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Abstract.
Cyclic forcing on many timescales is believed to have a

significant effect on various quasi-periodic, geophysical phe-
nomena such as El Niño, the Quasi-Biennial Oscillation, and
glacial cycles. This variability has been investigated by nu-
merous previous workers, in models ranging from simple en-
ergy balance constructions to full general circulation mod-
els. We present a numerical study in which periodic forcing
is applied to a highly idealised, two-layer, quasi-geostrophic
model on aβ-plane. The bifurcation structure and (unforced)
behaviour of this particular model has been extensively ex-
amined byLovegrove et al.(2001) and Lovegrove et al.
(2002). We identify from their work three distinct regimes
on which we perform our investigations: a steady, travel-
ling wave regime, a quasi-periodic, modulated wave regime
and a chaotic regime. In the travelling wave regime a non-
linear resonance is found. In the periodic regime, Arnol’d
tongues, frequency locking and a Devil’s staircase is seen for
small amplitudes of forcing. As the forcing is increased the
Arnol’d tongues undergo a period doubling route to chaos,
and for larger forcings still, the parameter space we explored
is dominated by either period 1 behaviour or chaotic be-
haviour. In the chaotic regime we extract unstable periodic
orbits (UPOs) and add the periodic forcing at periods corre-
sponding to integer multiples of the UPO periods. We find
regions of synchronization, similar to Arnol’d tongue be-
haviour but more skewed and centred approximately on these
periods. The regions where chaos suppression took place are
smaller than the synchronization regions, and are contained
within them.

Correspondence to:P. L. Read
(p.read1@physics.ox.ac.uk)

1 Introduction

Examples of cyclic climatic phenomena are widespread, and
there has been much attention given to reproducing this be-
haviour in climate models of greatly varying degrees of com-
plexity. Interactions between various external forcings (due
to astronomical modulations of the solar input) and possi-
ble intrinsic climatic oscillations form a significant subset of
these investigations.

The range of timescales for these different forcings are
vast. Models of the glacial cycles cover the last few hun-
dred thousand years (e.g.Imbrie and Imbrie, 1980; Ghil and
Le Treut, 1981; Saltzman et al., 1982; Nicolis, 1984). On
much shorter timescales many authors have attempted to re-
produce the Quasi-Biennial Oscillation (seeBaldwin et al.,
2001, for example for a review), some including forcing with
an annual cycle (Geller et al., 1997, for example). The annual
cycle is also believed to play a role in the El Niño Southern
Oscillation (ENSO), though its precise influence is still un-
der debate (e.g.Jin et al., 1996). Yet another example of
the periodic forcing is seen in the recent work on interac-
tions between oceanic tropical instability waves and annual
(Vialard et al., 2003) and sub-annual (Allen et al., 1995; Ben-
estad et al., 2001) wind forcings.

Another source of atmospheric variability, perhaps more
closely related to the present work, is the the North Atlantic
Oscillation, or NAO (e.g.Wallace, 2000). This has fluctu-
ations on multiple timescales though the relative contribu-
tions of the components may not be constant in time (Higuchi
et al., 1999). Possible causes of the 2–3 year variability, for
instance, include annual modulation of coupled atmospheric-
surface feedbacks, or subharmonics of the annual cycle gen-
erated by mid-latitude non-linearities (Stephenson et al.,
2000). Wallace(2000) showed that NAO indices, measures
of the strength of the oscillation, are effectively the same as
those developed byLorenz(1951) for the zonal index cycle
(e.g.Rossby, 1939; Namias, 1950). This views the variabil-
ity from an annular mode paradigm.
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A similar effect of annular modes is seen in the ampli-
tude modulations or “vacillations” of rotating annulus exper-
iments such as those ofHart (1972), Hide and Mason(1975),
Pfeffer et al.(1980) or Früh and Read(1997). The trans-
port of heat and angular momentum effected by “vacillating”
waves in the annulus (which have periodic amplitude modu-
lation) varies with a similar period to the changing shape and
intensity of the wave, thus producing a periodic “zonal in-
dex” variation. Southern Hemisphere baroclinic waves have
also been seen to vary in a similar way with timescales of
20–60 days (e.g.Randel and Stanford, 1985a).

In this paper we present experiments with an idealised
two-layer quasi-geostrophic model of baroclinic instability
(Lovegrove et al., 2001, 2002, hereafter LMR1 and LMR2,
respectively. We shall use LMR to refer jointly to both pa-
pers and the reader is referred to these papers for details.)
This model is arguably the simplest geophysical flow repre-
senting the quasi-geostrophic flow within the ocean or atmo-
sphere. It also models certain flows seen in annulus experi-
ments mentioned above. The model is formulated in Carte-
sian geometry and models the interaction of a single mixed
baroclinic-barotropic wave mode with a background zonal
flow.

The previous investigations of LMR with this model found
a rich sequence of bifurcations including pitchfork, Hopf
and secondary Hopf bifurcations, and period doubling cas-
cades leading to regimes corresponding to a stationary wave,
a travelling wave, an amplitude modulated wave and chaotic
regimes, respectively. LMR studied the bifurcation structure
as three parameters were varied, namely the dissipation pa-
rameter,r, the planetary vorticity gradient,β and the Froude
numberF . They thus unified various previous multiple-scale
studies which had considered only limited choices of these
three parameters. (For a summary see Table 1 in LMR1.)
In particular they note that, for small values ofβ andr, the
spectral amplitude equations reproduce the behaviour associ-
ated with the complex Lorenz equations (Fowler et al., 1982),
while for anf -plane model (i.e. forβ = 0) the equations re-
duce to the Lorenz equations with real coefficients (Lorenz,
1963).

In the present study we add periodic forcing to the model
and examine the ensuing behaviour. We consider three dis-
tinct regimes which were found by LMR:

– The steady wave (limit cycle) regime.

– The amplitude vacillation (quasi-periodic modulated
wave) regime.

– A chaotic regime with large Froude number.

Hart has also considered adding a periodic modulation to
a two-layer model on both anf -plane (Hart, 1989a) and a
β-plane (Hart, 1989b). In both cases he applied a periodic
modulation in a similar way: the parameter representing the
mean flow correction was varied, but only in the equation

for the evolution of the baroclinic term. In contrast we vary
the baroclinic velocity directly as, arguably, a physical way
of introducing an oscillatory forcing in the background ther-
mal structure, given that such a forcing may arise in the
atmosphere due to differential solar heating, or in the lab-
oratory by changing the thermal boundary conditions of a
differentially heated annulus. The heat input into the sys-
tem oscillates which in turn affects the baroclinic part of the
flow via the thermal wind equation.Hart (1989b), in his
β-plane study, only considered forcing at timescales which
were very different in magnitude from the natural internal
frequency of the system. We, however, choose to concen-
trate on timescales of the same order as frequencies identified
from the unforced system.

Pedlosky and Thomson(2003) considered adding an os-
cillatory perturbation to a similar Phillips-type model to the
one considered here, approaching the problem from a differ-
ent perspective. They introduced an oscillatory shear flow
in the neighbourhood of the classical steady-shear threshold
for marginal stability. They found the perturbations changed
the stability of the system, leading to new sources of grow-
ing disturbances which gave rise to new oscillatory states and
new regions of instability and chaos. In the weakly nonlin-
ear regime they show that the addition of periodic forcing on
timescales comparable with the linear growth of baroclinic
instability often leads to the development of chaotic oscilla-
tions for strong enough forcing. They also found that peri-
odic forcing of sub-critical (baroclinically stable) flows could
also lead to the development of oscillatory and chaotic insta-
bilities if the periodic forcing allowed the shear to enter the
linearly unstable regime even briefly during a cycle.

Our study covers more strongly supercritical states than
considered byPedlosky and Thomson(2003), albeit given
the same wavenumber truncations. We find some broadly
similar features toPedlosky and Thomson(2003) with the
appearance of an oscillatory state in previously steady wave
regimes. Moreover we also find a nonlinear resonance. In
the periodic regime we also see a range of aperiodic and even
chaotic behaviour. In particular Arnol’d tongues, frequency
locking and a Devil’s staircase is seen for small amplitudes
of forcing. As the forcing is increased the Arnol’d tongues
undergo a period doubling route to chaos, and for larger forc-
ings still, the parameter space we explored is dominated by
either period 1 behaviour or chaotic behaviour. A summary
of the findings, to be presented in more detail below, can be
found in Fig.1.

In Sect.2 we briefly present the model and the methodolo-
gies used to identify the different states of the system, con-
centrating on the degree of synchronization and chaos. The
detailed results of the study are in Sect.3, with a summary
and conclusion in Sect.4.
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Fig. 1. Summary of the periodic and chaotic regimes.γn (the nat-
ural frequency) largely performs a similar function toγf (the fre-
quency of the principal unstable periodic orbit); the Arnol’d tongue
tends toγn or γf asε→0. In the periodic regime classic Arnol’d
tongues are seen for small amplitudes of forcing. Period doubling
and chaotic behaviour is visible for larger forcing amplitudes, with
only the main tongue, now skewed, remaining for the largest ampli-
tudes. A similar pattern in seen in the largest Lyapunov exponent
(LLE). In the chaotic regime chaos is suppressed for particular val-
ues ofγ , close to multiples ofγf , and the chaos suppressed region
increases with increasingε. This tongue however has regions where
the chaos returns, and also not all points that are stable have stabil-
ity for all initial conditions. The regions of synchronization defined
by frequency locking are more extensive than those defined by the
LLE. For further explanation see text.

2 Methods

2.1 The model formulation

The model to be considered is shown schematically in
Fig. 2 and is the classic “Phillips-Pedlosky” two-layer model
(Phillips, 1954; Pedlosky, 1970, 1971, 1972). The two su-
perposed fluids are confined to a rotating, rectangular, zon-
ally periodic channel of heightD and widthL. We use a
Cartesian co-ordinate system,x∗, y∗ andz∗ to describe dis-
tances along the channel, across the channel and vertically,

ρ
1

2
ρ

L

D

Ω

y=+1 y=0
y’

z’

x’
2

U

2

U

-

+

z

x

y

*

*

*

Fig. 2. The two-layer model considered in this study: compris-
ing two immiscible fluids of densitiesρ1 andρ2 with ρ1<ρ2. The
fluids are in relative motion, with velocities of+U /2 and−U /2, re-
spectively. The channel has heightD, width L and is rotating at a
constant angular velocity� (from Lovegrove, 1997).

respectively, with periodic boundary conditions inx∗ (starred
variables refer to dimensional variables). The corresponding
velocities areun∗, vn∗ andwn∗, where the subscriptn=1(2)
refers to the upper (lower) layer. The densities of the upper
and lower layer areρ1 andρ2, with ρ2>ρ1. The analysis
in LMR1 is carried out in a reference frame that is moving
with the speed, (u1∗+u2∗)/2, of the mean flow. In this frame,
both the upper and lower layers appear to be in uniform mo-
tion along the channel, with respective velocities of+U /2
and−U /2; in non-dimensional units these become +1/2 and
−1/2. In the absence of motion the fluid layers have equal
depths ofD/2. The fluid is confined vertically between two
horizontal planes representing a base and a lid. The kine-
matic viscosity within both layers is assumed to be equal.
The principal dissipation is due to Ekman layers at the top
and bottom of the model. There is also an internal dissipa-
tion term parameterised by potential vorticity diffusion. For
further details see LMR1.

In LMR1 the barotropic and baroclinic streamfunctions
ψs,d are given by

ψs = (ψ1 + ψ2) /2,
ψd = (ψ1 − ψ2) /2.

(1)

where

uq = −
∂ψq

∂y
and vq =

∂ψq

∂x
, (2)

andq=1 or 2. ψs,d are projected onto a series of Fourier
modes:

ψs,d =

M∑
m=1

Xs,dm coslmy︸ ︷︷ ︸
mean flow correction

+

www.nonlin-processes-geophys.net/13/23/2006/ Nonlin. Processes Geophys., 13, 23–39, 2006



26 F. J. R. Eccles et al.: Synchronization in a forced 2-layer QG model

N∑
n=−N
n6=0

M∑
m=1

W s,d
nm exp[iknx] sinlmy

︸ ︷︷ ︸
wave term

− Us,dy︸ ︷︷ ︸
background

, (3)

where

W
s,d
−mn =

(
W s,d
mn

)∗

and k−n = −kn . (4)

Subscriptss and d refer to the barotropic and baro-
clinic terms, respectively, andUs,d is the background flow;
Ud=1/2 andUs=0. The terms are truncated at one term
in each direction, i.e.M=N=1. The resulting spectral am-
plitude equations for this 2-layer model (given as Eq. 11 in
LMR2) are

Ȧs = −1sAs + βsBs − (νs + γsXd) Bd ,

Ḃs = −1sBs − βsAs + (νs + γsXd) Ad ,

Ȧd = −1dAd + βdBd − (νd + γdXd) Bs ,

Ḃd = −1dBd − βdAd + (νd + γdXd) As ,

Ẋd = −1̄Xd + γ̄ [AsBd − BsAd ] ,

(5)

where the dot represents differentiation with respect to time,

As,d=Re
(
W
s,d
11

)
, andBs,d=−Im

(
W
s,d
11

)
. The coefficients

are somewhat unwieldy and are thus omitted here for brevity
but are given in the appendix of LMR2. The equation forẊs
is omitted as it describes only the simple exponential decay
of Xs . (Note this occurs because we chose to have equal
depths of the two layers of the model. An unequal depth
model would lead to a 6 dimensional system, with non-zero
Xs .)

To add the periodic forcing we vary the baroclinic velocity,
Ud , directly via

Ud → Ud + ε sin(γ t) (6)

whereε is the amplitude of the oscillation andγ the angular
frequency. ModulatingUd modulates the parametersνs and
νd in Eq. (5).

In practice Eq. (5), including the modulation ofUd given
by Eq. (6), were integrated usingMatlab’s variable order
Runge-Kutta solver.

2.2 Diagnostics

The solutions of Eq. (5) are analysed using four main tech-
niques:

– bifurcation diagrams of the amplitude behaviour ofXd
which show visually and qualitatively the changing flow
states

– Lyapunov exponents which give an indication as to
whether the system is chaotic

– phase dynamics ofXd which show whether there is syn-
chronization present

– unstable periodic orbits (UPOs) (for the chaotic regime)
which show if there are “natural frequencies” present in
the system

These are discussed in turn below.

2.2.1 Bifurcation diagrams

To examine qualitatively how the flow state changes as a
parameter varies, bifurcation diagrams can be conveniently
constructed in the following way. The model runs with one
set of parameters for 50 000 (200 000) timesteps for the regu-
lar (chaotic) regime and the first 10 000 (100 000) timesteps,
representing the transient behaviours are discarded. The
mean flow correction term (Xd ) is recorded and the succes-
sive minima and maxima of this variable are extracted, de-
notedXmin andXmax.

To examine the bifurcation structure as a function ofγ ,
for example, we incrementγ and rerun the model again
for 50 000 (regular regime) or 200 000 (chaotic regime)
timesteps. The initial conditions are the final values of the
variables of the previous run.Xmin(γ ) andXmax(γ ) then are
plotted as a function ofγ .

2.2.2 Lyapunov exponents

The spectrum of Lyapunov exponents indicate whether or not
the system is chaotic. We used the method ofWolf et al.
(1985) for numerically estimating the value of the largest
Lyapunov exponent (LLE) within the model phase space. An
initial-value numerical integration is performed from which
the transients are allowed to decay. Two neighbouring points
are then tracked in the phase space for a predetermined length
of time during which the average rate of expansion is cal-
culated. When the points become further apart than some
specified amount two new neighbouring points are selected
and the process repeated until the estimates of the exponents
converge.1 The Lyapunov exponent,λ, is given by

λ = lim
t→∞

1

t
log2

p (t)

p (0)
, (7)

wheret is time andp(t) is the length of the first ellipsoidal
principal axis at timet . Time is scaled ast=Lt∗/U (see
LMR1); we call one unit of timeσ , and the LLEs quoted for
the model results are all in terms of2 bits/σ .

2.2.3 Phase dynamics

Another way of measuring interaction and synchronization
is to investigate the phase relationship between the applied
forcing, ε sin(γ t) and some observable of the system. First

1This method actually yields the spectrum of Lyapunov expo-
nents. However we only examined the leading exponent to diagnose
whether or not the system is chaotic.

2A “bit”is a power of 2 for amplification of amplitude; noteλ is
defined in terms of log2.

Nonlin. Processes Geophys., 13, 23–39, 2006 www.nonlin-processes-geophys.net/13/23/2006/
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we must define what we mean by the phase in this system.
For this we follow the ideas outlined by e.g.Pikovsky et al.
(2003), using the analytic signal concept, originally intro-
duced byGabor(1946).

For the observable in our model we choseXd , the mean
flow correction, since this represents the nonlinear feedbacks
on the mean flow, and is also used for the bifurcation dia-
grams above. Firstly the time mean is subtracted fromXd(t)

to give a timeseriesX(t)′ (e.g.Pikovsky et al., 2003). Then
we calculateζ(t)=X(t)′+iXH (t)′, where the subscriptH
indicates the Hilbert transform of the signal. FromX′ and
X′

H , the real and imaginary parts ofζ , we construct the
phase,

φx(t) = arctan
[XH (t)′
X(t)′

]
. (8)

We then calculate the time dependent phase difference,

1φ(t) = φx(t)− γ t , (9)

and look for stationary and non-stationary values of1φ(t)

to indicate phase synchronization. It should be noted that the
analytic signal provides only an estimate of the true phase,
which should increase linearly with time. Obviously the
phase difference as defined using this concept may alter over
one period of the forcing as the phase of one oscillator speeds
up/slows down relative to the other. Also there may be par-
tial locking, such that the phase difference largely remains
stationary but occasionally performs phase jumps. To iden-
tify this type of behaviour and remove the variation in1φ(t)
over a period we calculate

1φM = 1φ mod 2π , (10)

and then further subsample this at intervals of the period. In
effect, we take a Poincaré section of1φ(t) on the interval
(−π, π). We then plot a histogram (or probability density
function, PDF) of the occurrence of1φM . Thus phase lock-
ing will appear as peaks in the histogram, and 1:1 locking as
plateaux in1φ(t).

2.2.4 Terminology

It is necessary to introduce a terminology to describe the am-
plitude and the phase behaviour. We follow Kociuba and
Heckenburg’s (2002) study of the complex Lorenz equations.
We consider a system forced by a signal such as the top wave-
form in Fig. 3. To describe theamplitude periodicitywe re-
fer to the number of successive response peaks needed for
recurrence – hence “period 1”, “period 2”, and so on. So,
for example, waveforms a and b in Fig.3 have period 1 am-
plitude periodicity (they reach the same amplitude after one
peak) and waveforms c and d have period 2. To describe the
frequency responsewe calculate the average phase velocity,
ω=<dφx/dt>≡φ̇, where the<> denote averaging over the
run. We then use this definition to discuss frequency lock-
ing ratios of the forcing frequency,γ . Locking occurs when

0 1 2 3 4 5
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1

−1
0
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1

Forcing

Response

a

b

c

d

1:1 lock, period 1

1:2 lock, period 1

1:2 lock, period 2

1:3 lock, period 2

Fig. 3. A schematic to introduce the terminology of different lock-
ing ratios and behaviour of the period. The first waveform is the
forcing, and all four waveforms represent possible responses. See
text for further explanation.

ω/γ≈n/m wheren andm are integers. So, waveform a is
locked in a 1/1 ratio, waveforms b and c have ratio 1/2, and
waveform d has ratio 1/3.

We acknowledge that this is not the only possible termi-
nology, nor in some cases, will it be the most obvious one.
However it is used throughout for consistency.

2.2.5 Unstable periodic orbits

In the chaotic regime certain forcing frequencies and ampli-
tudes may suppress the chaos. For example, previous work-
ers have suppressed chaos using perturbation frequencies that
are rational multiples of periodic drive frequencies that initi-
ated the chaos (e.g.Braimin and Goldhirsch, 1991; Fronzoni
et al., 1991; Vohra et al., 1995), or frequencies corresponding
to peaks in the power spectrum of the undriven system (e.g.
Sätherblom, 1997; Ding et al., 1994).

Mirius and Sprott(1999) suggest that these predictors are
not always reliable, but that the optimum perturbation fre-
quencies more typically correspond to rational multiples of
the frequencies of the unstable periodic orbits (UPOs) em-
bedded in the chaotic attractor. The UPOs can, in principle,
be extracted from the time series of any state-space variable
and hence no specific model for the system dynamics is re-
quired to predict optimum perturbation frequencies.Mirius
and Sprott(1999) apply their method to a variety of systems
including the Lorenz equations, and we follow them here (see
alsoLathrop and Kostelich, 1989). The first step is to iden-
tify the UPOs present in the attractor. Firstly the attractor is
reconstructed from the time series ofXd(t), using time de-
lays for simplicity, and then we measure the number of steps
it takes for the trajectory to return to within a distanceδ of
any given point. If this number of steps ism it is called anm
recurrence point. When the number of such points are plot-
ted in a histogram, as a function ofm, the data tend to cluster
at regular intervals, separated by a constant1m.
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Table 1. Table of parameters used for each regime. All experiments
had Rossby number of 0.05. This is obviously small although finite,
and is consistent with the conventional quasi-geostrophic approxi-
mation.

Regime r F β

Travelling Wave 0.02 5.5 0.1
Amplitude Vacillation 0.02 5.6 0.1
Chaotic 0.08 11.0 0.1

For example, the histogram of number of returns is in
Fig. 4 for our system of interest. Here,1m=40.45±0.17,
and there exist individual UPOs at period 1, 2, 3 and 4. We
call the periodτf=40.45, the fundamental UPO period, and
the associated angular frequencyγf≡2π/τf≈0.1553.

3 Results

We now present the results of our numerical experiments in-
vestigating the behaviour of Eq. (5) when a periodic forcing
term is added. LMR demonstrated that even when unforced,
the model generates a wide variety of behaviour depending

on the regime of parameter space chosen for investigation. It
was unfeasible to perform an exhaustive study on the effect
of adding a periodic forcing to this model. The results pre-
sented are, therefore, necessarily selective, and are chosen
to demonstrate examples of the rich structure that the model
can exhibit. They also provide examples of synchronization
phenomena in a model with geophysical relevance.

We concentrate on just three points in the (F, r, β) pa-
rameter space of LMR in the three principal regimes: (i) the
travelling steady wave regime, (ii) an amplitude vacillation
regime and (iii) a chaotic regime, explored in Sects.3.1, 3.2
and3.3, respectively. We concentrate on the latter two. The
parameters for each regime were chosen from the work of
LMR and can be seen in Table1. In the steady regime the
mean flow correction term,Xd , is constant in time and non-
zero, in the amplitude vacillation regime it varies periodi-
cally, and in the chaotic regime a range of amplitudes and
frequencies are seen. We present the results of several ex-
periments in which either the amplitude,ε, or the frequency,
γ , of the forcing is fixed and the other is varied gradually in
steps.

3.1 The travelling wave regime

In the travelling wave regime we do not expect to see
synchronization since there is no “natural frequency” of
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the system. Rather, we observe how the oscillatory forcing
changes this previously oscillation-free state.

Figure 5 shows a plot of the amplitude envelope of the
mean flow correction for various values ofε, plotted as func-
tions ofγ , i.e.Xmin andXmax are shown in the same colour
for a particular value ofε. Recall that, without forcing
there is no “natural” frequency of the system – there are
no oscillations, hence the amplitude of the mean flow cor-
rection forε=0 is a constant in Fig.5 (Xmin=Xmax, shown
in light blue). There appears to be a (nonlinear) resonance
aroundγ=0.008–0.009, in which the modulation amplitude
increases. Is this resonance perhaps showing the existence
of a UPO around this frequency? LMR2 studied the pe-
riod of the unstable torus born in a subcritical torus bifurca-
tion for this set of parameters asF was decreased (see their
Fig. 3). They found the period increased asF was decreased,
but reached a period of 200–300 before disappearing in the
saddle-node bifurcation at aroundF=5.6. We are below this
at F=5.5, where the torus has, according to LMR1, disap-
peared. Also we have a larger period of around 700 (for
γ=0.009, see Fig.5), but speculate that the resonance may
be related to this torus. The near-resonant perturbation of a
system close to a bifurcation point can sometimes suppress
or induce the bifurcation to chaos i.e. move the bifurcation
point (e.gLima and Pettini, 1990; Vohra et al., 1995). We
speculate that the same may be happening here and thus the
torus like behaviour may be found for larger values ofF in
the forced system than in the unforced one. Note we are con-
sidering only the mean flow correction term. The wave terms
have an additional oscillatory term, and hence a limit cycle
in the mean flow correction term,Xd , implies a torus in the
full system.

The oscillations visible forε=0.2 (shown in green), which
appear to have a variable amplitude (aroundγ=0.014), are in
fact long lived transients (longer than our rejected first 10 000
data points3), but indicate a period doubling is about to take
place. Certainly forε=0.5 (not shown), clear period dou-
blings become evident, followed then by inverse period dou-
blings asγ increases. For values ofε&0.3 chaotic behaviour
identified by an LLE>0 was found for some values ofγ .

3.2 Periodic amplitude vacillation

In the studies of LMR the steady travelling wave underwent
a Hopf bifurcation at largerF to a regime in which the am-
plitude of the wave and mean flow correction terms varied
periodically – an amplitude vacillation regime. The princi-
pal frequency of oscillation,γn=0.0995, is the “natural” fre-
quency of the system. We now explore this regime by ramp-
ing γ with ε fixed, and vice versa. The bifurcation diagrams
are plotted as functions of the varying parameter, and in all

3The question will often arise, of course, as to how long to wait
for transients to decay. 10 000 data points appeared to be long
enough for this regime for all but these few values ofγ .

Fig. 5. The amplitude of the mean flow correction as a function of
the forcing frequencyγ in the travelling wave regime. Experiments
are conducted for several values ofε.

subsequent such diagramsXmin is plotted in red andXmax in
blue.

3.2.1 Rampingγ for fixed ε

Figure 6 showsXmin andXmax plotted as a function ofγ
for ε=0.002, i.e. a perturbation of 0.4% of the background
flow. For most of the values ofγ the amplitude of the mean
flow correctionXd varies over a small range. There are two
places, however, where it becomes constant, or varies be-
tween only two values, demonstrating period 1 and period 2
flow.4 They are marked on Fig.6. The period 1 flow arises
aroundγn as would be expected from synchronization theory
(see e.g.Pikovsky et al., 2003); the period 2 flow is around
2γn/3. As expected for the period 1 part of the flowω

γ
=

1
1

and for the period 2 partω
γ
=

2
3 – two of the so-called “Farey

fractions”. Examples of the flow for three different values of
γ are also seen in Fig.6.

We now increaseε to 0.005 and again consider the flow
as a function ofγ , Fig. 7. The background flow is still only
perturbed by 1%. A notable feature here, compared to the
ε=0.002 case, is the period 2 flow which appears in the centre
of the diagram. Synchronization theory (e.g.Pikovsky et al.,
2003) predicts period 1 flow for small linear perturbations at
frequencies aroundγn. We surmise here that although the
forcing causes only a 1% variation inUd , it is in a regime
we shall label “moderate forcing” – it is not possible to com-
pletely predict the behaviour of the system analytically. Note
also that a period 3 flow has also become visible, along with

4We mention only these two as they are most visible on the plot.
There will be probably be others of course, depending on the reso-
lution in γ that we use.
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Fig. 7. Xmin andXmax as a function ofγ for ε=0.005 for the am-
plitude vacillation regime.

other smaller periodic windows. In these windowsω/γ can
be written asn/m, wheren andm are integers; it is evident
we have a “devil’s staircase” of frequency locking.

Examining this situation more closely we can observe the
behaviour of the phase (Figs.8 and9) for a selection ofγ
values. The phase difference,1φ(t), slips just outside the
central locked region (forγ=0.0898), though the histograms
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Fig. 8. Amplitude vacillation regime,ε=0.005. Values of1φ(t) for
a range ofγ . Note the changing ordinate. Forγ=0.0898 there is
quasi-periodic behaviour. Periodic behaviour of period 2 is seen for
γ=0.0918 and 0.0938. The middle three panels (γ=0.0958, 0.0978,
0.0998) show period 1. In the bottom three panels (γ=0.1018,
0.1038, 0.1058) phase slips start appearing in1φ(t), as we move to
the edge of the Arnol’d tongue and back to a quasi-periodic state.

show broad peaks at certain values of1φ; for these values
of γ there is still a degree of partial synchronization. The
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Fig. 9. Histogram of the data from Fig.8,1φ (mod 2π).

period doubling seen in the amplitude data, Fig.7, can be
seen also in the phase data (γ=0.0918, 0.0938), particularly
in the histograms, as a point where1φ clusters round two
values. On the far side of the locked region (γ=0.1018)
the phase slips become increasingly frequent until1φ(t) ap-
proaches a uniformly decreasing function, appropriate again
to a quasi-periodic region (γ=0.1058). The LLE for this
run (not shown) indicates that the system remains largely
non-chaotic until aroundγ=0.13 where it rises above zero
to about 3×10−3 bits perσ .

Similar runs for larger (constant) values ofε show a
greater variation inXmin andXmax, i.e. the underlying attrac-
tor is larger as the system explores more of the surrounding
phase space (not shown). There are values ofγ for runs with
ε=0.01 and 0.05, for which the LLE are significantly non-
zero, thus indicating chaotic behaviour. Indeed the chaotic
values of the LLE (i.e. the non-zero ones) are similar to those
for the unperturbed chaotic system examined in the next sec-
tion. Hence we label the forcing here as “strong”.

Figure10, for γ ramped for a range ofε, demonstrates the
regions where there is periodic amplitude behaviour show-
ing period 1,2... up to period 8. Forε≤0.005, which
have largely non-chaotic behaviour for the whole range of
γ=0.05–0.15, classic Arnol’d tongue-like behaviour can be
seen; we can class the forcing here as “weak”. The three
main locked regions can be seen as the red tongue in the cen-
tre for γ≈0.009, the cyan tongue forγ≈0.13, and the green
tongueγ≈0.14. At higher values ofε the middle tongue de-
velops the period doubling discussed above, hence the tongue
is not all in the same colour. Note the green and cyan tongues
also develop period doubling in their centres. The three main
synchronized regions also show up in the phase data (not
shown), this time as places whereω

γ
=
n
m
.

For ε greater than∼0.01 the Arnol’d tongue is still visi-
ble in the amplitude data, Fig.10, and to some extent in the
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Fig. 10. The amplitude vacillation regime: plot of locked regions.
Period 1+, period 2+, period 3o, period 4+, period 5o, period 6
o, period 7�, period 8+. Note the fields have not been contoured
as they are highly complex and contouring may give a misleading
impression.
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Fig. 11. The LLE as a function ofγ andε for the amplitude vac-
illation regime. + denotes LLE≤0.006 ando LLE>0.006. The
positions ofγn andγgm (see text for definition) are marked. Again,
as in Fig.10, it was felt contouring the fields would be misleading.

phase data (not shown), though it is more skewed. Indeed for
large values ofγ the 1:1 locked states do not even contain
γn. Some of the previously locked states have disappeared
altogether to be replaced by chaos. The system could be con-
sidered now to be jumping between the steps on the devil’s
staircase as they overlap, rather than remaining on any par-
ticular one, and so chaos instead of a coherent locked state is
seen. The forcing amplitude is now classed as “large”, and
probably alters the underlying dynamics as well.
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Fig. 12.Xmin andXmax as a function ofε, for γ=γn, in the ampli-
tude vacillation regime.

Having considered the (γ, ε) parameter space from the
point of view of the amplitude and of the phase, we present
one more analysis, that of the LLE. The regions showing pe-
riodic behaviour ofXd are, of course, all non-chaotic. How-
ever, it is possible to have regions where there is phase syn-
chronization, but the dynamics (amplitude) remain chaotic
(seePark et al., 1999; Zaks et al., 1999, for example). Fig-
ure 11 shows the regions where the LLE<0.002, i.e.∼0
(shown in black) and regions where the LLE>0.002 (shown
in blue). For values ofε<0.005, the system is non-chaotic
for all the frequencies of forcing that we investigated. For
the lowest value ofε for which chaos was observed, i.e. for
ε=0.005, theγ required is not close toγn as was found by
Franz and Zhang(1995), for example, for the real Lorenz
equations. Instead it is atγ∼0.13. Chaos also set in for
low values ofε aroundγ∼0.085. The fact that the tongue
of stability is skewed leads to the following interesting re-
sult. For low values ofγ , i.e.γ<γn, the range inγ for which
chaos is observed, increases with increasing forcing ampli-
tudes. For high values ofγ the converse is true. For very
low amplitudes of forcing the system is, as we said above,
non-chaotic. However it quickly becomes chaotic at moder-
ate forcing amplitudes and then becomes non-chaotic again
at high forcing amplitudes. If we denote the detuningν, as
ν=γ−γn, it would seem that the chaotic behaviour for mod-
erate and large forcing amplitudes depends on the sign of
the detuning, as well as its magnitude. There is also a small
range ofγ for which the system remains stable for all the
forcing amplitudes we investigated.

3.2.2 Rampingε for fixedγ

The investigations of the previous section allowed an exam-
ination of the behaviour of the periodic regime over a range
of forcing parametersγ andε. Before leaving this regime

Fig. 13.Xmin andXmax as a function ofε in the amplitude vacilla-
tion regime forγ=γgm (for definition see text).

we study further two particular points in parameter space,
this time holdingγ fixed. We considerγ=γn, andγ as far
away as possible from any frequency rationally related toγn.
Hence we consider the natural frequency,γn, multiplied by

the golden mean.5 Thus we defineγgm=

√
5−1
2 γn.

Consider first the case forγ=γn, Fig. 12. For small val-
ues ofε the system continues to oscillate at its natural fre-
quency, showing period 1 behaviour. However, there fol-
lows a period doubling route to a chaotic state, with various
different periodic states visible asε increases further. Thus
we can see where the classic Arnol’d tongue-like behaviour
breaks down, though further locked states become apparent
at higher values ofε (e.g. around 0.022). The onset of chaos
can also be seen in the behaviour of the LLE in Fig.11.
Studying the phase behaviour (not shown) shows1φ(t) re-
mains bounded for all time, even though the distribution of
1φ may vary and the specifics of its time dependence varies.

Figure 13 shows the case forγ=γgm. Now ε must be
greater than∼0.008 before any locking emerges. Interest-
ingly the LLE remains around zero for the whole of this run,
indicating that this state is largely quasi-periodic rather than
chaotic over the range ofε shown. The location ofγgm is
marked on Fig.11. Thus forcing at a frequency far away
from a frequency rationally related to the natural frequency
presumably requires a large driving amplitude (larger than in
any of our runs) to cause a transition to chaotic behaviour.

3.3 The chaotic regime

In Sect.2.2.5we found that there were UPOs present in the
chaotic regime at periods ofτf≈40.45σ (γf=0.1553), and

5The golden mean,p, can be found as a root of the equation,
1+

1
p=p. It is a continued fraction, i.e.p=1+

1
p=1+

1
1+

1
p

= . . .

etc.
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Fig. 14. Application of forcing withε=0.05 in the chaotic regime.
The position of the phase slip corresponds toγ=0.172 in Fig.15.
See text for further details.

integer multiples of this, and hence we shall pay particular at-
tention to forcing at these periods. For all runs, the parameter
space of the unforced system that was visited corresponded
to a chaotic region, and hence any ensuing periodicity is due
to the addition of forcing rather than crossing a bifurcation
point of the unforced system. (It could also be due to the
bifurcation point moving as a result of the forcing, but even
then the unforced system has been changed.)

3.3.1 Rampingγ for fixed ε

First the value ofε is held fixed for each experiment, and the
value ofγ ramped from 0.1 to 0.3. Runs were also carried
out rampingγ from 0.005 to 0.1, though in most runs the
forcing had little effect on the chaotic behaviour so they are
not shown.

Forcing withε=0.01 has little effect and the LLE, remains
fairly constant (and positive) throughout. When the ampli-
tude of oscillation is increased toε=0.02, small windows
appear where the chaotic behaviour disappears to be replaced
by regular amplitude vacillation, and the corresponding LLE
drops to zero. Asε is increased still further the windows of
regular periodic behaviour increase in their range inγ .

For example the case ofε=0.05 is shown in Fig.14, with a
region of period 2, going through an inverse period-doubling
cascade to period 1. Examining the ratios ofω/γ for this run
shows that the region of frequency locking (i.e. synchroniza-
tion) extends beyond the bounds of the region of amplitude
periodicity (see Figs.16 and17 later). This locked region is
marked on Fig.14; note that it corresponds to the region of
decreased variation in amplitude.

An example of the behaviour of1φ(t) going into and
out of the locked region forε=0.05 can be seen in Fig.15.
Phase slips are seen in Fig.15, going into the locked re-
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Fig. 15. 1φ(t) for the chaotic regime withε=0.05. Panels 3–8
correspond to the frequency locked region maked on Fig.14. Note
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phase slip seen in panel 5 is also marked on Fig.14.
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gion, in the same way as in the periodic regime (e.g.γ=0.13).
However, on examining the phase behaviour in Fig.15 over
this frequency locked region (γ=0.14–0.205) it can be seen
that it varies quite considerably. There are regions where
1φ(t) behaves in an erratic but bounded way (e.g.γ=0.14,
0.171, 0.173), regions where it oscillates in a regular way
(e.g.γ=0.177, 0.205), and even one where it performs phase
slips (γ=0.172). The corresponding phase-slip is marked on
Fig. 14. The PDFs (not shown) all have distinct peaks in this
region showing synchronization is taking place. Hence there
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Fig. 17. The chaotic regime: the values ofε andγ for which the
ratioω/γ≈1 are shown in green andω/γ≈2/3 are shown in black.
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Fig. 18. The chaotic regime: plot of amplitude locked behaviour.
Period 1+, period 2+, period 3o, period 4+, period 5o, period 6
o, period 7�, period 8+.

are regions where frequency entrainment is seen, where the
amplitude behaviour is still chaotic, and1φ(t) is also irreg-
ular though bounded.

The LLE (not shown) demonstrates increasing the ampli-
tude of the forcing from 0.01 to 0.1 seems to have two main
effects. The width of the windows of locked, regular periodic
behaviour increases, but also, in the chaotic regions, the LLE
itself in the chaotic states increases with increasingε, par-
ticularly for the higher values ofγ . A summary of the LLE
behaviour over a range of parameters is seen in Fig.16. The
periods of regular behaviour (shown in black) and increased
chaotic behaviour (shown in red) can be clearly seen. The
cut-off point between the blue and red areas of the plot is

somewhat arbitrary; a value of LLE=0.03 was chosen; the
unforced system has an LLE of∼0.02.

We now compare Fig.16with Fig. 17. The first shows the
region where the LLE drops below a certain threshold value,
i.e. is≈0, and the system is behaving in a non-chaotic way.
The second of these two shows regions whereω/γ=1 and
2/3 (recallω=φ̇(t)); this shows regions of frequency locking.
The two are not identical. This is because, as was pointed out
earlier, it is possible to have frequency locking in a chaotic
system, without necessarily having the amplitude also behav-
ing in a regular way. AsPikovsky et al.(1997) point out, the
LLE alone cannot be used to determine the point ofphase
synchronization, as this can occur in regions where the over-
all behaviour of the system is still chaotic.

Further, it is also interesting to note the frequencies for
which stability occurs. From the results ofMirius and Sprott
(1999) we would expect this to be at the periods of the
UPOs or integer multiples of these. The period one UPO
hasγf=0.15533, and the main region of stability for all the
values ofε considered here has period one (as seen in the
amplitude bifurcation plots), born from a period-two inverse
period-doubling cascade. However, these are clearly stab-
lisednot just atγ=γf , but over a range inγ , the range de-
pending on the value ofε. Examining Fig.16, the required
γ for periodic behaviour, for the smallest value ofε, seems
to be∼0.17, with the range ofγ values increasing with in-
creasingε, though for some values ofε this value ofγ does
not give a non-chaotic system. Hence this seems not to be in
agreement with the findings ofMirius and Sprott(1999) for
the real Lorenz system. The reasons for this are not entirely
clear and merit further investigation.

The plot of the frequency locked regime (for 1:1 locking),
however, does seem to tend toγ=γf asε→0 (see Fig.17),
though the tongue subsequently is not symmetric about this
value for increasingε. Thus, forcing at the fundamental
UPO period, at very low amplitudes, does seem to control
the phase behaviour of the system (and more so its average
frequency), although the same is not true for the amplitude
as we stated above.

We have considered the overall behaviour of the sys-
tem from the perspective of Lyapunov exponents and the
chaotic/non-chaotic behaviour of the system (Fig.16), and
we have considered it from a frequency locking perspective
(Fig. 17). A third possible view, as we used in the amplitude
vacillation regime, is to examine the periodicity of the ampli-
tude in the locked regions. This is shown in Fig.18. Again
the main tongue of regular behaviour is seen almost solely at
period 1 and period 2 (in contrast to the AV plot in Fig.10).
A second area of periodic behaviour, predominantly at pe-
riod 2 at aboutγ=0.25, is also seen where the 2/3 frequency
locking regime occurs, similar to the periodic case.

Kociuba and Heckenberg(2002), similarly, find various
locking ratios and amplitude periodicities for their version
of the complex Lorenz equations for a laser with periodic
forcing. Their main 1/1 locked tongue has period 3 behaviour
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Fig. 19. The variation in LLE withε for various frequencies of
forcing in the chaotic regime.
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Fig. 20. 1φ(t) for a range ofε forcing atγ=γf in the chaotic
regime. The phase difference remains bounded throughout this run.

(of the amplitude) in the centre, with period 2 and period
4 visible on either side. This is in contrast to ours which
is predominantly period 1, with period 2 on one side. The
behaviour is qualitatively similar, however.

3.3.2 Rampingε for fixedγ

As with the AV regime studies, we now pick out particular
values ofγ for further analysis, fixing the forcing at these
values ofγ and ramping the amplitude. We consider forc-
ing at periods which are integer multiples of the fundamental
UPO period, and at other periods as explained below.
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5 are regions of complete phase locking where the corresponding
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Fig. 22. The histogram for a range ofε forcing atγ=0.161, in the
chaotic regime. There is some degree of synchronization for many
values ofε.

Forcing at the UPO periods

First we consider forcing at frequencies equal to one, two,
three, four and half the fundamental UPO period, i.e. at
γf /p, wherep=1, 2, 3, 4, 0.5, respectively. In all these cases
the system remains largely chaotic, though there are a few
windows of regular periodic behaviour, as shown by the LLE
in Fig. 19. Thep =1/2 case is notable because there is very
little stability and the LLE increases steadily, whereas for the
p =1–4 cases the LLE remains less than∼0.02 bits/σ .
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In thep=2, 3, 4 cases the largest windows of periodic be-
haviour are at period two, three and four, respectively, as we
might expect (not shown). In contrast, forcing at thep=1
frequency, gives the main regions of periodicity being about
half at period one and half at period two. The period dou-
bling is present here too (not shown).

Examining the behaviour of1φ when forcing atγf
(Fig. 20) shows that the phase remains bounded for the full
range of forcing amplitudes, and the histograms (not shown)
are all sharply peaked. Forcing at this frequency certainly
seems to strongly affect the behaviour, showing (at least par-
tial) synchronization, though the specific behaviour varies as
ε varies. Only in certain cases do we have phase synchro-
nization in the strictest sense, e.g. forε=0.063. Contrast this
with the behaviour for the forcing at four times the funda-
mental UPO period. Anticipating interaction aroundω/γ=4,
we calculate the phase difference this time as

1φ(t) = φx(t)− 4γ t . (11)

The results can be seen in Fig.21. There are some values
for which phase synchronization is seen (e.g. panels 4 and
5), but for others1φ(t) is unbounded and increases or
decreases with time.

Forcing at non-UPO periods

Finally a non-UPO frequency of oscillation was chosen
by studying the results from the rampingγ runs, choosing
a value ofγ that gave periodic behaviour,γ=0.161. The
phase behaviour at this value suggests that this frequency
is effective at controlling the system to some extent since
1φ(t) is bounded for a large range ofε. There is a strong
phase preference at certainε values (see Fig.22) indicating
a degree of synchronization. Examination of the frequency
data suggests thatγ=0.161 has regions with locked ratios of
ω/γ=1/4. Hence the “natural period” here would correspond
to τ=2π/0.161×4=156. It is notable that the histogram of
UPO periods in Fig.4 has a very small peak at this period.
Hence controlled behaviour may be expected by forcing
periods which are rationally related to this. Indeed similar
controlled regions could be found by studying the other
small peaks of the UPO histogram.

Sensitivity to initial conditions

Interestingly, when comparing the LLEs for these two sets
of experiments, rampingγ and rampingε, for the values of
(γ, ε) common to both, the two do not always agree. In
other words there are regions of parameter space in which
the results are more sensitive to initial conditions.Mirius
and Sprott(1999) comment that differing conditions led to
differing specific trajectories in their studies on the Lorenz
equations, but not different behaviour.Kociuba and Heck-
enberg(2002), however, found that for some values of per-
turbation frequency and amplitude control did not occur for

all initial conditions in their studies on the Lorenz equations
with complex coefficients.

It is certainly true for our system, as for that ofMirius and
Sprott(1999), that as the amplitude of the perturbation is in-
creased at a fixed frequency, the system can pass through re-
gions of control and chaos. This is unlike the classic Arnol’d
tongue type behaviour seen in Sect.3.2in the amplitude vac-
illation regime for smallε. Here, once locked, the system re-
mains so asε is increased. However the changing from con-
trolled to chaotic regions is more like the largeε behaviour
seen for the amplitude vacillation regime, where the tongue
behaviour was less regular and in fact chaotic behaviour was
possible even when forcing atγn.

4 Discussion and conclusions

Applying a periodic forcing to a quasi-periodic or chaotic
system can significantly alter the behaviour of the system.
In the climate community this effect is of great interest with
respect to oscillatory phenomena such as ENSO, the Quasi-
Biennial Oscillation or Tropical Instability Waves, for ex-
ample, and their interaction with annual or sub-annual solar
forcings. Here we have considered one of the simplest geo-
physical fluid systems: a two-layer quasi-geostrophic model,
allowing one wave in the along-stream and cross-stream di-
rections. The bifurcation structure and unforced behaviour of
this model has been extensively mapped byLovegrove et al.
(2001, 2002). Here we applied periodic forcing by directly
varying the baroclinic velocity field in a sinusoidal manner.
Although the choice of parameters for this study has neces-
sarily been limited, we have, nonetheless, found a rich set of
solutions.

We have concentrated on three different regimes identi-
fied by Lovegrove et al.(2001, 2002): a steady, travelling
wave regime, a quasi-periodic, modulated wave regime and a
chaotic regime. First we showed that when a periodic forcing
is applied to asteady travelling wave regime, a resonance is
seen, albeit of small amplitude, when there is no such stable
“natural frequency” of the system in the absence of forcing;
see Fig.5. NotePedlosky and Thomson(2003) also found
an oscillatory state in a previously sub-critical regime when
a periodic forcing was applied.

A summary of the regime diagrams for the periodic and
chaotic flows, plotted schematically as functions of (γ, ε),
was presented in Fig.1. The fundamental UPO frequency,
γf , in the chaotic regime appears to play a similar role to
that of the natural frequency,γn, in the periodic regime. We
summarise some of the behaviour seen in these two regimes
below.

In theperiodic regime, at small amplitudes of forcing, the
classic Arnol’d tongues were seen, with Farey ratios of fre-
quency locking, periodic behaviour in the amplitude, and a
devil’s staircase. At moderate forcing amplitudes, period
doubling cascades were seen in the amplitude behaviour (and
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indeed in the phase behaviour), at the edge of the three main
Arnol’d tongues. Phase slips were also seen at the edge of the
periodic windows. Most of the periodic amplitude behaviour
of higher periodicities disappeared at these moderate forc-
ing values, as did some of the higher order frequency locked
regimes. The amount of chaotic behaviour (i.e. the range of
γ for which the LLE>∼0.003) increased with increasingε
(Fig. 11), and the Arnol’d tongue became highly asymmet-
ric with respect to the detuning on either side of the tongue.
Pedlosky and Thomson(2003) also found that the stronger
the periodic forcing the more likely chaotic behaviour was
to ensue when the shear was varied periodically in slightly
supercritical (when unforced) conditions. Our results were
not similar however to those ofFranz and Zhang(1995),
for example, who found that forcing at the natural frequency
was most likely to induce chaos in the real Lorenz equations.
However, we did agree with them in the sense that a fre-
quency not rationally related to the natural frequency,γgm,
showed no chaotic behaviour for the whole range of forcing
amplitudes used in this study. Throughout the investigations
period 1 behaviour was frequently born out of an inverse pe-
riod doubling cascade.

In thechaotic regimethe chaos was suppressed for partic-
ular values ofγ and the region over which this suppression
took place increased with increasingε, as seen by the black
tongue of Fig.16. This tongue however has “holes” in it, in
the form of regions where the chaos returns. Moreover not all
points that are stable have stability for all initial conditions.

Instead of searching fortotal synchronization, we can in-
stead observe frequency locking, with the frequency of the
system being defined as the time mean value ofdφx/dt .
Then the regions of synchronization are more extensive, see
Fig. 17.

The system can also be studied from the perspective of am-
plitude periodicity with a variety of periodic behaviours of
the amplitude visible in the main central frequency-locked,
non-chaotic tongue, in qualitative agreement with the find-
ings of Kociuba and Heckenberg(2002) studying the com-
plex Lorenz equations for a laser, Fig.18.

Our results are generally consistent with those ofMirius
and Sprott(1999) in that forcing at a period equal to the
principal UPO period was likely to give rise to total synchro-
nization, though not for all values ofε. A forcing period of
4τf was also particularly successful at quenching chaos, as
might be expected from the histogram of UPOs, Fig.4. From
a phase synchronization perspective we found that forcing at
the principal UPO period led to restricted ranges of1φ(t) for
almost all values ofε and to complete phase locking in some
cases. Forcing at the other UPO periods did cause phase
locking and synchronization, but to a lesser extent, defining
the value of1φ(t) appropriate to the particular multiple of
the fundamental UPO in each case. For total synchroniza-
tion at the smallest possible value ofε, control seemed to be
achievednot for the fundamental UPO period, but for a non
harmonically related value ofγ∼0.17. Frequency locking

is possible for smallerε values than this, however, and the
region of lockingis then consistent with the principal UPO
period ofτf=40.45. Again, similar to the AV regime, period
one locking is usually born out of an inverse period doubling
sequence.

Returning finally to the climate, there remains the ques-
tion of the applicability of these results on a highly idealised
system to that of a real geophysical system. Clearly, their
applicability to climate cycles, for example, is tenuous. In-
deed, the highly truncated model of baroclinic instability due
to Klein and Pedlosky(1986) shows strong dependence on
spectral resolution. We therefore doubt that our solutions
have quantitative significance for climate but rather illus-
trate the range of possible behaviour. The most obvious dis-
tinction between the present model and the real geophysi-
cal system is of complexity and state-space dimension. The
real system is vastly more complex than our 5-dimensional
model. It is therefore natural to suppose that the real sys-
tem exhibits richer and more varied behaviour than we see
here. This is an intriguing prospect because the present sys-
tem already displays great subtlety in response to periodic
forcing. Indeed, our results are necessarily somewhat incom-
plete owing to this complexity. The forcing function used
here is monochromatic and noise free. Perhaps extrapolation
of our results to geophysical systems should therefore be re-
stricted to similar cases. In practice, this would mean exter-
nal periodic forcing whose origin is in the Earth’s celestial
mechanics (e.g., tides, seasonal cycle, Milankovitch cycles).
In any event, it is of interest to speculate a little about how
syncronization phenomena may be at work in geophysical,
and laboratory, rotating, stratified fluids.

At least some aspects of the index cycle, NAO and asso-
ciated annular modes, have analogues in the rotating annulus
experiments. This Q-G model is the simplest representation
of such a laboratory system. Our results would suggest that
certain aspects of the northern hemisphere variability could
be due to interactions with a periodic forcing, be it annual or
with another period, in line with one proposal byStephen-
son et al.(2000). However the nature of the forcing in the
atmosphere is not mono-periodic so furthering the analogy
requires the addition of further forcing frequencies to the
model and possibly stochastic terms as well.

Recent climate work has also focussed on much shorter
timescales examining intraseasonal variability. Including a
seasonal cycle in GCMs can improve representations of in-
traseasonal tropical oscillations such as the Madden-Julian
oscillation (Huang and Cho, 1998). Moving to the extrat-
ropics, modes with periods of around 20–40 days have been
found in both hemispheres, with wavenumbers 4–7 (e.g.Ran-
del and Stanford, 1983, 1985b; Ghil and Mo, 1991a,b). Pos-
sible analogous phenomena occur in the laboratory in the
multiple wave regimes, both with and without periodic forc-
ing. This motivates further work on this Q-G model, but
including more than one azimuthal wave. The results with
only one wave, as presented here, suggest that if there was a
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forcing with a varying amplitude, the atmosphere could flip
between chaotic and stable states perhaps giving rise to some
of the observed features.

Thus the subtle, complex behaviour in the low-order
system we study here might have analogues in some
periodically-forced geophysical phenomena. Further work
on the applicability of these results from low-order systems
to climate variability is clearly required.
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