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Abstract.
We show that the results of major fetch limited field studies

of wind-generated surface gravity waves on deep water can
be explained in the framework of simple analytical model.
The spectra measured in these experiments are described by
self-similar solutions of “conservative” Hasselmann equation
that includes only advective and nonlinear interaction terms.
Interaction with the wind and dissipation due to the wave
breaking indirectly defines parameters of the self-similar so-
lutions.

1 Introduction

Theoretical interpretation of experimentally observed wind-
driven sea energy spectra is a fundamental problem of phys-
ical oceanography, and of the physics of nonlinear waves in
generally. At the moment oceanographers accumulated an
enormous amount of experimental data, both in field and lab-
oratory, on the wind generated waves.

Among field studies of wind-generated surface gravity
waves on deep water, the case of fetch limited wave growth
is of special importance. This case is characterized by a con-
stant (in space and time) offshore wind at the normal angle to
the straight coastline. Under these idealized conditions, the
wave field depends only on the fetchx that is defined as a dis-
tance from the shoreline. Highly interesting data sets of field
observations are available, for example, from the following
studies:

1. Measurements in Nakata Bay (Mitsuyasu et al., 1971);

2. The JONSWAP studies (Hasselmann et al., 1973);

3. Measurements in the Bothnian sea (Kahma, 1981);

4. Measurements in Lake Ontario (Donelan et al., 1985);
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5. Measurements off the Nova Scotia coast (Dobson et al.,
1989);

6. Measurements in Lake St. Clair, Canada (Donelan et al.,
1992).

The results of these experiments were analyzed by many
authors and are summarized byYoung(1999).

Theoretical explanation of field and laboratory experi-
ments has to include a clarification of basic physical pro-
cesses that take place in the boundary layer over the sea sur-
face. This layer is turbulent. The turbulence causes forced
oscillations of sea surface; these oscillations can be consid-
ered as “seeds” of future wind-driven waves (Phillips, 1957).
What is more important, the boundary layer is unstable if the
wind velocityu>ucrit, where

ucrit =
√

2(gσ )1/4
' 0.23 m/s (1)

Hereg is the gravity acceleration,σ is a surface tension. That
means that the range of unstable wave numbers is very broad

kmin < k < kmax (2)

Here kmin=g/u2 is a “standard” wave number associated
with the wind velocityu, while

kmax '
u2

σ
' kcrit

(
u

ucrit

)2

, (3)

wherekcrit=
√

g/σ is the wave number that separates the cap-
illary and gravity waves. Foru�ucrit we havekmax�kcrit,
and the real upper limit of unstable wave numbers is defined
by competing of wind-induced instability and viscous damp-
ing of capillary waves. Other physical effects: shear flow,
viscosity of air, drop formation, and turbulence are also im-
portant in this spectral range.

The linear instability leads to exponential growth in time
and space of wave amplitudes. This growth has to be ar-
rested by some nonlinear process; determination of this non-
linear saturation process is the most critical point of the the-
ory. One fact is clear: in a typical situation there is a white-
capping on the crest of each major wave. Starting from this
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observation,Phillips (1958) suggested that the linear insta-
bility induced by the wind is arrested by strong nonlinear ef-
fects, which lead to formation of the Stokes waves with am-
plitudes close to limiting. However, this elegant conjecture
was not supported by experimental data. The Phillips’ the-
ory presumes that the overall wave steepnessµ=ka should
be close to its limiting valueµcrit'0.41; herek is a character-
istic wave number anda is a characteristic wave amplitude.
Meanwhile, a typical experimental value isµ'0.1 that is es-
sentially less thanµcrit. The overall steepnessµ is a measure
of the wave nonlinearity. All experimental data show that
the average nonlinearity is small. On the other hand, due
to broadness of the instability region, the number of degrees
of freedom, involved in the process of wave generation, is
very large, 108 or so, and the wave ensemble has to be de-
scribed statistically. This fact was realized byHasselmann
(1962, 1963), who described the kinetic equation for average
squared wave amplitude, known as Hasselmann’s equation.
In his derivation, Hasselmann used a systematic expansion
in powers of the small parameterµ.

Derivation of the Hasselmann’s equation was a great suc-
cess of the theory. However, this equation couldn’t explain
the white-capping, which is a universal phenomenon, at least
at moderate wind velocityu≥6 m/s. This fact leaded many
oceanographers to a conclusion that in a real situation the
weak and strong nonlinearities do coexist. Moreover, to the
conclusion that the four-wave resonant processes described
by the Hasselmann’s equation and the strongly nonlinear
white-cap dissipation are equally important for dynamics of
wind-driven spectra. In the most clear way this idea was ex-
pressed in a well-known article byPhillips (1985). In math-
ematical terms it can be formulated as follow: the Hassel-
mann’s equation in the presence of wind input and white-cap
dissipation can be written as

∂N

∂t
+ ∇ωk∇xN = Snl + Sin + Sds (4)

HereSnl is the nonlinear interaction term derived by Hassel-
mann,Sin is the wind input term, andSds is the dissipation
term due to white-capping. According to Phillips, all three
terms have compatible influence in determination of spectral
peak dynamics. This is a rather pessimistic view on the the-
ory capacities, because there is only a little hope to find a
reliable, well justified expression forSds .

In this paper we formulate an alternative view on the prob-
lem. We show that more accurate estimates ofSnl demon-
strate that this term is more important thanSin andSds . That
means that on the average, the weakly-nonlinear interactions
dominate over the wind input and over the strongly nonlin-
ear interaction; that displays itself as white-capping. The
weak and the strong nonlinear interaction coexist; however
the white-capping is important in the high-frequency range
only. In the area of spectral peak, the nonlinear four-wave
interaction is the most important process.

That fact means that the space-time dynamics of the spec-
tral peak can be properly described by the “conservative”

Hasselmann’s equation

∂N

∂t
+ ∇ωk∇xN = Snl (5)

The limited fetch study are described by the stationary con-
servative Hasselmann’s equation

∇ωk∇xN = Snl (6)

In both stationary and non-stationary cases the “rare faces”
of the spectra are described by the stationary uniform kinetic
equation

Snl = 0 (7)

Conservative models (Eqs.5–7) are much simpler than the
full nonconservative Eq. (4), which includes rather indefinite
termSds . These models are available for analytic treatment.
The simplest stationary uniform Eq. (7) has a family of the
Kolmogorov-type solutions

N(k, θ) =
P 1/3

k4
F

(
Q ωk

P
,

M ωk

kP
, θ

)
(8)

HereP , Q, andM are fluxes of energy, wave action, and
momentum. Equations (5) and (6) have rich families of self-
similar solutions. All these solutions have short-wave Kol-
mogorov asymptotics (Eq.8).

In this article we concentrate on self-similar solutions of
the stationary conservative Hasselmann’s Eq. (6). This equa-
tion has a two-parameter family of similarity solutions. We
show that these solutions fit very well for description of spec-
tra observed in major fetch-limited experiments. We demon-
strate that a proper choice of parameters in the similarity so-
lution makes possible to reach not only qualitative but also
quantitative agreement with the field experiments. This state-
ment may appear counter to physical intuition because the
surface waves are caused by wind and are accompanied with
a substantial energy dissipation due to wave breaking. This
controversy easily resolves if one notice that conservative
kinetic Eqs. (5)–(6) are incomplete from the mathematical
view-point. Their solutions are not defined uniquely by de-
termination of initial data only. To define a solution one
should specify also the flux of wave actionQ(r, t) coming
from very high wave numbers. This flux is a result of com-
plicated interplay between the income of wave action from
the wind and its dissipation due to white-capping in the high-
frequency region. For a self-similar solution of Eq. (6), Q is
a powerlike function on fetchx. The exponent and the pre-
exponent ofQ defines parameters of a similarity solution.

Some authors instead of term “Hasselmann’s equation”
use “Boltzmann equation”, while comparing the kinetic
equation for squared amplitudes of surface gravity waves
with the kinetic equation for distribution function of a weakly
non-ideal gas. We should stress that this comparison cannot
be extended too far. In the kinetic gas theory, the Boltzmann
equation is complete, in a sense that its solutions are defined
uniquely by determination of initial data. The Hasselmann’s
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equation can be better compared with a heat transport equa-
tion in a finite domain; solutions of this equation depend es-
sentially on boundary conditions. For Hasselmann’s equa-
tion, the external fluxQ plays the role of boundary condi-
tion.

The “conservative” model formulated in the present arti-
cle is the simplest model that admits an analytical treatment.
More accurate model should include into consideration the
termsSin andSds ; these terms are considered to be small and
can be treated as perturabation. In this model, the stationary
Eq. (7) has to be replaced by more accurate equation

Snl + Sin + Sds = 0 (9)

This equation still has the Kolmogorov-type solution (Eq.8),
however the fluxesP , Q, andM are now “slow” functions
on frequency. The details of this study will be published in
another article.

Let us emphasize that the theoretical model, presented in
this article, is based on “first principles” and does not include
any adjustable parameters. Nevertheless, the model yields
results which not only are qualitative correct but are in a good
quantitative agreement with field observations.

2 Basic equations

Letη(r, t), r=(x, y) be the surface elevation field,η(k, t) its
Fourier transform, andIk=I−k=<|ηk|

2> the spectral den-
sity as a function of wave number. The wave field is de-
scribed by the wave action spectral densityNk:

Ik =
ωk

2
(Nk + N−k). (10)

Hereωk=
√

gk is the dispersion relation, whereg is the ver-
tical acceleration due to gravity.

The action densityNk(r, t) satisfies the Hasselmann ki-
netic equation,

∂N

∂t
+

∂ω

∂k

∂N

∂r
= Snl + SF , (11)

where

Snl = π g2
∫

|Tkk1k2k3|
2

×[N2N3)(N1 + N0) − N0N1(N2 + N3)] (12)

δ(k + k1 − k2 − k3)δ(ω0 + ω1 − ω2 − ω3)dk1 dk2 dk3

is a nonlinear interaction term andTkk1k2k3 is a coupling co-
efficient. The exact expression forT can be found in (Webb,
1978; Zakharov, 1999). Of great importance is the fact that
Tkk1k2k3 is a homogenous function of the third order:

Tζk,ζk1,ζ k2,ζ k3 = ζ 3 Tkk1k2k3. (13)

The termSF =Sin+Sds represents a source function which
includes the wind inputSin and the breaking wave induced
dissipationSds .

By definition, the variance of the surface elevation is given
by

σ 2
=

∫
ωk Nk dk, (14)

and the mean frequency is

ω̄ =
1

σ 2

∫
ω2

k Nk dk. (15)

The overall squared wave steepness is characterized by an
integral quantity

µ2
= α̂ = σ 2 k̄2. (16)

Let Ua be the wind speed at a reference heighta. We can
now introduce the characteristic angular frequency and wave
number related to the given wind speedUa by

ω0 = g/Ua, k0 = g/U2
a (17)

Most authors agree thatSin can be presented in the form

Sin = m F(ξ) ω N(k), (18)

whereξ=ω cosθ/ω0 and

m = 0.1 ∼ 0.3
ρa

ρω

' 10−4. (19)

There is no agreement about the exact form of the function
F(ξ). According to (Donelan and Pierson-jr., 1987),

F(ξ) =

{
(ξ − 1)2 ξ > 1

0 ξ < 1.
m = 0.194

ρa

ρω

(20)

According toHsiao and Shemdin(1983),

F(ξ) =

{
(0.85ξ − 1)2 0.85ξ > 1

0 0.85ξ < 1.
, m = 0.12

ρa

ρω

(21)

Tolman and Chalikov(1996) proposed a more complicated
form of F(ξ). In any case, all such models haveF(ξ)'1 for
ξ∼0.

One should take into account that the very concept of an
universal expression forSin, depending only on the wind
speedUa , can be easily criticized. The wind inputSin is de-
fined by the state of the turbulent air boundary layer. That
state depends on many factors; one of them is the differ-
ence of water and air temperature. If water is warmer than
air (unstable atmosphere), the wind input can be several
times higher than in the opposite stable case (seeKahma and
Calkoen, 1992). Another important factor is the gustiness
of the wind; it is defined by statistical properties of the air
boundary layer in mesoscale. Cavaliery and Burgens (1992)
showed an enhanced growth rate of ocean waves with the
increasing of gustiness. In principle, the growth rate could
depend on more fine statistical characteristics of the bound-
ary layer. Thus the scattering and variability of experimental
data in fetch-limited studies can be explained not only by an
inevitably limited accuracy of measurements, limited repro-
ducibility of experimental conditions such as wind velocity,
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fetch and duration, but also by a variability of the state of
boundary layer.

The dissipation termSds is studied much less thanSin.
Hasselmann(1974, see alsoKomen et al., 1984) proposed
the following form:

Sds = q
( α̂

αpm

)2 (ω

ω̄

)n

ω N, q = 3.33 · 10−5, (22)

whereαpm=4.57×10−3.
This relationship is widely used in WAM and SWAN wave

prediction models. In most cases, it is assumed thatn=2. In
our opinion, this choice overestimatesSds , especially in the
spectral rangeω0<ω<3'4ω0. There is no obvious physical
reason for existence of essential dissipation of long waves
with frequency near the spectral peak, if the waves are not
“too young”. Such dissipation has to display itself by cre-
ation of large-scale turbulence in the water boundary layer
and by formation of vortices with characteristic size of or-
der of the spectral peak wave lengthL'g/ω2

0. However, the
eddies of such scale have not been observed. All the tur-
bulence produced by wave-breaking is concentrated in the
thin layer near the surface (see, for instanceTerray et al.,
1996). The standard argument in support of dissipation in
the spectral peak frequency area is the existence of white
caps on wave crests. White caps appear at relatively weak
wind (Ua∼5−6 m/s). At Ua'10 m/s they are common.

However, the mechanism of white-capping is still un-
clear. The white caps appear at a moderate wave steepness
µ'0.07; this value is much less than the maximum steep-
nessµmax'0.4 that is typical for breaking Stokes waves. In
a real situation, even for young waves the steepness is mod-
erate(µ<0.2) at any small fetches. Typically,µ∼0.1 or less
for the developed sea. The Stokes wave of such steepness is
very smooth and close to a linear monochromatic wave.

Apparently the white capping in the real sea has lit-
tle in common with breaking of strongly nonlinear, almost
critical Stokes waves. One can suggest that the white-
capping happens due to interaction of high frequency power-
like spectral tails with long smooth waves. The spectral
tails with Zakharov-Filonenko asymptoticIk'k−7/2 means
the formation of fractal structure on the surface. It was
shown (Newell and Zakharov, 1992) that at a small wind
speedUa<(σg)1/4

'6 m/s the surface tension keeps the sea
smooth. For higher wind speeds the wave breaking is in-
evitable. There is no reason to think that the wave-breaking
is uniform in space. One can suggest that this process is con-
centrated mostly near the crests of long waves. This is a very
interesting question that deserves to be studied carefully.

It is assumed that in the fetch-limited experiments
∂N/∂t=0, and so Eq. (11) takes the form

∂ω

∂k

∂N

∂r
= Snl + SF (23)

We can estimate different terms in Eq. (23). If the sea is
not “full developed”, the advective term can be estimated as
follow
∂ω

∂k

∂N

∂r
'

ω

k

N

L
(24)

HereL is the fetch.SF is positive at least in some spectral
domain behind the spectral peak; otherwise the waves could
not be exited at all. Certainly,SF ≤ Sin. SF can be estimated
as follow

Sin < m ω

(
ω

ω0

)2

N, m ' 10−4 (25)

If ω�ω0, thenSin<mωN atω'ω0.
If n=2, Eq. (22) can be rewritten as follow

Sds ' 1.58µ4
(ω

ω̄

)2
ω N (26)

One can see that in this caseSds has exactly the same depen-
dance on frequency asSin if ω�ω0. For ω∼ω0, Sds domi-
nates overSin.

There is no any theoretical justification for such strong as-
sumptions. As for experimental data, we will show that they
can be explained without using of any particular empirical
expressions forSds , which inevitably includes indefinite tun-
able parameters. Instead of using such forms ofSds , we as-
sume thatSds atω∼ω0 is negligibly small and grows withω
faster thanSin. For instance, Eq. (22) can be used if we put
n=4 and assume thatq is less in two orders of magnitude.

3 Estimate for Snl

The central point of our theory is a predominance ofSnl over
SF . To be sure that this is correct, we show that this is a
rather sophisticated problem. Suppose that the spectrum has
a peak atkp'ωp2/g and the value ofN at the spectral peak
is Np. From Eq. (52) one can obtain a “naive” estimate

Snl ' ωp Np

|T (kp, kp, kp, kp|
2

ω2
p

k4
p N2

p (27)

or

Snl ' ωp Np

(
σ 2 ω4

p

g2

)2

(28)

In fact, estimates Eq. (27, Eq.28) are vulnerable for critics.
Snl is the intergal operator, and it looks more reasonable to
use an averaged value of frequency instead of its local value
in the spectra. If the average frequencyω̄ is used instead of
the peak frequency, Eq. (28) reads

Snl ' ω̄ Np

(
σ 2ω4

g2

)2

(29)

Estimates Eq. (28, Eq. 29) differ by the factor
(
ω̄/ωp

)9.
This is not a small factor. Suppose that the spectrum has
Zakharov-Filonenko asymptoticsεω'ω−4 and has no “peak-
eness”. Thus,

εω ' c1 P 1/3 θ(ω − ωp) ω−4 (30)

In this case

ω̄

ωp

=
3

2
,

(
ω̄

ωp

)9

' 38.4 (31)
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For the Zakharov-Zaslavskii asymptoticsεω'ω−11/3, we
have

εω ' c2 Q1/3 θ(ω − ωp) ω−11/3, (32)

ω̄

ωp

=
8

5
,

(
ω̄

ωp

)9

' 68.7 (33)

A dramatic difference between Eqs. (28) and (29) stems from
the fact that the coupling coefficient|Tkk1k2k3|

2 is a very fast
growing function of frequencies. Indeed,

Wωω1ω2ω3 = |Tkk1k2k3|
2 (34)

is a homogenous function of order 12

Wεω,εω1,εω2,εω4 = ε12Wωω1ω2ω3 (35)

As far asSnl is a nonlocal operator, integration in Eq. (11)
involves into process the integration of the more short waves
that the waves that are close to the spectral peak. This ef-
fect of “blurring” leads to essential enhancing ofSnl . Actu-
ally models (Eqs.30 and32) are too simple to describe real
spectra. In reality the spectra have an essential “peakeness”,
such that the most part of energy is concentrated in a narrow
spectral range1ω�ωp near the spectral peak. The peake-
ness decreases the effect of “blurring” but not supresses it
completely. Our numerical calculation (Badulin et al., 2002)
shows that even in the presence of peakeness

ω̄

ωp

' 1.3,

(
ω̄

ωp

)9

' 10.4 (36)

and estimate Eq. (29) differs from estimate Eq. (28) in order
of magnitude.

The peakeness is itself a factor for enhancing ofSnl . Near
the spectral peak one can putk=kp+δk and expandωk in
powers ofδk

ωk = ωp + v δk +
1

2
Tαβ δkα δkβ + · · · (37)

Tαβ =
∂2

∂kα ∂kβ

ω(k)

∣∣∣
k=kp

, v =
∂ω

∂k

∣∣∣
k=kp

(38)

There are four-wave resonant conditions

ωk + ωk1 = ωk2 + ωk3, k + k1 = k2 + k3 (39)

which have to be replaced by

Tαβ

2

[
δkα δkβ + δk1α δk2β

−δk2α δk2β − δk3α δk3β

]
= 0 (40)

δk + δk1 = δk2 + δk3 (41)

It is clear that in presence of peakeness, estimate Eq. (29) has
to be replaced by the following estimate

Snl ' ω Np

(
σ 2 ω4

g2

)2 ( ωp

1ω

)2
(42)

In a typical situation,1ω/ωp∼1/3 and the factor(ωp/1ω)2

adds toSnl another order of magnitude.
Summarizing the results of our consideration, one can of-

fer for Snl in the area of spectral peak the following estimate,
expressed in terms ofσ 2 andωp:

Snl ' λ ωp Np

(
σ 2 ω4

p

g2

)2

(43)

Hereλ is the “enhancing” factor, which accumulates the ef-
fects of “peakeness” and “blurring”. Due to corraboration of
two effects,λ is rather large,

50 < λ < 100 (44)

This estimate is supported by numerical simulations (Badulin
et al., 2002; Pushkarev et al., 2003). In other words, our study
shows that the “naive” estimate Eq. (28) diminishes the real
value ofSnl almost by two orders of magnitude.

Snl is the integral operator consisting of four terms of dif-
ferent signs. In the area of spectral peak these terms don’t
compensate each other; they are compensated by the advec-
tive term. However on the “rare face” of the spectrum at
ω>ωp, the advective term is too weak to compensateSnl .
There is only one possibility to reach balance in this spec-
tral range: the different terms inSnl should compensate each
other. In this area Hasselmann’s Eq. (4) is reduced to the
simplest Eq. (7). At the same time, the separate terms inSnl

can be estimated as follow:

Snl ' λ ω N

(
εω ω5

g2

)2

(45)

The fastest decrease ofεω compatible with weak-turbulent
theory is the Zakharov-Filonenko spectrumεω'ω−4. Even
in this case the particular terms inSnl grow with ω as vigor-
ousely asω3. That means that ifSnl surpassesSin in the area
of spectral peak, this is also true for the whole “rare face”
area.

The fast increasing with frequency of particular terms in
Snl is a manifistation of the fact that the weakly-nonlinear
approximation together with the Hasselmann’s equation is
applicable only in the finite range of frequencies, approxi-
mately forω<5ωp. In the high frequency region the nonlin-
earity becomes strong, the white-capping occur, and weak-
turbulent Kolmogorov spectra transit to the Phillips spectra
εω'α/ω5 (Kitaigorodskii and Lumley, 1983; Kitaigorodskii
et al., 1983; Newell and Zakharov, 1992). We will not dis-
cuss this very interesting subject the present article.

4 Self-similar solution

Let us introduce dimensionless variables

x = χ/k0, k = k0 κ, ω = ω0 �, � =
√

κ,

yielding

N(k) =
1

ω0 k4
0

n(κ). (46)



1016 V. E. Zakharov: Theoretical interpretation of fetch limited wind-driven sea observations

The non-dimensional surface height variance and the non-
dimensional average frequency are:

ε = k2
0 σ 2

=
g2

U4
0

σ 2, (47)

ν =
1

2π

ω̄

ω0
. (48)

Both ε andν can be expressed in terms ofn(κ). Apparently,

ε =

∫
√

κ n(κ) dκ, (49)

ν =
1

2π

∫
|κ| n(κ) dκ∫ √
|κ| n(κ) dκ

. (50)

Under limited-fetch conditions,n(κ, χ) is governed by the
kinetic equation

cosθ

2�

∂n

∂χ
= S̃nl + S̃F , (51)

where

S̃nl = π

∫
|Tκκ1κ2κ3|

2 δ(κ + κ1 − κ2 − κ3)

× δ(� + �1 − �2 − �3) × (52)

× [(n0 + n1)n2n3 − n0n1(n2 + n3)] dκ1 dκ2 dκ3,

S̃F ' m �F(�) n(κ, χ).

In Eq. (52) the parameterm is a small one (see Eq.19,
m'10−4). In a first approximation, we can setµ=0, and
obtain the “conservative” kinetic equation:

cosθ

2�

∂n

∂χ
= S̃nl . (53)

This governing equation is the main focus of our analytical
effort. It contains a family of self-similar solutions. In polar
coordinatesκ, θ onκ plane, these solutions can be presented
as:

n(κ, θ, χ) = a χα Pβ(b χβ κ, θ). (54)

Herea, b, α, β are constants.
Substituting Eq. (54) into Eq. (53) one finds

α = 5β − 1/2, a = b5,

and ultimately,

n(κ, θ, χ) = b5 χ5β−1/2 Pβ(b χβ κ, θ). (55)

In Eq. (55), β andb are constants that are unknown yet, and
Pβ(z, θ) is a function of two variables withz=bχβκ. Let us
emphasize that this function is independent onb; it satisfies
the following integro-differential equation:

cosθ

2
√

z

[
(5β−1/2)Pβ+βzPz

]
=π

∫
|Tz,z1,z2,z3,θ,θ1,θ2,θ3|

2

× δ(z cosθ + z1 cosθ1 − z2 cosθ2 − z3 cosθ3)

× δ(z sinθ + z1 sinθ1 − z2 sinθ2 − z3 sinθ3)

× δ(
√

z +
√

z1 −
√

z2 −
√

z3)

×

[
Pβ(z1, θ1) Pβ(z2, θ2) Pβ(z3, θ3) +

+Pβ(z, θ) Pβ(z2, θ2) Pβ(z3, θ3)

−Pβ(z, θ) Pβ(z1, θ1) Pβ(z2, θ2)

−Pβ(z, θ) Pβ(z1, θ1) Pβ(z3, θ3)
]

z1 z2 z3 dz1 dz2, dz3 dθ1 dθ2 dθ3. (56)

This is the equation that has to be solved numerically.
Let us denote:

Aβ =

∫
√

z Pβ(z, θ) z dz dθ, (57)

Bβ =

∫
z Pβ(z, θ) z dz dθ. (58)

Then, we find

ε = b5/2 χ
5β−1

2 Aβ ,

ν =
1

2π
b−1/2 χ−β/2 Bβ

Aβ

. (59)

These equations can be written as:

ε = uχp,

ν = v χ−q , (60)

where

q =
2p + 1

10
, β =

2p + 1

5
, (61)

v =
1

2π
ū1/5 Cβ , Cβ =

Bβ

A
1/5
β

. (62)

After integrating the Eq. (51) over κ we obtain the balance
equation

1

2

∫
cosθ

�

∂n

∂χ
dκ =

∫
S̃F dκ = Q(χ). (63)

HereQ is the total input of wave action; a net result of wind
forcing and breaking wave dissipation. Substituting the self-
similar solution Eq. (55) into Eq. (53), we find

Q ' χ
7β−3

2 b4 (64)

Therefore, the solution (Eq.55) implies the presence of
the wave action sourceQ at high wave numbers. For
β=βcrit=3/7, the net inputQ=const, and the intensity of the
source does not depend on the fetch. Forβ>βcrit, the inputQ
grows with an increasing fetch. For this special self-similar
solution

ncrit(k, θ, χ) = b χ23/14P3/7 (b χ3/7 κ, θ), (65)

p =
4

7
= 0.57,

q =
3

14
= 0.21,

Solution (Eq.65) was studied byZakharov and Zaslavskii
(19831983) andGlazman(1994). For β>3/7 the inputQ
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grows on increasing fetch. Note that according Eq. (65) the
total wave action is

N =

∫
κ n(κ) dκ dθ ' b3 χ3β−1/2. (66)

Self-similar solution (Eq.54) describes swell ifQ=0,
N=const. In this caseβ=1/6 and Eq. (54) takes the form

n(κ, θ, χ) = b5 χ2/3 P (bχ1/6κ, θ). (67)

The peak of the self-similar solution is posed arz'1. The
rare face of the similarity solution is a Kolmogorov type so-
lution. In the primitive variables, it is described by Eq. (32),
whereQ is given by Eq. (64), while the fluxes of energy and
momentum are

P(�, θ) ' b7/2 χ
5β−3

2

M(κ, θ) ' b3 χ
3
2 (β−1) (68)

Ar very largeκ, solution (27) becomes isotropic. Asymptot-
ically,

n(κ) '
c1 Q1/3

κ23/6
(69)

This is Zakharov-Zaslavskii spectrum that describes the in-
verse cascade (Zakharov, 1966; Zakharov and Zaslavskii,
1982). In the case of swell,Q=0 and the self-similar so-
lution has another asymptotics

n(κ) =
c0 P 1/3

κ4
, (70)

whereP'χ1/6. This is the Zakharov-Filonenko spectrum of
direct energy cascade.

Study of self-similar solutions shows that the conservative
kinetic Eq. (53) is incomplete. It must be accomplished by
the boundary condition

n(κ) →
c1 Q1/3

κ23/6
(71)

that defines the flux of wave actionQ(r, t) coming from high
wave numbers. In a general case,Q(r, t) is an arbitrary func-
tion of coordinates and time. Asymptotics (Eq. 62) plays
a role of a boundary condition for the conservative kinetic
equation.

5 Comparison with experiment

We shall now compare the similarity solution (Eq.55) with
the field observations under limited-fetch conditions. Let us
first notice that an elementary analysis of observed spectra
shows their self-similar behavior. The similarity is implicit
in the fact that the spectra can be expressed by a universal
form that involves a finite number of parameters.

The frequency spectrum can be introduced as follows:

F(f ) = k ωk

dk

df

∫ 2π

0
N(k, θ) dθ, k = (2π f )2/g. (72)

Table 1. First group of experiments.

Study ε(χ) ν(χ)

(3 pt)

Nakata Bay 2.89× 10−7 χ 3.12χ−0.33

(Mitsuyasu et al., 1971)
(3 pt)

JONSWAP 1.6 × 10−7 χ 3.5χ−0.33

(Hasselmann et al., 1973)
(3 pt)

Bothnian Sea 2.6 × 10−7 χ 3.18χ−0.33

(Kahma, 1981)
(3 pt)

Lake St. Clair 1.7 × 10−7 χ 3.6χ−0.33

(Donelan et al., 1992)
(3 pt)

For example, the results of the JONSWAP experiment are
summarized by the spectral form (Hasselmann et al., 1973):

F(f ) =
α g2

2π4f 5
exp

[
−

5

4

(
f

fp

)−4
]

γ
exp

[
−

(f −fp)2

2σ2 f 2
p

]
(73)

At moderate values of the non-dimensional fetchχ<105, pa-
rametersγ andσ are approximately constant

γ ' 3.3, σ ' 0.08,

while α andfp are powers ofχ . Form Eq. (73) is explicitly
self-similar. Actually, thef −5 asymptotic of Eq. (73) repre-
sents the regime described by the Phillips spectrum (Phillips,
1958). A more accurate analysis of the JONSWAP spectra
(Battjes et al., 1987) shows that af −4 behavior is more rel-
evant.Donelan et al.(1985) also found thef −4 asymptotic
for their spectra. This is exactly what the theory predicts, but
a discussion of this issue is outside the scope of this article.

In accordance with the main assumption of self-similarity,
the fetch dependence ofε andν is described by powerlike
functions ofχ . To assure that the spectra are described by
the similar solution (Eq.55), one has to compare these func-
tions with the theoretically predicted dependencies (Eq.61).
The results of the major fetch limited experiments can be
summarized in two tables:

Expression (61) makes it possible to findq if p is give.
For the first group of experimentsp = 1, and one obtains:

q = 0.3, β = 0.6

For the Lake Ontario experiment:

p = 0.76, q = 0.25, β = 0.5

For the North Atlantic study:

p = 0.75, q = 0.25, β = 0.5
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Table 2. Second group of experiments.

Study ε(χ) ν(χ)

(3 pt)

Lake Ontario 8.415× 10−7 χ0.76 1.85χ−0.23

(Donelan et al., 1985)
(3 pt)

North Atlantic 12.7 × 10−7 χ0.75 1.7χ−0.24

(Dobson et al., 1989)
(3 pt)

Table 3. Comparison with theory.

Study Experiment Theory Optimized
(3 pt)

Nakata Bay 3.12χ−0.33 3.23C1 χ−0.30 3.20χ−0.30

(3 pt)

JONSWAP 3.5χ−0.33 3.64C1 χ−0.30 3.6χ−0.30

(3 pt)

Bothnian Sea 3.18χ−0.33 3.1C1 χ−0.30 3.06χ−0.30

(3 pt)

Lake St. Clair 3.6χ−0.33 3.6C1 χ−0.30 3.56χ−0.30

(3 pt)

Lake Ontario 1.85χ−0.23 2.6C2 χ−0.25 1.84χ−0.25

(3 pt)

North Atlantic 1.7χ−0.24 2.4C2 χ−0.25 1.7χ−0.25

(3 pt)

In Eq. (62), coefficientsCβ are unknown constants defined
by the shapes of the solutions to Eq. (54). Let us denote:

C|β=0.6 = C1, C|β=0.5 = C2

Now we can compare experimental and theoretical results for
ν(χ). These results are summarized in Table 3. Coefficients
C1 andC2 in the second column of Table 3 are not adjustable
parameters. They have definite values to be found by numer-
ical solution of Eq. (25). We plan to determine these values
in a later study. At the present time we propose a hypothesis
that their values are “optimal”, so that the third column in
Table 3 is sufficiently close to the first column. Optimization
by the least square method gives:

C1 = 0.99, C2 = 0.71

Table 3 demonstrates a good agreement between theory and
experiment.

6 Discussion

1. The close agreement between the theoretical and ex-
perimental results indicates that the Hasselmann kinetic
equation is an adequate model describing the evolu-
tion of wind-driven surface gravity waves. Moreover,
the evolution of the spectral peak at moderate fetches
can be faithfully described by the “conservative” kinetic
equation where the forcing and dissipation terms are
dropped.

Self-similar solution (Eq.54) describes downshift of the
peak frequency. This is a direct consequence of the “in-
verse cascade” of energy and wave action. The physi-
cal origin of the inverse cascade is the existence of an
additional integral of motion – the wave action. The
wave action is preserved only in four-wave interactions.
One can say that the very fact of the downshifting of
the spectral peak indicates a dominant role of four-wave
nonlinear interaction.

This qualitative analysis finds, as we just showed, a rea-
sonable quantitative confirmation.

2. Different groups of experiments give two different val-
ues forβ: β=0.6 andβ=0.5. Both of them are larger
than the critical valueβ=3/7'0.43. This means that
the input of wave action increases with an increasing
fetch. The explanation here is rather simple. Accord-
ing to Eqs. (60) and (64), the characteristic steepnessα̂

decreases as the fetch increases:

α̂ ' χ
β−1

2 . (74)

According to Eq. (22) (see Hasselmann, 1974, and
many other models of the breaking wave dissipation),
Sds is very sensitive tôα and it rapidly decreases asα̂
decreases. As a result, the white capping is more vigor-
ous for “young” seas. Whenχ grows,Sds becomes sup-
pressed and the wave action input from wind increases.

3. According toKomen et al.(1995) theoretical predic-
tion, the self-similar solution (Eq.54) is valid only for
not too large fetches. What happens after? It depends
on the structure ofSF for long waves. If, as it was esti-
mated in models (Eqs.5–6), SF =0 forω<ω0, the down-
shift continues infinitely long. Asymptotically it is de-
scribed by the self-similar solution withβ = βcrit=3/7.
Behind the spectral peak, the spectrum has an asymp-
totic formF(f )'f −11/3.

In the experiments ofDonelan et al.(1992) performed
on Lake St.Clair, as well as in some earlier experi-
ments byPierson and Moskowitz(1964), and SMB
CERC (1977), the downshift is arrested approximately
at χcrit'5×104. It corresponds to a very long fetch,
χcrit'104 L, whereL is a characteristic wave length. In
a typical caseL'100 m, thusχcrit'103km.
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According to Pierson and Moskowitz(1964); Young
(1999) who summarized these results, stabilization of
the downshift (inverse cascade) is going up to the level:

ε = 4 ∼ 5 × 10−3, ν ' 0.13

Thus,ω̄'0.81ω0. In other words, the maximal “wave
age”, observed in these experiments, does not exceed
unit. In this scenario, whenχ → χcrit, the self-
similarity is violated.γ is not a constant any more. At
χ→χcrit, γ→1, and the spectrum loses its conspicuous
peak. This process is called “sea maturing”. Not all
researchers agree with this concept. According toGlaz-
man(1994), the inverse cascade is not arrested at wave
age of order of one, but continue to the spectral area
of waves with mean frequencyω<ω0. In his experi-
ments near Hawaii island, he observed the wave of age
ω0/ω≥3. Anyway, downshift in this area is more slow
than predicts the critical self-similar solution (Eq.65),
and the spectrum tail becomes less steep:F(f )'f −3.
This question urgently needs more experimental stud-
ies.

Nevertheless, it is clear that both the slowdown and
the arrest of the inverse cascade (“maturing of the
sea”), occur due to dissipation of long waves with
phase velocities close to the wind speed or exceeding
it. The decrement of this dissipation,β, is very small:
β/ω'µ∼10−4. A mechanism of this dissipation is still
unclear. It could be a combination of wave breaking
and friction over a turbulent air. Meanwhile, a scenario
of the inverse cascade, the slowdown and arrest is very
sensitive to the exact value and the details of this dis-
sipation. It makes the problem of wave prediction ex-
tremely difficult from a theoretical viewpoint.

4. The ideas presented in this article can be applied to
wind-driven waves on a finite-depth fluid. However, this
problem is much more difficult. On a finite-depth the ki-
netic equation has no self-similar solutions and the so-
lutions for comparison with experiment can be obtained
only by the use of a massive numerical simulation. Any-
way, the idea of predominance of four-wave nonlinear
interaction in the area of spectral peak is still applica-
ble, at least as a first approximation. The next important
factor to be taken into consideration is a bottom friction.
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