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Abstract. 5. Measurements off the Nova Scotia cod3bbson et al.
We show that the results of major fetch limited field studies 1989;

of wind-generated surface gravity waves on deep water can . .

be explained in the framework of simple analytical model. 6. g/lgegaasurements in Lake St. Clair, CanaBagelan et al.

The spectra measured in these experiments are described by '

self-similar solutions of “conservative” Hasselmann equation The results of these experiments were analyzed by many

that includes only advective and nonlinear interaction terms authors and are summarized ¥igung (1999.

Interaction with the wind and dissipation due to the wave Theoretical explanation of field and laboratory experi-

breaking indirectly defines parameters of the self-similar so-ments has to include a clarification of basic physical pro-

lutions. cesses that take place in the boundary layer over the sea sur-

face. This layer is turbulent. The turbulence causes forced

oscillations of sea surface; these oscillations can be consid-

ered as “seeds” of future wind-driven wavé&h({llips, 1957).

What is more important, the boundary layer is unstable if the

Theoretical interpretation of experimentally observed wind- wind velocity u>ucrit, where

Qriven sea energy spectra is a fund:_amental pr_oblem of phy_sb-tcrit _ ﬁ(ga)”“ ~ 0.23m/s 1)

ical oceanography, and of the physics of nonlinear waves in

generally. At the moment oceanographers accumulated ahlereg is the gravity acceleratiom, is a surface tension. That

enormous amount of experimental data, both in field and labmeans that the range of unstable wave numbers is very broad

oratory, on the wind generated waves. kmin < k < kmax )
Among field studies of wind-generated surface gravity . . i .

waves on deep water, the case of fetch limited wave growtH1€ré kmin=g/u® is a “standard” wave number associated

is of special importance. This case is characterized by a con%ith the wind velocityu, while

stant (in space and time) offshore wind at the normal angle to u2 u \2

the straight coastline. Under these idealized conditions, thé&max = . > Kerit ( ) )

wave field depends only on the fetelthat is defined as a dis-

tance from the shoreline. Highly interesting data sets of fieldwherekcrit=+/g /0 is the wave number that separates the cap-

observations are available, for example, from the followingillary and gravity waves. Foi>ucit we havekmaxc>Kerit,

1 Introduction

— 3

Ucrit

studies: and the real upper limit of unstable wave numbers is defined
by competing of wind-induced instability and viscous damp-
1. Measurements in Nakata Balylitsuyasu et al.1971); ing of capillary waves. Other physical effects: shear flow,
viscosity of air, drop formation, and turbulence are also im-
2. The JONSWAP studiesdasselmann et al1973; portant in this spectral range.

The linear instability leads to exponential growth in time
and space of wave amplitudes. This growth has to be ar-
rested by some nonlinear process; determination of this non-
linear saturation process is the most critical point of the the-
Correspondence tov. E. Zakharov ory. One fact is clear: in a typical situation there is a white-
(zakharov@math.arizona.edu) capping on the crest of each major wave. Starting from this

3. Measurements in the Bothnian sé&abima 1981);

4. Measurements in Lake Ontarib@nelan et a|.1985;
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observationPhillips (1958 suggested that the linear insta- Hasselmann’s equation

bility induced by the wind is arrested by strong nonlinear ef-

fects, which lead to formation of the Stokes waves with am- 9N Vaor Ve N = 5
. L . . + Vor Vi nl ( )

plitudes close to limiting. However, this elegant conjecture 97

was not supported by experimental data. The Phillips’ the-The |imited fetch study are described by the stationary con-
be close to its limiting valug.¢rit=~0.41; herek is a character-

istic wave number and is a characteristic wave amplitude. Vw;V,N = S,; (6)
Meanwhile, a typical experimental valueyis~0.1 that is es-

sentially less thapcrit. The overall steepnegsis a measure In both stationary and non-stationary cases the “rare faces”
of the wave nonlinearity. All experimental data show that Of the'spectra are described by the stationary uniform kinetic
the average nonlinearity is small. On the other hand, dueduation

to broadness of the instability region, the number of degrees

of freedom, involved in the process of wave generation, isS”l =0 )

very large, 18 or so, and the wave ensemble has to be de-onseyative models (EQ5-7) are much simpler than the
scribed statistically. Th_|s fact was rgallzed I_dyisselmann full nonconservative Eq4j, which includes rather indefinite
(1962 1963, who described the kinetic equation for average oy g, These models are available for analytic treatment.

squared wave amplitude, known as Hasselmann's equationre simplest stationary uniform Eq7)(has a family of the
In his derivation, Hasselmann used a systematic expansioRq|mogorov-type solutions

in powers of the small parameter

Derivation of the Hasselmann’s equation was a great suc- pl/3 Quwr Moy
cess of the theory. However, this equation couldn’t explainN(k’ 0) = K4 F ( P kP’ 9)
the white-capping, which is a universal phenomenon, at least
at moderate wind velocity>6 m/s. This fact leaded many Here P, O, andM are fluxes of energy, wave action, and
oceanographers to a conclusion that in a real situation théhomentum. Equations (5) and (6) have rich families of self-
weak and Strong nonlinearities do coexist. Moreover, to theSlmllar solutions. All these solutions have short-wave Kol-
conclusion that the four-wave resonant processes describe®ogorov asymptotics (E).
by the Hasselmann’s equation and the strongly nonlinear In this article we concentrate on self-similar solutions of
white-cap dissipation are equally important for dynamics of the stationary conservative Hasselmann’s Bjj. This equa-
wind-driven spectra. In the most clear way this idea was ex-1ion has a two-parameter family of similarity solutions. We
pressed in a well-known article BBhillips (1989. In math- ~ show that these solutions fit very well for description of spec-
ematical terms it can be formulated as follow: the Hassel-tra observed in major fetch-limited experiments. We demon-
mann’s equation in the presence of wind input and white-capstrate that a proper choice of parameters in the similarity so-
dissipation can be written as lution makes possible to reach not only qualitative but also
guantitative agreement with the field experiments. This state-
ment may appear counter to physical intuition because the
surface waves are caused by wind and are accompanied with
a substantial energy dissipation due to wave breaking. This
Here S, is the nonlinear interaction term derived by Hassel- controversy easily resolves if one notice that conservative
mann,S;, is the wind input term, andy; is the dissipation  kinetic Egs. §)—(6) are incomplete from the mathematical
term due to white-capping. According to Phillips, all three view-point. Their solutions are not defined uniquely by de-
terms have compatible influence in determination of spectratermination of initial data only. To define a solution one
peak dynamics. This is a rather pessimistic view on the theshould specify also the flux of wave acti@r, r) coming
ory capacities, because there is only a little hope to find &rom very high wave numbers. This flux is a result of com-
reliable, well justified expression fd;. plicated interplay between the income of wave action from

In this paper we formulate an alternative view on the prob-the wind and its dissipation due to white-capping in the high-
lem. We show that more accurate estimates,gfdemon-  frequency region. For a self-similar solution of E6),(Q is
strate that this term is more important thip andS;,. That  a powerlike function on fetck. The exponent and the pre-
means that on the average, the weakly-nonlinear interactionsxponent ofQ defines parameters of a similarity solution.
dominate over the wind input and over the strongly nonlin-  Some authors instead of term “Hasselmann’s equation”
ear interaction; that displays itself as white-capping. Theuse “Boltzmann equation”, while comparing the kinetic
weak and the strong nonlinear interaction coexist, howeverquation for squared amplitudes of surface gravity waves
the white-capping is important in the high-frequency rangewith the kinetic equation for distribution function of a weakly
only. In the area of spectral peak, the nonlinear four-wavenon-ideal gas. We should stress that this comparison cannot
interaction is the most important process. be extended too far. In the kinetic gas theory, the Boltzmann

That fact means that the space-time dynamics of the speaquation is complete, in a sense that its solutions are defined
tral peak can be properly described by the “conservative”uniquely by determination of initial data. The Hasselmann’s

®)

oN
E + VoV N = Sy + Sin + Sas (4)
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equation can be better compared with a heat transport equa- By definition, the variance of the surface elevation is given
tion in a finite domain; solutions of this equation depend es-by
sentially on boundary conditions. For Hasselmann’s equa-
tion, the external fluxQ plays the role of boundary condi- 2 = /wk Ny dk, (14)
tion.

The “conservative” model formulated in the present arti- and the mean frequency is
cle is the simplest model that admits an analytical treatment.
More accurate model should include into consideration theg — i/wf Ny dk. (15)
termss;,, andSy,; these terms are considered to be small and o?

Eq. (7) has to be replaced by more accurate equation integral quantity
Sni + Sin + Sas =0 ©) w=a=0%% (16)
This equation still has the Kolmogorov-type solution (Byg. Let U, be the wind speed at a reference heightVe can

however the fluxe, Q, andM are now “slow” functions  now introduce the characteristic angular frequency and wave
on frequency. The details of this study will be published in number related to the given wind speégl by
another article. )

Let us emphasize that the theoretical model, presented if?0 = &/Ua, ko =g/U; 17
this arti_cle, is based on “first principles” and does not inCIu_deMost authors agree that, can be presented in the form
any adjustable parameters. Nevertheless, the model yields
results which not only are qualitative correct but are in a goods;,, = m F(£) w N (k), (18)

quantitative agreement with field observations.
where&=w c0s6/wp and

o _
2 Basic equations m=01~03 p—a ~10" (19)
w
Letn(r,t), r=(x, y) be the surface elevation fielgk, ¢) its There is no agreement about the exact form of the function
Fourier transform, andy=I_;=<|n|*> the spectral den- F(&). According to Donelan and Pierson-ji1987,
sity as a function of wave number. The wave field is de-

scribed by the wave action spectral dengiy F(&) = { & _01)2 5 = 11 m — 0.194°¢ (20)
<L P
W
I = E(Nk + Ney). (10) According toHsiao and Shemdi(1983),

Herew,=4/gk is the dispersion relation, whegeis the ver- F(E) = { (0.85 —1)2 0.85¢ > 1 m— 0127 21)
tical acceleration due to gravity. 0 0.85 < 1.’ T e
The action densityV, (r, t) satisfies the Hasselmann ki-

netic equation, Tolman and Chaliko\{1996 proposed a more complicated

form of F(&¢). In any case, all such models hawés)~1 for

dN Jdw 0N ~U.
9t ok or Sui + SF, (11) One should take into account that the very concept of an
universal expression fof;,, depending only on the wind
where speedl,, can be easily criticized. The wind inpsy, is de-
5 ) fined by the state of the turbulent air boundary layer. That
St =18 /|Tkk1kzk3| state depends on many factors; one of them is the differ-
%[ NaN3)(N1 + No) — NoN1(Na2 + N3)] (12) ence of water and air temperature. If water is warmer than

air (unstable atmosphere), the wind input can be several
times higher than in the opposite stable case Ksgena and

is a nonlinear interaction term arf@l, i, is a coupling co- Calkoen 1992. Another important factor is the gustiness

efficient. The exact expression farcan be found in\Vebh of the wind; it is defined by statistical properties of the air
1978 Zakharoy 1999. Of great importance is the fact that boundary layer in mesoscale. Cavaliery and Burgens (1992)
Trtakoks IS @ homogenous function of the third order: showed an enhanced growth rate of ocean waves with the

increasing of gustiness. In principle, the growth rate could
depend on more fine statistical characteristics of the bound-
ary layer. Thus the scattering and variability of experimental
The termSrF=S;,+S4s represents a source function which data in fetch-limited studies can be explained not only by an
includes the wind inpus;,, and the breaking wave induced inevitably limited accuracy of measurements, limited repro-
dissipationSy;. ducibility of experimental conditions such as wind velocity,

8(k + k1 — kp — k3)8(wo + w1 — w2 — w3)dky dko dk3

3
Tk gk cka,cks = &7 Thkykoks- (13)
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fetch and duration, but also by a variability of the state of Here L is the fetch. Sf is positive at least in some spectral
boundary layer. domain behind the spectral peak; otherwise the waves could

The dissipation tern$,, is studied much less thasy,,. not be exited at all. Certainh§z < S;,. Sr can be estimated
Hasselmanr{1974 see alsdKomen et al. 1984 proposed as follow

the following form: w\2 A
5 Sipn<mo|— | N, mx=10" 25
Sus =g (i)z (2)' N, q=333.10°, 22 (wo> (23)
Cpm @ If w>wo, thensS;,<mwN atw~wg.
wherea ,,, =4.57x 1073, If n=2, Eq. @2) can be rewritten as follow
This relationship is widely used in WAM and SWAN wave o2
prediction models. In most cases, it is assumeditka. In Sy > 1.58/1,4 (5> o N (26)

our opinion, this choice overestimat&g,, especially in the

spectral rangep<w<3~4wo. There is no obvious physical One can see that in this casg has exactly the same depen-
reason for existence of essential dissipation of long waveglance on frequency &, if ©>wo. Forw~wo, Sqs domi-
with frequency near the spectral peak, if the waves are noflates oves;,.

“too young”. Such dissipation has to display itself by cre- There is no any theoretical justification for such strong as-
ation of large-scale turbulence in the water boundary layeSumptions. As for experimental data, we will show that they
and by formation of vortices with characteristic size of or- ¢an be explained without using of any particular empirical
der of the spectral peak wave |ength:g/a)8. However, the  €xpressions fo§,s, which inevitably includes indefinite tun-
eddies of such scale have not been observed. All the turable parameters. Instead of using such forms.of we as-
bulence produced by wave-breaking is concentrated in thume thatSs atw~wo is negligibly small and grows with
thin layer near the surface (see, for instafegray et al,  faster thans;,. For instance, Eq2Q) can be used if we put
1996. The standard argument in support of dissipation in?=4 and assume thatis less in two orders of magnitude.
the spectral peak frequency area is the existence of white

caps on wave crests. White caps appear at relatively wealé Estimate for S,

wind (U,~5—-6m/9. At U,~10 m/s they are common.

However, the mechanism of white-capping is still un- The central point of our theory is a predominancegfover
clear. The white caps appear at a moderate wave steepness. To be sure that this is correct, we show that this is a
n=~0.07; this value is much less than the maximum steep-rather sophisticated problem. Suppose that the spectrum has
nessumax>0.4 that is typical for breaking Stokes waves. In g peak ak,,:wpz /g and the value oV at the spectral peak

a real situation, even for young waves the steepness is mogg N,. From Eq. 62) one can obtain a “naive” estimate
erate(u<0.2) at any small fetches. Typically~0.1 or less

for the developed sea. The Stokes wave of such steepnessgs ~w N T (kp. kp, kp, kp|2 4 N2 27)
very smooth and close to a linear monochromatic wave. nl = ©p p w? PP
Apparently the white capping in the real sea has lit- ,,
tle in common with breaking of strongly nonlinear, almost 2
critical Stokes waves. One can suggest that the white- szf,
capping happens due to interaction of high frequency power>" ~ wp Np g2 (28)

like spectral tails with long smooth waves. The spectral ) N
tails with Zakharov-Filonenko asymptotig~k~7/2 means  In fact, estimates Eq2(, Eq.28) are vulnerable for critics.
the formation of fractal structure on the surface. It was S is the intergal operator, and it looks more reasonable to
shown Newell and Zakharav1992 that at a small wind  Use an averaged value of frequency instead of its local value
speedU, < (o g)¥/4~6 m/s the surface tension keeps the sealn the spectra. If the average frequergys used instead of
smooth. For higher wind speeds the wave breaking is in-the peak frequency, EQR§) reads
evitable. There is no reason to think that the wave-breaking o_a\ 2
is uniform in space. One can suggest that this processiscorg , ~ o N ow

o nl = @ Np
centrated mostly near the crests of long waves. This is a very

interesting question that deserves to be studied carefully. ) ) B 9
It is assumed that in the fetch-limited experiments Estimates Eq.28, Eq. 29) differ by the factor(a/w))".

2 (29)

9N /9t=0, and so Eq.X1) takes the form This is not a small factor. Suppose that the spectrum has
90 N Zakharov-Filonenko asymptoties~»~* and has no “peak-
~— o = Su+ SF (23)  eness”. Thus,

ok or 13 4

We can estimate different terms in EQ3[. If the sea is o = c1 P730(0 —wp) 0~ (30)

not “full developed”, the advective term can be estimated as, this case

follow 4 9

dw ON o N w ( w )

xon ra 24 — =, — ) ~384 (31)

ok or kL (24) w, 2 wp
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For the Zakharov-Zaslavskii asymptoties~w 13, we
have

1/3 ~11/3

Ew =20 (32)

- -\ 9
©_8 (ﬂ) ~ 687
wp 5 wp

A dramatic difference between Eq28f and 9) stems from

the fact that the coupling coefficierﬂfkklkzk3|2 is a very fast
growing function of frequencies. Indeed,

0(w—wp) w

(33)

Wwwlwzwg = |Tkk1k2k3|2 (34)
is a homogenous function of order 12
Wew,ewl,ewz,ew4 = 612 Wwwlwzwg (35)

As far asS,; is a nonlocal operator, integration in EQ.1j

1015

In a typical situationAw/w,~1/3 and the facto(w,,/Aa))2
adds toS,,; another order of magnitude.

Summarizing the results of our consideration, one can of-
fer for S,,; in the area of spectral peak the following estimate,
expressed in terms of? andw,:

2
St = Awp Np g2

Herex is the “enhancing” factor, which accumulates the ef-
fects of “peakeness” and “blurring”. Due to corraboration of
two effects A is rather large,

50 < A < 100

(43)

(44)

This estimate is supported by numerical simulatid@edulin
etal, 2002 Pushkarev et 3l2003. In other words, our study
shows that the “naive” estimate EQ8] diminishes the real

involves into process the integration of the more short waved/@lué 0fS. almost by two orders of magnitude.

that the waves that are close to the spectral peak. This e

fect of “blurring” leads to essential enhancing%y. Actu-

¢ Su is the integral operator consisting of four terms of dif-

ferent signs. In the area of spectral peak these terms don't

ally models (Eqs30 and32) are too simple to describe real COmpensate each other; they are compensated by the advec-

spectra. In reality the spectra have an essential “peakenes
such that the most part of energy is concentrated in a narroff~“»r:

spectral range\ , <, near the spectral peak. The peake- ; :
" but not supresses ﬁral range: the different terms i$),; should compensate each

ness decreases the effect of “blurring
completely. Our numerical calculatioB&dulin et al, 2002
shows that even in the presence of peakeness

- -\ 9
£ ~ 1.3, <2> ~ 104
wp a)p
and estimate Eq20) differs from estimate Eq2@) in order
of magnitude.

The peakeness is itself a factor for enhancing,pf Near

the spectral peak one can putk,+dk and expandyy in
powers ofy

(36)

1
wkzwp+v8k+§Ta58ka8kﬂ_|_... (37)
2
ow
Tus = k , = — 38
= ok O, U ok e, (38)
There are four-wave resonant conditions
Wk + Wp = Wy, + Wk, k+ki=ko+ k3 (39)
which have to be replaced by
T.
%ﬁ [Ske Sk + k1o Skag
—08koy Skop — Sk3y 5](3/3] =0 (40)
Sk + 8k1 = Sko + Sk3 (41)

Itis clear that in presence of peakeness, estimateZ@jjhas
to be replaced by the following estimate

2
_ o2zt wp \?
Snl >~ wNp 2 (—)
g Aw

(42)

dive term. However on the “rare face” of the spectrum at

the advective term is too weak to compenssgte
There is only one possibility to reach balance in this spec-

other. In this area Hasselmann’'s E¢) (s reduced to the
simplest Eq. 7). At the same time, the separate termsjjp
can be estimated as follow:

5 2
£ @
S,Z]:)»Q)N( 5 )
8

(45)

The fastest decrease gf compatible with weak-turbulent
theory is the Zakharov-Filonenko spectrugrw—*. Even

in this case the particular terms $; grow with w as vigor-
ousely ag»®. That means that if,; surpasses;, in the area

of spectral peak, this is also true for the whole “rare face”
area.

The fast increasing with frequency of particular terms in
S, is a manifistation of the fact that the weakly-nonlinear
approximation together with the Hasselmann'’s equation is
applicable only in the finite range of frequencies, approxi-
mately foro<5w),. In the high frequency region the nonlin-
earity becomes strong, the white-capping occur, and weak-
turbulent Kolmogorov spectra transit to the Phillips spectra
cw~~a/w° (Kitaigorodskii and Lumley1983 Kitaigorodskii
et al, 1983 Newell and Zakhargv1992. We will not dis-
cuss this very interesting subject the present article.

4 Self-similar solution

Let us introduce dimensionless variables
k=kok, Q = Jk,

x = x/ko, o= wo 2,

yielding

1
k)= —— .
N (k) wokgn(lc)

(46)
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The non-dimensional surface height variance and the non-x [P,g(m, 61) Pg(z2, 02) Pg(z3, 03) +

dimensional average frequency are:

2 2 g 2

€ =kjo :U—go, 47
1 4

v — 2 (48)
27 wo

Both e andv can be expressed in termsiafic). Apparently,

e:/ﬁn(x)dx,
_ 1 [ Il n(x)de
T on [ VIkln(e)di

Under limited-fetch conditions; (i, x) is governed by the
kinetic equation

(49)

(50)

cosh on ~ ~
—_— = SF, 51
20 3)( nl + SF ( )
where
Snl =7 / |TKK1K2K3|28(K + K1 — K2 — K3)
X §(2+ Q1 — Q2 — Q3) x (52)

x [(no +n1)nznz — noni(nz + n3)ldiy dio dis,
Sp~mQF(Q) n(k, x).

In Eq. 62) the parameter: is a small one (see Ed.9,
m~10"%). In a first approximation, we can sgt=0, and
obtain the “conservative” kinetic equation:

cosf dn ~

= T _S,. 53
20 8)( Snl ( )

+Pg(z,0) Pg(z2, 02) Ps(z3, 03)
—Pg(z,0) Pg(z1, 61) Pp(z2, 02)
—Pp(z.0) Pp(z1, 61) Pp(z3. 69)]

z1z223dz1dz2, dz3d61d62 d63. (56)

This is the equation that has to be solved numerically.
Let us denote:

Ap =/ﬁPg(z,9)zdzd9, (57)
Bg = /z Pg(z,0)zdz do. (58)
Then, we find
€ = b2 X# Ag,
1 B
— ~ p2,-B22F 59
v 27'[ X Aﬂ ( )
These equations can be written as:
e=uyx?,
v=uvy 7, (60)
where
2p+1 2p+1
= = 61
q 0 B o (61)
1 ~1/5 Bg

After integrating the Eq.51) overk we obtain the balance

This governing equation is the main focus of our analytical €auation

effort. It contains a family of self-similar solutions. In polar 1
coordinates, 6 on« plane, these solutions can be presenteds

as.
nc, 0, x) = ax® Ps(b xP «,0). (54)

Herea, b, «, § are constants.

Substituting Eqg.%4) into Eq. 63) one finds
a=58-1/2, a=»h
and ultimately,

nc, 0, x) = b° P V2 Py xP ke, 0). (55)

cosf on

_M=f$w=mn

o iy (63)

Here Q is the total input of wave action; a net result of wind
forcing and breaking wave dissipation. Substituting the self-
similar solution Eq. %5) into Eq. 63), we find
0=~y"7 bt

Therefore, the solution (Ep5) implies the presence of
the wave action sourc® at high wave numbers. For
B=Bcrit=3/7, the net inpuP=const, and the intensity of the
source does not depend on the fetch. FoBit, the inputQ

(64)

In Eq. B5), B andb are constants that are unknown yet, and 9rows with an increasing fetch. For this special self-similar

Pg(z, 0) is a function of two variables withb=bxP«. Let us
emphasize that this function is independentoit satisfies
the following integro-differential equation:

cosd 5
Z_ﬁ [ Sﬁ_l/z)Pﬁ—i_/Bsz] =n / |TZ,21,22,Z3,9,91,92,93|

X 6(z COSH + z1 COSH1 — 72 COSHo — 73 COSH3)
x 8(zSinf + z1 Sinf1 — z2 SiNBr — z3SiNB3)

X 8(vVZ 4+ V71— V22 — V/73)

solution
nerittk, 0, x) = b x4 P37 (b x¥ "k, 0), (65)
4
— _ =057
P=73
3
== —021
1= 12

Solution (Eq.65) was studied byakharov and Zaslavskii
(19831983 andGlazman(1994. For 8>3/7 the inputQ
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grows on increasing fetch. Note that according Eé) the

C . Table 1. First group of experiments.
total wave action is

N = //c n(k)di do ~ b3 312, (66) Study €(x) v(x)
(3 pt)
Self-similar solution (Eq.54) describes swell if =0, Nakata Bay BIx 107y 31257033
N=const. In this casg=1/6 and Eq. $4) takes the form EMItS)uyaSU etal.197])
3 pt
n(k, 0, x) =b° x?2PbxY%%,0). (67)
o . JONSWAP 16x 107y 3557033
The peak of the self-similar solution is posedzarl. The (Hasselmann et al1973

rare face of the similarity solution is a Kolmogorov type so- (3 pt)
lution. In the primitive variables, it is described by E§2),
whereQ is given by Eq. 64), while the fluxes of energy and  Bothnian Sea Bx10 7y 318,033
momentum are (Kahma 1987
_ (3 pt)
P(Q. 0) ~b"2 x5
3 i ~7 -033
Mc. ) ~ b3 y2B-D 68 Lake St. Clair 17 x 107/ x 3.6
e 0) X (68) (Donelan et al.1992
Ar very largex, solution (27) becomes isotropic. Asymptot- (3 pt)
ically,

n(c) ~ c1 Q"3 (69)  For example, the results of the JONSWAP experiment are
summarized by the spectral foridgsselmann et al1973:

This is Zakharov-Zaslavskii spectrum that describes the in- ) i Gt

verse cascadeZ@kharoy 1966 Zakharov and Zaslavskii F(f) = ag exp[—§ (i) } ye"p[* 222 ] (73)
1982. In the case of swellp=0 and the self-similar so- 2nA 5 4\ fp

lution has another asymptotics

At moderate values of the non-dimensional fexch10°, pa-

Pl/3 .
o (70) rameterg ando are approximately constant
4 9
K

n(k) =
y ~33, o ~0.08
whereP~x1/®, This is the Zakharov-Filonenko spectrum of
direct energy cascade. while « and f), are powers ofc. Form Eq. {3) is explicitly
Study of self-similar solutions shows that the conservativeself-similar. Actually, thef —> asymptotic of Eq.73) repre-
kinetic Eg. 63) is incomplete. It must be accomplished by sents the regime described by the Phillips spectinili{ps,

the boundary condition 1958. A more accurate analysis of the JONSWAP spectra
13 (Battjes et al.1987) shows that af —* behavior is more rel-
n(k) — 10 (71) evant. Donelan et al(1985 also found thef —* asymptotic
1c23/6 for their spectra. This is exactly what the theory predicts, but
that defines the flux of wave acti@(r, r) coming from high & discussion of thig issue is qutside the scope of thi; a}rtic;le.
wave numbers. In a general cagdr, ¢) is an arbitrary func- In accordance with the main assumption of self-similarity,

tion of coordinates and time. Asymptotics (Eq. 62) plays the fetch dependence efandv is described by powerlike

a role of a boundary condition for the conservative kinetic functions ofy. To assure that the spectra are described by
equation. the similar solution (Eg55), one has to compare these func-

tions with the theoretically predicted dependencies @}.

The results of the major fetch limited experiments can be
5 Comparison with experiment summarized in two tables:

Expression §1) makes it possible to fing if p is give.
We shall now compare the similarity solution (Exp) with  For the first group of experiments= 1, and one obtains:
the field observations under limited-fetch conditions. Let us
first notice that an elementary analysis of observed spectra = 0.3, B =0.6
shows their self-similar behavior. The similarity is implicit
in the fact that the spectra can be expressed by a univers
form that involves a finite number of parameters. p=076, ¢g=025 B=05
The frequency spectrum can be introduced as follows:

For the Lake Ontario experiment:

o For the North Atlantic study:

dk
Fi=kowys [ NG.0)d6, k=@ %s (1D ,_075 ¢=025 p=05
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Table 2. Second group of experiments. 6 Discussion

1. The close agreement between the theoretical and ex-

é,u;g;/ < v perim_enta_l results indicates that the Has_s_elmann kinetic
equation is an adequate model describing the evolu-

Lake Ontario 8415x 1077 076 185,023 tion of wind-driven surface gravity waves. Moreover,

(Donelan et a/.1989 the evolution of the spectral peak at moderate fetches

(3 pt) can be faithfully described by the “conservative” kinetic

North Atantic 127 x 10-7 /075 17,024 3:}(;1;1;2)(;1 where the forcing and dissipation terms are

(Dobson et a].1989 '

(3pt) Self-similar solution (Eg54) describes downshift of the
peak frequency. This is a direct consequence of the “in-
verse cascade” of energy and wave action. The physi-

Table 3. Comparison with theory. cal origin of the inverse cascade is the existence of an
additional integral of motion — the wave action. The

Study Experiment  Theory Optimized wave action is preserved only in four-wave inter_a(_:tions.

@ pY One can say that the very fact of the downshifting of
the spectral peak indicates a dominant role of four-wave

NSaktata Bay  32x7 9% 323C; %% 320,70% nonlinear interaction.

G P This qualitative analysis finds, as we just showed, a rea-

JONSWAP 3By 033 3640y x 030 36,030 sonable quantitative confirmation.

(3 pt)

. Different groups of experiments give two different val-

Bothnian Sea 38y 7033  31¢; x 7039 306y 030 ues forg: p=0.6 andB=0.5. Both of them are larger

(3 pt) than the critical valugg=3/7~0.43. This means that
the input of wave action increases with an increasing

Lake St. Clair ~ 3x7 %33 36C; x %% 356, 0% fetch. The explanation here is rather simple. Accord-

(3 pt) ing to Egs. 60) and 4), the characteristic steepness

Lake Ontario 185,02 26,4025 184,025 decreases as the fetch increases:

(3pt) p-1
&~y 7. (74)

North Atlantic  17x7 924  24(C, =025 17,7025

(3 pt)

In Eq. 62), coefficientsCg are unknown constants defined

by the shapes of the solutions to E§4). Let us denote:

Clg=06=C1, Clg=05=1C2

According to Eq. 22) (see Hasselmann1974 and
many other models of the breaking wave dissipation),
Sy4s is very sensitive t@x and it rapidly decreases as
decreases. As a result, the white capping is more vigor-
ous for “young” seas. Whegp grows, S, becomes sup-
pressed and the wave action input from wind increases.

. According toKomen et al.(1995 theoretical predic-

tion, the self-similar solution (Ecp4) is valid only for

Now we can compare experimental and theoretical results for
v(x). These results are summarized in Table 3. Coefficients
C1 andC> in the second column of Table 3 are not adjustable
parameters. They have definite values to be found by numer-
ical solution of Eq. (25). We plan to determine these values
in a later study. At the present time we propose a hypothesis
that their values are “optimal”, so that the third column in
Table 3 is sufficiently close to the first column. Optimization
by the least square method gives:

not too large fetches. What happens after? It depends
on the structure of r for long waves. If, as it was esti-
mated in models (Eq8-6), Sr=0 for w<wo, the down-
shift continues infinitely long. Asymptotically it is de-
scribed by the self-similar solution wih = B¢it=3/7.
Behind the spectral peak, the spectrum has an asymp-
totic form F(f)~ f~1%/3,

In the experiments obonelan et al(1992 performed
on Lake St.Clair, as well as in some earlier experi-
ments byPierson and Moskowit£1964), and SMB
CERC (1977, the downshift is arrested approximately
at xcrit=~5x10%. It corresponds to a very long fetch,
xerit~10* L, whereL is a characteristic wave length. In
a typical casd.~100 m, thusycrit=~10°km.

C1=099 C(C2,=0.71

Table 3 demonstrates a good agreement between theory and
experiment.
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