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Abstract

Measurements of individual NOy components were carried out at Halley station in

coastal Antarctica. The measurements were made as part of the CHABLIS cam-

paign (Chemistry of the Antarctic Boundary Layer and the Interface with Snow) and

cover over half a year, from austral winter 2004 through to austral summer 2005. They5

are the longest duration and most extensive NOy budget study carried out to date in

polar regions. Results show clear dominance of organic NOy compounds (PAN and

MeONO2) during the winter months, with low concentrations of inorganic NOy, but a

reversal of this situation towards summer when the balance shifts in favour of inorganic

NOy. Multi-seasonal measurements of surface snow nitrate correlate strongly with in-10

organic NOy species. One case study in August suggested that particulate nitrate was

the dominant source of nitrate to the snowpack, but this was not the consistent picture

throughout the measurement period. An analysis of NOx production rates showed that

emissions of NOx from the snowpack dominate over gas-phase sources of “new NOx”,

suggesting that, for certain periods in the past, the flux of NOx into the boundary layer15

can be calculated from ice core nitrate data.

1 Introduction

The chemistry of oxidised nitrogen (NOy = NO + NO2 + NO3 + HONO + HNO3 +

p-NO
−

3
+ RONO2 + PAN + HNO4 + N2O5 + XONO2 + XNO2 + . . . , where p-NO

−

3
is particulate nitrate, R is an alkyl group and X is a halogen) in polar regions has re-20

ceived attention over recent years for two primary reasons. Firstly, with the key role of

NOx (= NO + NO2) in tropospheric chemistry, sources, concentrations and associated

chemistry of NOx are important to understand and quantify in order to determine its

influence on the high latitude boundary layer. Early studies from the Arctic pointed to

the dominance of PAN in the NOy budget (driven predominantly by long-range trans-25

port), and explored the role of PAN as an NOx source (Bottenheim et al., 1993; Solberg
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et al., 1997). More recently, work has shown the surprising source of boundary layer

NOx from nitrate impurities within surface snow (Honrath et al., 1999; Jones et al.,

2000; Jones et al., 2001), and that in some polar locations concentrations of NOx aris-

ing from this source are high enough to drive local ozone production (Crawford et al.

2001; Davis et al., 2001; Davis et al., 2004). Furthermore, the snowpack has also5

been shown to be a source of HONO to the polar boundary layer, driven similarly by

photolysis of snowpack N impurities (Zhou et al., 2001; Beine et al., 2002; Dibb et al.,

2002).

The second reason for interest relates to ice cores. The deep ice cores that are

drilled in polar regions yield a record of changing nitrate through time. Nitrate in ice10

is easy to measure and there are abundant ice core nitrate data available. Nitrate im-

purities in ice are driven by deposition of atmospheric NOy species, and potentially

therefore, hold information about concentrations of NOx in the past and how they have

evolved over glacial/interglacial timescales. Our ability to reconstruct past concentra-

tions of NOx, however, is severely limited by our understanding and knowledge of the15

present day polar NOy budget, and we cannot hope to reconstruct past NOx without

knowing how present day NOx is connected, at minimum, to the depositional sinks for

NOy. Furthermore, we need to understand the depositional processes that generate

the record of nitrate in ice. Post-depositional processes are an additional complication,

but not one that is addressed in this paper.20

The family of NOy thus comprises a number of components whose concentrations

are likely to change throughout the year driven by seasonally-dependent sources and

sinks. To probe partitioning within the NOy family and the relationship to NOx concen-

trations, observations of as full a suite of NOy species as possible is necessary, and

measurements should extend over a sufficiently long time period to tease out the major25

and minor processes at work. Various studies have addressed the budget of NOy at

high latitudes, e.g. in Antarctica at South Pole (Davis et al., 2004, 2005; Huey et al.,

2004, Arimoto et al., 2004) and Neumayer (Jones et al., 1999; Jacobi et al., 2000),

and in the Arctic at Summit (Honrath et al., 1999; Ford et al., 2002; Dibb et al., 2002;

4129

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/4127/2007/acpd-7-4127-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/4127/2007/acpd-7-4127-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 4127–4163, 2007

Multi-seasonal NOy

budget in coastal

Antarctica

A. E. Jones et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Yang et al., 2002) and Ny-Ålesund (Solberg et al., 1997; Beine et al., 2001). As such

studies involve by definition a large range of measurements, previous assessments

have been conducted with varying degrees of coverage. Furthermore, the majority of

these studies have been carried out during summer months with some limited spring-

time measurements, but we are unaware of any studies addressing the NOy budget for5

other seasons. Our work considers the balance of NOy components in coastal Antarc-

tica, and explores how this balance changes as the Antarctic seasons progress from

winter, through spring and into summer. We also describe seasonality of surface snow

nitrate (NO
−

3
) concentrations and look for associations with changing NOy components

through the year.10

2 Observations and data averaging

The measurements were made at the British Antarctic Survey research station, Halley,

in coastal Antarctica (75
◦
35

′
S, 26

◦
39

′
W). The data were collected at the Clean Air Sec-

tor Laboratory (CASLab) as part of the CHABLIS (Chemistry of the Antarctic Boundary

Layer and the Interface with Snow) measurement campaign (see Jones et al., 2007
1
).15

Altogether 11 different NOy components were measured during the campaign using 8

different methods and techniques (see Table 1).

Instruments measuring the various component species came on line at different

times during the year from April onwards, but all species were being measured si-

multaneously after mid-winter. The data thus allow an assessment of how the NOy20

budget varies from mid-winter through spring and into the summer. In recognition of

the lower (weekly) sampling frequency for some components (e.g. RONO2, HNO3, p-

NO
−

3
), measurement intensives were carried out each season whereby sampling for

1
Jones, A. E., Wolff, E. W., Salmon, R. A.: plus 21 co-authors: Chemistry of the Antarc-

tic Boundary Layer and the Interface with Snow: An overview of the CHABLIS campaign, in
preparation, 2007.
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these species was increased; for 1 week each season they were sampled at daily

resolution, and for one day at 6-hourly resolution. Many of the 6-hourly filter/denuder

samples were unfortunately below the detection limit, but some higher resolution data

(e.g. daily HNO3) became available as a result. As of January 2005, a GC-MS was

measuring speciated alkyl nitrates at Halley, providing significantly higher resolution5

data (Sturges et al., 2007
2
). In addition, surface snow was sampled each day from

March 2004 onwards, and stored for subsequent analysis for nitrate.

Data in this paper are presented as monthly-averages and standard error of the

mean. Full resolution data sets, with details of data validation, are presented in com-

panion papers (Bauguitte et al., 2007
3
, for NO and NO2; Clemitshaw et al., 2007

4
, for10

HONO; Mills et al., 2007
5
, for PAN; Sturges et al., 2007

2
for RONO2). For instruments

whose data were collected at high resolution, averages were calculated using all avail-

able data and, as data coverage was sufficient, no account was taken for missing data.

The filter and denuder data were available as integrated averages for roughly weekly

periods. Averages for these species were derived by weighting each filter/denuder15

sample according to the number of days that the filter/denuder was exposed for. Alkyl

nitrate data were derived for most of the year from whole air flask samples; the data are

2
Sturges, W. T., Mills, G. P., Worton, D. R., Humphrey, S., Salmon, R. A., Bauguitte, S.J.-B.,

and Jones, A. E.: Seasonal cycles of several short-lived halocarbons and alkyl nitrates in the
Antarctic boundary layer and snowpack interstitial air, in preparation, 2007.

3
Bauguitte, S. J.-B., Bloss, W. J., Evans, M. E., Jones, A. E., Lee, J. D., Mills, G.P., Saiz-

Lopez, A., Salmon, R. A., Roscoe, H. K., and Wolff, E. W.: An overview of multi-seasonal
NOx measurements during the CHABLIS campaign: Can sources and sinks estimates unravel
observed diurnal cycles?, in preparation, 2007.

4
Clemitshaw, K. C., Ames, D., Fleming, Z., Salmon, R. A., Bauguitte, S. J.-B., and Jones, A.

E.: Multi-seasonal measurements of HONO during the CHABLIS campaign in coastal Antarc-
tica, in preparation, 2007.

5
Mills, G. P., Sturges, W. T., Salmon, R. A., and Bauguitte, S. J.-B.: Seasonal variation

of peroxyacetyl nitrate (PAN) in coastal Antarctica measured with a new instrument for the
detection of sub-part per trillion mixing ratios of PAN, in preparation, 2007.
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thus spot measurements made on a number of occasions (not always evenly spaced)

during each month. To derive a meaningful average, the data were plotted against day

of the month, and the slope and intercept used to calculate the mid-month mixing ratio

which was then taken as the monthly mean.

3 Results5

3.1 Gas-/aerosol-phase measurements

3.1.1 Seasonality of monthly-averaged NOy species

The variation of monthly-averaged NOy components throughout the measurement pe-

riod is shown in Fig. 1. Figure 1a shows the inorganic NOy species. HONO and HNO3

showed clear wintertime minima, with mixing ratios around the instrumental detection10

limit for each species (2 and 1 parts per trillion by volume (pptv) respectively). The mix-

ing ratios increased with the onset of spring, and by December (austral summer) had

reached monthly mean mixing ratios of 5.3 pptv for HONO and 5.7 pptv for HNO3. By

January, the HNO3 monthly mean mixing ratio was effectively unchanged, at 6.2 pptv,

while that for HONO had risen to 10.4 pptv. These observations for gas-phase HNO315

are consistent with measurements made by nylon filter sampling at Neumayer, both

in terms of seasonality (A. Minikin, personal communication) and summertime mixing

ratio (Jones et al., 1999; Jacobi et al., 2000). As shown on Fig. 1a, particulate nitrate,

p-NO
−

3
, was similarly suppressed during the winter months, but displayed a springtime

maximum with the monthly mean peaking in October at 4.6 pptv. Over the subsequent20

months, this value dropped to a monthly mean of 1.8 pptv in January. This seasonality

is in line with that measured previously at Halley and at Neumayer (A. Minikin, personal

communication). Work by Rankin and Wolff (2003) has shown that at Halley, p-NO
−

3
is formed locally by reaction of gaseous HNO3 with sea salt aerosol; the seasonality

of p-NO
−

3
is thus a composite of these two annual cycles. Furthermore, the seasonal25
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cycle of “total inorganic nitrate” (TIN = HNO3 + p-NO
−

3
) (not shown) shows a charac-

teristic late winter (August-September) peak which has previously been interpreted as

sedimentation of polar stratospheric clouds (PSCs) from the stratosphere into the tro-

posphere enhancing tropospheric TIN (Wagenbach et al., 1998; Savarino et al., 2006).

Monthly averages of NO and NO2 for the summer months (November–January) are5

also shown in Fig. 1a; NOx is clearly a significant component of summertime NOy at

Halley. Wintertime mixing ratios of NO and NO2 were below the instrumental detection

limit (S. Bauguitte, personal communication); this is consistent with the winter obser-

vations of NO made at Neumayer (Weller et al., 2000). Finally, NO3 measurements

were made during the year, but mixing ratios never exceeded the detection limit of10

2 pptv. Output from the GEOS-Chem model (Evans and Jacob, 2005), (a global three-

dimensional model of tropospheric chemistry, run at a resolution of 4 deg by 5 deg

using meteorological input from the NASA Global Modeling and Assimilation Office)

suggested that N2O5 mixing ratios never exceeded 0.5 pptv during the year (M. Evans,

personal communication).15

The monthly-averaged data for organic NOy components are shown in Fig. 1b, plot-

ted on the same scale as Fig. 1a to allow easy comparison. Two things are immediately

evident from the plot. Firstly, the organic NOy components are completely dominated

by PAN (peroxyacetyl nitrate) and MeONO2 (methyl nitrate). For PAN, the highest

monthly-averaged mixing ratio observed was in July, reaching 13.7 pptv. Measure-20

ments for PAN only began in July so it is not possible to tell from these data whether

the annual maximum occurred then or during an earlier month. For MeONO2, the high-

est measured monthly average also lay at the start of the data record, with 14.0 pptv

measured during April. By July, mixing ratios were still elevated compared with the

rest of the year, at 9.5 pptv. For both PAN and MeONO2, mixing ratios decline toward25

austral summer, but are still maintained at 7.2 and 5.6 respectively for the month of

December. This declining concentration in MeONO2 throughout winter darkness and

into the spring months is in line with recent measurements from South Pole (Beyersdorf

et al., 2006). The higher alkyl nitrates exhibit a similar seasonality to that of MeONO2,
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albeit at lower mixing ratios. They reach monthly averages of 2.5 pptv (ethyl nitrate),

1.4 pptv (i-propyl nitrate) and 0.2 pptv (n-propyl nitrate) during July and drop to around

instrumental detection limits during the summer months.

Also striking from Fig. 1 is that the shape of the timeseries of the organic NOy compo-

nents are quite different from those of the inorganic ones; rather than wintertime minima5

increasing with spring/summer, the organics show a maximum in autumn/winter and

their mixing ratios decline with the onset of sunlight and the warmer temperatures of

the spring and summer. An apparent exception to this is the January mean mixing ratio

for PAN, and to a lesser extent, for MeONO2 both of which are higher than the mean

observed during other summertime months. The relatively high January means are10

driven by two events with exceptionally high PAN and MeONO2, and the background

mixing ratios are more typically of the order of a few pptv (see Mills et al., 2007
5

for

further details). However, it is interesting to note that mixing ratios of PAN dominate

over any other single component during the entire measurement period.

3.1.2 Inorganic vs organic NOy in winter and summer15

The variation of inorganic and organic NOy components between summer and winter at

Halley is presented in Fig. 2. The first month in which all NOy species were measured

is July, and Fig. 2a shows the July averages of all species, as well as the total inorganic

and total organic NOy for this month. The dominance of the organic species is clear,

with an integrated mixing ratio of 27.4 pptv, as opposed to the 3.8 pptv of the inorganic20

species. By December, with significantly higher temperatures and extended daylight

hours, the organic NOy components are considerably reduced, with monthly-averaged

mixing ratios of 14.8 pptv. The NOy budget is now dominated by the inorganic species,

whose integrated mixing ratios reach 22.4 pptv.
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3.1.3 Comparison with NOy and budget measurements from other Antarctic sites

Previous studies with simultaneous measurements of a range of NOy components have

been carried out at two other Antarctic stations, the German research station, Neu-

mayer (70
◦
37

′
S, 8

◦
22

′
W), another coastal site in the Weddell Sea sector of Antarctica,

and the American Amundsen-Scott station at the South Pole. At Neumayer, studies5

were carried out in 1997 and 1999 with measurements extending from late January

through to early March. The South Pole measurements were made during December

2003. A comparison between the monthly mean Neumayer (February), South Pole

(December) and Halley (January) data is given in Table 2. The Halley data are of a

similar order to those from Neumayer in all species measured at both stations. This10

suggests that, at least in this sector of coastal Antarctica, there is some representative

boundary layer chemical composition. In contrast, those from South Pole show large

differences for certain species measured, in particular NO, NO2 and HNO3. These

data highlight the large differences in the boundary layer chemistry between coastal

and inland, plateau, sites.15

Direct measurements of NOy were made at Neumayer during a full year in 1999, us-

ing a CO/gold catalyst combination to reduce NOy components to NO, followed by NO

detection using a chemiluminescence detector (Weller et al., 2002). Although no direct

assessment of NOy was made at Halley, it is possible to integrate the individual NOy

component measurements to derive an approximation which can then be compared20

with the Neumayer data. Various provisos must be borne in mind: i) The Neumayer

convertor is assumed not to convert particulate NO
−

3
given its operating temperature

so p-NO
−

3
is not included in the Halley integrated NOy; ii) the NOy convertor does not

reduce all species with 100% efficiency, so some will be underestimated; iii) it is likely

that not all NOy components are included in the Halley data coverage – for example,25

neither HNO4 (important at South Pole) nor halogen nitrates (which other results from

CHABLIS suggest may be present in non-insignificant amounts) were measured. Fig-

ure 3 shows the comparison between the directly measured Neumayer NOy and the
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integrated Halley NOy. During both the winter and the summertime, the integrated NOy

is of a similar order to the measured NOy. This suggests that the Halley data capture

the dominant NOy components.

3.2 Linking boundary layer and snowpack measurements

3.2.1 Year-round NOy and surface snow nitrate5

The concentration of nitrate in surface snow is determined by the combination of input

and loss terms. Loss of nitrate is driven both by physical (volatilisation) and photo-

chemical processes. At very low accumulation sites such as those of central Antarc-

tica, physical loss processes are believed to be predominantly responsible for the very

large nitrate losses observed there (Röthlisberger et al., 2000). The incorporation of10

impurities into snow can occur at various heights within the troposphere. For example,

snow forms either by condensation of water vapour or by riming (Pruppacher and Klett,

1978). Both processes require nuclei which can be provided, among other candidates,

by minerals such as nitrate aerosols. As snow crystals grow, additional molecules can

be incorporated by adsorption onto the surface. At tropospheric temperatures, even in15

polar regions, the surface of snow crystals is disordered (e.g. Petrenko and Withworth,

1999) to the extent that the surface layer is commonly referred to as the quasi-liquid

layer (QLL). Uptake of trace gases commonly approximate to gas/liquid interactions,

and can be described by the Henry’s Law coefficient, KH . Thus, as snow falls, it can

scrub the atmosphere, both through adsorption of gases and scavenging of aerosols,20

thereby collecting additional impurities which can contribute to nitrate measured in sur-

face snow. Uptake of impurities may continue once the snow has reached the Earth’s

surface as long as crystal surfaces remain exposed to ambient air.

The suite of measurements gathered during CHABLIS allows us to investigate pos-

sible links between changes in boundary layer concentration of individual NOy compo-25

nents and changes in the concentration of surface snow nitrate. If the surface snow

nitrate inventory is driven by uptake within the boundary layer, some association be-
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tween snow nitrate and the NOy component source gas might be expected. However, if

nitrate becomes incorporated into snow as it forms aloft and while it falls to the ground,

associations between surface snow nitrate and boundary layer NOy components are

likely to be less apparent.

Of the inorganic NOy species measured during the CHABLIS campaign, the highly5

acid gas, HNO3, with a Henry’s Law coefficient of the order 10
5

M/atm (e.g. Brimble-

combe and Clegg, 1989; Lelieveld and Crutzen, 1991), is the most likely to be taken up

onto the snow surface (Huthwelker et al., 2006). For HONO, KH is considerably lower,

of the order 5×10
1

M/atm (e.g. Park and Lee, 1988; Becker et al., 1996), so uptake will

be less than for HNO3 but could nonetheless be significant. Particulate nitrate, p-NO
−

3
10

can be scrubbed from the atmosphere by falling snow, or deposit directly to the surface

of the snowpack, so again, is a likely candidate as a snowpack nitrate source. NO

and NO2 on the other hand, with their relatively low solubility are not likely to be direct

sources of snowpack nitrate. Henry’s Law coefficients for PAN and the alkyl nitrates are

only an order of magnitude smaller than for HONO (Kames and Schurath, 1992, 1995),15

so some uptake for these molecules by snow crystals might be expected depending on

their concentrations.

Figure 4a shows the sum of HONO + HNO3 + p-NO
−

3
, and the sum of PAN +

MeONO2, plotted together with daily surface snow nitrate concentrations. It is clear

that the seasonality of surface snow nitrate closely matches that of the inorganic com-20

ponents, with winter minima increasing through spring to summer maxima. There is

no equivalent association between surface snow nitrate and the organic NOy compo-

nents. Even if individual organic NOy species were considered, their winter maxima,

shown in Fig. 1b) clearly does not match the surface snow seasonality. If there is a

direct role for organic NOy components to contribute to surface snow nitrate, then that25

role is significantly smaller than that of the inorganic components. Figure 4b shows in

more detail the variation throughout the year of the inorganic components and surface

snow nitrate: HNO3 is clearly the most closely correlated with nitrate in surface snow.

We return to the reasons for this in the Discussion.
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3.2.2 The August surface snow nitrate “event”

A useful way to probe deeper into potential sources of snowpack nitrate is to consider

case studies. Figure 5 shows the time period in August 2004 when surface snow nitrate

concentrations became significantly elevated for a number of days. The surface snow

sample collected on 15 August had a background concentration of nitrate of roughly5

50 ppb; on 16 August, the sample collected had a concentration of over 200 ppb. These

high concentrations were maintained through until the end of August. By 30 August,

concentrations of nitrate had fallen to roughly 80 ppb, and following a short data gap,

by 2 September, concentrations had returned to background.

Having assessed that the most likely contributors to surface snow nitrate are the in-10

organic NOy components, Fig. 5 also shows the coincident measurements for HONO,

HNO3 and p-NO
−

3
at their maximum resolution. Mixing ratios of HONO are generally

constant across this time period, varying little around a background of ∼1 ppbv. Some

increase is measured from 7 September onwards, but this occurs after the surface

snow nitrate event has occurred. HNO3, being measured using weekly denuder sam-15

pling, is not available at such high resolution as the HONO data, but nonetheless it is

clear from the figure that there is also little variation in HNO3 during this time period.

Mixing ratios are relatively constant at about 1 ppbv. Particulate nitrate concentrations,

however, show considerable variability. Again, the data are only available as weekly av-

erages, so the variation from day to day can only be surmised. However an interesting20

picture emerges when considering these data together with occurrences of snowfall.

At Halley, meteorological observations are made every 3 h. They include information

on periods of snowfall – whether it is snowing at the time and whether it has snowed

in the previous 3 h. These snowfall observations are represented as red dots in Fig. 5,

and they show that the sudden increase in surface snow nitrate concentrations that25

occurred between sampling on 14 and 15 August was the result of fallen snow: on

14 August, surface snow was sampled at 11:00, with nitrate concentration of around

50 ppb; by the time the sample of surface snow was collected, at 15:00 on 15 August,
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nitrate concentrations had risen to over 200 ppb. Snowfall was reported at 09:00 on 15

August. As discussed above, the newly fallen snow could have brought impurities to

the snow surface from sources at various heights. However, on this occasion, the mea-

surements are consistent with scrubbing of particulate nitrate in the lowermost layer of

the atmosphere. During the sampling period from 10 August to 17 August, the concen-5

tration of p-NO
−

3
is significantly elevated above prior weekly sampling periods. As the

data are integrated measurements they are intrinsically smoothed and there will have

been periods during the sampling period when the p-NO
−

3
mixing ratios were further

elevated. It is quite consistent that falling snow would have incorporated particles in

the boundary layer and deposited them to the snow surface. Over the following days,10

there is further variability in surface snow nitrate concentrations which could have been

caused by a number of factors: the subsequent snowfall could have deposited snow

with a different impurity loading; post-depositional losses could have released some

nitrate to the atmosphere; or simply heterogeneity in the surface layer could result in

different samples having different concentrations. The progressive decrease in surface15

snow nitrate from 27 August, which resulted in concentrations returning to background

on 2 September, appear to have been driven by the recorded snowfalls. At this time,

particulate nitrate mixing ratios were also at background values suggesting that there

was little boundary layer p-NO
−

3
available to be scrubbed from the atmosphere. Al-

though p-NO
−

3
was again elevated after 2 September, there was no snowfall to deposit20

any aerosol to the snow surface.

Previous analyses of surface snow nitrate and ground level aerosol, even sampled

at daily resolution did not find the two to be consistently highly correlated (Wolff et al.,

1998). This suggests that impurities in surface snow can be determined by factors

other than the ground level aerosol composition (as discussed above). Indeed, a lim-25

ited number of profiling measurements subsequently showed that aerosol composition

varied quite markedly with height, and that air masses aloft (∼200 m above the ground)

could have an aerosol loading quite different to that measured on the ground (Rankin

and Wolff, 2002). However, for the event described here, at least, it appears that the
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source of surface snow nitrate was wet deposition and scrubbing, and the data are

consistent with the nitrate source being p-NO
−

3
within the boundary layer.

4 Boundary layer trace gas versus snowpack sources of NOx

A key question among polar atmospheric chemists concerns the role of polar snow-

packs as a source of trace gases to the overlying boundary layer. For those studying5

nitrogen chemistry, the interest lies in understanding the budget of NOx; we know that

NOx is photochemically produced (Honrath et al., 1999; Jones et al, 2000) and then

released (Jones et al., 2001; Wolff et al., 2002) from the snowpack, but the relative

contribution compare to NOx production from trace gases in the background atmo-

sphere has not yet been assessed. The data gathered during CHABLIS allow us to10

constrain the dominant NOx production mechanisms, and by comparing these calcu-

lated production rates, to assess the relative importance of sources of boundary layer

NOx, both in the air and from the snowpack. This approach also provides insight into

which gas-phase species are dominating NOx production within the boundary layer.

4.1 Methodology15

We selected two 24-h periods, one in summer and one in spring, within which to cal-

culate diurnally-averaged NOx (as either NO or NO2) production. The periods selected

were 18 January 2005 and from noon of 28 September 2004 through to noon of 29

September 2004. The former period was the first day in the summer season when

high-resolution alkyl nitrate data were available to compliment the other high-resolution20

datasets. This was also a time when an NOy intensive was carried out, so that daily

HNO3 measurements are available. During the latter period, an NOy measurement

intensive was also conducted, giving, in addition, alkyl nitrate measurements every 6 h

– the highest resolution alkyl nitrate data available for the spring period.
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4.1.1 Deriving gas-phase data

NOx production rates were calculated every 3 h during these diurnal periods, giving

8 data points from which daily means could be calculated. Where possible (e.g. for

HONO, PAN, summertime methyl and ethyl nitrates), input data were taken from an

hourly data merger carried out for all the CHABLIS data and the few missing data5

points were derived by linear interpolation. For the 6-hourly springtime methyl and

ethyl nitrate mixing ratios, it was by default necessary to interpolate to achieve data

at a 3-h frequency. These data were thus point-averages rather than hourly-averages,

but as mixing ratios did not vary rapidly over the day, the uncertainty introduced by this

approach is limited. For HNO3, sampled over a longer timeframe, it was necessary10

to reconstruct higher resolution data. Summertime HNO3 was measured as a 24-h-

mean centred around 23:59 on both 17 January and 18 January. These two data

points were averaged to derive a daily mean for 18 January. The diurnal variation was

reconstructed by comparing with 6-hourly resolution HNO3 data measured previously

at Neumayer station (Jones et al., 1999). There, a diurnal cycle with amplitude 7.5 pptv15

was measured, centred around noon. This amplitude was applied to the 18 January

mean to give a reasonable diurnal cycle. For the 28/29 September HNO3, the 6-hourly-

resolution data were below the detection limit, so the daily mean for 27 September and

29 September were averaged to give a mean for the calculation period. This mean was

only 0.96 pptv, and, being so low, it was taken to be constant over the 24-h period of20

interest. Finally, several measured NOy species did not exceed 2 pptv throughout the

year (e.g. NO3 and the higher alkyl nitrates), and they were ignored for this calculation.

Similarly, output from the GEOS-Chem model suggested that HNO4 also remained

well below this threshold throughout the year (M. Evans, personal communication) so

no account for HNO4 was taken here.25
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4.1.2 Gas-phase kinetic data

Gas-phase reaction rates were taken from Atkinson et al. (2004, 2006) and photolysis

rates for each 3-h period were calculated using the on-line version of the radiative trans-

fer model TUV (Madronich and Flocke, 1998). For these calculations, input parameters

included the total ozone column measured at Halley for these days, and an albedo of5

0.9. Clear sky conditions were assumed, so photolysis rates will be overestimated, but

the relative effect on all species will be comparable. In addition, OH concentrations

were necessary for some kinetic calculations. On 18 January 2005, OH was measured

by the FAGE (Fluorescence Assay by Gas Expansion) instrument (Bloss et al., 2007).

These data were included in the CHABLIS data merger, so that mean hourly OH con-10

centrations were available for this period. No OH measurements were available for

September, so OH was derived indirectly. Bloss et al. (2007) calculated a mid-month

OH throughout the CHABLIS measurement period based on varying jO(
1
D) (from the

TUV model). To derive a daily mean OH for 28/29 September, we averaged the mid-

month values for September and October, and found that (28/29 September)calculated15

= 0.561 (15 January)calculated. A diurnally-varying OH for 28/29 September was calcu-

lated from 0.561 * each 3-hourly measured January OH. Temperature data were taken

from measured values. For PAN thermal decomposition, the upper limit was calculated

according to –d[PAN]/dt = k[PAN].

4.1.3 Calculating snowpack NOx emissions20

The rates with which NOx was emitted from the snowpack during the periods of inter-

est were calculated in line with previous work by Wolff et al. (2002). In brief, spectral

irradiance at 3-h intervals was calculated using the TUV model. These were converted

to actinic flux as a function of depth according to output from a model designed to

simulate light propagation through snow (Grenfell, 1991). The actinic fluxes were then25

convoluted with the absorption cross-sections and the quantum yield to give J values.

In this case, temperature-dependent quantum yields were used (Chu and Anastasio,
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2003) which were not available at the time of the Wolff et al., 2002 work. A temperature

of –4
◦
C was taken for 18 January, and of –20

◦
C for 28/29 September. These were cho-

sen by assuming that the top few cms of snow saw an average of the near surface (1 m)

air temperature for the preceding 1–2 days. Finally, the nitrate concentration in snow

was derived using the average of the 0 cm, 5 cm and 10 cm snow nitrate concentration5

from the snowpit dug nearest to the date in question. This gave 73 ng/g for September

and 157 ng/g for January.

4.2 Outcome

The results for the gas-phase production rates are given in Table 3a. It is immedi-

ately evident that the contribution from HONO photolysis completely dominates NOx10

production for both periods, with rates of 6.20E+05 and 4.80E+04 molecs cm
−3

s
−1

for

January and September respectively. This is no great surprise, given the very short

lifetime of HONO to photolysis, and reflects a recycling of NOx through HONO (via NO

+ OH → HONO) rather than a pure source of NOx. Indeed, NOx, although generally

defined as NO + NO2, is sometimes expanded to include HONO as well. However,15

as discussed earlier, HONO also has a source from snowpack photochemistry (Zhou

et al., 2001; Beine et al., 2002; Dibb et al., 2002) so as well as facilitating recycling,

boundary layer HONO that has been released from the snowpack can act as a source

of atmospheric NOx. With our data it is not possible to determine how much of the

NOx produced by HONO photolysis (or reaction with OH) is “new” and how much is20

merely recycled. From the longer-lived “reservoir” species, the dominant mechanism

for NOx production in January is thermal decomposition of PAN with contributions from

photolysis of the other reservoir species of roughly similar orders of magnitude. In late

September, with lower temperatures, thermal decomposition of PAN is less important,

as is photolysis of HNO3, reflecting its lower background mixing ratio at this time of the25

year. Instead, other than the HONO source, NOx production from gas-phase reactions

is governed predominantly by photolysis of PAN and methyl nitrate.

The diurnally-averaged rates of NOx emission from the surface snowpack are given
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in Table 3b. For 28/29 September, an emission rate of 1.22E+06 molecs cm
−2

s
−1

is

calculated, with almost all production in about 6 h around midday. For 18 January, a

daily averaged emission rate of 1.92E+08 molecs cm
−2

s
−1

is calculated, spread a little

more evenly throughout the day (midday value being roughly a factor 10 higher than

the midnight value).5

In order to compare with the gas-phase NOx sources, we need to convert the snow-

pack emissions to units of molecs cm
−3

s
−1

. To do this, we need to make certain

assumptions about the height of the boundary layer into which these emissions can be

assumed to be well-mixed. Defining the boundary-layer height over coastal Antarctica

is not straightforward (Anderson and Neff, 2007
6
). Acoustic radar measurements made10

at Halley (Anderson, 2003) indicate a significantly varying upper boundary, with vary-

ing degrees of definition from day to day. However, for the purposes of this analysis

it is reasonable to assume that on the periods in question, it lay somewhere between

100 m and 500 m above the snowpack surface. Figure 6 shows the gas-phase rate

of NOx production presented in Table 3a. It also shows the integrated rate of NOx15

production from the reservoir species PAN + HNO3 + MeONO2 + EtONO2 the role

of HONO being ignored for the moment because of the recycling arguments outlined

above. The figure also indicates the equivalent emission of NOx from snow for var-

ious BL heights; 1000 m, 100 m, and 10 m. This representation shows immediately

that even if the boundary layer stretched to 1000 m height, production of NOx would be20

dominated by emission from the snowpack. This source of NOx thus far outweighs any

of the gas-phase production mechanisms.

4.3 Uncertainties

Of course there are important assumptions and uncertainties within the approach of

this analysis. For instance, we have focussed on only two 24-h periods, and measure-25

6
Anderson, P. S. and Neff, W. D.: Boundary layer physics over snow and ice, in preparation,

2007.
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ments on other days will have a different distribution of NOy components. For example,

on 28 January, daily averaged PAN mixing ratios reached 29.8 pptv. Using these higher

mixing ratios in this calculation would have increased the NOx contribution from PAN by

a factor 6.5. However, although this would have increased the dominance of PAN as a

gas-phase source of NOx, the combined contribution from reservoir species would still5

not have exceeded calculated NOx emissions from the snowpack, even for a BL height

of 1000 m. Similarly, HONO measurements at high latitudes are often difficult to recon-

cile, through numerical model calculations, with measured HOx and NOx (e.g. Chen et

al., 2004; Bloss et al., 2007). At South Pole, as shown in Table 2, two different HONO

measurement techniques recorded HONO values that differed by roughly a factor 6.10

We could reduce the HONO data here without any influence on our conclusions. We

have also made noticeable assumptions in the way we reconstructed diurnally-varying

cycles of HNO3 and September OH. Again, though, the uncertainty here will not affect

the overall conclusion. For the derivation of snow NOx emissions, the biggest uncer-

tainty lies in how to scale the combination of e-folding depth for actinic flux, quantum15

yield and proportion released so as to match measurements. With the newer quan-

tum yields (Chu and Anastasio, 2003) used here, the modelled values given in Wolff

et al. (2002) would be reduced by a factor of 2; this would mean that they would have

been lower by this factor than the values measured on one day for the NOx flux at

that site. If real, this discrepancy is most likely caused by us using too low a value for20

the effective e-folding depth for actinic flux (Warren et al., 2006). We have therefore

taken values midway between the calculated values and those implied by using the

Neumayer data to “calibrate” our model. The values we use should therefore be as-

sumed to have an uncertainty of +/–50%, as shown in Table 3b. A further choice in the

analysis was whether to use surface snow nitrate concentrations or those from snow-25

pits. Had we used surface snow values on the actual day in question, the calculated

emissions would have been similar to within about 10%.
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5 Discussion

There are two main questions which the work presented here can go some way to

address. The first is, what are the main net sources of NOy to the coastal Antarctic

boundary layer. We have evidence for the late winter stratospheric source seen also

at other coastal stations. Long-range transport of PAN and alkyl nitrates plays a role5

in delivering NOy to Antarctica. The overall budget and distribution of NOy species

between the boundary layer and the snowpack, however, is made complicated by the

recycling mechanisms in operation. For example, we show here a strong correlation

between BL HNO3 and surface snow nitrate. Assuming that this correlation is real,

the question then arises – which could be driving which? Some help is provided by a10

recent study from Savarino et al. (2006), who report measurements of TIN made at

the French coastal Antarctic station, Dumont D’Urville. They interpret the seasonality

based on isotopic analyses of both
15

N and
18

O. As mentioned above, they attribute

the late winter (August–September) peak to PSC sedimentation from the stratosphere,

in line with previous observations from Halley and Neumayer (Wagenbach et al., 1998).15

A second, major, late spring (November–December) peak is attributed to re-emission

of both NOx and HNO3 from the snow on the polar plateau, which is then transported to

the coastal regions. Their work supports the notion of recycling of N-species between

the air and the snow which one would then expect to see evidence for in correlations,

such as shown in Fig. 4b. Support for the idea of plateau air delivering enhanced NOy20

to the coastal regions is also given in the work of Weller et al. (2002). They reported

year-round measurements of NOy made at Neumayer station and demonstrated that,

between March and May, air masses with elevated NOy had originated in the free tropo-

sphere over the plateau. Unfortunately, we have no budget data during the equivalent

months. The Antarctic NOy system is complex with significant overlaps between net25

sources of NOy, and NOy species that are merely recycled. The next stage, to try

to elucidate further the driving mechanisms, is a full three-dimensional model assess-

ment. Such a study goes beyond the scope of this paper, but the data included here
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can provide constraints.

The second question concerns understanding sources of BL NOx, and what the

present day atmosphere/cryosphere can tell us about the atmosphere of the past. Ice

core records suggest that during glacial times, nitrate is bound up within the cryosphere

by higher levels of impurities such as dust (Röthlisberger et al., 2000). Emission rates5

for NOx out of the snowpack would thus be different from those of today. However, dur-

ing past interglacials, snowpack nitrate should be equally available for photolysis and

consequent NOx emission. Interestingly, there are times, even within an interglacial,

when the concentration of nitrate deposited to ice in at least parts of Antarctica has fluc-

tuated (Röthlisberger et al., 2000), raising questions regarding the response by NOx10

emissions. Our work shows that, of the major NOx production routes, emissions from

the snowpack dominate to a considerable extent over gas-phase sources under the

interglacial conditions that we experience today. For past interglacial periods, there-

fore, all other things being equal (e.g. snow accumulation rate, boundary layer height,

NOx destruction mechanisms (see Bauguitte et al., 2007
3

for a full analysis)) changing15

cryospheric nitrate suggests a changing NOx flux, with significant impacts on boundary

layer composition. This response would be amplified by enhanced HONO snowpack

emissions, with a consequent additional NOx source. As has been shown by the field

measurements over South Pole, under conditions of elevated NO, the influence is seen

in radical cycling, with shifts in the HOx budget towards OH, as well as in boundary20

layer ozone production.

6 Summary and conclusions

We report here the longest-duration assessment of the NOy budget in Antarctica car-

ried out to date. The data show that during the winter months, organic NOy components

dominate the budget, but that their importance diminished with the move towards the25

summer, when inorganic NOy compounds become predominant. PAN, however, has

the highest mixing ratio of any NOy component throughout the period of measurements.
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By comparing daily measurements of surface snow nitrate a strong association with

inorganic NOy species is apparent, that is completely lacking when compared with

organic NOy components. This suggests either that the snowpack is an important

source for inorganic NOy, or that inorganic NOy components are depositing to the

snowpack to ultimately build up the nitrate record through the cryosphere. One case5

study supported wet deposition from boundary layer nitrate aerosol, but this was not a

consistent picture throughout the measurement period, suggesting other mechanisms,

e.g. incorporation aloft, must be playing a role.

Photochemical release of NOx from the snowpack appears to be an extremely im-

portant source of NOx to the coastal Antarctic boundary layer, and dominates over10

any single gas-phase production mechanism (as well as the integrated source from

the longer-lived reservoir species). HONO is also a key producer of NOx, but it is not

possible to deduce how much arises from recycling within the boundary layer, and how

much of the HONO also has a source within the snowpack and is therefore generating

“new NOx”.15

Our work suggests that, for some periods in the past, we should now be able to

derive a direct flux of NOx to the BL using ice core nitrate data. A secondary source

of NOx, via snowpack production of HONO and subsequent photolysis or reaction with

OH, would further enhance this amount.

We cannot yet say definitively where the nitrate in surface snow originates. Certainly20

emissions of NOx from snow will include a significant component of recycled NOx, and

will not solely be a net source. However, knowing that the emissions of NOx from

snowpack nitrate will dominate over gas-phase NOx sources during interglacials helps

us a significant way towards assessing how BL NOx may have changed in the past.
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Beine, H. J., Honrath, R. E., Dominé, F., Simpson, W. R, and Fuentes, J. D.: NOx During Back-
ground and Ozone Depletion Periods at Alert: Fluxes Above the Snow Surface, J. Geophys.
Res., 107(D21), 4584, doi:10.1029/2002JD002082, 2002.

Beyersdorf, A., Meinardi, S., Rowland, F. S., and Blake, D.: VOC distributions over Antarctica
and at the South Pole during ANTCI 2005, Eos, Trans. AGU (Abstract Supplement), A31C-25

0917, 2006.
Bloss, W. J., Lee, J. D., Heard, D. E., Salmon, R. A., Bauguitte, S. J.-B., Roscoe, H. K., and

Jones, A. E.: Observations of OH and HO2 radicals in coastal Antarctica, Atmos. Chem.
Phys. Discuss., 7, 2893–2935, 2007,
http://www.atmos-chem-phys-discuss.net/7/2893/2007/.30

4149

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/4127/2007/acpd-7-4127-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/4127/2007/acpd-7-4127-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html
http://www.atmos-chem-phys.net/4/1461/2004/
http://www.atmos-chem-phys.net/6/3625/2006/
http://www.atmos-chem-phys-discuss.net/7/2893/2007/


ACPD

7, 4127–4163, 2007

Multi-seasonal NOy

budget in coastal

Antarctica

A. E. Jones et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Bottenheim, J. W., Barrie, L. A., and Atlas, E.: The partitioning of nitrogen oxides in the lower
Arctic troposphere during spring 1988, J. Atmos. Chem., 17, 15–27, 1993.

Brimblecombe, P. and Clegg, S. L.: Erratum, J. Atmos. Chem., 8, 95, 1989.
Chen, G., Davis, D., Crawford, J., Hutterli, M., Huey, L. G., Slusher, D., Mauldin, L., Eisele,

F., Tanner, D., Dibb, J., Buhr, M., McConnell, J., Lefer, B., Shetter, R., Blake, D., Song, C.5

H., Lombardo, K., and Arnoldy, J.: A reassessment of HOx South Pole chemistry based on
observations recorded during ISCAT 2000, Atmos. Environ, 38, 5451–5461, 2004.

Chu, L. and Anastasio, C.: Quantum yields of hydroxyl radical and nitrogen dioxide from the
photolysis of nitrate on ice, J. Phys. Chem. A, 107, 9594–9602, 2003.

Crawford, J. H., Davis, D. D., Chen, G., Buhr, M., Oltmans, S., Weller, R., Mauldin, L., Eisele,10

F., Shetter, R., Lefer, B., Arimoto, R., and Hogan, A.: Evidence for photochemical production
of ozone at the South Pole surface, Geophys. Res. Lett., 28, 3641–3644, 2001.

Davis, D., Nowak, J. B., Chen, G., Buhr, M., Arimoto, R., Hogan, A., Eisele, F., Mauldin, L.,
Tanner, D., Shetter, R., Lefer, B., and McMurry, P.: Unexpected high levels of NO observed
at South Pole”, Geophys. Res Lett., 28(19), 3625–3628, 2001.15

Davis, D., Chen, G., Buhr, M., Crawford, J., Lenschow, D., Lefer, B., Shetter, R., Eisele, F.,
Mauldin, L., and Hogan, A.: South Pole NOx chemistry: an assessment of factors controlling
variability and absolute levels, Atmos. Environ., 38, 5375–5388, 2004.

Dibb, J. E., Arsenault, M., Peterson, M. C., and Honrath, R. E.: Fast nitrogen oxide photochem-
istry in Summit, Greenland snow, Atmos. Environ., 26, 2501–2511, 2002.20

Evans M. J. and Jacob, D. J.: Impact of new laboratory studies of N2O5 hydrolysis on global
model budgets of tropospheric nitrogen oxides, ozone and OH, Geophys. Res. Lett., 32,
L09813, doi:10.1029/2005GL022469, 2005

Ford, K. M., Campbell, B. M., Shepson, P. B., Bertman, S. B., Honrath R. E., Peterson, M., and
Dibb, J. E.: Studies of Peroxyacetyl nitrate (PAN) and its interaction with the snowpack at25

Summit, Greenland, J. Geophys. Res., 107(D10), doi:10.1029/2001JD000547, 2002.
Grenfell, T. C.: A radiative-transfer model for sea ice with vertical structure variations, J. Geo-

phys. Res., 96, 16 991–17 001, 1991.
Honrath, R. E., Peterson, M. C., Guo, S., Dibb, J. E., Shepson, P. B., and Campbell, B.: Evi-

dence of NOx production within or upon ice particles in the Greenland snowpack, Geophys.30

Res. Lett., 26, 695–698, 1999.
Huthwelker, T., Ammann, M., and Peter, T.: The uptake of acidic gases on ice, Chem. Rev.,

106, 1375–1444, 2006.

4150

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/4127/2007/acpd-7-4127-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/4127/2007/acpd-7-4127-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 4127–4163, 2007

Multi-seasonal NOy

budget in coastal

Antarctica

A. E. Jones et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Jacobi, H.-W., Weller, R., Jones, A. E., Anderson, P. S., and Schrems, O.: Peroxyacetyl ni-
trate (PAN) concentrations in the Antarctic troposphere measured during the photochemical
experiment at Neumayer (PEAN “99), Atmos. Env. 34, 5235–5247, 2000.

Jones, A. E., Weller, R., Minikin, A., Wolff, E. W., Sturges, W. T., McIntyre, H. P., Leonard, S. R.,
Schrems, O., and Bauguitte, S.: Oxidised nitrogen chemistry and speciation in the Antarctic5

troposphere, J. Geophys. Res., 104, 21 355–21 366, 1999.
Jones, A. E., Weller, R., Wolff, E. W., and Jacobi, H.-W.: Speciation and rate of photochemical

NO and NO2 production in Antarctic snow, Geophys. Res. Lett., 27, 345–348, 2000.
Jones, A. E., Weller, R., Anderson, P. S., Jacobi, H.-W., Wolff, E.W., Schrems, O., and Miller,

H.: Measurements of NOx emissions from the Antarctic snowpack, Geophys. Res. Lett., 28,10

1499–1502, 2001.
Kames, J. and Schurath, U.: Alkyl nitrates and bifunctional nitrates of atmospheric interest:

Henry’s law constants and their temperature dependencies, J. Atmos. Chem, 15, 79–95,
1992.

Kames, J. and Schurath, U.: Henry’s law and hydrolysis rate constants for peroxyacyl nitrates15

(PANs) using a homogeneous gas-phase source, J. Atmos. Chem., 21, 151–164, 1995.
Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric photochemistry, J. Atmos.

Chem., 12, 229–267, 1991.
Madronich, S. and Flocke, S.: The role of solar radiation in atmospheric chemistry, in Handbook

of Environmental Chemistry (P. Boule, Ed.), Springer Verlag, Heidelberg, 1–26, 1998.20

Park, J.-Y. and Lee, Y.-N.: Solubility and decomposition kinetics of nitrous acid in aqueous
solution, J. Phys. Chem., 92, 6294–6302, 1988.

Petrenko, V. F. and Whitworth, R. W.: Physics of ice, Oxford University Press, Oxford, UK,
1999.

Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and precipitation, Reidel Pub. Co.,25

Dordrecht, Holland, 1978.
Rankin, A. and Wolff, E. W.: Aerosol profiling using a tethered balloon in coastal Antarctica, J.

Atmos. and Ocean. Tech., 19, 1978–1985, 2002.
Rankin, A. and Wolff, E. W.: A year long record of size-segregated aerosol composition at

Halley, Antarctica, J. Geophys. Res., 108(D24), 4775, doi:10.1029/2003JD003993, 2003.30
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Table 1. Details of techniques used to measure NOy components during CHABLIS.

Molecule Technique Detection Limit Normal sampling
resolution

Data capture

NO
NO2

HONO
HNO3

p-NO
−

3

PAN
NO3

MeONO2

EtONO2

i-PrONO2

n-PrONO2

speciated RONO2
snow NO

−

3

Chemiluminesence
Chemiluminesence
Colorimetry
Denuder + IC
Filter + IC
GC-ECD
BL-DOAS
Flasks + GC-MS
Flasks + GC-MS
Flasks + GC-MS
Flasks + GC-MS
in situ GC-MS
IC

1.5 pptv
5.0 pptv
2 pptv
< 1 pptv
< 1 pptv
< 1 pptv
2 pptv
< 1 pptv
< 1 pptv
< 1 pptv
< 1 pptv
< 1 pptv
< 1 ppb

1 min
1 min
15 min
daily/weekly
daily/weekly
30 min
10 min
weekly
weekly
weekly
weekly
hourly
daily

July onwards
July onwards
May onwards
April onwards
April onwards
July onwards
February onwards
April onwards
April onwards
April onwards
April onwards
January 2005 onwards
March onwards
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Table 2. Comparison of measurements of NOy component species made at Antarctic sites.
(Neumayer 1997 data from Jones et al., 1999; Neumayer 1999 data from Jacobi et al., 2000;
South Pole data from Davis et al., 2004, 2005; Huey et al., 2004, Arimoto et al., 2004). CIMS
= Chemical Ionisation Mass Spectrometer ; MC = Mist Chamber. * These data are revised
estimates of 1997 measurements following a re-calibration that showed the original data were
overestimated by a factor 3 (Weller et al., 2002).

Species Halley
(January 2005)

Neumayer
February 1997

Neumayer
February 1999

South Pole
December
2003

NO 7.1±0.5 3±5 1.2±2.2 143+128
NO2 2.2±0.7 3.2±3.7
HONO 10.4±0.1 5.3±2.5 -LIF

30±4 -MC
HO2NO2 39±1
HNO3 6.2±0.5 5±2 4.0±2.0 86±78 CIMS

23±5 -MC

p-NO
−

3 1.7±0.3 4±3 4.2±2.4
PAN 11.4±0.4 13.1±7.3 15.5±4.3
MeONO2 7.2±0.6 10±2* 9.5±1.4
EtONO2 1.5±0.2 3±1* 2.3±0.5
1-PrONO2 0.2±0.1 1.1±0.8
2-PrONO2 0.8±0.1 1.2±0.5
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Table 3a. 24-h average NOx production rates calculated from various mechanisms for 18
January 2005 and 28/29 September 2004.

Gas-phase NOx production mechanism
NOx production rate (molecs cm

−3
s
−1

)

mid-January end-September

HONO + hν →OH + NO 6.20E+05 4.80E+04
HNO3 + hν → OH + NO2 7.60E+01 2.57E+00
PAN + hν → CH3C(O)OO + NO2

CH3C(O) + O2 + NO2

6.48E+01 3.24E+01

MeONO2+ hν → CH3O + NO2 7.26E+01 2.01E+01
EtONO2+ hν → C2H5O + NO2 3.41E+01 4.71E+00
HONO + OH → H2O + NO2 4.42E+02 9.88E+01
PAN + M → CH3C(O)OO + NO2 1.22E+02 4.74E+00
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Table 3b. As for Table 3a, but now the rate of NOx emission from the snowpack into the
overlying boundary layer.

NOx production mechanism
NOx emission rate (molecs cm

−2
s
−1

)

mid-January end-September

Snowpack emission of NOx 1.92E+08 +/–50% 1.22 E+07 +/–50%
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Fig. 1. (a) Variation in monthly-averaged inorganic NOy components during the measurement
period. (b) as for (a), but now showing organic components. Data are plotted on the same
scale to allow direct comparison.
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Fig. 2. Monthly-averaged inorganic and organic NOy components during (a) the winter (July)
and (b) the summer (December). Each plot also shows the sum of the organic and inorganic
components to highlight which dominates in the respective seasons.
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Fig. 3. A comparison of NOy measured directly at Neumayer station and integrated NOy

species from Halley. As the NOy measurement is not considered to include particulate ni-
trate, this component is excluded from the Halley integrated NOy. The Neumayer data were
taken from Weller et al. (2002).
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Fig. 4a. Daily surface snow nitrate plotted against the sum (HNO3 + p-NO
−

3 + HONO) and the
sum (PAN + MeONO2).
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Fig. 4b. Daily surface snow nitrate plotted against individual inorganic NOy components.
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Fig. 5. The period in August when surface snow nitrate concentrations increased markedly.
Coincident data shown include HONO, HNO3, p-NO3-. Also shown are snowfall observations
which indicate either whether it was snowing at that time or whether it had snowed during the
previous 3 h.
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Fig. 6. Rate of NOx production from gas phase reactions as 24-h averages during (a) summer
(January) and (b) spring (September). Also shown (by the pink dashed lines) is the contribution
of NOx produced from snowpack photochemistry assuming various boundary layer heights.
Note the log scale.
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