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Abstract. The results of theoretical and numerical study of 1 Introduction

the Hasselmann kinetic equation for deep water waves in

presence of wind input and dissipation are presented. Thdo develop a proper and reliable theory that describes at least
guideline of the study:nonlinear transfer is the dominat- in some basic features the wind-driven sea is an urgent and
ing mechanism of wind-wave evolutioim other words, the ~ challenging task. Very important step in this direction was
most important features of wind-driven sea could be underdone byHasselmani{1962 1963. Hasselmann started with
stood in a framework of conservative Hasselmann equatiorihe seminal work ofPhillips (1969 who established that
while forcing and dissipation determine parameters of a sothe main weakly nonlinear process in the system of gravity
lution of the conservative equation. The conservative Hasselwaves on the sea surface is a four-wave interaction governed
mann equation has a rich family sélf-similar solutiongor by the following resonant conditions

duration-limited and fetch-limited wind-wave growth. These
;{k1+k2=k3+k4

solutions are closely related to classic stationary and ho
w1+ w2 = w3+ wy

mogeneous weak-turbulent Kolmogorov spectra and can b
considered as non-stationary and non-homogeneous generq.jtarting from this pointHasselmanr{1962 1963 derived
izations of these spectra. It is shown that experimental pathe kinetic equation for squared amplitudes of water waves.
rameterizations of wind-wave spectra (e.g. JONSWAP specThis was an important achievement in fledging nonlinear
trum) that imply self-similarity give a solid basis for com- physics as an outstanding event for physical oceanography.
parison with theoretical predictions. In particular, the self- First, Hasselmann claimed that the theory of wind-driven sea
similarity analysis predicts correctly the dependence of meartan be treated as a part of theoretical physics: thus, the so-
wave energy and mean frequency on wave@ggeU1o. This lution can be found by means of well-justified analytical and
Comparison is detailed in the extensive numerical Study Ofnumericai methods. Then he persuaded the Community of
duration-limited grOWth of wind waves. The Study is based physica| oceanographers to use his approach as a core of
on algorithm suggested by Webb (1978) that was first realyave prediction models. Note, that the Hasselmann equa-
ized as an operating code by Resio and Perrie (1989, 1991jion is just a limiting case of the quantum kinetic equation
This code is now updated: the new version is up to one orfor phonons known in condensed matter physics since 1928
der faster than the previous one. The new stable and re”amﬂ\lordheim 1929.
code makes possible to perform massive numerical simula- |p spite of progress in development of new models for
tion of the Hasselmann equation with different models of wave forecasting, this probiem is far from being solved. Nu-
wind input and dissipation. As a result, a strong tendencymerical solution of the Hasselmann equation turned out to
of numerical solutions to self-similar behavior is shown for pe an extremely hard task for available computers. First at-
rather wide range of wave generation and dissipation conditempts to solve this equation numerically were done in the
tions. We found very good quantitative coincidence of theseseyenties Klasselmann and Hasselmar®81): since that
Solutions W|th a.Va.iIable reSU|tS on duration'limited grOWth, time many researches a” around the World Contributed into
as well as with experimental parametrization of fetch-limited development of algorithms and numerical codemgsel-
spectra JONSWAP in terms of wind-wave a@g/ U1o. mann and Hasselmanf981 1985 Webh 1978 Masuda
1980 Komatsu and Masuda 996 Polnikov, 1990 1993
Lavrenoy 2003 Tracy and Resiol1982 Resio and Perrie
Correspondence tdS. |. Badulin 1991; Hashimoto et a).2003. This list is not complete, it
(bsi@wave.sio.rssi.ru) just shows the diversity of approaches to the problem.
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In parallel with numerical approaches, a number of mod-proaches to a direct numerical simulation of dynamical equa-
els was proposed in order to substitute the exact Hasselmartions for water wavesAnnenkov and Shrird2004a Onorato
equation by simpler (first of all, for numerical solution) mod- et al, 2002 Dyachenko et a].2004. In these papers the
els. The Discrete Interaction Approximation (DIA) is the tendency to formation of weak-turbulent Kolmogorov spec-
first and the most known substitute of this kindesselmann  tra was demonstrated for discrete ensembles of deep water
and Hasselmanri985. The main point of this approach is waves: the ensembles contained relatively small number of
replacing the nonlinear integral operat§y; in the kinetic  harmonics. Tanaka(2002 demonstrated the spectral maxi-
equation (collision integral) that describes a continuum ofmum downshift that is the key physical effect of the kinetic
four-wave resonant interactions by a sum of relatively smalltheory of surface waves. Encouraging results in this direc-
number of terms for a particular set of resonant quadrupletdion are obtained recently byékharov et al.2005. in
(1). Recently the Multiple Discrete Interaction Approxima- numerical experiments with regular ensembles of harmonics
tion (MDIA) entered into practice as an extension of DIA, it (512x512 grid in wavevector space) and Bynenkov and
is based on the same idea and on the power of modern conShrira (2009 for chains of resonant harmonics. However,
puter systemsHashimoto et a).2003. Till now a “modus  an extensive verification of the Hasselmann kinetic equation
vivendi” in popular wave prediction models WAMKOmen by comparison with numerical solutions for dynamical equa-
et al, 1995 and SWAN Booij et al, 1999 is the use of DIA  tions is not carried out yet and remains a vital problem for
and MDIA as substitutes for the kinetic equation. the water waves study.

An alternative approach is based on replacing the non-
linear integral operatos,; by a simpler differential opera-
tor. HasselmannHasselmann et al1985 was the first who

Taking into account the difficulties mentioned above, some
researchers claim that the Hasselmann kinetic equation is not
applicable to wind-driven wavefR@smussen and Stiassnie

realized the idea of “differential approximation”. Indepen- o -
. . . . 1999. If this is the case, the vast activity of last decades
dently, Iroshnikov (1986 obtained the differential operator focused on wave prediction models of the third and fourth

as an approximation for the collision integral. In both cases . . . . . SR .
. . generations is futile. We think that this opinion is too radi-
the forth-order differential operators were proposed. Later . .
. cal. Of course, such extremely important physical processes
Zakharov and Pushkarefd999 showed that the compli- . . !
, as wave breaking and freak wave formation remain beyond
cated fourth-order PDE’s offered by Hasselmann and Irosh- oo ; . : .
. T . .. the kinetic equation. However, we believe that their contribu-
nikov can be simplified to the second-order nonlinear diffu- . ~ . :
. ) ; ) e tion into the key effects — evolution of the mean energy and
sion equations without loss of accuracy: the diffusion equa- : .
. . . - . frequency of the spectral peak — is negligible or can be taken
tions describe evolution of average spectra characteristics ) .
L into account by adding some small correction terms to the
(energy, mean frequency) surprisingly well. To reach bet-, .~ ° . .
- ! . kinetic equation. In other words, the wind wave spectrum
ter description for fine features of spectra, several modifica- : o .
) : . near the pronounced spectral maximum is wide enough (in
tions of the simple diffusion model were offere(shkarev frequency and direction) for the kinetic equation to be valid
et al, 2004. In spite of this success, the simple models are q 4 q '
not able to reproduce very important details of experimental The Hasselmann kinetic equation for water waves is not
spectra of wind-driven waves: the strong angular anisotropyan extraordinary object of modern physics. Similar equa-
that decreases with the frequency (angular spreading), thdons are well known in many other areas: in plasma physics,
pronounced peakedness of the spectral distribution etc. As helium superfluidity, in Bos condensation problem etc.
it has been pointed out recently Benoit (2005 “the ac-  All these problems are subjects of the theory of weak turbu-
curacy of currently used approximations (e.g. DIA and dif- lence. The key result of this theory is the exact Kolmogorov-
fusion operators) are quite low” to approximate adequatelyZakharov (KZ) solutions of the stationary kinetic equation.
the collision integrak,,;. Thus, the return to the exact kinetic These solutions describe cascades of motion constants to in-
Hasselmann equation seems inevitable. finitely small or to infinitely large wave scales. The sim-
Coming back to the Hasselmann equation we should stresglest “direct cascade” solution found Bakharov and Filo-
that its derivation is based on a number of rather restrictivenenko (1966 is quite similar to the classical Kolmogorov
hypotheses and approximations. First of all, the phase ranspectrum of incompressible fluid turbulence and describes
domness is suggested, i.e. the coherent structures like soltransport of energy from large to small scales where energy
tons and wave breaking do not play any role in the Hasseldissipates. The opposite tendency, also observed in the wa-
mann equation. Evidently, this condition is not fulfilled in ter wave ensembles, is the “inverse cascade” — the transport
some important physical situations. For example, in wind-of wave action from small to large scales. The correspond-
wave tanks the wave turbulence spectrum is one-dimensionahg Kolmogorov-type solution was found by Zakharov in the
(quasi-one-dimensional) and the Hasselmann kinetic equasame yeardakharoy 1966 but was studied in details for wa-
tion in its classical formulation is not valid. In this case more ter waves fifteen years lateZgkharov and Zaslavskil 982).
sophisticated theory is required, for instance, the approactKatz and Kontorovich1971) showed that solutions of this
offered recently bylansser(2003 and developed success- type appear in a number of problems of weak turbulence (e.g.
fully by Onorato et al(2004 2005 can be used. plasma waves) and found weakly anisotropic Kolmogorov-
The validity of kinetic description of large wave ensem- Zakharov solutionsatz and Kontorovich1974 Katz et al,

bles at long time was verified recently by several different ap-1975.
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Both these basic solutions imply sinks and sources at innot be justified without serious problems. Numerous experi-
finitely large or at infinitely small scales and no genera- mental studies were carried out to determine the wind-wave
tion and dissipation in the domain of cascades, in the sogeneration rates. Actually, these complicated and very ex-
called inertial interval. In this case the nonlinear transferpensive experiments do not provide reliable estimates for the
is the only mechanism of wave field evolution. Existence rates dealing with the effect of the wind. The dispersion of
of two Kolmogorov-type solutions that carry different con- magnitudes for the wind input rates given by different au-
stants of motion in two opposite directions takes place inthors is more than the rates themselves.
two-dimensional turbulence of incompressible fluidgich- The situation with experimental background for the wave
nan 1967). dissipation rates is even worse. Physical mechanisms of dis-

The development of weak turbulent theory proceeded insipation are still not clear, especially for long waves. At low
parallel with the boom in wind-wave forecasting based onwinds, the generation of capillary waves is likely to be the
the Hasselmann equation. Unfortunately, these two streammiajor mechanism of dissipation. For moderate winds cap-
of science interacted quite weakly. In 1983 Kitaigorodskii, illary waves generate micro-breakers that increase dramati-
following the series of works by Zakharov and co-authors cally the dissipation in small wavelengths. The dissipation
(Zakharov and Filonenkdl966 Zakharov and Zaslavskii  of dominant waves becomes noticeable for high winds (more
1982 1983, tried to persuade the oceanographic communitythan 6 ms~1) when the breaking of waves occurs. Quanti-
that the Kolmogorov-type approach is applicable to the wind-tative comparison of different dissipation mechanisms is not
driven sea. He was criticized l§omen et al.(1984), then  done yet, hence, all available formulas for nonlinear dissipa-
by Phillips (1985, and the concept of Kolmogorov-type sce- tion rates can be subject of criticism.
nario was not accepted by majority of oceanographers. Criti- An additional unclear point is the following: how to sep-
cism was based on superficial arguments: the main point waarate wave generation and wave dissipation in the real sea
the difference in energy budgets for fully-developed turbu-experiments? In experiments the wave input is measured
lence in incompressible fluid and for the wind-driven weak for special conditions of initial growth of short waves or
turbulence of surface waves. Indeed, for sea waves wind inby measuring the wave-induced pressure field above waves
put may not be concentrated in small wave numbers (as ibf any length Plant 1982. In the first case the nonlinear
is in 3-D turbulence of incompressible fluid) but is broadly transfer and wave dissipation are assumed to be small. In
distributed in the whole spectral range. However, this cir-the latter, the momentum and energy fluxes due to turbulent
cumstance does not affect significantly the weak turbulencevind are thought to be absorbed completely by wind waves,
theory results and leads only to slow dependence of energdrift currents, turbulence etc. The quantifying the fluxes to
and wave action fluxes on wave scales. In spite of this depenthe various physical processes, certainly, requires sophisti-
dence the weak turbulent theory correctly predicts exponentsated experimental setup or/and (rathed than or) addi-
for wind-driven spectra tails as well as the rate of spectraltional hypotheses. Evidently, in this case the separation of
peak downshift and the rate of energy growth with durationwave growth and the dissipation is extremely difficult prob-
and fetch. lem. In fact, less than 5% of the fluxes contribute into wave

In 1985 Phillips formulated an alternative scenario for the growth and the dissipation is generally measured as a resid-
energy budget. He argued that in the equilibrium range threeaial quantity to provide a stationarity of wind-wave spectra in
major input terms in the Hasselmann equation — nonlineam particular spectral rang&@men et al. 1984). The effect
transfer, wind input, and white-cap dissipation — are of theof nonlinear transfer is ignored completely in this case (e.g.
same order of magnitude and, thus, balance each other. DeEq.15 inPlant 1982 Donelan and Pierson-ji1987 Tolman
initely, our numerical experiments do not support this view- and Chalikoy1996.
point. They show thathe nonlinear transfer term always The key point of the theory we develop in this paper:
surpasses income terrm@r growing wind-waves. This fact Wind-wave growth does not depend on details of wind-wave
validates our approach. We have to stress once more thaeneration and dissipation.We believe that this statement
the validity of the kinetic equation for wind-driven waves is will be the starting point for further progress in our under-
a problem of great concern and requires an extensive studgtanding the wind-driven waves. This statement requires a
of theoretical, experimental and numerical aspects in theifew notes. As far as the weak turbulent approach is relevant,
intimate linkage. Phase-resolving models of wave field pro-the evolution of the wave spectra is governed by the follow-
posed recentlyAnnenkov and Shrira2005 Dyachenko et  ing kinetic equation
al., 2004 Onorato et al. 2002 have given indispensable INL
tools of exploring this problem. —— + Viwr Ve N = Su + Sy (2)

In this paper we apply systematically the weak-turbulent ot
theory to the wind-driven sea. The wind-driven waves areHere Sui is the nonlinear interaction term due to four-wave
generated by Cerenkov-type instability but it is not easy toprocesses and
calculate the growth rate of this instability. The atmospheric, _ S Sy 3)
boundary layer near the sea surface is typically very turbu-"/ — i T 2diss:
lent, therefore, all theoretical models for instability, that is describes non-conservative effects due to generation by
excited by a real air flow, are vulnerable for critics and can-wind-wave interactiors$;,, and dissipatiors,;s;. The indices
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of gradient symbols define the corresponding Fourkgrof Using different versions of the source teisp, we ex-

coordinate £) spaces. tend our analytical results with numerical analysis of the full
The main point is: in a short time (or in a short fetch) duration-limited equation

the collision integralS,; becomes greater than the non- N,

conservative ternf ;. Thus, inthe firstapproximation EQ)(  —— = S,y + Sy (8)

can be reduced up to the form 9t
then solve this equation with different initial conditions:
Ny PR " .
+ Ver Vo Ny = Sy (4) small “white” noise, step-like funct!on of.fr'e.quency,' gnd
ot JONSWAP spectral form. Irrespective of initial conditions

This equation looks similar to the Boltzmann equation for V€ observe that nonlinear transfer tefg starts to dominate

gas dynamics. However, there is a dramatic difference bell & Very short time. Numerical solutions of the full E) (

tween these equations. The Boltzmann equation is completléem_j to self-similar solut|_ons_of the conservat_lvg EB).\(ery.
and self-sustained. It has a unique solution at any initialrap'dly' The corresponding indexes of self-similar solutions

data. Temporal evolution of this solution preserves energy,th"’tl_t ar(fal de]tcermlr;]e'zdhby boundakr)y condltltoEstrEE)lﬁwavet. |
momentum, and total action (number of particles). action flux from high wavenumbers) matc € heoretica

On the contrary, the Hasselmann kinetic Et).dreserves dependencies fairly well. . . .
P " We compare the numerical results with experimental pa-
energy and momentum “formally” onlyPshkarev et al.

2003 2004. Due to presence of the Kolmogorov-type cas- rameterizations of fetch-limited wind wave spectra, first of
cades, the energy and the momentum can “leak’ at higha"’ with the JONSWAP spectrum. Regardless quite differ-

wavenumber region. This region can also work as a source o‘?nt fqrms of the governing Eq_7X _the spec_tra appear to_be
. . surprisingly close to the self-similar solutions for duration-
wave action, energy and momentum. Thus, the conservativ

Eqg. (@) is not “complete”. It describes an “open system” and ﬁmited. growth (_Eq.6). In addition, we find that shapes of
has to be accomplished by a “boundary condition” Supposenume_nc_al goluuons depend very slightly on the indexes of
in the form of wave action flux at high frequencies. The full Se:I'iSS'rﬂngrglyjto reproduce main points of the baper in Intro-
Eq. @) with sufficiently large dissipation term at high fre- ction P P pap

quencies appears to be well-posed. The former constants o '

: . In Sect. 2 we present the “first principles” of weakly non-
motions cease to be constants but the balance equations for . .
) : - . Inear approach for surface gravity waves. We follow strictly
total wave action can be written trivially in the form

the Hamiltonian approach proposed by Zakharov (1968) (see
ANy also Zakharoy 1999 Krasitskii, 1994 for dynamical and
(= F Vkwr Ve Ne) = (S5) (5)  statistical description of water waves.

In Sect. 3 we discuss experimental parameterizations of
where brackets mean the total wave action or the total waveyind-driven waves spectra (first of all, the JONSWAP spec-
forcing (integrated in the whole Fourier space). Similar bal-trum). These parameterizations postulate a universal depen-
ance equations can be written for energy and momentum. dence of spectra on non-dimensional frequengy, and

Our basic statement is: the conservative kinetic Bj. ( monotonic dependence of the spectra magnitudes on the only
with the corresponding boundary conditions (Eg). at parameter —the wave agg,/ Uyinq. This is an implicit con-
|k|—oc is a fairly good approximation to the exact kinetic firmation of our concept of spectral self-similarity. In the
Eq. ). The “effective” boundary condition is defined by the same section we discuss different models for the infiu
integral source termiS¢) and is not defined by the details of and dissipation{y;ss) terms and compare these terms with
this term. the collision integrals,;. For this comparison we use ex-

The analysis for the conservative kinetic E4).i6 incom-  perimentally observed spectra obtained in JONSWAP exper-
parably simpler than the analysis for the full E8).( The iments. Simple calculations show that for all conventional
approximate Eq.4) has a rich family of self-similar solu- models ofS;=S;,+Saiss the nonlinear terns,; is strongly
tions. In this paper we discuss self-similar solutions of thedominating.

“duration-limited” equation Section 4 is devoted to weak-turbulent Kolmogorov spec-

tra (or the Kolmogorov-Zakharov spectra). We show that in
_ (6) general case the spectra are governed by three independent
ot parameters: the fluxes of wave action, energy, and momen-
tum, i.e. are defined by a function of three variables. In the
simplest case this function can be found in the explicit form.
Viwr Ve Nk = Su (7) Quantitative dependence of spectra on fluxes is defined by

fundamental constants, the so-called Kolmogorov constants.

Analytical properties of both classes of solutions are quiteWe finalize the section by qualitative analysis of the effect of
similar. In both cases we have two-parameter families of self-spectrally distributed forcing and dissipation on fluxes and,
similar solutions. Parameters of these solutions are definetience, on spectral forms of stationary solutions of the kinetic
by the flux of wave action gk|— oco. equation.

and of “fetch-limited” equation
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In Sect. 5 we introduce self-similar solutions for duration- 2 Weakly nonlinear approach for water waves — Back-
limited and fetch-limited versions of the Hasselmann kinetic ~ ground and definitions
equation. In proper variables, self-similar spectra satisfy the
stationary homogenous kinetic equation with some sophis2.1 Dynamical equations for water waves
ticated S that, formally, includes forcing and dissipation
and, thus, can arrest the downshift. The structure of the selfEquations for potential wave motion in incompressible in-
similar solutions is rather complicated. They are anisotropicfinitely deep water with a free surface can be written in terms
and are determined, at least, by two free parameters. AIPf velocity potential® (x, z, r) and surface elevatiom(x, 1)
these solutions (excluding special case of swell) correspones follows
to wave action flux from high frequency region. Being in-
tegrated ink-space this flux is a power-like function of time A® =0; —00 <z <n(x,1) 9)
_(fetch) which exponent and prejegponent can be r_elated easﬁ_’? F VOV = _aﬁ 2 =n(x. 1) (10)
ily with parameters of the self-similar solutions. It is easy to d¢ 9z
show that the solutions for special cases of the self-similarityd®
indexes tend to the Kolmogorov-Zakharov stationary spectray;
atr—oo.

1 1
gn+§(vq>)2+§q>§+P=0 z=n(x,1) (11)

We split coordinates to the horizontal wavevectoand the
In Sect. 6 the results of numerical solutions of the ki- vertical coordinatez. Here the Laplace equation (E)
netic equation are presented. We refer to our previous pacomes from the condition of incompressibility, the kine-
pers Pushkarev et 312003 Badulin et al, 2002 in a brief  matical boundary condition (E4.0) describes continuity of
description of numerical approach. Then we analyze the rethe surface elevation, and the dynamical boundary condition
sults of the so-called “academic” numerical experiments on(Eq. 11) corresponds to continuity of pressure across water
duration-limited growth of wind-driven waves. The purpose surface. As shown by Zakharov (1968), Eg)—(11) can be

of the “academic” experiments is to justify theoretical results presented in the Hamiltonian form for two canonically con-
of previous section and to demonstrate the tendency of th@ugated variableg andy
kinetic equation solutions to self-similar behavior. In addi-

tion, these somewhat artificial experiments serve as areferdn _ éH 3¢ sH (12)
ence for experiments with realistic conditions of wind-wave ar — sy’ dr  &p
evolution.

. ] Here the canonical coordinatéx, r) is the surface elevation
A number of numerical experiments was performed for the gng the canonical conjugated coordinate defined as

duration-limited Hasselmann Eg8)(with “realistic” wind

input parameterizationsSayder et al.1981 Stewart 1974 V(x, 1) =d(x,n(x,1),1)

Plant 1982 Hsiao and Shemdji983 Donelan and Pierson-

jr., 1987. Our analysis is based essentially on theoreticalis the velocity potential at the water surface. Symbah

analysis of self-similarity (Sect. 5) and “academic” runs de- Eq. (12) is used for variational (chet) derivative. Further

scribed in Sect. 6. In terms of non-dimensional parameters transformation to the Fourier amplitudes pfand v con-

non-dimensional frequeney/w, (w, is afrequency of spec- serves the Hamiltonian form of Eql%) because of canon-

trum peak) and wave agg/(Uiow,) — we found very good icity of the Fourier transform. Define this transformation as

agreement for all considered parameterizations of wind wavdollows

input. Different criteria of the agreement could be applied for

comparison. First, we analyze the agreement in terms of selfy) (x) = S / n(k) exp(ikx)dk, n(k) = n*(—k);

similarity indexes, then in terms of the shapes of solutions. 27{

All solutions appear to be very close to the shapes of “aca-y(x) = — / ¥ (k) expikx)dk, (k) = ¢*(—k)

demic” solutions and are reasonably close to experimental 2

parameterizations of JONSWAP. While the Hamiltonian and the canonical variabiesn are
Properties of self-similarity of numerical solutions in réal-valued, one can introduce complex normal variables.

terms of fluxes of motion constants are presented in Sect. 71h€ conventional definition of these variables (Zakharov,

This analysis shows that the self-similar solutions can be con1968; Krasitskii, 1994)

sidered as a generalization of the Kolmogorov-Zakharov so-

lutions: the generic feature of the KZ cascading — a rigid de-"®) = T(0)la(k) + a*(=k)l;

. . (13)
pendence of spectral magnitudes on spectral fluxes — keep¥ (k) = —iA(k)[a(k) — a™(—k)]
validity for the non-stationary (inhomogeneous) anisotropic
solutions. kY2 1) 7Y/2
_ _Tk=[iiﬁ : Mh=[ﬂ3]
In Sect. 8 we present an overview of our results and their 2w (k) 2|k|

possible applications for the problem of wind-wave forecast-
ing. (k) = [glk|tanh(|k| H)]"?
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is used in numerous papers on the Hamiltonian weakly nonnot resonant: they corresponddlave harmonicsSlave har-
linear approach. Introduce the alternative definition of themonics are corrections to linear approximation solutions that

normal variables we callmaster modesSlave harmonics are strongly linked
n(k) = 25T () [Ak) + A*(—k)]; with master modes. One can perform a canonical transforma-
) . (14) tion to new variableg (k) in order to cumulate slave harmon-
Y k) = —2riAR)[AK) — A*(—K)] ics in dynamically essential master modes. The general form
or, simpler as of the transformationKrasitskii, 1994 Zakharoy 1999
A(k) = = - @
(k) = Ea(k) ap = bo + / A012b1b25o,1,2dk12

This emphasis on notation may seem somewhat trivial but —|—/ A(()Zl)zbibzsoﬂ_zdklz
different notations can lead to mutual misunderstanding and
grave mistakes. The advantage of normalization (E4). + / Aésl) 1P380+1+20k12
comes from the linear wave theory that gives D
Byp1b2b3d0-1-23dk123 (18)

+f
LIy k)t — 6 2 b
n(x,r = @ ocogkx — w(k)t — 6p), ~|—f30123b1b2b380+1,2,3dk123
o]
+

B pxpx
20k _ By 1b5b30011+2-30k 123
V(x, 1) = al)k(l ) Ao sintkx — w(k)r — 6o) (15) 01z

B o bibsb30s 142+ 3dki23+ O (6%

for the simplest plane wave solution and the simple expres-

sion for the plane wave energy is cumbersome but makes possible to simplify essentially
the dynamic Eq.X7) and the Hamiltonian function (E4.6).

This transformation cancels a number of non-resonant terms
By definition, A2 = E/w is the density of wave actiomhe N Eg. (16) and leads tdhe effective Hamiltonian

definition of normal variables(k) (Eq. 13) is common for
theoretical studies whild (k) (Eq. 14) are useful for practi-

2

H(bk, b)) = [ o by b dk

cal needs such as wave forecasting. 1 (22 non
Starting with linear approximation one can obtain the fol- T2 f To1p" b1b2b38041-2-3dk0123
lowing explicit expression for the Hamilton functidd in
terms of integral power series in normal amplitudék) and to the equation known dse Zakharov equatiofZa-

kharoy, 1968
H=Hyo+H1+H>...

. 0bg oH
where I =k by
* o ob; L (19)
Ho = ) [ woadaodko +§ / T()(l)23bszb35o+1—2—3dk123
H, = — / V(l) (agaraz + c.c)8o_1_2dko12
2 01270 Explicit expressions for the coefficients of the Hamilton
1 function and for canonical transformation (EbB) can be
= ©)]
T3 f Vo12(@0a142 + €.€)d0+1420k012 found in (Krasitskii, 1994 Zakharoy 1999 and in Ap-
1 @ pendix A.
Hy =3 / Toy23(aparazas + C.€)do-1-2-3dko123 In terms of master modes, the classic Stokes solution for

1 @ deep water waves looks trivial
+ 2 / To1agagaiazaz + €.€)8041-2-3dko123 .

1 bstokes = bo €xpi21)é(k — ko);
+ 3 / Tc,(g?’(agafa;a; + €.C)80+1+2+30k0123 (16) (20)
We follow the kernel notations by¥akharov(1999 and the ) Yy .
abbreviations for arguments brasitskii (1994. Notation ~ Herebo=const and the superscript for ker&f is omitted.

namical equations for variablesk) elevation

dak) oM L 2
"o T sar k) a7) 1) = —5 [~ b cos 2 — kov — 6o)

contain a number of “unessential” terms. Both cubic terms 1 ( kol

with kernel V® and quartic terms witt'» and 7® are 272 \ w (ko)

1
Q =wk) + EToooolbol2

2
> b3 cod2(Q2 — kox — o)1 + O (bd)
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that can be rewritten easily in conventional terms of the am-The weak nonlinearity assumption must be completed by hy-
plitude of the first linear harmonic (compare Bép) pothesis on wave field uniformity. Thus, the correlation func-
tion for normal variables containsfunctions (see Eq3
and25). This is true for presentation both in variableg)

\koln3 3 (21)  and in master moddsk):
t— coq2(Q2t — kox — 60)] + O (np)

n(x) = —no co 2t — kox — 6p)

(akya* (k') = nq (k)5 (k — k')
where (bk)b* (K')) = np(Kk)8 (k — k') (26)

Q=oll+ (n°|k|)2/ 2 (22) The same is true for “observableX(k) and its “master”
As we see, the weak nonlinearity leads to weak correction ofcounterpart. Similarly to the dynamical description, the dif-
linear frequencyn (k) in the Stokes solution (Eq81and22) ference between, andn, is small
and to appearance of new slave harmonics. Evidently, mean, _ .| )
values such as mean energy, wave action etc. are correcteeg——— >~ i
in a similar way. "ta
and can be ignored in a humber of cases. However, this is

2.2 Statistical description — the Hasselmann equation correct for the infinite depth case onlgdkharoy 1999. It

o o ) . should be stressed that the kinetic equation is derived for cor-
The Hasselmann kinetic equation is the basic theoreticalg|ation function, k), that is, for the master mode decom-

model for statistical description of gravity surface waves. osition of wave field as it was introduced above. Hereafter
This equation can be obtained within the Hamiltonian ap-\ye omit the subscript fot (k) andN (k).

proach in a consistent way. A few important notes should be  The kinetic equation requires theosure hypothesisn-

made for the correct treatment of this equation. posed on correlation functions. We assume that
The basic assumption of weak nonlinearity (small wave

steepness) <bi...bpby q...by, , >=0 if m#n

m

uw=ak <1 It is easy to check that this assumption is compatible with

is usually considered as a validity condition of the HasseI-Eq' (19). Correlation functions

mann equation for water waves. Sea waves are weakly non-< p; . .. b"b;zk+1 L.bh >
linear, their typical steepness is less thafh Bven in se- _
i . —Il,.‘.,n,nJrl ,,,,, 2n'8(k1+"'+kn—kn+1—‘~-—k2n)
vere storm conditions and much less than critical water wave
steepness can be decomposed by a standard way to a sum of products
of some low-order functions and cumulants. In particular,
wer = 0.4019

Assuming the wave field as a superposition of statistically/1234 = 11712 [8ks — ke3) + 3(ka — ka)] + J1234

independent harmonics (that is true in linear wave approxXiwvhere I 34 is irreducible part of the forth-order cumulant.
mation) one can define thepectral wave action density  The closure hypothesis claims that the irreducible parts of

terms of alternative normal variablesk) (Eq. 14) the next six-order cumulants are plain zeroes and, thus, the
1 imaginary part off1234 can be expressed followirkpkharov
N(k) = E(A(k)A*(k/))Mk —K) (23) (1999 as follows

According to “oceanographic definition”, the spectral wave IM(I1234) = 7w T1234n3na(nz + n1) — nina(nz + ng)l

energy density is . . N .
9y y This hypothesis leads to the Hasselmann kinetic equation that

k . . . 2
E(k) = o )(A(k)A*(k’))S(k K (24) e will write for N (k) = n(k)/(4n?)
8
Ny
Spectral densities (Eq83and24) are known as asymmetric 5 + Vk@kVr Nk = Sut + Sin + Saiss (27)

spectra. Their symmetric counterparts can be introduced as S
Here the collision integral has the form

I(k) = %w(k)[N(k) + N(=k)] Sy = 161'(5g2f |T0123|2

X (N1N2N3 + NoN2N3 — NoN1N2 — NoN1N3)
x8(wo + w1 — w2 — w3)

(n(k)n(k/)) =I1(k)sk + k) (25) x8(k + k1 — ko — k3)dk,dkodk3

and

Then the wave amplitude dispersionis given by evident  Note, that inhomogeneity af (k) is assumed to be weak in
formula Eq. 27), i.e. the wave field uniformity conditions (EG6)

) ) are satisfied “locally” and the collision integral does not de-
ot =) = /‘U(k)N(k)dk = / 1 (k)dk pend explicitly on coordinates. Cumbersome expressions for
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the kernelTp123 can be found in a number of papers (see 2.4 On fine structure aof,;

Hasselmannl962 Zakharoy 1968 Webh 1978 Krasitskii,

1994. Different forms of Tp123 can be used as far as the Estimate Eq.Z9) is very rough and applicable only in vicin-

kernel is unique in the resonant subspace and is arbitrary bdty of the spectral peak for smooth spectral distributions sim-

yond the Subspace_ The collection of formulas is given in"ar to the Pierson—Moskowitz spectrum. Usual spectra have

Appendix A. power-like “tails” for |k|>|k,|. To estimateS,; on such rare
The most important fact we will use furthein the deep ~ face of the spectral peak one has to present the collision inte-

water case the kernef (ko, k1, k2, k3) is a homogeneous gral as

function of order six

, , Sut = Fx — ViNk (31)
T (ck, k1, kk2, kk3)|” = «°| T (k, k1, k2, k3)] (28) where
This gives the well-known re-scaling property of the collision 5 5 5
integral for deep water waves Fi = 161°g / |To123]
Sy =~ g% |k|*2N3 (29) XN1N2N38(k + k1 — ko — k3)
x8(wg + w1 — w2 — w3)dk1dkodk3 (32)

whereN, is a “characteristic” scale of wave action density,
say, its peak or mean value.

. =167152/T 2(N1N2 + N1N3 — NaN:
2.3 Notes on canonical and oceanographer’s definition of ¥ & I Tor2d" (Va2 + N1N3 2N3)
wind wave spectra x8(k + ki1 —ky — k3)

Let us introduce notations and definitions that we use further x8(wk + w1 — wg — w3)dk1dkadks (33)

in this paper. We accept “oceanographer’s” definition of theFrom a physical view-poing is the imaginary part of fre-
total wave energy as follows quency that appears due to four-wave nonlinear interaction or
+oo inverse relaxation time . On the rear faces of the spectral

E = / E(k)dk = / / E(w,0)dwdd = (n%)  (30) peakN,~|k|~*, s>~4. For these powerlike spectra, integrals
k 0 - (Egs. 32 and 33) diverge at small wavenumbers and major

In these terms the total energy has dimengibfi, the en- ~ contribution to these integrals is given by a vicinity of the

ergy spectral densit (k)-[L*] and the frequency spectral Spectral peak. Fdk|>|k |, yx can be estimated as follows

density E (w, §)-{L2T]. We refer to the spectral density of

wave actionN (k,t) as a solution for the kinetic equation yx =~ 32ﬂ5g2/ |Tkkpkkp|2N1N28(0)l — wp)dk10k;

(27). Following Eq. B0) one gets

_ [Ekn)
N_/ o0 dk_/N(k,t)dk

For|k,| < |k| one has (sekavrova 1983

1
Tkk ,kk, = m|kp|2|k|
where the wave action spectral density has dimengi6f]. _
The wave action densities in frequency—angle space are ddhat gives
fined by evident relations obtained from equivalence of the a

. . . 2w 2 \2
corresponding differentials Yk —— <|k,,| E)

- w%c‘ia)
N(w. 0)dwdd = N(k, )|k|d|k|do

dlk
= N(k, t)|k|£dwd9
Jw

One can see tha is a fast growing function ab and

Vi Nie == [k| 52 (34)
Then for the deep water waves one has

23 19
N(@,6) =~ Nk Sut = A(s) k|27 (35)

At the same time the “naive” estimate EQ9 gives

Energy spectral density can be introduced quite similarly ~ WhereéA(s) is a function of the exponentof the spectrum
tail. For a typical case = 4, one has

4
E(w, 0)dwdd = w(k)N (k)dk = ZgizN(a), 0)dwdo YNk ~ |k|72; Su >~ A(s) |k|75/2
Later we refer to frequency one-dimensional spectra as funcThus,yx Ni decays atk|— oo slower thans,,;.
tions of one argument only Actually in the “inertial range” differents,; terms (see
. . Eq. 31) compensate each other. As a result, divergences at
N(w) = N(w,0)dd; E(w)= / E(w, 0)do small wavenumbers are exactly cancelled. The dimension-
-7 -7 less factorA(s) depends strongly om and in the case of



S. I. Badulin et al.: Self-similarity of wind-driven seas 899

isotropic spectra becomes plain zero for the Kolmogorov ex-govern the wind-wave evolution (wind-wave interaction, tur-

ponents=4, s=23/6: bulence and mixing in sea upper layer etc). Empirical de-
23 pendencies proposed by different authors differ from each
A4 = A(E) =0 other: the difference is at least of the same order as the mag-

nitudes themselves. Thus, the problem aribesv to choose
We can make the following conclusion: estimate ) can  a “true” forcing (input and generation) term?
lead to a grave mistake for the inertial range. In this range In the final part of the section the collision integsa) and
S,1— 0, while different parts of,,; are definitely not zeroes. source functions;, andSy;ss are compared. This compari-
In many cases the spectrusk) is narrow near the spec- son does not require the solution of the evolution problem: it
tral peak (has “peakedness”). Then, estimate E9).i6 also  is enough to make “snapshots” of terms for different experi-

not valid and should be replaced by the following one mentally measured spectra. We used JONSWAP spectra for
3/2 11,19/2 n13 the comparison and came to the following basic statement
Sni = A g7 k[N regarding the wind-wave evolutioras compared to wind-

wave generation and dissipation, the nonlinearity dominates
in rather wide range of physical conditions.

As it was pointed out by Plant (1982, p. 1961), the role of
nonlinearity in formation of wind-wave spectra is substan-
tially underestimated.

Here A is a large dimensionless constant$1) and can be
called “enhancing factor”. To calculate the enhancing factor,
we suppose the spectral width to be smédb«w,). Near
the peak one can perform the following replacement

dwo+ w1 — w2 — w3) > _ L .
2 3.1 Experimental approximations for wind-wave spectra.

8((dk)? + (dk1)? — (dk2)? — (dk3)?) JONSWAP spectrum

i
O

Moreover, for the “peaked” spectrum the mean frequencys_imilarity analysis i; vyidely us?d in the wind-wavg stud!es
o differs from the peak frequenay,. Taking into account since 1962, when Kitaigorodskii proposed to use dimension-
both factors, one obtains the following expressionfdrom ality analysis to construct a shorter set of non-dimensional

Eq. 29): arguments of wind-wave spectra. In the simplest case of deep
water waves the dimensional variables are: wave frequency

wp (@ o w, gravity acceleratiog, friction velocityu. (or wind speed

A~ Sw <w_p) at some height), time and fetchx. The wind-wave fre-

quency spectra (Sec2.3) are written in non-dimensional
The typlcal rathCZ)/wp:125 is close to Unity but its ninth variables as follows
power is not a small factor:(@/wp)9%7.45. Our calcu-
lation shows that the enhancing factar can be of order
A~50+100 near the spectral peak, while in the inertial range u3
A—1.

3
.1, 0e” _ (wu*/g, 81/ 8x/(”*)2>

HereF (wu./g. gt/ux, gx/(u*)?) is a non-dimensional fun-
ction of non-dimensional frequency, time and fetch. Such
characteristic scales of the spectra as the frequency of spec-
tral peakw, and the wave height dispersien& >%/2 are as-
sumed to be functions of non-dimensional “external” vari-
In this section we give an overview of different parameteriza-ables only:gt /u. (time) or/andgx /(u*)? (fetch). We should
tions for wind-wave spectra and for generation terms in thestress that almost in all experimental parameterizations of
Hasselmann equation. These parameterizations accumulay@nd-wave spectra the dependencies on “external” parame-
essential features of wind-wave behavior in the most comters containing explicitly time or fetch are replaced by an
pact form and can be adequately related to the “first princi-‘internal” parameter — the spectral peak frequenagy In
ples” presented above. such formulation the wind-wave spectra cease to depend ex-
First we consider JONSWAP parameterizations of wind- Plicitly on “external” time or fetch. As an example let us
wave spectra that will be used further as a basis for comconsider the JONSWAP spectrutigsselmann et al1973
parison of experimental and numerical spectra. In additionthat summarized experimental measurements of wind waves
we pay attention to the self-similarity features of the JON- in the Northern Sea
SWAP parameterization that is the key point of the study. [ 5 ( © >4}

3 Ondominant role of nonlinear interactions in Hassel-
mann equation

Actually, the idea of self-similarity of the wind-wave spec- E(w) = ag%w > exp 2

tra was introduced by experimentalists (¢&tigorodskii @p

1962 long before its theoretical understandimtpSselmann (0 — wﬂ)Z
etal, 1973. x expyiny - exp T o027 (36)
Tp®p

Conventional parameterizations of input and dissipation
terms in the Hasselmann equation are based on rather podihis formula is based on measurements that were carried out
quantitative knowledge of different physical processes thaffor the case of fetch-limited growth of waves. At the same
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time (Eqg.36) does not contain the dependence on fetch ex-Forag we accept the following estimate (Eq. 25 Babanin
plicitly. The JONSWAP spectrum was proposed as a generaland Soloviey1998:
ization of thePierson and Moskowit@l 964 spectrum for the _
case of developing wind-wave field. Parameitgris directly oo = 0.08/(2m) (40)
connected with the wave age=g/(w,Ui0) (Uio~u*/28  The exponent, can vary in rather wide range depending on
is the wind velocity at standard anemometry height 10 m).wind conditions.
Parametera; also depends on the wave age, contrary Emphasize two features of almost all wind wave spectra
to the constant Phillips’ parametefp;~1.17x10°2 and  parameterizations including Eq86) and @7):
fixed characteristic frequeneypy =g/ U2 of the Pierson-
Moskowitz spectrum,g is the wind speed at 20 m height).
Parametery ando, are introduced to describe an impor-
tant feature of the developing wind-wave spectra — their pro-
nounced peakedness. These parameters are assumed to be The dependence of wind-wave spectra on these two ar-
dependent on wave age guments is split.

Formqlly one can consider spectra_l parameterizationsrne JONSWAP parameterization (EG3.and39) yields:
(Eq. 36) irrespective of the method of wind wave measure- )
ments. Additional arguments for unique parameterizationsE(w) _ @08 Fy (ﬂ) Fou (Ulowp>

— There are two non-dimensional arguments: the wave
frequencyw/w, (“internal” argument) and the wave age
(“external” argument);

of fetch- and duration-limited growth data can be found in w5 )
paper byKahma(1981), where correlations of measured pa- and? (U Kee
. 08 10Wp w
rameters with the fetch were analyzed. =—= (—) Fu (—) (41)
A modified version of parameterizations in the same fetch- “p 8 @p
free form was proposed for the same JONSWAP data aftewhere
re-analysis Donelan et al.1985 Battjes et al.1987). The (x — 1)2
modified JONSWAP spectrum is written as Fu(x)=x"4 exp(—x“‘) X exp{ln y - [— 02 ] }
o
P
—4
E(w) = aTng—4w;1 exp| — <ﬂ) is the_ universal fgn_ction of=w/wp. _This functiqn has a
@p freakish form, while its counterpaft.,, is a power-like func-
) tion of the “external” wave age argument.
% exp{ln y - exp[— (“)2_2“)1;) } } 37) Integrating Eq.41) over frequency one has
(O ()]
rr Eror) (U 1°>Ka F 42)
—_— = —_—
that keeps the high frequency tail asymptoties® in full g2 °\¢c, ror

accordance with predictions of weak turbulence theda ( pytting «,=1 into Eq. @2) we get exactly the Toba’s law

kharov and Filonenkol96§. It should be stressed that the (Topg 1997 in terms of significant wave height and mean
spectrum (Eq37) has been proposed with no influence of the \yave periodr; :

theoretical work, basing on experimental facts only.

: _ 3/2
The total energy paramete differs froma in Eq. 36). a5 = B(gus) Y21, (43)
The standard shape parameters are The Toba’s constant
y =33 B = (2ragFeUso/u:)"?/(2)?
o= {a" - 88; ::or = wp; (38) can be easily calculated assumingio~28u..  For
op = V. or o>y «p=0.08/27 (Babanin and Solovie\1998 one has

Here w), is the characteristic frequency, i.e. an “internal” p — 0.095(F,,,)%? = 0.0632
parameter of the wind-wave field. Parameter depends
on “external” parameters. This dependence is expressed
terms of non-dimensional parameter, the wave @geUo,
so does not contain dependence on time and fetch explicitl
Parameterg, o), strictly speaking, depend on “external” pa-
rameters and they are fetch-free (duration-free) functions o
the wave age as welB@banin and Solovievi999. In this
paper we assume parametgraindo, to be constant (see
Eq. 38) when comparing with numerical results.

The dependence of parameter on the inverse wave age
U0/ Cp=w,U10/g is generally fitted by power-like approx-
imation (Young 1999

i}pat is very close to Toba’s valug=0.062 (Tobg 1973.

We must stress again that E@lly describes the typi-
y_:al case of “incomplete” self-similarity, when the spectrum
shape depends on internal self-similar argumesab /w,, in
very complicated way but dependence on key external pa-
rameter — wave age — has essentially asymptotic nature of
a monotonic power-like dependence. As new experimen-
tal data become available, the self-similarity of wind wave
spectra and the universality of spectra parameterizations are
discussed more and more widely (&shanin and Soloviev
1998. We use the idea of self-similarity of wind-wave spec-
tra as a basis for comparison of our numerical results with
ar = ag(Urowp/8) (39) experimental data.
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3.2 Conventional parameterizations of wind-wave inputin Eg. @9) the non-dimensional growth rajg/«w depends
terms;, guadratically on wave frequency. Plant emphasizes that this
behavior is consistent with experimental results at high fre-
A number of parameterizations is proposed for the wave in-quencies, while at the low-frequency cut-off the increment
put terms;,. They are based on the simplest physical modelsdoes not vanish but has a finite magnitude.
and on results of experimental studies. Generally, all param- Then Plant (1982) refers to Stewart's (1974) theoretical
eterizations imply linearity or quasi-linearity of the wave in- model, where the wave generation rate vanishes at low-

put

Sin = B(k)N (k) (44)

Growth rateB (k) is usually related to a resonant mechanism

of surface wave generation, i.e. it takes a form

Bk) = ow(k)F (<)

where small parameter of wave generation

(45)

0 = Pa/Pw

frequency cut-off

g = 00420, (o 1 (50)
pw Cp

Plant(1982 stresses the agreement of Eds0)(and @8) in

the high frequency limit, while near the low-frequency cut-

off their behavior is essentially differents/w in Eq. (50)

grows linearly in(¢ — 1) as Snyder’s formula (E@t7) pre-

dicts.

Hsiao and Shemdin (1983) proposed the following param-

is a ratio of air and water densities. Resonant nature of waveterization based on their own experimental data

generation is associated with the ratio of wind spégdat
some height: (or its substitute friction velocity:,) to the
wave phase speed. The dependencg oh angle is taken
into account in a Cerenkov-like form as follows

Uy
¢ = §—— COSsH
Con

Heres is a coefficient close to 1, angteis related to wind
direction.

(46)

0122 0w(c—1)2 5=085 1<c<74
= Pw

0, otherwise

(51)

The wind speed/;, is taken at 10 m height. Two features
of Egq. (1) are important: 8 vanishes quadratically at the
low-frequency end and the maximal phase speed of amplified
waves is lower than the wind speed. This is consistent with
idea of vanishingly small generation near the spectral peak

Let us describe the commonly used parameterizations ofPlant 1982, or even of a rather strong wave damping in the

wave input that we will refer to later in the paper.
Snyder et al. (1981) proposed the following formula for
the wind wave generation rate

{ 02+03) X0 —1),s=1,
w
0,

HereU,, is the wind speed at 5 m height. The ratés linear
in ¢ near the low-frequency limit of the generation domain

. l<¢<3

B (47)

otherwise

and likely overestimates the generation at peak frequency for

the developing wave field. This formula is obtained for rel-
atively narrow wave frequency bandt <3 while in many

peak vicinity Hasselmann and Hasselmard®85. Equa-
tion (51) is justified for a wider frequency band as compared
to Eq. @7). At the same time, authors accentuate the prob-
lem of high-frequency cut-off for the wind-wave increment

=

Donelan and Pierson-jr. (1987) summarized previous at-
tempts to parameterize the wind wave input and came with
the following formula

Pa 2
0.194—w(c—D4s=1 ¢>1
= IOw i (52)
0, otherwise

wave models these restrictions are completely ignored. FoHere the high-frequency limit is not specified explicitly and

¢— o0 the non-dimensional incremeffw grows linearly.
Plant (1982) proposed stronger growth @fwith fre-

guency
e \2
(0.04+ 0.02)a)< : ) cosd,
Con
B= g w (48)
for — < 20H cosd >0
2n U1 = 2 = % =
0, otherwise
or in terms ofU1o (u2/ U2y~ pa/pw)
2
U
(0.04+ 0.02 2% & (—1") coso,
Pw Cpn
P=1tor —5_ -2 _20Hz cosp=0 49
2nU10 21
0, otherwise

Uy, is taken at one-half of wavelength,=U,, ,». Except
the particular multipliers Eq.5Q) is identical to Hsiao and
Shemdin formula (Ecp1).

Thus, we have in total five different models §y,. These
models differ dramatically from each other. Exc&gtyder
et al.(198]) they predict for short waves growth rates

wUio
8

The same behavior ¢f is predicted by Miles theory. How-
ever, different authors of the experimental formulas offer
quite different values o8, as it is seen in Table 1. The
lowest value (Plant’s and Stewart's models) is 5 times less
than the highest one (Donelan’s model). The distinction near
the low-frequency cut-off is also dramatic: the parameteriza-
tion by Plant(1982 predicts a finite growth ratg at c—1,

2
ﬂ/w—)ﬂmg—a ( > at o> g/Uio (53)
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Table 1. Multipliers in high-frequency asymptotics (E8@) for different parameterizations of wind-wave growth rates.

Model Plant (1982) Stewart (1974) Hsiao and Shemdin (1983) Donelan and Pierson-jr. (1987)
Boo 0.04 0.04 0.087 0.194

formulas bySnyder et al(1981) andStewart(1974 are lin-  not connected directly and dissipation of short waves does
ear in(¢—1) while Donelan and Pierson-j{1987 andHsiao ~ not lead immediately to dissipation of long waves.
and Shemdirf1983 dependencies are quadratia(g+1). Another argument against the white-capping mechanism
Figurel present®(w) for different models plotted in lin-  for the long-wave dissipation is the structure of turbu-
ear and in logarithmic scales and shows how limited ourlence. The wave-induced turbulence is concentrated in a thin
knowledge of8 is. boundary layer beneath the surface. There are no traces of
long vortices that should appear due to dissipation of long
3.3 Wave dissipation terrfy;,s — “white-capping” mecha- waves. In fact, the only visible argument in support of
nism white-capping mechanism for long-wave dissipation is phe-
nomenon of “sea maturity”. It is considered that the spectral
All existing forecasting models (WAM, SWAN) include downshift is arrested when the spectral peak frequengcis
strong dissipation ternf;,s, which is comparable witlf;,  somewhat below the characteristic frequengy=g/ U1o.
and may surpass,;. However, physical mechanisms of  The concept of “mature sea” was offered Bierson and
wave energy dissipation are not studied properly: actuallymoskowitz(1964). Since that time this concept is still a sub-
we know aboutS;;zs much less than abos,,. ject of discussions. Some autho@lgzman 1994, by re-
Certainly dissipation is essentially nonlinear process. Wa-mote sensing of ocean, reported observations of very long
ves shorter than 1m generate trains of gravity-capillarywaves with phase velocities several times higher than wind
forced harmonicsLonguet-Higgins 1995 1996). Due to  speed. However, most authors agree that the maturing of the
these harmonics the energy transfers to capillary wavessea is a real phenomenon that takes place at very high fetches
then the capillary waves dissipate due to viscosity. For theof order 13 wave lengths). For wave lengths-100 m this
“smooth sea” in absence of white-capping this process isjields 1000 km. We must stress that very weak dissipation
the leading mechanism of dissipation. In typical conditions g/»~10-° can provide this effect. Indeed, the origin of this
the sea is “smooth” if the wind spedfio<5+-6 ms™. For  dissipation could be white-capping but existence of this dissi-
stronger winds the generation of gravity-capillary slave har-pation does not mean that this is essential for shorter fetches
monics turns to micro-breaking — the formation of quasi- which are more interesting from the practical view-point.
periodic patterns of breakers with periods much less than e will not discuss in this paper all empirical models for
ones of energy-containing waves (see, for exantgtdyille, Saiss- We will mention two most popular ones only. The first
1996. model, offered byHasselmani(1974 and widely used since
These mechanisms take away the energy from the highthat time is the following:
frequency range of wave spectrum. Does there exist any L, = N2
mechanism of absorb_t|on (_)f energy from the spectr_al peakg . —Cm (g) <_L) N k) (54)
range? From the physical view-point the answer to this ques- o apm

tion is unclear. Usually the mechanism of energy diSSipa'HereC —333x10-5 anda@ » 1 —4.57x10-3 is the theoret-
tion is associated with white-capping. The white-capping; S pM=

appears if the wind velocity is higher thanBms-1 Den ical “Pierson-Moskowitz steepness” and both the mean fre-
! ) ) . S uencyw and the non-dimensional energ
sity of white-capping grows fast with the wind velocity and g Yo 9y
at U1p>15ms! each leading wave has a white cap. Cer-_ . Epi@®

tainly, the white caps present the area of energy dissipation‘?‘ T g2

However, the assumption that this dissipation is also concen- ' L
trated in high wave numbers is very natural. The white Cap,depend on the wave field state. The ratjarpy in Eq. (54)

. - an be estimated easily for conventional parameterizations
persisting at the crest of a long energy-containing wave a :
; . 4 . ._of wind-wave spectra (e.g. JONSWARasselmann et al.
strong wind, can be interpreted in a following way. There is

some nonlinear mechanism that tries to form a wedge—type1973 using their property of self-similarity. While these

singularity on the surface and the white-capping Smootheéaarameterlzanons split the dependence of wave spectra on

9 : : . flnternal and external parameters — the non-dimensional wave
this singularity. If this mechanism takes place on the crest o tequency and the wave age — the mean vaiuasd the non-
limiting Stokes wave a®hillips (1958 assumed, it should d y g

take away the energy from the spectral peak. However, Charc_ilmensmnal energy can be expressed in terms of wave age

acteristic steepness of the leading wave with0.1 is much 8/(Uzowy). One gets (see Eq8I and42)
less than the steepness of limiting Stokes wave@.4). For o Uiowp \*
waves of such small steepness the short and long waves agg, ,, ~ g

(55)
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=0

B(w)/wat ©

wU 10/g

Fig. 1. Dependence of wind-wave growth rate on non-dimensional frequetigy/ ¢ in log- and linear scales given by different experimental
parameterizations (see legends).

and, finally, a fairly simple expression for the dissipation ratetheir consideration is “. .. based on extrapolation ...” of ex-
- perimental parameterizations obtained for developing wind-
Bdiss wU1o wpU10\7*" wave sea at rather weak winds{@ ms~1 in experiments of
=—Cg % (56) S
® g g nyder et al.1981) on the case of mature sea where so far

there are no direct measurements of wave input and dissipa-
ConstanCy is close to the multiplier 33x107°in Eq. G4).  tion. Severe hypotheses underlying the analysikdryen et
Toba’s law for developing sea correspondscge=1. That  al. (1984 were ignored by many followers. Unintentionally,
gives the dissipation rate in Eh&) growing with frequency  this milestone paper became “a misguiding star”: the prob-

asw? similarly to the generation rate 8nyder et al(1987). lem of physical roots is replaced by the problem of tuning of
Note, that the wave input rates in other models of the pre-wave dissipation to fit some superficial non-physical criteria.
vious section grow faster, as>. The result looks paradoxi- This is seen in another model §f;,,, offered byPhillips

cally: the termSy;s; (Eq.54) cannot balance the wave input (1985 and used by some authors in their theoretical con-
in small scales, where the dissipation due to wave breakingtructions (seeHara and Belche2002. The result
must dominate.
In fact, in wave forecasting models the high frequency dis- S, = o” wx Nk (|k|? Ex)? (57)
sipation is introduced in implicit form in order to achieve nu-
merical stability in small scale§¢Iman 1992 or it is intro- (a” is a constant) coincides exactly with a simplistic estimate
duced explicitly to keep correct quasi-stationary asymptoticsof S,; (Eq.29). The form (Eq57) was taken deliberately to
of wave spectra in high-frequencies (éIlglman and Cha- obtain the Zakharov-Filonenko spectrunm* as a solution
likov, 1996. In the latter case the relative contribution of of the balance equation in the universal range. In fact, the
S, Sin andSyiss into the balance becomes a key problem. spectrumw—* is a solution of equatiofs,;=0: to obtain this
Results of numerical experiments with mature wind wavesspectrum there are no reasons to include dissipation terms
(Komen et al. 1989 are considered usually as a justifica- into consideration!
tion of the Hasselmann white-capping mechanistagsel- Some practical reason to include an artifickg};; term
mann 1974. Komen et al(1984) calculated wave inpus;, into the Hasselmann equation does exist. As we mentioned
and collision integralS,; for the Pierson-Moskowitz spec- above, there is a big diversity of wind-input terf)s and the
trum and found the dissipation terfiy;;; as a residual one results of numerical simulation of the Hasselmann equation
to provide a balance in the kinetic equation. All the three depend essentially on the choice®f. It is shown Komen
terms of wind-wave balance appeared to be close to eacbt al, 1984 Pushkarev et gl.2003 that if S;, is taken in
other in magnitudes near the spectral peak. Additionally, itEq. @7) proposed bySnyder et al(1981) or Eq. 62) by
was found that the dissipation can be parameterized surpridf9onelan and Pierson-j(1987 the waves grow too fast as
ingly well by the white-capping formulabé) with slightly compared to experimental data. In this case including
smaller coefficienC . In fact, the authors do not consider can fix the situation. However, this is not a “physical” argu-
these results as a justification of the leading role of white-ment. We will show that numerical simulations with less ag-
capping mechanism in wind-wave evolution. They stress thagressive form of5;, (Eqs.51 and48) by Hsiao and Shemdin
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(1983 or Plant(1982 make possible to obtain good agree- 3.4.2 Nonlinearity vs. wave input for JONSWAP spectra

ment with experiment without using any artificigy; ;.
The similar term-to-term comparison can be performed for

the collision integralS,; calculated for a “reference” spec-
trum JONSWAP. Results are presented in Rgfor the
same spectra as in the previous section and for inverse wave

o . ) agesw,Ui0/g=2 and w,U10/g=1.5. The first point to
The problem of dominating mechanisms of the wind-wave,q gyessed igonlinear transfer dominates at rather early
balance can be easily solved by numerical simulation of thevstages of wind wave evolution

Hasselmann equation. Comparison of terms in the kinetic In fact, this is true near the spectral peak, where

qun:atlltoin dﬁes nr?tt reng]u:(re ‘t‘hﬁ So'ﬁt'?rl O];tth?n?v?ur“;?f prronbt_S”l exceedss;, significantly: approximately 4 times for
em. 1L1s enougn to make Shapshots- ot terms for diterent ,, vy, \/o—2 and 8 times forw,U10/g=15. In order to

spectra. \,/,Vhile t_he ‘snapshot” is “”"}I‘_Je for the *first prin- fix this difference definitely we show,; (middle, right in
ciple term” S,,;, different forms of empirical dependence for Fig. 3) and $;=S:,+Sais, (bottom, right in Fig.3) in the
Sui, Sqiss can be used for the comparison. same scales in Fig. ‘

Note the strong effect of spectra peakednesss,pn for
3.4.1 Comparison of different parameterizations for wavey =1 (the Pierson-Moskowitz spectral form) the difference of
input S ands;, is noticeably less than for higher valuesyafin
perfect agreement with results of Sect. 2, we see that peaked-
Comparison of source terms for different parameterizationshess amplifies the nonlinear transfer dramatically. Underes-
of wave growth rate (Eqs47-52) is given in Fig.2. The  timation of peakedness effect is likely a source of misleading
JONSWAP forms of frequency spectidw) (Donelan etal.  results on secondary role of nonlinear transfer in the kinetic
1985 for wind speed/10=10 ms~! and three differentwave equation (see discussion in Se&:8).
ages are taken for the comparison. To calculate the corre- Inthe inertial interval, comparison of different terms in the
sponding spatial spectrum the simplest form of angular dekinetic equation is not a trivial problem. In this spectral range
pendence was chosen whens,; — 0 andS,;+Sy—0 a term-to-term comparison
can be misleading. To find which term is more important one
has to impose a small perturbation to the stationary solution

3.4 Nonlinearity vs. wave input and dissipation — direct
comparison of the terms

N(lk|)cogo, for —m/2 <0 <m/2

N o) = {0, otherwise N = Ng+ 8N

) _and study the kinetic equation in variational forBa(k and
In fact, the observed wind wave spectra have more Comp“"Zakharov 1988 1998

cated dependence on angle but the above form is sufficient
to fix important problems of wind input parameterizations. 9N () _ Bin (VSN (') + Baiss (VSN (k)
The source terms are calculated as they appear in the kinetic 9z " e

Eq. @7) for wave action (I_eft column in Fig?). In the ngh_t +f R(k. K)o N (K')dk/ (58)
column the spectral density of the input term averaged in an-
gle is shown. where
Figures for three different wave ages show clearly a rather 58, (k)
strong difference of wave input terms. For young waves (topR(k, k') = 51\,/1(k/)

row), all formulas show similar behavior and the agreement

can be achieved by simple tuning of the corresponding multi-is the FEchet derivative of the collision integral. The effect

pliers. Parameterizations Bonelan and Pierson-jf1987; of local (in wavevector space) terms of wave input and dissi-

Plant (1982; Snyder et al.(1981) have close magnitudes pation can be estimated as a characteristic time of exponen-

while Hsiao and Shemdi(1.983 andStewart(1974 param- tial growth (decay) — the relaxation time

eterizations form an alternative group with essentially lower 1

values. Tf=—"7—;
The difference of parameterizations for the wave input be- Pn + _ﬁd_l” . o

comes dramatic for “old” wavess, U1o/g=1 (middle row) F.or.the 'CO||ISIOn mtggralSnl a crude approximation of the

andw,U10/g=0.9 (bottom row). We emphasized this prob- similar time scale gives

lem in Sect. 3.2: the parameterizations have perfectly dif- -1

ferent behavior (constant, linear or quadraticgn-()) near 7,y = </ R(k, k’)dk’) ~ —

the low-frequency cut-off off(w). Both magnitudes and Yk

forms of dependencies are essentially different. The annoyHereyy is introduced by Eq.31). It should be stressed that

ing question of the comparison is: “What parameterizationsthe relaxation timer,; depends essentially on the solution

should be used in the kinetic equation? Which formula isand this dependence is not local in wavevector space. Relax-

true?” ation times were estimated numerically Bgsio and Perrie

Baiss <0



S. I. Badulin et al.: Self-similarity of wind-driven seas 905

-4
15210 g g 0.015
: : — Hsiao
1f- (Y01 RRMRIR
T
o 3
i 3
=~ =
~c (O
[ —
0.5 0.005f v
85 8s
-3
2% 10 : - ! .
: : — Hsiao E\ — Hsiao
BBb - - - Snyder i \\ : - -- Snyder
. i\ : -~ Plant [ : - - Plant
s e sewart || 004 L Sewart
0 © | Donelan . © | Donéan
[ : P :
Q2.5 Rt o) Co ;
o P = P z
B R 0) P :
~— 3 \ _C | |‘ \ » ‘
015 »0.02 I; :
| LT
0.5 -+ L R
: Q! s
n Tt
8.5 85 1 15 2
ww
—3
4x 10 . : g .
: : — Hsiao : : — Hsiao
BBb --- Snyder | : : - - - Snyder
| | | o Rt | |- Ptant
b Stewar [ Q04 - Stewart )
: : - Donelan | | . Donelan
225 9
0] i 2
8 )
2 )
= gc
9 o002f
1.‘”
0.5

Fig. 2. Wave input functions as they appear in the right-hand side of the kinetic equation for wave action (left column) and the averaged
one in angle (right column) for different wave ages and different parameterizations of wind input (shown in leggpds) =2 — top,
Uiowp/g=1— centerlU1gwp/g=0.9 — bottom) as functions of non-dimensional wave frequenay,. The JONSWAP spectrum with the
standard set of parameters is taken for wind sgegg=10 ms—1(see Sect. 3.1).
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Fig. 3. Upper row — instantaneous JONSWAP spectra, middle row — wave inputSigrisy Donelan et al. (1987), bottom row — collision

integral S,,; as they appear in the kinetic E®) for down-wind direction. Wind speetl;p=10 ms—1, angular dependence of JONSWAP
spectra is cds). Left column shows results for inverse wave ddgwp/g=2 and right — forUpwp,/g=1.5. Results for three values of
peakedness parametee1, 3.3, 5 are shown by different curves (dash-dot, solid, dashed, correspondingly). The abscise is non-dimensional
wave frequency. Note, that the term scaling is different for the columns: the spectrum peak is approximately 10 times, the inputterm is 2 times
and the collision integral is approximately 4 times higher for “older” wavégy®,/g=1.5 (right column). Collision integral amplitudes

grow faster than the wave input term and exceed the term by factor 8 for the sharp&3UUONSWAP spectrum dfyowp/g=1.5.

(1991, see Figs. 18 and 19). Their calculation gives ratherspeedUig. At the same time, the dissipation terfp;;
short times in a range #6-10%s. We do not present similar  (Eq.56) grows faster than the nonlinear transfer term
estimates in this paper. The dominating rolegf(shortz,;)

will be demonstrated as an inherent property of the resultingSaiss ~ (@pU10/g

solutions — their tendency to self-similar behavior. ) o
As we mentioned, the JONSWAP spectrum have self-and' formally, can dominate for sufficiently old waves. How-
y ever, this term appears to be small for reasonable wave ages

g/(wpU10)<1.5 because of small multiplier in Ecb4). The
effect of wave spectra saturation due to the white-capping
dissipation has been observed in numerical experimots (
matsu and Masuda996.

)3Ka -9

similarity features. Together with re-scaling property of the
collision integral (Eq29) it gives a simple dependence $f
on wave age (see E§7)

Su ~ (wpU10/8)>® (59)
3.4.3 Nonlinearity of “natural” spectra at early stages of
Fork,=1 (Toba's law) Eq59gives 3, — 8=-5, i.e. a very wave field evolution
rapid growth ofS,,; with spectrum downshift. Figur (bot-
tom row) follows this scaling fairly well. As we will show below, the JONSWAP parameterization ap-

The input termS;,=8(k)N (k) does not allow the self- pears to be close to our numerical solutions for the kinetic
similar re-scaling. For JONSWAP spectrum this term growsequation. At the same time, this parameterization and the
slower thans,; because the growth raf@(k) sharply de- “natural” spectra obtained in our numerical experiments are
creases when the wave phase speed is tending to the wimibt identical. The minor difference of the spectra are of
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no practical importance but this difference can affect signifi- x 10*
cantly the magnitudes of the kinetic equation terms. 10

Figure 5 shows “snapshots” of the collision integrsy;
and the input terns;, for the solutions of kinetic Eq.2) : :
for the same values of wave ages as in Big.The details g f.............[..| PR RO
of numerical approach will be given below. The point to be s : :
stressed here is that small difference in spectral forms can _
affect significantly our quantitative results. First, the peak .
values of both JONSWAP and numerical solutions appear to 0
be very close to each other for the standard peakedness pa-
rametery=3.3. The minor difference is in the wave age def- ] :
inition: the peak of JONSWAP distribution is shifted slightly =5 o Ao D
to lower frequencies as compared to the paramegewhile : :
for “natural” spectraw, corresponds exactly to the spectral
peak. This tiny mismatch leads to 280% excess in peak 0.5
values of the input terns;,, and 50% of growth ofS,; as
compared to the JONSWAP spectra.

As a summary of the section two points should be stressedrig. 4. Comparison of nonlinear transfer ters; (hard line) and
First, the collision integral in the kinetic equation starts to the term of forcingS ;=S;,, + Suss (dotted line) in the kinetic
dominate at very early stages of wind wave evolution. WeEq. (2) for the case of left panel Fi® (Uowp/g=2) and differ-
demonstrated this fact for the JONSWAP parameterization oent peakedness (see Facaption).
wave spectra. Second, we showed that details of spectral dis-
tributions can affect the magnitude of the collision integral
significantly. Thus, the question on contribution of differ- ©f weak turbulence. The Kolmogorov spectra are exact solu-
ent terms of the kinetic equation goes hand in hand with thdions of stationary homogenous kinetic equation
question how these terms evolve within the kinetic equation.Snl -0 (60)

The comparison of “snapshots” of the terms for some “repre-
sentative” parameterizations of wave spectra can be mislead3asic features of the Kolmogorov solutions are reproduced
ing as it was the case for the Pierson-Moskowitz spectrumin @ number of numerical and experimental studies. The best
(Komen et al, 1984 Sect.3.3). known result of the theory — the exponent4) for high-
frequency tail of wind-wave spectra — is in perfect agree-
ment with available experimental data. The same spectrum is
4 Weak-turbulent Kolmogorov’s spectra systematically observed in numerical experiments. However,
the majority of wind-wave community does not associate so
We presented preliminary arguments in favor of dominantfar this spectrum with the weak-turbulent theory. Meanwhile,
role of nonlinear transfer in the Hasselmann equation. Thighis is the simplest weak-turbulent Kolmogorov spectrum.
statement implies applicability of basic results of weak tur- This spectrum was found analytically Bakharov and Filo-
bulence theory for the case of wind-driven waves. The weaknenko (1966, in 1972 this spectrum was observed experi-
turbulence theory describes the transport of motion con-mentally byToba(1973. Since that time the~*-spectrum
stants: energy, momentum and wave action along the speavas observed many times in the ocean, in laboratory and in
trum. So far many members of the wind-wave community numerical experiments. This spectrum describes the direct
believe in “local balance” of energy ik-space. According cascade of energy that migrates from small to high wavenum-
to this “local mentality”, instability that causes exponential bers.
growth of wave in certain spectral range has to be arrested by An opposite tendency — migration of wave action from in-
nonlinear dissipative mechanism that takes place in the samfinitely small to large scales is presented by the inverse cas-
spectral range. This concept is reasonable if nonlinear eneade solution that gives close exponeny3for frequency
ergy transport is a mechanism of secondary importance andpectra. This solution was found by Zakhard9§6 in
its role is just to fix some mismatch between linear instability sixties, in seventieth it was studied as a particular case of
and nonlinear dissipation. However, if nonlinear interactionsnon-equilibrium stationary distributions of particles (quasi-
dominate such view-point is not tenable yet. Nonlinear inter-particles) in a number of physical problent&afz and Kon-
action leads to migration of energy along different spectraltorovich, 1971, 1974 Katz et al, 1975. Just in eighties
ranges. Now, the energy balance is nonlocal: the energy bethe inverse cascade solution has been related to the problem
ing generated in one spectral range (say,3,) can be ab-  of wind-wave spectra evolutiorZz@kharov and Zaslavskii
sorbed by some dissipative mechanisms (at Bw, or s0). 1982 Zakharov and Zaslavsky 983, in particular, to the
The energy, momentum and wave-action transfer along thevell-known phenomenon of wave spectra downshift.
spectrum is described by the Kolmogorov (or Kolmogorov- In this section we give basic results of the theory of the
Zakharov) spectra, which play the central role in the theoryKolmogorov-Zakharov cascade solutions.
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Fig. 5. The same as in Fig.for spectra resulting from evolution within the Hasselmann equation. The wave inpusigligiven twice:
in middle (solid line) and in bottom row (dashed) for direct comparison with magnitudes of the collision irfiggral

4.1 Definitions of constants of motion and their fluxes IM(w, 1) — K (. 1)

at ow
Let us consider basic properties of conservative homogewhere the corresponding fluxes of wave action, energy and
neous kinetic equation momentum production are defined as follows
w p 3
NED _ g, 6) o= [ [ Zrsiodeds (62)
ot w J-m 8§
i.e. EQ. €7) in absence of wind forcing, dissipation and spa- @ (T 2t
tial inhomogeneity. The following quantities are constants of Plw) =~ /,,), /—n’ ? () od (63)
motion for Eq. 61) © [T 9,5
K. (w) = — / / —5 Su (k) cosfdadd (64)
N = /N(k, ndk = f N(w, t)dw o J-mw 8
We assume that momentubs and its fluxK have only one
E = /a)(k)N(k, t)dk = /a)N(a),t)da) component aligned along the x-axis. Positive signatur@ of
corresponds to wave action flux to small wavenumbers, while
M — /kN(k, £)dk = /kN(a), £)de positive fluxes of energy and momentunk, are directed
to high wavenumbers.

Let us formulate this statement more accurately. Actually, . It IS useful to pr_esent the "flux form” of the kinetic equa-
tion in polar coordinates as

conservation of motion constants means that the following

i i i i IN o,t
differential relations are valid (w,0,1) _ LA (65)
IN(w, 1) 90w, 1) dt
ar = EP where
IE(w,t)  dP(w,1) 192 1 92

L= 4+ ="
at ow 20w w2362



S. I. Badulin et al.: Self-similarity of wind-driven seas 909

and the auxiliary functiom can be found as aresult of action 4.2.2 Constant flux Kolmogorov’s solutions

of nonlinear integral operator Q¥ (w, )
Stationary kinetic Eq.80) has a vast family of exact so-
A@,0) = [ F(w, 01,02, 03,0 = 01,0 = 02,0 — 63) lutions completely different from the Rayleigh-Jeans spec-
x N (w1, 61) N (w2, 62) N (w3, 63) (66)  trum (Eq.69). These solutions were found by Zakharov with
co-authorsZakharov and Filonenkd 966 Zakharoy 1966
X Uy dez0r3dd1 00,003 Zakharov and Zaslavskiil982. In these articles authors
The explicit expression af is given in Appendix B. An ad-  used the so-called Zakharov conformal mapping to construct
ditional auxiliary function can be introduced in a similar way the solutions (see aldéatz and Kontorovich1971, Katz et
for the “flux form” of the kinetic Eq. 2) rewritten for energy  al., 1976. For the same purpose much more simple tech-
spectral density niqgue was offered inZakharov 1999. The stationary ki-

B(@,8) = [ oF (@, w1, g, w3, 6 — 01,0 — 02,0 — 63) netic Eq. 60) is equivalent to
% N (w1, 01)N (w2, 62) N (w3, 03)dw1 dwpdasdd1 dood6 LA=0

For angular mean values one gets (see Eg65) that can by integrated as follow

K gcoso
1 (% Alw, 0) = P22 70
Alw) = 2—/ Aw, 6)do (@.0) = 0@+ P+2—=7 (70)
JT . . -
1 0 (67) Here P and K are constants of integration ardis integral
B(w) = —/ B(w, 8) coshdd operator given by Eq.66). Using homogeneity of function
2 0 .
F in Eq.(66)
Useful relation between energy, wave action and momentum 12 _4 12
fluxes can be obtained for spectral fluxes (E%64) Few, ewy, ewp, ews) = e°F (@, w1, wp, wg) ~ g~ w(71)
9A one can define the most general stationary Kolmogorov-type
Q) = = solution of the kinetic Eq.60)
0A 4/3Pl/3 K
P@) = A—wot 68 _§TPTE @@ 58K
(@) W ©8)  N@.o)="—5—R(=—F. 2> 0) (72)
Ko(w) =2 (23 _ w‘;_B> with the energy spectrum
8 w

4/3p1/3 K
g—R(ﬂ’ 2g_’ 0)
w? P’ wP

Finding solutions for the Hasselmann kinetic equation is theLet us study the most important special cases. Homogeneous

subject of the theory of weak turbulence. The main point ofSOIUtionS with vanis_,hing fluxes of wave _action and momen-
this theory is investigation of the stationary EGO) tgm (©=0. k=0) give the well known direct cascade solu-

tion (Zakharov and Filonenkd 966
4.2.1 Local balance solutions ¢43p1/3

E(,0) =Cp~—
Thermodynamic spectra correspond to local in wavevector @ ) ]
(frequency) space balance. In this case nonlinear interactionsere C,=R(0, 0, 0) is the Kolmogorov constant (the first
vanish for each quartet of interacting waves. In other words Kolmogorov constant). Scaling invariance of the problem al-

4.2 Kolmogorov’s solutions E(w,0) =

(73)

amplitudes of an interacting quartet lows for constructing other power-like solutions correspond-
ing to constant fluxes of wave action and momentum. Sup-
NoN1N2 + NoN1N3 — NoN2N3 — N1N2N3 =0 pose N (w, 6) is an isotropic power-like function of fre-
are balanced at every point of resonant surface quency
{k0+kl:k2~|—k3 N(w) ~ o™
w0 + w1 = w2 + w3 From Eqg. 70) and homogeneity property (Edl) one gets

This balance does not depend on interaction kernels that rez () = £(x)w@53

sults in thermodynamic solution ) . ]
Here f(x) is a function of one variable to be calculated nu-

(69) merically. In fact, f (x) can be expressed througt(s) (see
Wi + 1 and Geogjaev and Zakharov, 26aind Eq.35). For the di-

where temperatur@ and . are arbitrary parameters. This rect cascadeK#0, 0=0, K=0)

Rayleigh-Jeans solution a_ppears_in a great numbgr of physiA(w) ~ const x =5 3= f(5) (74)

cal problems. However, this solution is completely irrelevant p

to the problems of wind-driven sea because the correspond- 1 Geogjaev, V. V. and Zakharov, V. E.: Hasselmann equation

ing energy spectrum does not decaykdt> oco. revisited, in preparation, 2005.

Nk) =
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The inverse cascade solutio@#0) with a constant wave
action flux gives Zakharov and Zaslavskii 982

Aw)~w;  x=14/3  CJ= f(14/3) (75)
and
4/3 H1/3
Y
N@,0) = Cg>—7=— 76
4/30)1/3
E@.0) = Cy*— (77)

Quite similarly for constant momentum fluK é40) one gets

A, 0) ~w Y, x=16/3; C3 = f(16/3)
5/3g1/3
8
N(@,6) = Cn™—55—h(0) (78)
g5/3K1/3
E@,0) = Cn=—gzz—h(®)

From the symmetry consideration one has
h(0) = —h(r —0)

i.e. the solution (Eq78) is not positive at all angles. Thus,
general solution (Eq§.0and72) is unlikely to be realized in
a whole range ofw, 6)-plane. An anisotropic generalization
of the solution can be found assumigg=0 and momentum
flux to be small Katz and Kontorovich1974 Katz et al,
1976

g¥3p13

E(.0) = *——(Cp+ CngK cosd/(@P) +...) (79)

C,, is known as the second Kolmogorov constant. E§) (
predicts isotropy of the Kolmogorov spectrumaat>co. In

fact, the observed wind wave spectra are anisotropic for arQ(w) =
bitrary large frequencies. A possible explanation is that in

real situations the momentum fluk is a growing function
of frequency.

There is an additional restriction on power-like solutions.

Convergence of integrals in expression (B66) for A re-
quires (Geogjaev and Zakharov, 20D5)

5/2 < x < 19/4

Thus, Egs. 13) and (78) are just formal solutions that can
be valid in a finite domain onw, 6)-plane. This is a case
of the direct cascade solution (E£3) that is an analogue of
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4.3 Stationary solutions for the kinetic equation in presence
of sources and sinks

In this section we discuss briefly stationary homogenous so-
lutions of the Hasselmann equation in presence of forcing
and dissipation, more details for the consideration can be
found in Zakharoy 2004. For simplicity we study the
isotropic case only. In this case the Hasselmann equation
is written in the form

Sni + B(@)N =0 (82)
or in terms of auxiliary functiom

1d%A

3 42 + B(w)N =0 (83)

Integrating Eq. 83) overw one gets evident formulas
o
/ B(w) N(w)dw =0
—00

o

/ wB(w) N(w)dw =0 (84)

—0oQ
Conditions (Eq.84) are satisfied only if3(w) changes the
sign at least twice. If3(w) is negative for small and high
frequencies, i.e. there are both low- and high-frequency dis-
sipation, the energy spectrum(w), fluxes of wave action
and energy take the forms presented in BigThe distribu-
tions for stationary solutions can be found from numerical
integration of Eq. 82) or analysed qualitatively starting with
a spectrum and using evident identities (E§).. One gets

- /w B(&)N (w)di>
0

Alw) = / ! 0(@)dé (85)
0

P(w) = A(w) — w0 (w)

The qualitative analysis is illustrated by F&basing on our
numerical experiments where results Kgmatsu and Ma-
suda(1996 have been reproduced. The Hasselmann white-
capping dissipation arrested the spectrum downshift in these
experiments for rather long time (approximately 100 h for the
sketch discussed). This is the well-known effect of satura-

the classical Kolmogorov spectrum of turbulence in incom- fion (maturity) of wind-wave spectra studied numerically by

pressible fluid. The energy source is assumed at some smdfiomen et al(1984. Here we treat it as a balance of spec-
but finite wave frequencies and the energy dissipates in higﬁr&“ fluxes due to nonlinear transfer and local (in wave scales)

frequency domain.

forcing. Both direct and inverse cascading coexist in the pre-

In our further consideration the spatial presentation of Kol- S€nted example.

mogorov’s solutions will be useful for the direct cascade of

energy
1/3 1/3

and for the inverse cascade of wave action
Q1/3 Ql/3

The saturated spectrum has no pronounced peakedness in

contrast to developing wave case. Nonlinear transfer fgym

is balanced by source function (Figb) but keeps “weakly
turbulent” high-frequency tailb—* perfectly well (Fig.6a).
Limits of positive ratesg(w) are not easy to relate with
generic properties of the stationary problem (B§). due to
weak non-stationarity and anisotropy of the numerical exam-
ple, this is why maxima of fluxes of wave actigh(Fig. 6¢)

and energy’ (Fig. 6d) P are slightly upper-shifted relatively
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Fig. 6. (a)— Energy spectrun (w); (b) — nonlinear transfes,,; (w)

and forcing terms ¢ (w); (c) — wave action fluxQ; (d) — energy flux

P; (e)— auxiliary functionA () for quasi-stationary solution of the

kinetic equation witiKomatsu and Masud@d 996 setup: wave in-

put (Eq.47) by Snyder et al(1981) at Us=20 ms~1, Hasselmann’s

white-capping dissipation (E§4), time 100 h. Domains of positive

B, O and P are shaded. Vertical straight lines are given for maxi-

mal and zero wave action to show that the numerical solution obey

identities for spectral fluxes (Eq88 and85). . 270
T=25.6 hrs; t =122065; w = 0.40

Fig. 7. Form of the energy specti&(w, ) and its directional dis-

to B(w) zero-crossing. All other relations between fluxes tribution (bottom) for an “artificial” source function. The solution

and auxiliary functiond (w) are in excellent agreement with is tending to Kolmogorov’s asymptotics, i.e. to the inverse cascade
Eq. @5 in low frequencies and to the direct cascade in high frequencies.

An additional example of “flux nature” of the Hassel-
mann equation solutions in presence of forcing is presented
in Fig. 7. The structure of the solution is especially simple 5  Self-similar solutions for kinetic equation
as far as domains of dissipation and input are well-separated.
The dissipation takes place in the region of small frequenciedn this section we present new theoretical results on wind-
w<wo and high frequencie®>w», the forcing is concen- wave spectra evolution based on the theory of weak turbu-
trated in a narrow range near-wi, andwgK w1 Kwz. Then lence. These results can be considered as a generalization
in the rangavp<w<w1 one gets a pure inverse cascade thatof the Kolmogorov-Zakharov constant flux solutions for the
describes the spectruam 13, while in the rangey; >w>wy case of non-stationary (non-homogeneous) isotropic wind-
—a pure direct cascadé,~w 4. This situation is illustrated wave spectra. The exponents of wind-wave spectra are usu-
by Fig. 7 where the results of a numerical experiment areally discussed as a justification of physical relevance of the
presented. Note that despite of strong anisotropy of input thékolmogorov spectra approach. At high frequency tails, the
numerical solution reflects the robust features of nonlineamwind wave spectra keep exponent4) that corresponds to
transfer in wind-wave spectra fairly well. In more realistic the direct cascade solution (EG3). At the same time, a
situation (e.g. Fig6), when the wave forcing occupies a wide part of wind wave community considers the KZ solutions
frequency domain the direct and the inverse cascades coexs physically irrelevant because two key features of wind-
ist and their discrimination does not manifest itself in suchwave spectra — the pronounced peakedness and the strong
pronounced form. anisotropy — are, evidently, beyond the stationary isotropic
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power-like Kolmogorov-Zakharov solutions. In fact, the The non-dimensional energy and frequency become
Kolmogorov-Zakharov exponents remain extremely robust

for wind-wave spectra strongly localized in wave scales and ¢ = / Vien(c)die = kjo? = g%02/U%,

directions. Figur&Z mentioned above illustrates an “unreal-

istic” case when relatively strong generation is localized in J ren(ec)die — B/

a narrow frequency range to leave more space for cascading [ Vrn(x)di N 0

regimes at lower and higher frequencies, i.e. . . . .
g g g The non-dimensional cyclic frequency of spectral peak is the

Constwr <w<wy; 61<0 <6 well known inverse wave age

plw,0) = { 0, otherwise
wy = wp/wo = wpU10/g
This forcing, as well as the resulting spectrum, is strongly o . ]
anisotropic. In spite of this fact, this spectrum keeps theTNe Kinetic equation for water waves in homogeneous ocean
Kolmogorov-Zakharov exponents in a rather wide range of(Ed. 2) can be rewritten in non-dimensional form as follows
angles and frequencies. an Vn N ~ _

In low frequencies (relatively to generation domain) the 7 + W = Snt + Sin + Sdiss (87)
solution is approximated by power-like dependeacé?/3
corresponding to the inverse cascade regime. For high frelt is of primary importance for further analysis that collision
quencies the solution tends to the law?, i.e. to the direct  integralS,; is homogeneous in wavenumber (see ).as
cascade asymptotics. Thus, both features of real wind-waviell as the terms in left-hand side of E@7]. It gives an
spectra and of basic weak turbulence models are coexistinifiea to construct self-similar solutions for stationary (fetch-
within this numerical solution. limited) and homogeneous (duration-limited) cases. Unfor-

The key point of our theoretical analysis $saling in-  tunately, termss;, andSy;ss are not homogeneous functions
variance (Eq.28) of the conservative kinetic Ec)(for the  of x. Thus, the analysis of self-similar solutions of the con-
case of deep water waves. This invariance allows to conservative kinetic Eq4) can give physically relevant results if
structa family of anisotropic self-similar solutions for non- external forcing terms are small. Look for such solutions as-
stationary and non-homogeneokisetic equation. The sta- suming formally the smallness of generation and dissipation
tionary Kolmogorov-Zakharov solutions can be consideredterms.
as special solutions of the family at>oco. Thus, the KZ so- o _ o
lutions can be treated not only as mathematical objects but a3-2  Self-similar solutions for duration-limited wave growth
physically relevant states of the wave field at infinitely long

time f— co. Consider the waves generated in homogeneous sea by sta-

tionary wind from an initial state. The so-called duration

5.1 The kinetic equation for deep water waves — homo-limited case gives the following kinetic equation
geneity of collision integral and routes to self-similarity 4, _ -

o= =Su+Sy

For deep water case there is no specific scaling and non-ar

dimensional variables can be introduced in arbitrary way ~ Searching for the solutions in the form

t =1/wg, x=x/ko, k=kok; n(§77)=aTaUﬁ(E,T) (88)
o=wQ, Q=K wo=gk whereé=bkt#, one gets after simple algebra
Non-dimensional wave action takes a form aU

g4 r¥+ﬂ$V§Uﬂ(§,f)+aUﬂ(§,T)=
N(k) = 4ﬁ(lc) = —gﬁ(’c) a? ~ Sr(&. 7
wokl 3 mr2a+l—l9ﬁ/2Snl[Uﬂ & O]+ # (89)
Correspondingl
P gy Condition

8% g
Nw.0) =iy E.6) = 5w 66 ,_19-2

wq g 4

Below we omit tilde in non-dimensional wave action nota- leaves two terms only in Eq89) that contain dependence on
tions. We shall relate characteristic scalgswo to the only  time explicitly: the term with time derivative and the term
“external” parameter of wave generation — wind spBeglat of external forcingS;. For a>1 the latter term vanishes
standard heightu(, — friction velocity can be used as well). asymptotically with time (we detail this point below), thus,
Thus, unless otherwise is specified, we define characteristione can look for approximate stationary solutions of the ki-
wavenumber and wave frequency scales as follows netic Eqg. B9) in variables(&, 7). After re-scaling

ko = g/ U%, wo = g/U10 a=pt* (90)
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the stationary “shape” functiot/g (§) obeys the following

integro-differential equation 3 |

10
[aUp + BEV:Ug] = ﬂ/d§1d§2d§3|TE€1§2§3|2

x8(E+&1—8—&3)
x 8(V1El+ V1€l — Vg2l — VIEsD (91)

x [Up(EDUp(E2)Up(E3) + Ug(§)Up(Ex)Up(£3)
— Up(§)Ug(E)Up(E2) — Up(§)Up(§1)Up(€3)]

Total amount of solutions for Eq9() is not known. For- :
mally we have a two-parametric family of self-similar solu- 10°}F
tions with independent parametersanda. The parameter

a can be related to initial conditions while paramedeis
specified by conditions of consistency with higher approxi-

0

E(w,0) a o

mations in a formally small parameter of wave pumping
(see Eq45). 10°H 7.
Let the total wave actiolV is a power-like function of time
Nyt ~ f n(&, v)dk ~ b4 SRE
@
Using the self-similar form ofi(¢, ) one gets for the total %
wave action growth rate 357
L
re=a—28=118 —2)/4 = (1la — 4)/19 (92) -
Solutions of this type make sense if “perturbation” term deal- ol
ing with the effect of generation/dissipation in E§9) van-
ishes with time, i.e. L : — .
10° 10t
a>1; re > 7/19 (93) w

and solutions do not grow infinitely in the frequency range Fig. 8. Numerical solutions for the swell case. Both directional (top
of wave generation. More accurate estimates of the effect opanel) and one-dimensional (bottom —averaged in direction) spectra
forcing, and, hence, of validity of our approximation can be demonstrate features of self-similarity. Time in hours is shown in
carried out for particular cases of wave growth. legends.

5.2.1 Swell —“purely nonlinear” evolution of wave field

The special case of wave swell when generation and dissipanitial conditions. Fortunately, this is not our case. Below

tion are absent gives (see EP) we present numerous justifications of self-similarity features
i _ . _ for variety of initial data and for different conditions of wave

re=0 p=2/11, o =4/11 generation and dissipation. Here we give just the first illus-

The solution tration as a motivation for further study.

— a1y bier2/11 Figure 8 shows the evolution of step-like initial spectrum
n=ar 2/11(bkT=) with no dissipation or generation. The initial state corre-
describes downshift of spectral peak as sponds to rather steep waves£0.225) and mean wave-

length 5m. After 64h the dominant waves become ap-
proximately 3 times longer and their steepness 5 times less.
The numerical solution for the kinetic equation shows self-
similarity features perfectly well (Fig8). The peak fre-
E;pp ~ 7 Y1 guencyw, and “shape functionUz,11 can be extracted eas-
ily to justify these features (Fig®). Top Fig.9 shows that

Note, that the total wave action is real constant of motion inthe solution peak is travelling very close to the theoretical
this case while the wave energy leaks to small scales as it waself-similar dependence
described in previous section.

We cannot guarantee that the corresponding self-similar
solutions appear as a result of evolution from an arbitrary(§ )

—2/11
lkpl ~ 72/

The total energy decreases as

1/2 1/11 1/2.1/11
12~ w,ty) 7~ [k, Y1,/ = const
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the self-similar solutions are nothing but approximate ones.
In fact, we havea large family of the approximate solutions
corresponding to different exponents of wave action growth
rater;. This family gives a basis for comparison and inter-
pretation of numerical results of next sections.

Defining integrals

Ap = f VEIUs€)ds By = / EIUs(5)dE.  (94)

one can express mean frequency and total energy for self-

-0.09 [ L .
O Front frequency w Ot °% | similar solutions (Eq88) as follows

O Mean frequency o Ot %% Lo
— Theory  OtY% N

— — € =u.thr v =u,7 "
10° 10° 10 10° 10°
Time(sec) ur = b%4Ag; ve =b"Y2Bg/Ag

with exponents

pr = (98 — 2) /4 q: = B/2

For the wave action growth rate one has

re=a—=28=(118/-2)/4

Total wave action grows as

o = & = B / Us (&)

-0. 0.5 81 . and for total momentum one has
g=log, (o’t")

Fig. 9. Self-similarity of the kinetic equation solutions for the case Mior = f 1§1n(&, 7) cos dk ~ Mo pT/2 e (95)
of swell. Top — dependence of mean (circles), peak (triangles) and

front (squares — maximal positive spectral slope) frequencies onvhere

time. The exponents of downshift are close to the theoretical

value /2=1/11. Bottom — functionlz/11(§) (£=w?r?/11) ex- M. =o —3B = (78 — 2)/4

tracted from the numerical solutions at different times (see legend,

. . e N
in hours). The direct cascade slope™ is shown by hard line Additional dimensionless parametéf, is introduced in

Eqg. 95 to emphasize dependence of total momentum on
angular spreading of self-similar solutions. For isotropic
spectraMy=0. There might exist some “most anisotropic”

The “shape functionU; extracted for different times L. . .
P 2/11(8) self-similar spectrum with maximalfy. We can guess that

(Fig. 9, bottom) shows remarkably strong tendency to self- ) . )
similar behavior: after half an hour no difference is seen forexactly this spectrum that provides the maximal momentum

the functions. All the evolution occurs for the low-frequency [anSPOrtis realized in the real sea. _
pedestal only. This is illustration of a trivial fact: the nonlin- ~ D€Pendence of mean energy on mean frequency gives

earity is stronger — the evolution to self-similar form is faster.

— t/qz ,—2T
As we noted above, the total wave action is conserved foff = “zV7" "V (96)
the swell case while the energy leaks. This leakage provide ;
a direct cascade of energy to high-frequency range describegdrameters
by theZakharov and Filonenk(1966 spectrumk (w)~w 4 9/2_1
as it is clearly displayed by Fi§. Bropa =b¥*TBS': T = # (97)

5.2.2 Self-similar solutions for time-dependent wave input can be related to the well-known Toba’s law (see B@s94

andTobg 1973. Note, that for the definition (EQ7) the
The self-similar solution for the swell (Se&.2.]) is an ex-  Toba exponent depends on wave growth gatéor ;). Two
act solution of the kinetic equation. For wind-driven waves particular cases are of special interest.
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5.2.3 Constant wave action input and the Kolmogorov-reached in different ways for different directions or cannot
Zakharov inverse cascade solution be reached at all. The result depends on interplaying of non-
linear and input terms, that forms some kind of “magic cir-
For the case of linear growth of total wave action one has thesle”: low input means low nonlinear transfer and, thus, the
following set of exponents regime of dominating nonlinear transfer may be unattainable
for reasonable time: this is a subject of numerical analysis.

o =23/11; B =6/11
re=018-2)/4=1; pr =8/11~ 0.73; 5.3 Self-similar solutions and flux balance in the kinetic
9/2-1 equation
q: = 3/11~ 0.27, T = # =4/3 q
) ) ) . Equation @1) for Ug(§) has a form
i.e. the amplitude growth is slower than Toba'’s law predicts
(Toba 1973. Assuming that the self-similar solution Su(Up (&) = BEVEUR(E) + aUg(§) (98)
n = at® Mg 11(bret®h) (see Eq89 atr—o0) and can be considered as a basic one

_ ) ) _in the weak turbulence theory. It can be treated quite nat-
has power-like high-frequency asymptotics one can find, )1y as a stationary kinetic equation with specific external
the exponent corresponding exactly to the inverse Casgcing quite similarly to the stationary equation in primitive
cade solution (Eq81). Thus, the homogeneous station- \aiiaples (Eq82). In contrast to Eq.82) the external forcing
ary Kolmogorov-Zakharov solution (Eq6 and81) can be 5 ot small yet because the right-hand term describes strong
related quite naturally with this non-stationary self-similar effect of non-stationarity. Equatior9§) gives an accurate

regime. This link becomes more definite if we substitute the.cqnt of interplaying of spectral distributions and spectral
inverse cascade solution into EQ1). Left- and right-hand 56 for wind wave field. Note, that the coefficieatands

sides of the equation vanish simultaneously. We come to rez . onstants and the right-hand-side of ) (s linear in
markable physical (and mathematically trivial) resulihe  ¢nction 17, Thus, the qualitative analysis of Sect. 4.3 can

Kolmogorov-Zakharov inverse cascade solution is the exache ampiified by explicit and mathematically correct results
solution for the homogeneous kinetic equation in self-similarg,, o family of approximate self-similar solutions.

variables (Eq.91)! For the inverse cascade KZ solution
(Egs. 76 and 81) the balance of non-stationarity (left-hand
side of Eg.91) and nonlinearity (right-hand side of E§1)

is split for the “shape functionUg (§).

The first important result is a behaviour of the collision
integral S,,; at large time. If our hypothesis on dominating
nonlinear transfer is correct and the solutions do tend to the
asymptotic self-similar forms that satisfy (E268), the S,; is
simply a linear combination of the spectral form and its first
derivative. Assume the JONSWAP spectrum to be close to an
asymptotic self-similar solution. As soon as the right-hand

Quite similar to the previous paragraph one can obtain for thesd€ Of Ed. 88) is linear inUs one can take (see E&7)
regime of constant wave energy inpyt=4/3 (p:=1)

5.2.4 Constant wave energy input and the Kolmogorov-
Zakharov direct cascade solution

_ _ (V& - 1)7?
U =g exp(—& 2 expliny - exp— ~———"
o =8/3 823 pE) =57 eR=E) Xp{ v T )
=(118-2)/4=4/3; =1 . . .
re=Qa1p -2/ / P 9/2—1/8 and to reconstruct the corresponding asymptotic behavior of
q: = 1/3; T=——"""=3/2 collision integral S,; and spectral fluxes. The results are

2 shown in Fig.10. Parameter,=0.08 and three different
The Toba exponent/2 appears to be consistent with the set peakednesg =1, 3.3, 5 have been taken for calculations.
of exponents and corresponds to the wave action input growkeft column of Fig.10 shows results for the inverse cascade
ing with time while energy input remains constant. set of exponents, =1, p,=8/11, «=23/11, B=6/11 and
Once again, assuming power-like high-frequency tails forthe swell caser{=0, p,=—1/11, «=4/11, B=2/11)is il-
the non-stationary self-similar solution one gets that thelustrated by the right column of plots. One can see a strong
Kolmogorov-Zakharov direct cascade solution (BO). is its effect of peakedness on all the patterns presented inlBig.
stationary counterpart. Quite similar to the previous sectionThe caser=1 (an analogue of the Pierson-Moskowitz spec-
the Kolmogorov-Zakharov direct cascade appears to be tharum) does not give a typical strongly localized pattern for
exact solution for the homogeneous kinetic equation in self-S,; (Fig. 10c) in contrast to other cases. Stress the resem-

similar variables (Eq91)! blance of the patterns and the exact collision integral for
The special cases of duration-limited wind wave growth JONSWAP spectra in Fig3 and in previous paperdg@s-
are summarized in Tab@ selmann et al.1985 Masuda 1986 Komatsu and Masuda

It should be emphasized, that the self-similar solutions1996. The similarity is more pronounced for sharp spectra
(88) are not necessary isotropic. The contributions of non-(y=3.3, 5) than fory=1 (the Pierson-Moskowitz spectrum).
linear transfer and wave input can differ dramatically for dif- The latter implies that JONSWAP spectra are rather close to
ferent directions and, hence, self-similar behaviour can benherent wind-wave spectral shapes.



916 S. |. Badulin et al.: Self-similarity of wind-driven seas

Table 2. Exponents of self-similar solutions in duration-limited case.

19 +4 A +2 9 -1 _2r+1 T Regime
T YT T 11 Pr="77 =11 g
0 4/11 2/11 -1/11 1/11 —-1/2  Swell
1 23/11 6/11 8/11 311 4/3  Constant wave action input
4/3 8/3 2/3 1 1/3 3/2  Constant wave energy input

Table 3. Exponents of fluxes evolution for self-similar solutions in duration-limited case.

SniCk,t) ~ 158, () Ok, t) ~1’10(&) P(k,t) ~ 7 P(§)

e s =19 —7)/11 sg=(r—1) sp=(or—12/11  Redime

0 —7/11 -1 —-12/11 Swell

1 12/11 0 -3/11 Constant wave action input
4/3 5/3 1/3 0 Constant wave energy input

Spectral fluxes for the stationary EQ8f can be calculated as a source term in the framework of spectral peak (in other
explicitly as integrals of its right-hand side (see E8®-64). words, in self-similar variables). The “external forcing” in

T I&] oU Eq. (98)
0= / / BIEPTE + al€|Up)dIE|do
- JO 8|§|
b 1&] m rl& S;k :ﬂgVEU’g +aUg
R +rT/ /0 £]Udlg|do "
-7 0 -7
—— arrests wave action and energy fluxes in low frequency band
p— _f / (ﬁ|8|5/23ﬂ + ot|§|3/2U,3)d|§|d9 _ as it was described in Sect. 4.3 (see Bjg.Permanent forms
=z Jo /& of the self-similar solutions are reached due to this arrest. In
&l high-frequency range the arresting effect of teffpvanishes

for power-like tails of the Kolmogorov-Zakharov solutions
" (see notes in Sects. 5.2.3 and 5.2.4 giverithlic). Thus,
_ § 3217 digld fluxes in high-frequencies are not vanishing for the patterns
Pe 1§17 “Upd|&|do I : . )
—zJo of Ug that implies a production of wave action and energy in
" the range. The physically important arrest of fluxes in small
K — _/ /0 (BlE3 By a|§|2Uﬂd|§|)d0 _ scales cannot be described within the asymptotic theory (the
-7

0| only exception is the swell case).

&1 T i In Fig. 10d, e fluxes are tending to constant values quite
e [ /O €20, dl€|do
—TT

T |
— | BIEY?UgE)do
-7 0

rapidly. Note, that self-similar argumerst in the fig-

ure corresponds exactly to non-dimensional wavenumber
k|/lk,|=w?/w3 and for&=2 the fluxes reach their 95%
evel of asymptotic values for the case of wave pumping
(left column). The same tendency to the basic Kolmogorov-

and correspond to inverse cascade reglm_e,ng, P<0, Zakharov solutions (E¢.0) is seen for the auxiliary function
K <0. Note, that small rates <7/19 are of little interest for AE) (A())

our analysis because the smallness of source terms is ques-"" ] ) o
tionable in this case (see E@S, 89). Evidently, the full dependencies on time and primitive

The case of swell is of special interest. Parameters wavenumbetk can be obtained easily for collision integral

m, are negative and both types of cascades are co-existingnd fluxes. The corresponding transformation is a power-
for wave energy and momentum: inverse cascade in low frelike stretching of Fig10in absmse_ and ord!nate_ with time .
quency band (smalk|) and leakage of energy and momen- The exponents of the transformation are given in T&ble
tum (direct cascade) in high frequencies. Note, that fluxes depend on time. The special casel

We assumed no angular dependenc&pfé) for Fig. 10 (Table 3) corresponds to constant flux of wave action and
because of no qualitative differences for anisotropic distri-can be associated with the inverse cascade KZ solution. The
butions. Note a remarkable coincidence of our calculationsnverse cascade of energy decays a¥ 1! in this case. The
with results of qualitative analysis of saturated wave spec-constant (in time) flux of energy gives the wave action flux
trum in Sect. 4.3: the effect of non-stationarity can be treatedgrowing with time asr/3.

— | BIEPUs @&

0
The result of the integration is of fundamental interest: for
positive exponents of wave action, energy and momentu
growthr;, p;, m; the signs of fluxeg), P andK are fixed
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Fig. 10. Patterns of wave spectra, auxiliary functiai), collision integrals,,; (§) and fluxes of wave actio@® (¢) and energyP (¢) for the
balance Eq.98) for shape functiorl/g. The JONSWAP-like function of non-dimensional argumisatk|/|k | is taken as a shape function
Ug. Curves for different peakedness parameterl (dashed)y=3.3 (hard) andy=5 (dash-dotted line) are given. Left column — linear
wave action growthry =1, «=23/11, =6/11, p.=8/11), right column — swelliz =0, «=4/11, =2/11p,= — 1/11).

5.4 Self-similar solutions for fetch-limited case Herex=|k| —wavenumbes — polar angle of the wavevector
relatively to wind direction,y — x-coordinate — fetch. The
Extend the previous section analysis and recent results byamily of self-similar solutions for Eq.99) can be written
Zakharov(2002 for the case of fetch-limited wave growth. as:
Consider an idealized problem of fetch-limited growth

when constant offshore wind is perpendicular to the straight!(: X+ 6) = a x“ Ps(b x" . 6) (100)
coast_line and wind_ wave spectra depepd on the oply S_patiaéubstituting Eq.100) into Eq. @9) one finds

coordinatey. The first-order “conservative” approximation

(0=0) gives the balance a=58-1/2, a=h° (101)
cosh dn  ~ Quite similarly to the previous section the “shape function”

=3 (99)

22y — ™ Pg depends on two variables#-and ¢=bx«x. Function
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Pg(¢) is independent of parametersandb (see Eq.101) For total growth of wave action one gets
and satisfies the following integro-differential equation:

cosd [ » —i—ﬁ;apﬂ} /IT 2 Nior = /n(k)dk ~ x0T~ R (105)
—F |« —— |=7 0 01020
Zﬁ B ac ¢ $1£2¢3,60 016203
X §(£ COSH + £1 COSH1 — £2 COSH2 — £3 COSH3) Basic cases can be specified for particular sets of exponents
x 8(¢ SiN@ + £15iN61 — £7SiNBp — £3Sinb3) quite similarly to the duration-limited case. First, the swell
case when total wave action is constant gives (sed &4).
X 8/ + 11 = Vi —/ta) gives (sed &
X [Pﬁ(él, 61) Pg($2, 62) Pg(t3, 03) (102) ry =a—2=0 p,=-1/12
+Pg(£.0) Pg(£2.02) Pp(L3. 03) ax =112 T = py/2qy = -1/2 (106)

~Pp(&. 0) Ppl81, 01) Fs (G2, 62) The case of constant total input of wave acti@p=const;
—Pg(¢,0) Pg(s1, 61) Pp(¢s, 493)] B=3/7 (see Eq104) has been studied Bakharov and Za-
slavsky (1983 and byGlazman(1994). The corresponding
X £1£2630¢10520¢3d01d02d03. exponents are
Similarly to the previous case (see define:
Y P (see B ry = 11/14; py =4/7,
Ap = [ VTPs(¢, 0)5dcdo gy =3/14 T =p,/2, =4/3 (107)
Bg = [ ¢ Pg(¢, 0)¢dedo.
While the wave action input is constant the total wave action

For mean frequency and energy one has for the case (Eq107) grows slower than linear function of
€ = MXXP)(; V= v)(X_qX fetch
where Nygr ~ X% ~ 1114
gy = 2Py + 1, Py = o8 — 1; The exponents (Eq4.06 and107) differ slightly from ones
10 ZB for the duration-limited case (compare TaB)e This differ-
uy =b>?Ap; vy, = u)l(/5Tﬂ5' ence can be explained easily by the effect of wave spectra
Aﬂ/ downshift in spatially nonuniform wave field: wave input is

damped by dispersion of longer waves propagating offshore.
The case of linear growth of total wave action
can be associated with constant input of wave energy

@0, (x)=const r,=1)

Quite similarly to the duration-limited case one can treat
Eq. (102 in self-similar variables as stationary and homoge-
neous equation that describes equilibrium of nonlinear trans
fer (termS,;) and a specific source term

8P,3(§) Iy =1; Px :3/4;
zf T ] ax =1/4 T =py/2q, =3/2 (108)

The source term is linear in functiofs and not small be-  The special cases of fetch-limited growth are summarized
cause it appears from strong effect of non-homogeneity. Thisn Tapble 4. In spite of quantitative difference of expo-
balance equation giVeS a fam"y of self-similar solutions. nents (Compare Tabl@) there is a key common feature Of
The higher order “non-conservative” approximation should quration-limited and fetch-limited cases: the exponents for
be considered to specify parameters (self-similarity indexeskonstant wave action and wave energy inputs make left- and
of these solutions quite similarly to the duration-limited case.right-hand sides of the corresponding balance E88afd

i ﬁ(é‘))— [OéPﬁ(é“)JrﬂC

Integrating Eq. 99) overx and¢ one gets the balance 102 vanishing separately for the stationary isotropic power-
cosd on ~ like Kolmogorov-Zakharov solutions. The KZ solutions
/ — —Kd do = / inkde = Q5 (x) (103)  split the effect of non-homogeneity and nonlinear transfer in

Eqg. (102 in self-similar variables and, thus, can be treated

Here Q, is the total input of wave action — a net result of as asymptotic solutions of the self-similar family (E0)
wind forcing and wave breaking dissipation. The condition at infinitely long fetcheg— oo.
(Eq. 103 is consistent with self-similar forms of solutions  Similarly to the duration-limited case one can show that
(Eg. 100 if the total input is a power-like function of fetch self-similar solutions of this section are governed by inverse
x. The corresponding exponents are obtained easily frontascades of wave action and energy. In the special case of
re-scaling properties of the collision integl (Eq.29) swell inverse and direct cascades of energy coexist. The ex-

253 ponents of dependencies of fluxes and of collision integral on
O,~x 7. (104) fetch are given in Tablg (compare Tabl8).
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Table 4. Exponents of self-similar solutions in fetch-limited case.

S5ry +1 2ry +1 10ry —1 2ry +1 .
o =T P T T Tn Regime
0 1/3 1/6 -1/12 1/12 —1/2  Swell
11/14 23/14 37 a4/7 3/14 4/3  Constant wave action input
1 2 1/2 3/4 1/4 3/2  Constant wave energy input
Table 5. Exponents of fluxes evolution for self-similar solutions in fetch-limited case.
, Suile, )~ x°Su @) Q0 ~xMQE) Pl ~XTPE) g
x s =22, —7)/12 sq = (L4ry, —11)/12 sp=(ry — 1
0 —7/12 —-11/12 -1 Swell
11/14 6/7 0 —3/14 Constant wave action input
1 5/4 1/4 0 Constant wave energy input

5.5 Self-similarity and experimental exponents of wind- (Eq. 39) can be determined by different methods: first, in
wave growth terms of total energy and mean frequency (seelbg), i.e.
taking into account both self-similar and “background” frac-
Power-like approximations of parameters of wind-wave tjons of wind-wave field and, second, in terms of local char-
growth are of common use in wind-wave studies (88  acteristics of wind-wave growth: peak frequency exponent
banin and Soloviev1998. The question is: “How the ex-  (downshift exponent}p and spectral peak magnitude expo-

perimental approximations can be related to our theoreticahenty. In terms of these two quantities Eq.O9 can be
findings?” For total energy and mean frequeacgne has rewritten as

Epor ~ & "4 Ky = 9— 20/B (110)

We omit subscripts fop., ¢., py, g, here to show inde-
pendence of the trivial relation on conditions of generation
(duration- or fetch-limited growth). For JONSWAP spectra
(Eq.37) the exponent of energy growitly can be determined
easily

This presentation is valid for both duration and fetch-limited
growth and can be useful as an alternative definitiorof

in analysis of numerical results. Comparing exponents de-
termined from “global” characteristics of wind-wave field
(mean frequency and total energy — BE§9 and from “lo-

kKo =5—-r/g=4—p/q=4-2T (109)  cal” exponents of spectral peak evolution (frequency and am-
plitude of spectral peak — E4.10) one can quantify self-
similarity features of wave spectra. This gives us a solid basis
for analysis of our numerical results.

Surprisingly, the exponents, for basic regimes presented
in Tables2 and 4 are the same in time-limited and fetch-
limited casesk,=1 for constant wave energy input, i.e. ex-
actly Toba’s law Toba 1973 and«,=4/3 for constant wave
action input. 6 Numerical solutions for the kinetic equation

Our exercises with exponentg, p, ¢ look like a jug-
gling by notations with no reference to the Hasselmann equaln this section we present results of numerical solutions of
tion. In fact, very strong hypotheses underly this juggling: the kinetic equation for the case of duration limited growth
the self-similarity of the asymptotic solutions for the Hassel- (Eq. 6). Details of numerical algorithm used in this paper
mann equation and self-similar form of JONSWAP spectrumhave been published in many papers (&/gbh 1978 Resio
(see Sect. 3.1). Real wind-wave spectra are, evidently, noand Perrig 1991 Pushkarev et 312003. The code based
self-similar. They can manifest their self-similarity features on this algorithm has been developed Byacy and Resio
partially only, say, for certain range of directions and wave (1982 and modified recently by Pushkard(shkarev et gl.
frequencies where nonlinearity dominates as compared to in2003. Extensive numerical studies performed with this code
put and dissipation. Beyond this range the wave spectra ar@Pushkarev et gl2003 Badulin et al, 2002 showed its ade-
affected heavily by details of wind input and dissipation, by quate accuracy and stability in a wide range of parameters of
initial and boundary conditions etc. The magnitudes of thewave field and external forcing. In this paper we give just a
non-self-similar fraction of wave field are likely relatively brief overview of features of the algorithm and the numerical
small but total energy content and mean wave frequencyapproach.
can differ significantly from predictions of self-similar be-  The numerical study is based on the algorithm of calcula-
haviour. In other words, the exponent of spectral growth  tion of the collision integralS,; proposed byVebb (1978.
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The resonant subspace is parameterized by a series of respew and was exploited, for example, for numerical estimates
nant curves — locii with a fixed pairs of wavevectérsand  of fundamental Kolmogorov’s constantBushkarev et al.

k3 in conditions of resonance (E). Alternative approaches 2003 Lavrenov et al.2002. The features of self-similarity
(e.g.Komatsu and Masudd 996 Lavrenoy 2003 perform  are reproduced in our academic experiments perfectly well
an analytical integration af,,; in order to reduce dimension as it will be seen below. They give a very good reference to
of integration domain. It leads to a complicated form of the study “realistic” cases where the self-similarity is contami-
resulting domain and, hence, to additional problems with ac-hated by effects of strong anisotropy and wave forcing in a

curacy and time of calculations. wide frequency domain.
In a majority of our numerical experiments the following  In this section we present a series of numerical runs that is
parameters have been used: specially designed to detail self-similarity properties of the

kinetic equation solutions. Starting with very low “white
noise” as initial conditions we put a time-dependent source
function into high-frequency range in order to reproduce in-
2. Grid is regular in angle with T0step and logarithmic  VErse cascade regimes corresponding to the family of self-

in frequency with increment.Q68 (71 points in fre- similar §o|utlons conS|dered_above. In this setup_one can con-
trol easily the total wave action flux as a power-like function
of time in full accordance with the asymptotical procedure of
3. 30 points are taken to calculate contour integrals alongprevious section.

each locus;

1. Range of wave scales — 0.02—-2 Hz (wavelengths approx
imately 40 cm — 4 km);

quency);

6.1.1 “Academic” series with isotropic source function
4. Harmonics of essentially different scales are not taken

into account, i.e. quadruplets with frequency ratio more We start with absolutely unrealistic problem of isotropic
than 3 (factor 9 for wavelength) are ignored. Addi- source function in order to relate our numerical results with
tionally, quadruplets with magnitude of kernels below the Kolmogorov-Zakharov solutions for direct and inverse
a certain small threshold are ignored. Effectively, aboutcascades which are essentially isotropic. This unrealistic
50 000 quadruplets are taken into accoun§;jncalcu-  setup has a long story, recently it has been used in numer-
lations. ical studies of the direct cascadeushkarev et gl.2003

o ) ) o Lavrenov et al.2002. The idea is very simple: to reproduce
An explicit integration scheme with adaptive time step hasyey features of the theoretical model in numerical experi-

been used. All the parameters given above are consistenfents first of all, to leave maximal space for the so-called
with ones recommended bgomatsu and Masud@l998.  jnertial frequency range where the nonlinear transfer is the
Comparison with their results of the kinetic equation solu- only physical mechanism of wave evolution.

tions showed reasonable quantitative agreement for mean en- rpe jntial conditions in all the experiments (excluding the
ergy, frequency and for features of spectral distributions. The.;5a of zero wave input — swell ) corresponded to very low

exact coincidence could not be achieved because some pgitial wave amplitudes — the significant height was approx-
rameters of their numerical runs were not specified in theimately 1cm. The source function in the experiments has
paper explicitly. The results of the comparison are not dis-paan set up as a time-dependent function
cussed here and will be presented in a separate paper.

Calculations have been made for water depth 2000 m and;,, = B(k)N (k) = ﬁo(t/to)Rle(k) (112)
wind speeds from 5 to 30#r L. High-frequency cut-off
of wave generation was at 1Hz or as it is required by theln @ frequency range-11.5Hz. The constanfo was chosen
conventional parameterizations considered in Sect. 3 of thsufficiently high to provide essential evolution for reasonable

paper. Strong dissipation is assumed for frequencies highetllme of calculations. In fact_, gll these “unrealistic” experi-
than 1 Hz. ments can be related to realistic temporal and spectral scales
of wind wave evolution. For example, the significant wave

Time of spectra evolution was generally limited by?$0 ) i
(slightly more than 1 day). In cases of slow evolution (low helghts up to 10 m were reached for very reasonable physical

winds, wave swell) this time was extended up t§ 40Cal- t|r.ne' 1 day in these runs. Franly sp.eaking, the oply “'unre-
culation time was typically one-to-one with time of evolution alistic” feature of these experiments is strong localization of

(CPU AMD Barton 3000, Fortran77 under Linux). wave input domain in frequency. _
Calculations have been carried out for a series of expo-
6.1 “Academic” series nentsr in the range 12<R<4/3 that approximately corre-

sponds to “acceptable” rates of wave action growth for the
The justification of the theoretical background given aboveself-similar solutions (see Sect. 5.2 and Bg) and for the
remains our red line. In this section we start with “academic” special case of wave swell. The most important advantage
numerical experiments. The conditions of generation in thesef the source function is seen in Fifjl. Very large iner-
experiments can be considered as unrealistic but they allovial interval has been provided thanks to very narrow domain
one to focus on fundamental qualitative and quantitative fea-of generation and strong relaxation of solutions to some “in-
tures of the problem. The idea of the academic runs is noherent” state beyond the domain. A good agreement with
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Fig. 11. Isotropic solutions in “academic” runs for different val- Fig. 12. Self-similarity of the kinetic equation solutions for the

ues of exponenRk (see Eq.111). Generation domain limits are “academic” case ak=1. Top — dependence of mean (circles), peak

shown by vertical solid lines. Asymptotics for inverse (dotted line) (triangles) and front (squares — positive maximum of spectral slope)

and direct (dash-dotted) cascades are shown. g%, bottom — frequencies on time. The exponents of downshiétre close to the

R=4/3. theoretical valugg/2=3/11. Bottom — functior/ (¢) (£ =w?:%/1%)
extracted from the numerical solutions at different times (see leg-
end, in hours). Slopes—4 and& —2%/6 for direct (dash-dotted) and
inverse (dotted) cascades are shown.

Kolmogorov's inverse cascade solution was found in terms

of slopes of the spectra in the inertial interval (asymptotes .
w—ll/S are shown by dotted line in F|g_l) in all the range The theoretical Value$:23/ll, /326/11 were taken for the

of parameterR. corresponding transformation. One can see relaxation to a

The source function (EqL11) provides very good fit to ~Permanent form for extremely short time: no visible differ-
power-like wave action input and makes possible to extrac€nce of solutions is seen for0.45 h.
the self-similar dependencies from numerical solutions. The All the experiments with different wave input ratRshow
self-similarity of the solutions is illustrated quite well by the same strong tendency to self-similar behaviour. A re-
Fig. 11 where solutions taken at approximately log-spacedmarkable result of our studyghape functio/g (§) does not
times appear to be log-spaced both in amplitudes and in fredepend (more conservatively, does not depend within the ac-
quencies. Figurd?2 gives quantitative analysis of the self- curacy of our numerical approach) on index of self-similarity
similarity features for the case of constant wave action in-g. This result is illustrated in top Figl3. Ug(£) normal-
put R=1. First, mean and peak frequencies show power-ized on their peak magnitudes were traced as functions of
like dependencies on time with exponents which are verythe normalized argument — non-dimensional wave frequency
close to the theoretical exponggjt2=3/11 (top panel). Bot-  |£|=2log(w/w,). For different parameters of wave input
tom panel in Figl12 presents the shape functiéfy(§) (see R (shown in legend) these functions are amazingly close to
Eq.88) extracted from numerical solutions at different times. each other.
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> ] proper relations. The stationarity of generation domain for
N : o 23 R=1 means thatg=a/f=23/6. In bottom paneN (k;,p.:)
AN z 411/3 is definitely growing with time, that is¢g <o/ f=4.

B : I Unlike the case of wave input the swell solution has high-
frequency asymptotics visibly closer to the direct cascade
asymptoticg —*. This difference can be treated as a key dif-
ference of regimes governing the solutions: in case of wave
input one has a purely inverse cascading in the domain of
self-similarity while swell corresponds to a hybrid regime
when domains of direct and inverse cascades coexist.

The universality ofUs (quasi-universality — weak depen-
dence on self-similarity indeg) allows one to verify eas-
: : ily other important property of the self-similar solutions —
- 0 0;.5 : the relation.between wave ;cales and spectra amplitudes
£=2log, (W) (Eq..90). Strictly speaking, t.hIS property sh_oulq l_)g checkgd
g g ! for fixed exponent of wave input by changing initial condi-
tions or rate of wave growtfip (Eq. 111). Bottom panel of
Fig. 13 shows fairly well validity of scalingi~b1%* where
parameters: and b have been estimated from characteris-
tics of spectral peaks for different expone®of wave in-
put. A small deviation of the power-like fit exponent in bot-
tom Fig. 13 (4.63<19/4) can be considered as a measure
of quasi-universality of functior/g(¢). Thus, the scaling
(Eq.90) can be considered as universal one irrespectively to
the particular regime of self-similar evolution.

|
=
!

N
T

(UERIVE)

log
&

a=135x b*

6.1.2 Anisotropic self-similar solutions in “academic” nu-
merical experiments

05 1 15 2 25 The kinetic equation admits of anisotropic self-similar solu-
log,, b tions as it was pointed out in Sect. 5. Two evident questions
arise:

OI\J

Fig. 13. Shape function#/z for different parameters of wave input

R (top). The solutions for different ratg® are shown by different — Do these anisotropic solutions emerge from arbitrary

symbols (in legend). The swell case is given by solid line. Bottom initial data?

— the scaling of the solution peaks and the peak positions. Fitting

formula and the corresponding fitting line are given. — What are features of these solutions as compared to
isotropic solutions?

Anisotropic source function for the series has been set up
The high-frequency tails are found to be very close to thesimilarly to Eq. L11) in a semi-ringr /2<0<—m/2
inverse cascade Kolmogorov's expongrt23/6) for runs
with wave input. In fact, the difference between exponentsg, —
of direct and of inverse cascadges4) and(—23/6) is rather

small and the above conclusion seems speculative in view ofpe strong tendency to the self-similar behavior has been

the problem of correct estimates of these exponents withiryemonstrated for the same parameter $8&R <4/3 as for
the numerical approach. Nevertheless, a clear evidence th"i’éotropic “academic” runs. T

the spectral slopes are less than one of the direct cascade Kol- Figure 14 shows tendency of the numerical solution to
mogorov SO“J“O”ST“ can be acquired from Figll. For  ggjfsimilar behaviour for different angles At=1. The ex-
R=1 (top) the solution is stationary in the domain of genera-ponent of total wave action growth appears slightly lower
tion while for R=4/3 (bottom) the solution is growing with (r=0.97) than in the isotropic case whe&=r=1. This lit-
time in this frequency range. The solution in the generationye gifference is dealing with anisotropy when a fraction of
domain can be estimated from the self-similar dependencg;,e input “leaks” to periphery of the self-similar “core”
(Eq.89) as of solution. In fact, this negligible, at the first glance, ef-
NKippur) ~ 1985 fect results in rather strong qualitative and quantitative con-
input . .
sequences. The leakage to domains where amplitudes of the
wherexg is exponent of the solution power-like tail. Thus, solution and the generation rates are weak leads to forma-
generally,N (k;npu:) depends on time ikg does not fit the  tion of non-self-similar background. The exponent of total

Bocosd(t /1o)X IN(k), m/2 < 60 < —7/2
0, otherwise
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Fig. 14. Tendency to self-similar asymptotics for different angles to wind direction30°, 60°, 90°, 15(°, 18(°, the “academic”
anisotropic run withR=1 (total wave action growth rate=0.97). The exponent,,,=a—28=0.89 determined from exponents of the
solution peak growtlx andB was used to extract the self-similar dependence (see comments in Sect. 5.5).

wave action growtlr becomes inadequate to the self-similar mined by tracing peak frequency and peak magnitude and
“core” of the solution. In this case, exponents of local growth the corresponding parameteg, has been determined from
evident relatiorr,,=a—28 given by Eq. 92). It gave es-
sentially lower value,,,=0.89 for the cas&=1. Evidently,

can be more relevant to the problem. In Higthe exponents
a andp of the self-similar solution (E#8) have been deter-
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Fig. 15. The same as in Fid.3 for anisotropic academic numerical Fig. 16. The same as in previous figure for non-dimensional fre-
solutions. quency spectréE (w)/E(wp). The JONSWAP spectrum for the

standard peakedness=3.3 is shown by dashed curve. The de-
pendence of the solutions parameteendb is presented in bottom
panel, swell scaling is given bk.
the non-self-similar background exists in the isotropic exper-
iments as well, for example, in low-frequency domain which
is not affected by the self-similar “core” but the effectis in-  Looking for functionsUpg (&) of the anisotropic solutions
comparably smaller than in the anisotropic case. in Fig. 15 we find differences with isotropic solutions of the
We see again an illustration of the problem of “magic cir- previous section. First, the low-frequency front is essen-
cle™: self-similarity requires strong nonlinearity and, in its tially steeper for the anisotropic solutions. Secondly, high-
turn, the strong nonlinearity requires strong wave input. Infrequency spectral slopes show a weak dispersion. This ques-
anisotropic case we always have a situation when nonlineartion is to be studied more carefully with more accurate nu-
ity is not strong enough to provide pronounced self-similarity merical approach. At the moment, one can conclude that
features. It can be seen in Fityt for oblique directions. The the qualitative behaviour is well within the theoretical pre-
strongest tendency to a permanent shape funéfinig) ex- diction: for lower wave input exponents (sma) the tails
tracted from the numerical solution is observed for down-of solutions are closer to the direct cascade spectral slope
wind direction where the wave pumping is maximal: the so- (—4), while for higher values ol the tails are more flat.
lution for 1 h, actually, fits solutions for larger times remark- The spectral tails of swell show definitely the direct cascade
ably well, i.e. it is very close to a limiting functiobig (if this exponentg—4).
limit exists). The tendency to a limiting shape is slower for  The solutions’ scaling for differem® manifests a remark-
oblique directions, but, unexpectedly, the tendency for up-able agreement with the theoretical relation (BQ). as it is
wind direction appears more pronounced than for the direcseen in Figl15 (bottom). It should be noted that the scaling
tion 9C°. The latter can be explained by stronger nonlinearparameters of isotropic and anisotropic solutions appear very
transfer from maximal down-wind components to up-wind close to each other (compare multipliers in fitting formulas in
ones. bottom Figs13and15).
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An important result of the analysis of the “academic” inverse cascade mechanism forces the solution to propagate
anisotropic solutions has been found calculating normalizedo low frequencies in a front-like manner.
frequency spectra for different rat8yFig. 16). One can see Qualitatively the same evolution is seen for the case
closeness of the frequency spectra shapes to each other araf, right panel. The Pierson-Moskowitz spectrum for
more, to the experimental JONSWAP spectrum (shown byU,,=5ms! is taken as an initial condition (significant
dashed line). Thus, the self-similarity features of “academic”wave height is approximately 28 cm) and wind speed
solutions are very close to ones of experimentally observed/;;=20 ms~1. Strong dissipation is introduced for frequen-

spectra of growing wind waves. cies higher than 1 Hz. Note, that for these initial conditions
the collision integral does not vanish as in the previous case.
6.2 “Real” wave input Additionally, 28 times higher initial wave amplitudes means

potentially 285~:482 times higher nonlinear transfer term or

In this section we present results of numerical solutions for2 8*~61.5 higher ratio of the nonlinear term to linear wave
the kinetic Eq. 27) with parameterizations of wind-wave input. This is why the solution evolves essentially faster than
source functiors s =S;,+Saiss given by conventional formu-  in the first case. Even though the evolution is faster the result-
las of Sect. 3. Taking the results of previous “academic” stud-ing levels of solutions in a quasi-stationary high-frequency
ies as a reference we show that details of the source functiorange are approximately the same in both cases: the solution
is of little importance for qualitative, and, more, for quan- “forgets” the initial data in a very short time.
titative features of wind-wave evolution. It contradicts to  The validity of the kinetic equation for the examples is
the streamline of wind wave studies where tremendous efquestionab|e_ The solutions evolve very rap|d|y with a typ|-
forts are mounted to describe details of wind-wave genercg| time scale of only few hundreds periods tending to some
ation in different wave scales. In many cases it complicatesnherent form of solutions which scales of evolution are com-
essentially mathematical and physical approaches but give ngatible with the kinetic description of wave field. Addition-
gain for the problem understanding and for practical needs ojly to the conceptual problem of applicability of the kinetic
wind wave forecasting. equation at small times the fast evolution gives rise to com-

The critics of the attempts to solve the problem of wind- putational problem when time step has to be very small to
wave modelling by “tuning” source function is not a point provide adequate accuracy and stability of calculations.
of the section. We try to fix some “trigger” points in order
to understand where such tuning can lead to physically im6.2.2 Solutions at large time — Self-similarity of solutions
portant results and where we have to switch our attention to
other ways of the problem solution. The most impressive feature in a relatively short time of evo-

In spite of great number of numerical studies of wind wave lution is similarity of the solutions in a wide range of condi-
evolution within the kinetic equation there is no a substantialtions of wave generation. Figufe8 demonstrates this obser-
foundation for analysis of the results. We use the concept ofation for wind speeds 1041 and 20 ms~1. Equation 61)
wind-wave spectra self-similarity as such foundation. by Hsiao and Shemdif1983 for wind-wave growth rate was

We start with analysis of initial stage of wind-wave evolu- used in both cases. Solutions are different for different phys-
tion when nonlinearity is relatively weak, wave spectra evo-ical times, but in terms of wave age paramej¢(w,Uio)
lution is not self-similar and depends essentially on details ofthese solutions are very close to each other. This can be seen
initial data and of the source functidfy. This stage is typ- ~ for solutions at final times in top and bottom panels of Ef).
ically very short in time for realistic wind wave conditions. (curve 6 in top and curve 5 in bottom one): the peak values
Further evolution of wind wave field can be described quite Of these solutions are the same for the same (approximately)

well by self-similar dependencies. wave ageg/(w,U10)~1 while physical times are essentially
different — approximately 32 (left) and 16 (right) h. Solutions
6.2.1 Solutions at initial stages in Fig. 18are log-spaced in time and show clearly power-like

dependence of peak frequency on time in perfect agreement
The solution of the kinetic equation at initial stages of wind with our theoretical analysis of self-similar solutions (see
wave evolution is accompanied by a number of difficulties. Eg. 88). Additional argument for the weak turbulence the-
The effects of initial data and details of source function areory is in spectral slopes which are close to the Kolmogorov-
very important at this stage. Figufd illustrates this re- Zakharov exponents.
mark. The growth rates are identical for both examples pre- Two-dimensional wave spectra in Figk9 and 20 show
sented in the figure. In left panel the evolution starts fromthat the Kolmogorov’s power-like dependencies and similar-
“white noise” with significant wave height approximately 10 ity features of solutions are essential for anisotropic solutions
cm. These conditions correspond to Rayleigh-Jeans equilibas well. Energy spectra contours are shown for two differ-
rium, the collision integral is plain zero for the initial state ent wind speeds as functions of non-dimensional frequency
and, thus, linear pumping dominates at small times. Whenmv=wU10/g (see Figl8). The corresponding wave ages are
the solution deviates from the equilibrium state far enough,calculated for spectral peak frequency without interpolating
the nonlinear transfer becomes important. The direct cascada frequency grid (this is why wave ages are slightly different
tail appears in an explosive way in high frequencies and thdor pairs of contours for different wind speeds). Contour lev-
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0.1 1 0.1 1

Fig. 17. Non-dimensional frequency spectBiw, 0) vs. non-dimensional frequenéy=wU10/g for small times. Left column — initial
condition is a “white noise” (equipartition) of ener@y(w) (significant wave height approximately 10 cm). Input rate (bottom panel) is given

by Snyder’s et al. formula (Egt7) for wind speed/;0=20 ms~1, dissipation is absent. Right column — initial condition is the Pierson-
Moskowitz spectrum for wind spedd=5 m-s~1 (significant wave height approximately 28 cm). Input rate (bottom panel) is the same as in
left column, strong dissipation is introduced for frequencies higher than 1 Hz. Solutions for down-wind direction are given for a sequence of
non-dimensional times 408-£200 s)), 816, 1250, 1680, 3860, 7370 (physical time approximately 1 h). Dotted and dashed lines correspond
to inverse and direct cascade exponent&3ldnd 4 (for frequency spectra of energy).

=0
=0

E(woO)ao
E(0O) a0

Fig. 18. Non-dimensional (Eg86) down-wind energy spectral density vs. non-dimensional frequency for two wind speeds s—iqieft)

and 20 ms~1 (right). Wave input is given by Hsiao and Shemdin (1983) (&1, strong dissipation is taken fof>1Hz. Solutions are
shown for the same set of log-spaced nondimensional tirags/ U1o: 1700 (number 1); 3500 (2), 7000 (3), 14 000 (4), 28 000 (5), 59 000
(6, not shown for 20 is~1), i.e. for physical times approximately 0.5, 1, 2, 4, 8, 16 h for the case $0'mAsymptotes for direct (dash-dot,
exponeni—4)) and inverse (dottedi—11/3)) cascades are shown. Vertical dash-dotted lines correspond to wayg(agé g)=1.

els are log-spaced and, thus, power-like dependence on waweave ages look very close to each other. Stress, that wave age
frequency is clearly seen in these figures. Asymptotics ofis responsible for the scaling of these solutions but not phys-
isotropic Kolmogorov's solutions are likely consistent with ical time! Again we come back to the idea of self-similarity
what we see in a wide range of angte40° near wind direc-  of these solutions.

tion. Wave spectra for different wind speeds but for the same
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T=1.43 hrs; t=5072; w=1.88 T=2.03 hrs; t=3600; w=1.84
90

180 0 180

270 270
T=2.77 hrs; t=9813; w=1.54 T=4.18 hrs; t=7391; w=1.51

180 0 180

270 270

Fig. 19. Energy spectra for different inverse wave agesw,..xUi0/g (shown in legends) as functions of nondimensional fre-
quency @=wUo/g, source function is given by Ed61 for wind speeds 101 (left column) and 20ns~1 (right column).

Peak frequencies are calculated by interpolating between grid knots. Levels are normalized by peak values and log-spaced as
10°Y2, 10734, 1071, 10754, 10°%/4, 10-7/4. Charts show impressive similarity of contours for spectral densities exceeding
10% of peak values.

Great difference of the solutions in left and right columns can contaminate links of our numerical results with theoret-
in Figs.19and20 for large angles to the wind gives nothing ical models presented above. We faced this problem in the
but justification of our guideline on effect of dominating non- anisotropic academic runs but for “real” input it is compli-
linearity. The difference is great for the solutions peripheriescated by a large domain of wave input.
where magnitudes are less than 3% of peak values. The small Following the previous section approach one can extract
magnitudes mean dramatic (as magnitude in cube!) decreasghape functiors. The question is: how to determine the
of nonlinearity while linear terms of input and dissipation fall Corresponding index of Se]f-sim”arity fora particu]ar numer-
much slower. Existence of the non-self-similar baCkgrOUﬂdica| solution? The parameter of wave action growﬂppears
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T=5.98 hrs; t=21118; w=1.25 T=8.44 hrs; t=14908; w=1.24

180 0 180

270 270
T=13.9 hrs; t=49379; w=1.02 T=17.3 hrs; t=30692; w=1.01

180 0 180

270 270

Fig. 20. Same as in previous figure for small inverse wave ages (shown in legend).

to be not adequate in this case because of the contaminatirfgrm within a few percents near the spectral peak. At the

effect of essentially non-self-similar background. An alterna- solution periphery (both in frequency and in direction) the

tive way to specify the self-similarity parameter is to extract tendency to the limiting form is essentially weaker.

it from local features of the solution (see notes of Sect. 5.5)

as it was employed for academic runs using the exponents o';
! i

the solution peak growtk andg.

The comparison of Figg1with its “academic” counterpart

g. 14illustrates the effect of source function — the only vis-

ible effect of “real” input as compared with “academic” one
Results are presented in FR{L for different directions rel-  is in different evolution of non-self-similar background while

atively to the wind. The directly calculated total wave growth the self-similar cores evolve in a universal way in both cases.

rater=0.919 in this case. The corrected value determined byFigures22 and23 illustrate the universality features of solu-

exponentr givesr,,,=0.878. In Fig.21we see qualitatively  tions quite similarly to Figsl5and16. The “real” input so-

the same behavior as in Fit$4 — very rapid tendency of so- lutions show the same universal shapes and the same scaling

lution to keep a limiting form: it takes less than 2 h to fit this properties (bottom figures). Stress the remarkable closeness
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Fig. 21. FunctionU (¢) (¢=|k|?) for angles 0, 30°, 60°, 90°, 150, 18C° for different times (see legend, in hours). Wave input is given
by Eq. 61) for wind speed 10 rs L.

of fitting coefficients of the scaling in “academic” and “real” details of wind input, of course, are important at early stages
cases. There is nothing strange in this fact because the scadf wave evolution and specific features of non-self-similar
ing parameters are determined by evident relation betweebackground are determined by these details but evolution of
parameters of self-similar solutions (E§96). They do  the self-similar core of solutions is identical in “academic”
not depend on details of source function but are determinednd “realistic’ numerical experiments.

by some integral characteristics of wind wave input only. The
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Fig. 22.  FunctionU (§)/U(§p) as function of non-dimensional Fig. 23. Nondimensional frequency spectfdw)/E(wp) as func-
wave frequency for different wave inputs (in legend). The swell tions of non-dimensional wave frequency for different wave inputs
case is given by solid line. Bottom — the scaling of the solution (in legend). The JONSWAP spectrum for the standard peakedness

peaks and the peak positions. Fitting formula and the corresponding=3.3 is shown by dashed curve. The dependence of the solutions
fitting line are given. parameters: andb is presented in bottom panel, swell scaling is

given by.

A trivial but rather important result of all the above discus-
sion is that wind speed;, in expressions for wave growth corresponding exponents shown in legend have been calcu-

rates (Eqs47-52) is, evidently, not useful quantity for scal- lated for times >4 h to remove effect of initial stage. Char-
ing wind-wave spectra. This characteristic can specify aacteristic frequencies are traced as mean frequejcgnd
freakish form of wave growth rates, while all our theoretical as a frequency of the solution pegk. One can see a small

and numerical results show dependence on integral featuregifference between two estimates of the corresponding expo-
nents for these frequencies and for wave slopes.

This difference is illustrated by Tab&for basic models of
6.2.3 Solutions at large time — Evolution of mean values wave input and different wind speeds. The exponenis ¢

were calculated for times more than 4 h in order to eliminate
The evolution of mean wave field characteristics is a waythe contaminating effect of initial stage of evolution. Similar
to trace generic features of interplaying of nonlinearity andexponents (with indice%exp”) were calculated from theo-
wave input. Figure24 shows typical dependencies of basic retical expression (E@2) by power-like fit of peak values of
wave parameters on time. In view of above remark on windnumerical solutions (exponea). While exponenty, r, ¢
speed scaling we presented these dependencies in dimeare responsible for global features of solutions, the exponents
sional form for wave input biisiao and ShemdifL.983 and Dexps Texp» Gexp CaN be associated with self-similar cores of
wind speed 10ns 1. The characteristics in Fi®@4 can be  numerical solutions. The corrections of exponents of energy
fitted by simple power-like dependencies for large times. Thep and of characteristic frequengyare of opposite signs, i.e.

of wave pumping, on fluxes.
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Fig. 24. Evolution of total wave action, energy;component of momentum, mean and peak frequency, significant wave height and wave
slope (defined a&ik) and asak eqk ). Exponents of power-like approximations calculatedsfe# h are shown in legends.

Table 6. Exponents of wind wave growth calculated for mean valueg ( ¢) and for peak characteristic&(,, pexp. gexp) Of numerical
solutions of the kinetic equation. Data for4 h only are taken for the power-like approximations. Toba’s exponents are given in the last
column.

p
. r p q Texp Pexp Vexp ==
Wave input ¢ 2q
N(@) E(@) V(1) N(wp) E(wp) p (Toba’s exponent)
10ms1
Hsiao (1983) ®m2 069 023 088 063 025 1.50
Stewart (1974)
and Plant (1982) 0.99 074 025 085 058 027 148
Donelan (1987) ®3 070 023 093 069 024 152
Snyder (1981) ®8 073 025 095 069 026 146
20ms1
Hsiao (1983) ™4 Q070 024 091 066 025 146
Snyder (1981) 05 Q79 026 098 Q70 0.28 152
30ms 1

Hsiao (1983) ®8 073 025 092 066 026 146
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Fig. 26. Non-dimensional energy=g%02/Uf, (top) and
frequency v=f,U10/g (bottom) vs non-dimensional duration
&=gt/Uyo. Numerical results for different wave input parame-
: : : : terizations are shown: wave input Hsiao and Shemdin (1983) —
0 01 02 03 0z curve 1 -Uyp=10ms™1, 2 -U10=20ms~1, 3-U30=30ms™1;

q 4 — Donelan et al. (1987) with fixel; ,,=10 ms1; 5 — Stewart

(1974) and Plant (1982) wave inputi@jo=10 ms~1. Recapitula-
Fig. 25. Top — exponentg andq for power-like approximations tive experimental data and their fit curve from Young's book (1999)
of total energy and mean frequency of the kinetic equation solu-are shown by symbols and hard line.
tions. Bottom — exponent.,, andgexp, calculated for exponents
of the solutions peaks andg. O — Isotropic “academic” runsy —
Anisotropic “academic” runsp — Swell; 0 — “Real” wave pump-  ter than by empirical Toba’s lawf¢ba 1973. The problem
ing. Exponents for constant wave action and wave energy inputs args that for “realistic” experiments these exponents are vary-
given by stars. Hard line shows theoretical dependenge@fq,  ing in very narrow range and difference between the exper-
dashed line corresponds to Toba’s law. imental Toba law and the theoretical dependence cannot be
demonstrated in full measure.

Figure 26 can be considered as an illustration of reason-
wave energy and action of self-similar core grow slower thangple agreement of our numerical results with experimental
ones for the whole solution while characteristic frequencydata discussed in monograph ¥gung (1999. The disper-
of the core falls faster. A possible explanation of the effectsjon of our numerical results is of the same order as disper-
is that non-self-similar background is stronger for shortersjon of experimental points. A possible source of the disper-
waves where wave input is relatively strong and nonlinearsjon is in normalization of results. Normalization of mean
transfer is weak due to low magnitudes of solutions. energy ag/ 4 (wind speed in power minus four!) requires

Figures25 gives a summary of directly calculated expo- rather high accuracy of measurements of wind speed. More-
nentsp andg and their counterpartg,,, andg.., derived over, as we concluded above, not the wind speed itself but
from local features of the numerical solutions. Cases ofsome integral properties of wind input are responsible for
swell, “academic” and “real” inputs are presented. One carwave growth. An additional reason for mismatch is the use of
see that all “academic” and swell cases follow perfectly theexplicit dependence on tinre Duration of initial (non-self-
theoretical dependengdq) in a wide range of parameters of similar) stage depends essentially on initial state that can lead
wave growth, i.e. the non-self-similar background affects theto incorrect comparison of results.
corresponding exponents rather slightly. In contrast, “realis- Figure 25 and Table6 show clearly that local features of
tic” runs have stronger dispersion. Corrected values (rightsolutions (position of the solution peak and this peak magni-
panel) are fitted by theoretical dependence somewhat betude) are likely more adequate for comparison of results.
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Fig. 27. Comparison of JONSWAP (dashed) and numerical (hard line) spectra for different wave(@)p(it), (c)wave input by Hsiao and

Shemdin (Eq51) for wind speeds 10, 20, 30-sT2 correspondingly(d) wave input by Donelan and Pierson-jr. (B#) for U=10ms™1;
(e), (f) wave input by Snyder et al. (E47). Time in hours, inverse wave agg/Cj, and wind speed/ are shown in plots. Exponenf,
(Eqg. 39) was estimated by power-like dependence of the solution peak on time. Solutiansifbrwas taken to reduce the effect of initial
stage of wave growth. Ratio of JONSWAP and numerical spectra peak magnitudes is giyefags

6.3 Numerical solutions vs. JONSWAP spectrum merical and JONSWAP spectra for the same values of wave

ages. Results of the comparison are shown in Efg.Nu-
Basing on theoretical results and on observations made imerical spectra (frequency spectra integrated in angle) were
the above subsections one can perform a comparison of nisalculated for different parameterizations of wind input and
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wind speed/jg itself but the integral value of input tert,
is responsible for scaling of wind-wave spectra.

Figure 27 demonstrates rather good conformance of nu-
merical and JONSWAP spectral shapes (compare with “aca-
demic” Figs.16 and23). At the same time, shapes of fre-
qguency spectr& (w) are not universal for numerical spectra
— plateaus or, sometimes, peaks are seen in the spectra at fre-
quencies approximately 40% higher than the peak ones (e.g.
B P ; ; N Fig. 27b, d). This deviation from universality looks quite
-2——— : : —_— natural for the frequency spectra that can cumulate both self-
) similar core and non-self-similar wave background in the
same frequency range.

7 Self-similarity of nonlinear transfer

7.1 Asymptotics of collision integral and of spectral fluxes

The discussion of self-similarity features of nonlinear trans-
fer is extremely important to finalize our study. The term
S, itself and the resulting fluxes of constants of motion de-
termine predominantly the evolution of wind-wave spectra.
The typical evolution of all the terms is presented in 2§.
In the whole frequency range.(2—2 Hz) we see a combi-
nation of fluxes of different signs. Near the spectral peak the
. : : AR behaviour of fluxes agrees with the above theoretical scheme:
1’ . 10 all fluxes (action, energy and momentum) are directed to
® large scales. The domain of inverse cascades is expanding
Fig. 28. Down-wind spectra of wave action, nonlinear transfer term with time t.o low frequenues V.Vh!le the boupdary of direct
s,; and fluxes of wave actiof (w), wave energyt (w) and wave cascade_s is tending to some limit. These o_Ilre(_:t cascades of
momentumk , () as functions of nonlinear frequendy=wUso/ g wave action, energy and momentum are maintained by strong
at different time (in hours in the center panel). Wave input as in dissipation that arrests all the fluxes in high frequencies (at
Hsiao and Shemdin (1983), wind speed 16T1. »>6.5).

The time dependence of the terms for fixed nondimen-
sional frequencies is shown in Fig9. Four values o are
taken: 09, 1.0, 1.2, 1.5. The particular case of wave input
corresponds approximately to the case of slowly decaying
wave action input withr = 0.92, r,,,=0.88 (see Tablé).

h ‘ h b | Power-like theoretical dependencies are shown in bold for
the exponents of wave growif (Eq.39) have been calcu- 0 onstant wave action input & 1). One can see rather

Iar:ed in apcordarcg W't? (Eh(tj.l_O),.ILe. for eifpo?epts th?_th good agreement with theoretical predictions.
characterize evolution of self-similar core of solutions. The ™ 1o cet_similar form of the kinetic Eq9g) allows to de-

parameter_xo=0.08/(2n) was fix_ed (sfee EdOin Babgnin tail the relevance of our numerical experiments to theoretical
and Soloy|ev199a). Thus, we fix ratio of peak_magnltudes results. After re-scaling the collision integral takes a form
of numerical and JONSWAP spectra for large times when nu-

merical solutions keep self-similar forms. The ratio shown in lim S,;(k, ) = [aN (k) + BkViN (k)]/t

plots asuy /a; varies in a wide range. At the same time itis =

well within dispersion of parameter; found in sea measure- Thus, the asymptotics of nonlinear transfer quantifigsQ,
ments Babanin and Soloviev1998 Table 2). The ratiois P, K, can be calculated from instantaneous solutions and
lower for wave input byHsiao and Shemdif1983 (Fig. 27a, than be compared with direct calculationsSyf and fluxes.

b, ¢) and higher for generation ratesBgnelan and Pierson- Such comparison can be considered both as theory verifica-
jr. (1987 (Fig. 27d) andSnyder et al(198]) (Fig. 27e, f). tion and as a test of numerical approach.

This is in perfect agreement with our comparison of different Results of the comparison are presented in Big.for
generation rates in Sect. 3.4.1. Besides thata; depends  swell solutions. As it was mentioned above the transition
on wind speed for the same input parameterization (comparé “inherent” wave spectra occurs for rather short time. For
Figs.27a, b, c for wave input by Hsiao and Shemdin, 1983, the swell case considered above this time is about half an
or Fig. 27e, f for input by Snyder et al., 1981). This is an hour (see Seck.2.1and Fig.9). Patterns for ®h and 100 h
additional illustration of trivial remark made above: not the of swell evolution are almost identical. Small differences

wind speeds presented in TaléleFor the JONSWAP spec-
tra peakedness parameters were fixed(, in Eg.38) while
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Fig. 29. Nonlinear transfer terns,,; (a), wave action fluxQ (b), energy fluxP (c) and momentum fluxx;} (d) as functions of time for
different non-dimensional frequenciés=wU1g/g: ©=0.9, 1.0, 1.2, 1.5 (shown as curve markers). Wind speégy=10 ms~1, wind
input (Eq.51). Power-like asymptotics for constant wave action input are shown (seeJjable

appear near peaks of distributions. The hybrid nature of7.2 Self-similar solutions and the Kolmogorov-Zakharov
weakly nonlinear cascading in the swell case is clearly seen cascades

in these patterns — energy flux changes its sign/af,~2

(w/wp~1.4). For momentum flux the point of the cascade In our analysis of self-similar solutions in Sect. 5.2 we noted

inversion is closer to the spectral peak gk ,~1.5. the generic relationship of self-similar non-stationary (non-
For the case of wave input the tendency to an asymptotihomogeneous) solutions and the Kolmogorov-Zakharov sta-
behaviour is slower but it is still pronounced. Fig@eil- tionary solutions of the kinetic equation: formally, the KZ

lustrates it quite well. The nonlinear transfer tefip for  solutions are exact solutions of the kinetic equation in self-
down-wind direction is shown to be very close to its asymp- similar variables: the term corresponding to non-stationarity
totic form while for fluxes, which are averaged in angle val- (non-homogeneity) and nonlinear transfer term vanish inde-
ues, the tendency is essentially slower. The explanation ipendently for these special solutions. We concluded quite
rather simple. We see again the effect of averaging in anglgéaturally, thathe KZ solutions can be treated as stationary
when non-self-similar background contaminates the strongimits of non-stationary (non-homogeneous) self-similar so-
features of self-similarity. lutions for the two particular cases — constant wave action
input and constant wave energy inptthere is nothing be-
hind the above statement but behaviour of slopes of spec-
tral tails of these solutions. In fact, in addition to the fun-
damental exponents there are fundamental coefficients — the
so-called Kolmogorov’s constants that are responsible for ra-
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Fig. 30. Direct calculation ofS,;; and fluxes for swell (solid lines) vs. their asymptotical profiles predicted byd8)(§ashed). Left panel
—time 0.5 h; right — time 100 h.

tio of spectra magnitudes to spectral fluxes (in powg3)1 Probably, these constants can be estimated for quasi-
These constants can be estimated analytically (Geogjaev argtationary parts of solutions — their high-frequency tails. It
Zakharov, 2005) for the KZ solutions. A number of ques- was made numerically for the direct cascade constgnt
tions arises when we try to estimate the Kolmogorov con-(Pushkarev et gl2003 Lavrenov et al.2002 within the spe-
stants numerically. cially designed “academic” runs. Isotropic (or anisotropic)

The Kolmogorov constant€”,, C, are introduced by wave generation was put at the low frequency end of the cal-
Egs. (74 and 75) for isotropic stationary solutions. The nu- culation domain while strong dissipation was set up at the
merical solutions are essentially non-stationary and, morehigh frequency end. The wide inertial frequency domain
anisotropic. The effect of anisotropy is eliminated automati- provided a quasi-constant spectral flux of energy from large
cally in definitions themselves where frequency spectral disto small scales. In this case the solution reaches a quasi-
tributions are used (Eq§.3 and 77). More burning ques- stationary state in an explosive way and leaves no questions
tions are:How to define the Kolmogorov constants for non- on the first Kolmogorov constaft,: the numerical estimate
stationary (non-homogeneous) case? Does the definitiontends quite rapidly to some limiting value.

make a physical sense? How the corresponding values can The situation is quite different in case of our key inter-
be related to “true” Kolmogorov constants? won 1S q y
est — self-similar inverse cascade. The corresponding non-
stationary solutions propagate in front-like manner with fi-



S. I. Badulin et al.: Self-similarity of wind-driven seas 937

(%)

=0

N

i

N(K) (m"*s),0

=0

S (k) (m"), @

x10° x10°

x 10~

T T Lt s s ]

0.5 1 15 2 25 3 0 05 1 15 2 25 3
K/K K/K
p p

Fig. 31. Direct calculation ofS,,;; and fluxes for swell (solid lines) vs. their asymptotical profiles predicted by #).(ashed) for wave
input (Eq.51), wind speed 10 s~ L. Left panel — time 4.15 h; right — time 65 h.

nite speeds (see Fi®1). Moreover, for the family of mogorov constan€, shows evident tendency to an asymp-
self-similar solutions with different exponents of wind wave totic value C,~0.35. The range where this value depends
growth the wave action flux depend on time essentially. Theslightly on wave scales (constant flux domain) correspond to
prospects for building a bridge from the KZ solutions to the non-dimensional wavenumbekgx ,~2—4 (1.5—2 in non-
families of non-stationary and non-homogeneous self-similardimensional frequencies).

solutions look illusory. Even more cogent argument for the cons@pts given in

A straightforward trick to overcome the difficulty is to as- Fig. 33. Two “academic” runs with essentially different wave
sume the valu€, be slowly dependent on time (fetch). In growth rates'=1/2 (wave action input decays) ame=4,/3
fact, the correct solution of the problem does not require this(growing wave action, constant wave energy input) are pre-
trick: The ratios of the self-similar solutions to fluxes for the sented. Variations of wave action flux reach 4 times in these
self-similar solutions defined as the KZ constaiifsand C, two examples but the valu€$, remain very close to the pre-
do not depend on time! vious estimates.

Consider, first, numerical evidence of the result. In B. The dependence df, on time (fetch) can be found eas-
the calculation of the Kolmogorov constaty for two cases ly for self-similar solutions using scaling relations given in
of wave input is presented. Wave inputs (E§%.and 47) Tables2-5.
for Uio=10ms™1 are taken for comparison. Despite great
quantitative difference of the examples (wave action by fac- _ E(w, o3
tor 3, flux Q — 5-7 times) the resulting estimate for the Kol- Ca(@. 1) = lIm B0, 1B Cq(1ED) (112)
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Fig. 32. Down-wind solutionN (k), compensated frequency spectra of endigy)w~°, wave action fluxQ and the resulting estimate of
the Kolmogorov constar@,. Left —wave input (Eg51), wind speed 10 rs~1, time 8 (dotted), 16 (dash-dot), 32 (dashed), 64 h (hard line);
right — wave input (Eg47), wind speed 10 rs~1, time 4 (dotted), 8 (dash-dot), 16 (dashed), 32 h (hard line).

Thus, the analogue of the inverse cascade Kolmogorov conhigh-frequency domain the direct cascade is described per-
stantC, does not depend on time, it depends on self-similarfectly well by the KZ solution withC,~0.38—0.4. The do-
argument only. Quite similarly, for the direct cascade con-mains of inverse and direct cascades in this case are deter-

stantC, one has mined by wave input features. These domains coexist in the
Elw. Do swell case as it was pointed out above but the inverse cas-
Cp = lim % = C,(l&)) (113) cade domain for energy is rather narraw« , <2). Figure34
1—0 g43P(w, )Y/ (right) illustrates this special “hybrid” cascading. The ratios

Thus, the basic property of the KZ solutions — constant ra-(Egs.112and 113 give values which are very close to nu-
tio of the solution to the fluxes (in power/3) is dealing  merical and theoretical estimates of the “true” Kolmogorov
with self-similarity of solutions of the Hasselmann equation. constants found previously.gvrenov et al.2002 Geogjaev
It remains valid in a general case irrespectively to the caséind Zakharov, 2005 Pushkarev et al2003.
of wave pumping. This extends essentially the applicability
of the concept of Kolmogorov’s cascading for non-stationary
(non-homogeneous) evolution of wind-wave spectra. 8 Discussion

Figure 34 (left) illustrates this conclusion for an artificial
“hybrid” solution of coexisting direct and inverse cascadesIn this paper we have attempted to address important ques-
presented above (Fi@). In ranges of weak variability of tions of wind-driven eave dynamics based on “first princi-
fluxes the corresponding functions of self-similar argumentples” of the statistical description of waves. We recognize
C4(8), Cp(&) tend to some limiting values. Inverse cascadethat to some researchers these principles may appear too re-
of wave action in a range/«,~2—5 (v/w,~1.5-2.2) is strictive for current needs. On one hand, hypotheses, approx-
governed by slowly varying paramet€~0.35. In alarge  imations, and simplifications are unavoidable. On the other
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Fig. 33. Down-wind solution¥ (k), compensated frequency spectra of endigy)wY/3, wave action fluxQ and the resulting estimate of
the Kolmogorov constar€,. Left —“academic” wave inpuNw,~zl/2 time 4 (dotted), 8 (dash-dot), 16 (dashed), 32 h (hard line); right —
“academic” wave inpulV;.; ~1%3, time 4 (dotted), 8 (dash-dot), 16 (dashed), 32 h (hard line).

hand, we argue here that first principles can provide an ex- Often in numerical models of wind waves known physi-
cellent framework for properly considering these hypothesescal principles are sacrificed for speed of computations, al-
approximations and simplifications. gorithm stability, and “plausibility” of the results. Evi-
dently, it is easier to achieve the plausibility by tuning gener-
We started with formulation of the basic principles in ation/dissipation terms in the kinetic equation. The resources
Sect. 2 of the paper. In Sect. 3 we fixed common points angyf g ch “diagnostic” patchingTblman and Chalikoy1996)
points of disagreement in experimental and theoretical apyf the physical problem are rather short and, additionally,
proaches. The experimental parameterizations of wind-wavegne patching being applied for particular conditions does not
spectra are based on the concept of self-similar evolution Obuarantee adequate results in general case. We propose our
wave field, they are implying independence of the resulting-first principles” — the theory of weak turbulence —as a physi-
spectra on details of wind-wave generation and dissipationgg| hasis, as a system of criteria for verification of wind-wave

At the same time, a great portion of efforts in parameteriza-mogels but not as a barrier for experiments with different
tions of wind-wave growth and dissipation is aimed at detail- jodels.

ing frequency dependences of the rates. It should be realized

quite clearly, that any “new” form of these dependencies im- The theory of weak turbulence predicts correctly many
plies an extra scaling. Physical reasons for the extra scalinfeatures of wind-wave evolution, first of all, the well-known
are usually absent in the models. Great dispersion of magpower-like asymptotics of wind wave spectra. This fact
nitudes of the rates is just one side of the problem. Otheiis usually ignored because the corresponding KZ solutions
side of the problem, mentioned in Sect. 3: the forms of inputare considered as physically irrelevant — these solutions are
functions (e.g. their low-frequency cutoff) are not consistentisotropic and are not localized in wave scales. But the KZ
with self-similar scaling of wind-wave spectra. solutions are not “the first and the last” result of the theory
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Fig. 34. Correlation of wave spectra and spectral fluxes. Compensated spectra for direct (dashed) and inverse (hard line) cascades, wave
energy flux, wave action flux and estimates for the Kolmogorov cons@ngsdC), (Egs.113 112). Left column - “artificial” wave input

(see Fig.7), both direct and inverse cascade regimes are presented by wide domains of quasi-constant fluxes. Right column — swell case,
direct cascade with quasi-constant (in frequency) flux of wave energy allows for reliable estimate of the Kolmogorov consikimt

domain of inverse cascade is relatively narrow.

of weak turbulence. In fact, they represent basic physicalave action propagates to low frequencies while inverse cas-
mechanism of wind-wave evolution — cascading of wave ac-cade of wave energy and momentum fluxes occur in a narrow
tion, energy and momentum in wave scales. Evidently, thisband near spectral peak only. The direct cascades of wave en-
mechanism works in general case and, more, it dominates iergy and momentum play a key role in wave evolution: they
many cases of interest. provide leakage of wave energy and momentum in high fre-
The theoretical analysis in Sect. 5 assumes that wave norfluencies without any dissipation in the system.
linearity is a dominant process in wind-wave generation. As The self-similarity of experimental parameterizations of
the first step of the approximation procedure we consider sowind-wave spectra (e.g. JONSWAP) makes possible to relate
lutions of “conservative” Hasselmann Ed) for deep water  the indexes of self-similar solutions with experimental expo-
waves to describe shapes of self-similar solutions. The nexnents of wind-wave growth. The experimental dependencies
step — the balance Edp)(just selects a self-similarity index are shown to be consistent with the theoretical results. This
that is consistent with the growth of total wave action (en-is an important point for further numerical analysis.
ergy). We show that the families of self-similar solutions for ~ Numerical approach of Sect. 6 was described in previous
duration-limited and fetch-limited wave growth are nothing papers (sed@racy and Resio1982 Resio and Perriel 991
but generalization of the KZ solutions where spectral fluxesPushkarev et 3812003 and is presented in the paper briefly.
are not yet constant but power-like functions of time (fetch). The point of the present numerical study is in formulation
These solutions describe inverse cascades of wave action, eof physical models basing on the concept of self-similarity.
ergy and momentum for “acceptable” rates of wave growth.The “academic” series allows one to obtain the self-similar
Particular case of swell corresponds to “hybrid” regime whenbehaviour in “naked form” in a whole range of indexes of
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self-similarity. The main result of the section and of the pa- growth only. At the moment numerical solution of the fetch-

per as a wholeShapes of spectra depend very slightly on thelimited problem for the Hasselmann kinetic equation cannot

indexes.This result can be considered as a theoretical argube obtained with accuracy which is adequate to the ques-

ment for universal parameterization of shapes of wind-wavetions considered above. At the same time, the present study

spectra. In fact, the universality of the spectral forms is agives a hope that essential features of self-similar evolution

starting point of all experimental parameterizations of wind- of wind wave spectra remain valid in this particular case and,

wave spectra (e.gdasselmann et al1973. very likely, can facilitate essentially description of spatio-
Proceeding with “realistic” wave inputs we, first, justify temporal wind-wave growth in general case.

the effect of strong tendency to self-similar behaviour, and,

then, the universality of the spectral shape. Again, we find

rather small differences of spectral shapes for different mod-Appendix A Kernels for the kinetic equation

els of wave generation. Quite evidently, this results from

dominating nonlinear transfer as compared to wave input and'he four-wave interaction coefficient for gravity waves, sat-

dissipation but the possibility itself of this domination is not isfying all the symmetry conditions at the resonance curve as

evident a priori. The situation looks like a magic circle — well as elsewhere, has the form

high non-linearity requires high magnitudes of wave field

and these magnitudgs, in. thgir_turn, require high wave _in-vl(§)34= T1234+ (w1 + w2 — w3 — w4)N1234, (A1)

put. Fortunately, nonlinearity is likely a permanent winner in

this conflict in a wide range of conditions of wave input and whereT1234 can be presented in a relatively compact way as

dissipation.
For “realistic” wave inputs the nonlinearity cannot domi- Tioaa= — 1 1
nate globally, in the whole domain of wave scales and direc- 3272 (q19293q4)Y/*
tions. There are frequencies and directions where nonlinear-
ity is relatively small and, hence, does not provide the strong X {(—kzks + q2q3)(—kiks + q1q4)
tendency to self-similarity. In this case it is useful to model
the wind-wave field as a composite of self-similar “core” and + (—kaks + q193)(—k2ka + g2q4)
non-self-similar “background”. This composite model al- + (kik2 + q192) (k3ka + g3q4)

lows to explain differences of exponents of wave growth ob-
served in experiments and in numerical runs. Spectral peaks
are desqubed bet'ter by behaviour of self-similar core of solu- x| g2 +q3 + q§ +¢2 — q1_3(w2 — wa)?
tions while evolution of total energy and mean frequency can

+ wiworw3wy

be affected essentially by non-self-similar wave background.

Taking into account this simple observation we obtain very —go_3(wp — w3)® — q142(w3 + a)4)2:|
good coincidence of our numerical results with JONSWAP

parameterization of wave spectra. We extract paramegter (w2 — wa)?

of wind-wave growth from numerical solutions. Generally it + 413 — (02 — wa)?

appears significantly higher than in experiments. The expla-

BN 2k 1k - q1-
nation is trivial: we used spectral peak features as a reference x[2kks + w13(q1 + 43 = 41-3)]

for the comparison while experimentalists operate usually by x[2koks + w204(q2 + g4 — q1-3)]
total energy and mean frequency that are affected heavily by " (w2 — w3)?
non-self-similar wave background. Gr—3 — (w2 — w3)?2

The final part of the paper brings us back to the fundamen- x[2k1ka + w104(g1 + qa — g2—3)]
tal role of the Kolmogorov-Zakharov solutions. We find rela-

. . . . . 2kok —qr—
tionship of the non-stationary (honhomogeneous) anisotropic x[2koks + w2w3(g2 + g3 = q2-3)]

S . . . ’ 2
self-similar solutions and stationary and isotropic KZ solu- + (w3 + wa)
tions in terms of spectral fluxes. The result looks paradoxi- q1+2 — (w3 + wa)?
cal: spectral cascading in both cases is governed by the same x[2k1ko + wiw2(q1 + g2 — q142)]
set of fundamental physical valu€s, andC,. Former Kol- x[2kska + w30a(q3 + ga — q142)] (A2)

mogorov’s constantg’, and C, become functions of self-
similar argument which is nothing but non-dimensional Note that:
wave scale {=|k|/|k,|=w?/w3) for the self-similar solu-
tions. These functions characterize ratios of wave spectra 1. Perhaps it is not the shortest possible form (see below),
magnitudes to spectral fluxes. Our result show that these ra-  but it is indeed remarkably symmetric;
tios are independent, or, more carefully, depend weakly on
wave input, i.e. the problems studied in this paper show adi- 2. g=1. Otherwizeg would appear in places.
abatic development of spectral fluxes.
We presented numerical results for duration-limited 3. Krasitskii's notation is used, in particul@t|=q.
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There are two other versions Bf>34 One, somewhat longer,
is suggested byakharov(1999. Correcting a number of
misprints and omitting, it can be written as

1 1
3272 (q19293q4) V4
2(w1 + wp)?

x [wzwa (k1kz — q1q2) + 0102 (k3ks — q3q4)]

2(w1 — w3)?

X [wawy (k1k3 + q1g3) + w103 (k2ks + g2q4)]

2(w1 — wa)?

X [wa2w3 (k1ks + q194) + w104 (k2k3 + q2q3)]

+ (kik2 + q192)(k3ka + g3qa4)

+ (—kiks + q193)(—k2k4 + q2q4)

+ (—kika + q1qa)(—koks + q2g3)

)2 (kak2 — q1q2)(kska — q3q4)
q142 — (01 + w2)?

03)2 (k1k3 + q1q3)(k2ka + q2q4)

Z123a= —1291q929394

+ 4wy + w

+ 4w1 —
q1-3 — (w1 — w3)?
kik kok
v Aoy — w4)2( 1k + q194) (k2ks + g2q3) (A3)
q2-3 — (w1 — wa)?

There exists yet another version&h3athat can be found in
the monograph bizavrenov(2003 and used in his derivation
of the specific algorithm for the solution of the Hasselmann
equation. Apparently, it is eventually inherited from paper by
Webb(19798. Following the above normalization and again
omitting g, the following formula is obtained:

1 1
3272 (91929394

+ 2(w1 4 w2)* (w1 — w3)* (w1 — wa)?

x(q1+¢q2+ g3+ qa)

(k1k2)(k3ks) + (k1k3)(koks) + (kika)(kok3)

1

> [(wl + w2)(k1ko + kaka)

—(w1 — w3)*(kaks + koky)

(@1 — oa)*(kaka + koks) |

w1 — w3)? (k1ks + q1q3) (koka + q2q4)
q1-3 — (w1 — w3)?

Mw1 — wa)? (k1ka + q1qa) (k2kz + q2q3)
go-3 — (w1 — wa)?

A1 + 02)? (q192 — k1k2) (q3qa — kska)
q1+2 — (014 @2)?

ThoughT, Z andL look quite differently, they are all numer-
ically equivalentat the resonance curveHowever, it is im-
portant to note that they aret equivalent out of it, i.e. they
differ on certain functions proportional {1 +w2—w3—w4).
The expression folN1234 depends on the specific choice
of the canonical transformation. Using the transformation

Lioza= V17 { 591429394

+

+

- (A4)
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of Krasitskii, the following expression (unfortunately, rather
long) can be obtained (certainly, it is valid fBr2340nly, and
not valid forZ andL):

1 1
3272 (q19293q4)Y/*

N1234=

X {w1w2w3w4 [q1w1 + qow2 — q3w3 — qawa

—q1-3(w2 — w4) — g2-3(w2 — W3)
+q1+2(w3 + w4)]
(w2 — w3)
g2-3 — (w2 — w3)?
X [k1ks + q194 + w104(q1 + g4 — G2-3)]
X [2k2k3 + wr2w3(q2 + g3 — g2-3)]
(w2 — wa)
q1-3 — (w2 — w4)?
x[k1k3 + q1q3 + w103(q1 + g3 — q1-3)]
x[2k2ka + w204(q2 + g4 — q1-3)]
(w3 + wa)
q142 — (03 + wa)?
x[—kik2 + q192 — w1w2(q1 + g2 — q1+2)]
X [—2k3ks — w3w4(q3 + qa — q1+2)]
+ [w2-3(g293 — k2k3)
—wp(ksk2—3 + q3q2-3)
+w3(q2q2-3 — kok2_3)|
x [w2-3(q194 — k1ka)
+wi1(qaq2—3 — kakz-3)
— w4(kik2-3+ q192-3) ]

X [4wr—3 (wo—3 + w1 — wa) (w2—3 — w2 + w3)] ™+
[w2—3(—k2k3 + q2q3)

+w2(k3k2-3 + g3g2-3)

—w3(—k2k2-3 + g2g2-3)]

x [w2-3(—k1ka + q1q4)

—w1(—kak2_3 + q4q2-3)

+wa(kiko-3 + q192-3)]

X [dwr—3 (wp—3 — w1 + wa) (w2—3 + w2 — w3)] ™+

+ [w1-3(—koka + q2q4)

—wz2(ksk1-3+ qaq1-3)

+wa(—k2k1-3+ q2q1-3)]

x [w1-3(—k1ks + q193)

+w1(—kski-3 + q3q1-3)

—wa(kik1-3 + q191-3)]

x[4w1-3 (01-3 + w1 — w3) (W1-3 — W2 + wa)]
[w1-3(—k2ka + q2q4)

+wz(kak1-3 + qag1-3)

—wa(—kok1-3+ g291-3)]

x [w1-3(—k1k3 + q193)
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—w1(—ksk1-3 + g391-3)

+ w3(k1k1-3+ q1q1-3)]

[4wn—3 (w1-3 — w1 + w3) (W1-3 + w2 — W)+
+ [w1r2(kika + q192)

+w2(—kik142 + q191+2)

+w1(—k2k12 + q29112)]

x [w112(k3ka + q3q4)

+wa(—k3zk1+2 + g3q1+2)

+w3(—kak1y2 + qaq112) ]

x[dw142 (0142 + 01+ @2) (0142 + w3 + wa)]
— [w112(k1k2 + q192)

—w2(—kik12 + g19142)

—w1(—k2k1y2 + g29142) ]

x [w112(k3ka + q3q4) (AS)

—wa(—ksk12 + q3q1+2)

—w3(—kak112 + q4q142) ]

x[dw142 (0142 — 01 — @) (w142 — w3 — @4)] "
The expressionTi234t+(w1+wr—w3—wa)N1234 coincides
with Krasitskii's V1(234globally
Appendix B Green function for function A(w, 6)

Solution for the equation

1 92 1 92
A=z 4v= 2 VA= fw.0 B1
(28w2+a)2892) f@,9) (B1)

is given by Green function

0o p2r
Alw, 0) = f / G(w,o,0 —0")f(w,w)dw'dd’ (B2)
0 0

where
1 ww’ . ,
Gw, o, 0— 9)——5’1_700 A explin(® — 6] (B3)
o'\ 2" o w \ An o'
x <—> 9(1——)+(—,) 9(--1)
w w w w
Here
1
e 2
A, = 4+2n
and
_J1&>0
9(5)—{0$<0}

Equation 66) appears after substituting &, (o', 8") as
f(',0")in Egs. 63) and 62).
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Appendix C  Formal solution for function A(w, 0)

To determine the equation, describing the general Kolmogo-
rov solution one defines the following function:

00 w3 00 2 2 2
F(w,0) = 47T/dwlfdwzfdw3/d01/d92/d93
0 ® 0 0 0
x8(w + w1 — w2 — w3) (C1)

X8 (w COSH + w1 COSH1 — wy COSHr — w3 COSH3)
x [wSNwlezNws + @3Ny Ny Nos

3 3 2
_szwNwleg - wstNwlez] : |Tww1w2w3,9919293|

and find its Fourier coefficients

2
Fu(w) = / Fy(w, 6) cosnfdo (C2)
0

A general Kolmogorov spectrum is defined by the following
system of equations:

P+w0— / (@ — w1) Fo(opdwr (C3)
1{,

M = g/wlFl(wl)dwl (C4)

Fi(w)=0 if n>2 (C5)

Now g, () = wN,(0). One can preseny in a form of the
Fourier series

N(w, 0) = % > Nu(w) cosnf) (C6)

and turn Egs.€3)—(C5) into an infinite system of nonlinear
integral equations imposed oV, (w).
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