayleigh number decreases with the increase of
(4) 7; (5) 4.0; (6) 5.0; (7) 6.0; an¢b) minimal critical Rayleigh 6 narameteRe® — Fig. 7b. It means that this new factor
number versus helical feedback intensiy™ at Pr=1, n=1. appeared in the system, in addition to the buoyancy affects
a warmer and lighter fluid causing it to rise from the heated
du v lower boundary.
free boundary  w =0, 9z 0z 0. The minimum of neutral stability curves is shifted to
) N ) ~small wave numbers (long wave domain), implying the
The analysis of stability has been accomplished foIIowmggrowth of typical horizontal scale of arising structures.
the standard procedure discussed in detallandrasekhar \yjith the parameteRe® approaching some critical value

(1963; Gershuni and Zhukhovitsk{1972). For the prob-  g,2_ the threshold Rayleigh number tends to a limit
lem under consideration describing the helical convection, 5| e Ra*=474~390 whilst the wave number tends to zero.
the spectrum of disturbances is found to be dependent Ofqormally, this corresponds to an infinite horizontal dimen-
three parameterska, Pr andRe®. sion of a supercritical flow and suggests profound changes
In the general case the spectral problem for the disturbancg, the flow pattern compared with the natural convection: in-
amplitudes can be solved numerically, for example, by thestead of a set of relatively small cells there appears a large
Runge-Kutta method with an automatic step selection. scale structure that occupies the whole available space.
Specifying Pr=1 we could considerably simplify the  The curveRa(k) at Re@=r also serves as a boundary
spectral problem formulation and analytically obtain its ex- separating two domains within which the solutions display
act solution in the case of the fluid layer bounded by two freeg quite different behavior. Above it the neutral curves have

Ra,,

£ 500
Ra —

500 \

D

surfaces. minima, the stability domain is contiguous to the vertical
N ) ) ) Ra-axis and contains the solutions with comparably smaller
B1 Instability of fluid layer with free boundaries wave numbers, i.e. corresponding to the longer waves. Below

9 . . . the separating curvBe$=xr the picture is just opposite: the
In the caseRe™*=0, we obtain the classical Rayleigh prob- nstaple solutions area adjoins the-axis whilst the domain
lem which has an analytical solution given, for example, in uf siapility is located to the right from the neutral curves and
monograph Gershuni and Zhukhovitskyi972: the mini-  (g\yards the larger wave numbers (shorter waves). The lower

mal (i.e. lowest from the possible ones for disturbances of,o\tral curves have no minima and carry on over a domain
different scale) critical Rayleigh number marking the onset negative Rayleigh numbers.

of convection iska,,=657.511, and the corresponding wave
number isk,,=2.221. Our numerical method applied to this
problem vyields the highly close valug&a,,=657.512 and
ky,=2.221.

To trace the effect of the helical feedback introduced into
the system aRe® 0, the following formula was obtained
for the neutral curve:

The helical forcing can generate a vortex flow for
Re®>Rel=n in the absence of any temperature inhomo-
geneity Ra=0).

Moreover, if Re*> Re$=n some instability can be gen-
erated for any Rayleigh number, and even in conditions of
heating from above that is usually impossible in natural con-
vection flows without any complicated factors. This demon-

272 + k23 — (Re®2n272(n%72 — k?) strates the dominant effect of helical forcing ®¢*>x and

Ra 12 (B2)  corresponds to forced convection flows.
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Thus, important conclusions following from the above Edited by: N. S. Erokhin
consideration are worth to note particularly: the helical forc- Reviewed by: three referees
ing operates favoring the long wave flow generation and de-
creasing the threshold of instability.
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