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Abstract. This work addresses the autoregressive modelling
of sea level time series from TOPEX/Poseidon satellite al-
timetry mission. Datasets from remote sensing applications
are typically very large and correlated both in time and space.
Multivariate analysis methods are useful tools to summarise
and extract information from such large space-time datasets.
Multivariate autoregressive analysis is a generalisation of
Principal Oscillation Pattern (POP) analysis, widely used in
the geosciences for the extraction of dynamical modes by
eigen-decomposition of a first order autoregressive model fit-
ted to the multivariate dataset of observations. The extension
of the POP methodology to autoregressions of higher order,
although increasing the difficulties in estimation, allows one
to model a larger class of complex systems. Here, sea level
variability in the North Atlantic is modelled by a third or-
der multivariate autoregressive model estimated by stepwise
least squares. Eigen-decomposition of the fitted model yields
physically-interpretable seasonal modes. The leading autore-
gressive mode is an annual oscillation and exhibits a very ho-
mogeneous spatial structure in terms of amplitude reflecting
the large scale coherent behaviour of the annual pattern in the
Northern hemisphere. The phase structure reflects the seesaw
pattern between the western and eastern regions in the trop-
ical North Atlantic associated with the trade winds regime.
The second mode is close to a semi-annual oscillation. Mul-
tivariate autoregressive models provide a useful framework
for the description of time-varying fields while enclosing a
predictive potential.

1 Introduction

Geophysical systems often exhibit complex variability pat-
terns over a wide range of spatial and temporal scales. Obser-
vation of the Earth by remote sensing techniques is yielding
huge space-time datasets of geophysical observations. It is a
challenging task to summarise and extract information from
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such large datasets and characterise the dynamical properties
of the associated geophysical time series.

This work focuses on the autoregressive modelling of time
series of sea surface heights from TOPEX/Poseidon satel-
lite altimetry mission. Sea level is a key indicator of climate
change and an important observational constraint on global
climate models. Furthermore, sea level changes have consid-
erable environmental, social and economical impacts. The
height of the sea surface relative to a geocentric reference
ellipsoid is measured from space through radar altimetry.
TOPEX/Poseidon (T/P) mission achieved an unprecedented
accuracy, yielding a huge, high quality, space-time dataset of
precise sea level measurements.

A stochastic space-time process{Xs,t } is defined as a col-
lection of random variables indexed by parameters[s, t]∈R2

where t indicates time ands a location. Observed values
of {Xs,t } from m spatial locations (s=1, ..., m) at N times
(t=1, ..., N ) constitute a realisation of the stochastic process
{Xs,t }. The term field is used hereafter to designate a partic-
ular realisation and is denoted by

Xt = [X1,tX2,t ...Xm,t ]
T

∈ Rm×1, t = 1, ..., N. (1)

Statistical space-time methods play a key role in the analy-
sis of time-varying fields. Given an observed fieldXt , di-
mensionality reduction, spatio-temporal description and ex-
traction of dominant variability modes are often primary
goals. In the case of systems dominated by nonlinear inter-
actions, nonlinear methods for dimensionality reduction are
required, such as the Isomap procedure (Tenenbaum et al.,
2000; Ǵamez et al., 2004), based on the replacement of Eu-
clidean by geodesic distances, or nonlinear principal compo-
nent analyses (Hsieh, 2001; Hsieh and Wu, 2002). Modelling
of nonlinear systems requires methods extending the linear
empirical models to a nonlinear setting such as in Kravtsov
et al. (2005) and Kondrashov et al. (2005). However, lin-
earity is assumed henceforth as a first approximation to the
dynamics of the system.

Principal Component Analysis (PCA), or Empirical Or-
thogonal Function (EOF) analysis is a useful multivariate
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analysis method for extraction of the dominant variabil-
ity patterns from an observed field (Preisendorfer, 1988;
Von Storch and Zwiers, 1999; Jollife, 2002). PCA yields
dominant spatial structures, in terms of maximal variance ex-
plained and the corresponding temporal evolution for these
structures; the observed field is decomposed into modes of
variability, each of which is the product of a spatial pat-
tern and a time-varying amplitude. Although principal com-
ponents (PCs) are often interpretable, dynamical modes are
not necessarily uncorrelated and/or yielding maximal vari-
ance. Furthermore, PCA depends on the size and shape of
the spatial domain. Thus interpretation of PCs as physi-
cal/dynamical modes must be always done with caution.

Principal Oscillation Pattern (POP) analysis (Hasselman,
1988; Von Storch et al., 1995; Von Storch and Zwiers, 1999)
yields dynamical modes from a spatio-temporal dataset
through the analysis of a stochastic model fitted to the ob-
servations. POP analysis assumes that the observed field has
a temporal autoregressive structure of order one, i.e. follows
a m-variateAR(1) model

Xt = AXt−1 + εt (2)

whereA∈Rm×m is the matrix of real autoregressive coeffi-
cients andεt is a temporally uncorrelated noise vector with
mean0 and covariance matrix6∈Rm×m. A first order au-
toregressive model is the discrete-equivalent of a first order
ordinary differential equation and thus corresponds, depend-
ing on the autoregressive parameters, to a combination of
stochastically forced relaxators and oscillators. If a first or-
der multivariate autoregressive model provides an adequate
fit to the observed field, the dynamical characteristics of the
system can be empirically inferred from the fitted model, as-
suming the space-time characteristics of the model to be rep-
resentative of the full system. The eigen-decomposition of
the autoregressive model describing the temporal evolution
of the field yields the dominant modes of variability from
the multivariate dataset in terms of relaxation and oscillation
modes. From eigen-decomposition of the matrixA of au-
toregressive coefficients,A=PLP−1, the state of the system
at any timet can be expressed as

Xt =

m∑
k=1

ukt pk (3)

where the eigenvectorspk (the columns of matrixP) are
the principal oscillation patterns (POP) or empirical normal
modes, and the time seriesukt are the coefficient time se-
ries, computed from the adjoint patternspak (eigenvectors of

AT ) asukt =pa
T

k Xt . In the absence of noise the eigenvec-
tors of matrixA are the system normal modes, representing
the natural modes of variability of the evolving field. Com-
plex eigenvaluesλj=rjeiwj are associated under stationary
conditions (|λj |≤1, j=1, ..., m) to damped oscillations with
characteristic damping raterj and frequencywj while real
eigenvalues describe damped, non-oscillatory, patterns.

POP analysis yields a space-time description of dominant
variability modes and can also be used for prediction, but
the applicability of POP analysis is restricted to fields for
which an AR(1) model provides an adequate fit to the ob-
servations. However, the methodology can be generalised,
allowing to model a larger class of systems, by extending
the analysis to autoregressive models of arbitrary orderp,
AR(p) (Lütkepohl, 1993; Neumaier and Schneider, 2001).
Multivariate autoregressive models (m−AR(p)), also called
vector autoregressive models (VAR), are the most used mod-
els for multiple time series and are being increasingly used
in geophysical applications (e.g. Maharaj and Wheeler, 2005;
Rashid and Simmonds, 2005).

In this study sea level variability in the North Atlantic
is examined through multivariate autoregressive modelling.
The paper is organised as follows. Multivariate autoregres-
sive analysis is summarised in Sect. 2. The particular appli-
cation of multivariate autoregressive modelling to the anal-
ysis of sea level observations from satellite altimetry is de-
scribed in Sect. 3. Concluding remarks are presented in
Sect. 4.

2 Multivariate autoregressive analysis

2.1 Multivariate autoregressive modelling

A m−variate autoregressive model of orderp (m− AR(p))
is defined as

Xt = A1Xt−1 + A2Xt−2 + · · · ApXt−p + εt (4)

whereAi∈Rm×m i=1· · ·p are the matrices of autoregressive
coefficients andεt∈Rm is a temporally uncorrelated noise
vector with mean0 and covariance matrix6∈Rm×m.

The fit of a m−AR(p) model to a time-varying field
involves the selection of the model orderp and the es-
timation of the model parametersA1,A2· · ·Ap, 6 from
a spatio-temporal dataset. The model order can be se-
lected by minimising an order selection criterion such as the
Schwartz Bayesian Criterion (SBC) (Schwarz, 1978) reflect-
ing the trade-off between over-fitting and over-simplification.
The SBC is superior in terms of consistency to the Akaike
Information Criterion (AIC) and the Final Prediction Er-
ror Criterion (FPE) as discussed in Lütkepohl (1993). A
m−AR(p) model can be cast in the form of a regression
model and the parametersA1,A2 · · · Ap estimated by least
squares (L̈utkepohl, 1993, chapter 3). The parameters for
a model with orderp optimising a order selection criterion
such as SBC can be estimated in a computationally efficient
way through stepwise least squares i.e. by stepwise down-
dating the least squares estimates from a QR factorisation of
the data matrix for a model with a pre-set maximum order
(Neumaier and Schneider, 2001). Although the least squares
approach does not have many of the desirable properties of an
exact maximum likelihood algorithm, such as allowance for
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missing values, the least squares estimator for am−AR(p)

model is consistent and asymptotically normal (Lütkepohl,
1993) and is recommended, provided that the model to be fit-
ted is stable (Schneider and Griffies, 1999). Difficulties in the
estimation of am−AR(p) are often associated with the large
number of parameters involved. For large fields the number
of spatial degrees of freedom can be reduced by consider-
ing the leading components from a PCA analysis thereby re-
ducing dimensionality while retaining most of the variance
in the original field. Although PCA is a multivariate anal-
ysis method for independent observations, and thus should
not be used for time series, non-independence does not have
a serious effect when the main objective of the analysis is
descriptive rather than inferential (Jollife, 2002). A positive
by-product of estimating a multivariate autoregressive model
in PCA space is the exclusion of noisy components from the
analysis and diagonalisation of the error covariance matrix.

2.2 Multivariate autoregressive modes

A m−AR(p) model can be written as a first order model
m−AR(1),

X̃t = ÃX̃t−1 + ε̃t (5)

where X̃t=[Xt ,Xt−1· · ·Xt−p+1]
T
∈Rm×p, ε̃t=[εt 0. . .0]

T

with covariance matrix 6̃=

[
C 0
0 0

]
∈Rmp×mp and

Ã∈Rmp×mp is the augmented covariance matrix given
by

Ã =


A1 A2 Ap
I 0 0
0 I
...

. . .
...

0 0 0

 . (6)

Since am−AR(p) model can be formulated as a first order
autoregressive model, higher order multivariate autoregres-
sive models can be used, analogously to POP analysis, to
infer the dynamical characteristics of a system through de-
composition into eigenmodes with characteristic oscillation
periods and damping times.

Eigen-decomposition of the augmented coefficient matrix
Ã as Ã=P̃LP̃−1, whereP=[p̃1p̃2...p̃mp] is the matrix of
eigenvectors andL is the diagonal matrix of the eigenval-
uesλk, k=1, ..., mp yieldsmp m-dimensional eigenmodes
(Neumaier and Schneider, 2001). Complex eigenvalues
λj=rj e

iwj correspond to damped oscillatory modes with
periodTj=2π/wj and characteristic damping raterj or e-
folding time −1/ln(rj ) (the time interval in which a ex-
ponentially decaying quantity decreases to 1/e of its previ-
ous value). Real eigenvalues correspond to damped, non-
oscillatory modes.

3 Multivariate autoregressive analysis of sea level series

Multivariate autoregressive analysis is illustrated for the time
series of sea level observations from TOPEX altimeter.

3.1 Data

The analysed altimetry data are measurements from TOPEX
altimeter for the North Atlantic. The dataset covers nearly
12 years from September 1992 to March 2005 (cycles 1 to
460) at approximately 10-days intervals (9.9156 days, corre-
sponding to the satellite repeat period). Corrected sea sur-
face heights are derived from the Merged Geophysical Data
Records (MGDR) products (AVISO, 1996) by applying stan-
dard instrumental and geophysical corrections and editing
procedures, including the Inverse Barometer (IB) correction
(Dorandeu and Le Traon, 1999), the smoothing of TOPEX
dual frequency ionospheric correction (Fernandes and An-
tunes, 2003), the cycle dependent drift effect in the wet tro-
pospheric correction derived from the onboard TOPEX Mi-
crowave Radiometer (Scharroo et al., 2004), the sea state
bias (SSB) correction (Chambers et al., 2003) and a residual
SSB correction of−3 mm applied to cycles 236 and greater
(Berwin, 2003). Tides are removed using the NAO99b model
(Matsumoto et al., 2000). Sea level anomalies are derived by
subtracting to corrected sea surface heights the GSFC00.1
mean sea surface model (Wang, 2001).

For each cycle, a regular 5 degree grid of altimetry data
is obtained from the along-track measurements. In order to
avoid spatial aliasing and eliminate redundant data spatial
blocks with size equal to the grid spacing are considered and
the along-track observations within every non-empty block
are replaced by a median position and value. Regular grids
of sea level anomalies are then obtained using the adjustable
tension continuous curvature surface gridding algorithm of
Smith and Wessel (1990), with a tension value of 0.35, which
is the value suggested by experience for topography data.
The resulting dataset comprises 153 time series of sea level
anomalies at the grid nodes (Fig. 1) at approximately 10-days
intervals (m=153 locations,N=460 observations). The typ-
ical standard deviation for the time series of sea level anoma-
lies is below 5 cm.

3.2 Multivariate autoregressive modelling

Multivariate autoregressive modelling of the sea level field
is carried out in three steps: i) data preprocessing for error
and dimensionality reduction, ii) model estimation and order
selection and iii) computation of autoregressive modes from
eigen-decomposition of the estimated matrix of coefficients.

The R software environment (R Development Core Team,
2005) has been used in the analysis. The R-package mAr
for multivariateAutoregressive analysis has been developed,
implementing in R the stepwise least squares estimation for a
multivariate autoregressive model based on the algorithm of
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Fig. 1. Study area (North Atlantic) and time series locations (*).

Neumaier and Schneider (2001) and the code of Schneider
and Neumaier (2001). The mAr package has been released
under GPL (General Public License) Version 2 and is avail-
able from the CRAN repository (http://www.cran.r-project.
org).

3.2.1 Data preprocessing

Altimeter records are short and include substantial high-
frequency variability associated with mesoscale circulation.
Denoising based on the discrete wavelet transform is an ef-
ficient way to remove high frequency variability from the
satellite altimetry time series while preserving non-smooth
features (Barbosa et al., 2005). Variability at scales shorter
than 20 days is reduced through nonlinear thresholding in the
wavelet domain using the universal level-dependent thresh-
old rule (Donoho and Johnstone, 1995) yielding an overall
reduction in variability of sea level anomalies of 1 cm.

The gridded dataset of denoised sea level anomalies is
standardised by subtracting the mean and dividing each time
series by its standard deviation. The normalisation of the
sea level series allows one to obtain spatial patterns with-
out possible domination by gridpoints with larger variances.
Although avoiding the problem of spatial variability being
driven by the most energetic gridpoints, normalisation yields
coefficients corresponding to standardised sea level, which
are therefore less easy to interpret directly.

PCA is carried out on the normalised field for dimension-
ality reduction. The large number of spatial degrees of free-
dom is reduced by considering a truncated PCA version of
the original sea level field. A subspace ofk=8 principal com-
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Fig. 2. Fraction of variance accounted by the principal components
(PC).
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Fig. 3. Schwartz Bayesian Criterion (SBC) as a function of model
order (p).

ponents (PCs) is considered, explaining more than 85% of
the overall variance of the sea level field (Fig. 2).

3.2.2 Model estimation

A multivariate autoregressive model is estimated for the de-
noised and normalised sea level field. The estimation of the
parameters in the model is carried out in the PCA subspace
by least squares. The Schwartz Bayesian Criterion (SBC) is
used for selection of the orderp of the model (Fig. 3). The
plot shows that a considerable improvement in model fit (as
measured by SBC) is obtained by considering rather than a
first order (corresponding to the assumption in POP analysis)
higher order models. The SBC criterion suggests a model of
orderp=3.

Since the estimated model can be written as a system
of k=8 multiple regressions, inference on the fitted model
can be carried out from the univariate form of the equa-
tions. Each equation is a linear regression withk×3=24 vari-
ables forN−p observations. The statistics (residual sum of
squares, R square and F test) describing how well each uni-
variate equation fits the data, assuming normally-distributed
errors, are presented in Table 1. The results indicate a very
good agreement between the model and the observations.
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Table 1. Statistics of model fit for each variable: residual sum of
squares (RSS), R-square, F statistic and corresponding p-value.

Variable RSS R-square F p-value

PC1 08.55 0.9998 93 093 <10−16

PC2 02.72 0.9995 39 440 <10−16

PC3 11.58 0.9972 6397 <10−16

PC4 14.28 0.9939 2949 <10−16

PC5 06.59 0.9955 4015 <10−16

PC6 07.81 0.9930 2553 <10−16

PC7 12.40 0.9884 1541 <10−16

PC8 04.87 0.9947 3403 <10−16

Table 2. Eigenmodes for the sea level field estimated from the
m−AR(3) model.

Period (years) e-folding time (years)

0.97 9.70
0.52 0.94

However such agreement can be misleading due to the dan-
ger of overfitting in which case the model is not a parsimo-
nious representation of the multivariate dataset. A trade-off
between parsimony and agreement with observations is un-
avoidable and to a large extent dependent on the objectives of
the analysis. If the model is used for forecasting for example,
a “worst” fit may yield better predictions; on the other hand
if the model is used to describe and understand the measured
system a closer agreement between the model and the dataset
may be preferable.

Since a multivariate autoregressive process can be in-
terpreted as a filter that transforms the observations into
white noise series, uncorrelatedness of the residuals is a pri-
mary criterion for checking the adequacy of an estimated
model. The autocorrelation function for the leading compo-
nent (Fig. 4a) indicates that the model yields a uncorrelated
residual series. Figures 4b and c show that the estimated
model is able to describe the relationship between the first
two leading components of the observed field yielding un-
correlated residual series. These results suggest that the fitted
model is an adequate representation of the sea level field.

3.2.3 Eigenmodes

Eigenmodes are computed from the eigen-decomposition of
the coefficients matrix from them−AR(3) model. The esti-
mated model is stable since for all the eigenvalues|λi |<1∀i.
Only sustained modes, as measured by the corresponding e-
folding time (e-folding> period), are considered (Table 2).
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Fig. 4. Correlation of leadings PCs (left) and corresponding resid-
uals from the estimatedm−AR(3) model (right): (a) autocorre-
lation, PC1;(b) cross-correlation, PC1 & PC2 (positive lags);(c)
cross-correlation, PC1 & PC2 (negative lags). Horizontal dashed
lines represent 95% confidence levels for correlation of white noise
realisations. Lags are spaced by 10 days.

The leading, least damped mode, associated with the
largest eigenvalue, is an annual oscillation. The second
mode is close to a semi-annual oscillation. These are natural
modes, since the seasonal signal is usually the dominant sig-
nal in sea level time series. The structure of the autoregres-
sive modes is represented by the amplitude (A) and phase (ψ)
obtained from the real (pr)and imaginary (pi) components

of the associated eigenvectorsp=pr+ipi asA=

√
p2
r+p

2
i

andψ= arctan(pi/pr).

The annual mode (Fig. 5) exhibits, as expected, a very ho-
mogeneous spatial structure reflecting the large-scale coher-
ent behaviour of the annual cycle of sea level. The ampli-
tude values are very similar over the North Atlantic, only
slightly lower in the tropical Atlantic near 15 degrees lat-
itude, in agreement with the known weakening of the an-
nual cycle and increase dominance of the semi-annual cycle
at these locations. The phase pattern is fairly homogeneous
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Fig. 5. First autoregressive mode:(a) Amplitude;(b) Phase.

throughout the North Atlantic except for the seesaw in the
tropical Atlantic, reflecting opposing phases on the west and
east sides. Sea level in this region is closely related with the
winds regime. The relaxation of trade winds at the beginning
of the year (February–March) causes a decrease in sea level
on the west side and an increase on the east side; the onset
of trade winds in May–June is responsible for a decrease in
the sea level in the east and an increase in the west (Schouten
et al., 2005). A difference in phase is also visible along the
coast of Newfoundland and Ireland.
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Fig. 6. Second autoregressive mode:(a) Amplitude;(b) Phase.

The semi-annual mode (Fig. 6) exhibits higher amplitudes
on the eastern boundary near the equator and in the intertrop-
ical convergence zone (ITCZ) reflecting the dominance of
the semi-annual signal in the tropical Atlantic. The phase
of the semi-annual mode exhibits a complex spatial pattern.
In the tropical Atlantic the equatorial region (particularly
near the western boundary) and the ITCZ exhibit contrasting
phases possibly associated with dynamic influences through
mechanical and thermal forcings on the semi-annual sea level
signal.
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4 Conclusions

Remote sensing of the Earth is yielding large datasets of geo-
physical observations in both time and space. Finding pat-
terns from an observed field is a challenging task, even more
challenging when one comes to interpretation. The use of au-
toregressive models as linear approximations to the dynamics
of a field has a strong physical motivation, since autoregres-
sions can be interpreted as discretised versions of ordinary
differential equations.

Multivariate autoregressive models constitute an useful ex-
tension to POP analysis. By considering higher order mod-
els, a larger class of systems can be modelled. Multivari-
ate autoregressive models allow the extraction of dominant
modes of variability from an observed field. Similarly to
POP analysis, if a multivariate autoregressive model of arbi-
trary orderp provides an adequate fit to the observations of
an observed field, the dynamical characteristics of the field
can be empirically inferred from the fitted model through
eigen-decomposition, yielding the dominant modes of vari-
ability from the multivariate dataset in terms of relaxations
and oscillations. A drawback of the approach is the large
number of parameters that need to be estimated, leading to
difficulties in estimation and stability. Estimation is thus car-
ried out in reduced PCA space for dimensionality reduction.
When fitting an autoregression to an observed field, the es-
timation method and the number of principal components
to retain when considering the field in PCA reduced space
are important issues that must be handled on an application-
specific basis.

Here satellite altimetry observations in the North Atlantic
have been modelled by a multivariate autoregression of third
order. The estimated model is according to SBC a signif-
icantly better representation of the observed sea level field
than a first order model. Eigendecomposition of the fitted
autoregressive model yielded physical interpretable modes,
constituting a useful space-time description of North Atlantic
sea level variability. Although only seasonal modes have
been inferred by autoregressive modelling, this is a limita-
tion of the dataset (strongly constrained by the short length
of the satellite altimetry series) rather than of the approach
itself.

Autoregressive models have a predictive potential. Thus
the estimation of a multivariate autoregressive model can
be applied not only to produce a space-time description in
terms of dominant variability modes, as in this work, but
also to prediction. Although the linear stationary nature of
autoregressive models implies the decay of the oscillatory
solutions, which is an undesirable property in a forecasting
framework, this can be handled by assuming a constant uni-
tary amplitude for prediction from an estimated model. In
the sea level application discussed here, forecasting is ham-
pered by the short length of the available time series. With
the expected increasing length of sea level series as satellite

missions extend in time, forecasting sea level from an autore-
gressive model should become feasible.
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