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Abstract. The results of theoretical and numerical study of
the Hasselmann kinetic equation for deep water waves in
presence of wind input and dissipation are presented. The
guideline of the study:nonlinear transfer is the dominat-
ing mechanism of wind-wave evolution.In other words, the
most important features of wind-driven sea could be under-
stood in a framework of conservative Hasselmann equation
while forcing and dissipation determine parameters of a so-
lution of the conservative equation. The conservative Hassel-
mann equation has a rich family ofself-similar solutionsfor
duration-limited and fetch-limited wind-wave growth. These
solutions are closely related to classic stationary and ho-
mogeneous weak-turbulent Kolmogorov spectra and can be
considered as non-stationary and non-homogeneous general-
izations of these spectra. It is shown that experimental pa-
rameterizations of wind-wave spectra (e.g. JONSWAP spec-
trum) that imply self-similarity give a solid basis for com-
parison with theoretical predictions. In particular, the self-
similarity analysis predicts correctly the dependence of mean
wave energy and mean frequency on wave ageCp/U10. This
comparison is detailed in the extensive numerical study of
duration-limited growth of wind waves. The study is based
on algorithm suggested by Webb (1978) that was first real-
ized as an operating code by Resio and Perrie (1989, 1991).
This code is now updated: the new version is up to one or-
der faster than the previous one. The new stable and reliable
code makes possible to perform massive numerical simula-
tion of the Hasselmann equation with different models of
wind input and dissipation. As a result, a strong tendency
of numerical solutions to self-similar behavior is shown for
rather wide range of wave generation and dissipation condi-
tions. We found very good quantitative coincidence of these
solutions with available results on duration-limited growth,
as well as with experimental parametrization of fetch-limited
spectra JONSWAP in terms of wind-wave ageCp/U10.
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1 Introduction

To develop a proper and reliable theory that describes at least
in some basic features the wind-driven sea is an urgent and
challenging task. Very important step in this direction was
done byHasselmann(1962, 1963). Hasselmann started with
the seminal work ofPhillips (1960) who established that
the main weakly nonlinear process in the system of gravity
waves on the sea surface is a four-wave interaction governed
by the following resonant conditions{

k1 + k2 = k3 + k4
ω1 + ω2 = ω3 + ω4

(1)

Starting from this point,Hasselmann(1962, 1963) derived
the kinetic equation for squared amplitudes of water waves.
This was an important achievement in fledging nonlinear
physics as an outstanding event for physical oceanography.
First, Hasselmann claimed that the theory of wind-driven sea
can be treated as a part of theoretical physics: thus, the so-
lution can be found by means of well-justified analytical and
numerical methods. Then he persuaded the community of
physical oceanographers to use his approach as a core of
wave prediction models. Note, that the Hasselmann equa-
tion is just a limiting case of the quantum kinetic equation
for phonons known in condensed matter physics since 1928
(Nordheim, 1928).

In spite of progress in development of new models for
wave forecasting, this problem is far from being solved. Nu-
merical solution of the Hasselmann equation turned out to
be an extremely hard task for available computers. First at-
tempts to solve this equation numerically were done in the
seventies (Hasselmann and Hasselmann, 1981): since that
time many researches all around the world contributed into
development of algorithms and numerical codes (Hassel-
mann and Hasselmann, 1981, 1985; Webb, 1978; Masuda,
1980; Komatsu and Masuda, 1996; Polnikov, 1990, 1993;
Lavrenov, 2003; Tracy and Resio, 1982; Resio and Perrie,
1991; Hashimoto et al., 2003). This list is not complete, it
just shows the diversity of approaches to the problem.
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In parallel with numerical approaches, a number of mod-
els was proposed in order to substitute the exact Hasselmann
equation by simpler (first of all, for numerical solution) mod-
els. The Discrete Interaction Approximation (DIA) is the
first and the most known substitute of this kind (Hasselmann
and Hasselmann, 1985). The main point of this approach is
replacing the nonlinear integral operatorSnl in the kinetic
equation (collision integral) that describes a continuum of
four-wave resonant interactions by a sum of relatively small
number of terms for a particular set of resonant quadruplets
(1). Recently the Multiple Discrete Interaction Approxima-
tion (MDIA) entered into practice as an extension of DIA, it
is based on the same idea and on the power of modern com-
puter systems (Hashimoto et al., 2003). Till now a “modus
vivendi” in popular wave prediction models WAM (Komen
et al., 1995) and SWAN (Booij et al., 1999) is the use of DIA
and MDIA as substitutes for the kinetic equation.

An alternative approach is based on replacing the non-
linear integral operatorSnl by a simpler differential opera-
tor. Hasselmann (Hasselmann et al., 1985) was the first who
realized the idea of “differential approximation”. Indepen-
dently, Iroshnikov(1986) obtained the differential operator
as an approximation for the collision integral. In both cases
the forth-order differential operators were proposed. Later
Zakharov and Pushkarev(1999) showed that the compli-
cated fourth-order PDE’s offered by Hasselmann and Irosh-
nikov can be simplified to the second-order nonlinear diffu-
sion equations without loss of accuracy: the diffusion equa-
tions describe evolution of average spectra characteristics
(energy, mean frequency) surprisingly well. To reach bet-
ter description for fine features of spectra, several modifica-
tions of the simple diffusion model were offered (Pushkarev
et al., 2004). In spite of this success, the simple models are
not able to reproduce very important details of experimental
spectra of wind-driven waves: the strong angular anisotropy
that decreases with the frequency (angular spreading), the
pronounced peakedness of the spectral distribution etc. As
it has been pointed out recently byBenoit (2005) “the ac-
curacy of currently used approximations (e.g. DIA and dif-
fusion operators) are quite low” to approximate adequately
the collision integralSnl . Thus, the return to the exact kinetic
Hasselmann equation seems inevitable.

Coming back to the Hasselmann equation we should stress
that its derivation is based on a number of rather restrictive
hypotheses and approximations. First of all, the phase ran-
domness is suggested, i.e. the coherent structures like soli-
tons and wave breaking do not play any role in the Hassel-
mann equation. Evidently, this condition is not fulfilled in
some important physical situations. For example, in wind-
wave tanks the wave turbulence spectrum is one-dimensional
(quasi-one-dimensional) and the Hasselmann kinetic equa-
tion in its classical formulation is not valid. In this case more
sophisticated theory is required, for instance, the approach
offered recently byJanssen(2003) and developed success-
fully by Onorato et al.(2004, 2005) can be used.

The validity of kinetic description of large wave ensem-
bles at long time was verified recently by several different ap-

proaches to a direct numerical simulation of dynamical equa-
tions for water waves (Annenkov and Shrira, 2004a; Onorato
et al., 2002; Dyachenko et al., 2004). In these papers the
tendency to formation of weak-turbulent Kolmogorov spec-
tra was demonstrated for discrete ensembles of deep water
waves: the ensembles contained relatively small number of
harmonics.Tanaka(2002) demonstrated the spectral maxi-
mum downshift that is the key physical effect of the kinetic
theory of surface waves. Encouraging results in this direc-
tion are obtained recently by (Zakharov et al., 2005). in
numerical experiments with regular ensembles of harmonics
(512×512 grid in wavevector space) and byAnnenkov and
Shrira (2005) for chains of resonant harmonics. However,
an extensive verification of the Hasselmann kinetic equation
by comparison with numerical solutions for dynamical equa-
tions is not carried out yet and remains a vital problem for
the water waves study.

Taking into account the difficulties mentioned above, some
researchers claim that the Hasselmann kinetic equation is not
applicable to wind-driven waves (Rasmussen and Stiassnie,
1999). If this is the case, the vast activity of last decades
focused on wave prediction models of the third and fourth
generations is futile. We think that this opinion is too radi-
cal. Of course, such extremely important physical processes
as wave breaking and freak wave formation remain beyond
the kinetic equation. However, we believe that their contribu-
tion into the key effects – evolution of the mean energy and
frequency of the spectral peak – is negligible or can be taken
into account by adding some small correction terms to the
kinetic equation. In other words, the wind wave spectrum
near the pronounced spectral maximum is wide enough (in
frequency and direction) for the kinetic equation to be valid.

The Hasselmann kinetic equation for water waves is not
an extraordinary object of modern physics. Similar equa-
tions are well known in many other areas: in plasma physics,
in helium superfluidity, in Bośe condensation problem etc.
All these problems are subjects of the theory of weak turbu-
lence. The key result of this theory is the exact Kolmogorov-
Zakharov (KZ) solutions of the stationary kinetic equation.
These solutions describe cascades of motion constants to in-
finitely small or to infinitely large wave scales. The sim-
plest “direct cascade” solution found byZakharov and Filo-
nenko(1966) is quite similar to the classical Kolmogorov
spectrum of incompressible fluid turbulence and describes
transport of energy from large to small scales where energy
dissipates. The opposite tendency, also observed in the wa-
ter wave ensembles, is the “inverse cascade” – the transport
of wave action from small to large scales. The correspond-
ing Kolmogorov-type solution was found by Zakharov in the
same year (Zakharov, 1966) but was studied in details for wa-
ter waves fifteen years later (Zakharov and Zaslavskii, 1982).
Katz and Kontorovich(1971) showed that solutions of this
type appear in a number of problems of weak turbulence (e.g.
plasma waves) and found weakly anisotropic Kolmogorov-
Zakharov solutions (Katz and Kontorovich, 1974; Katz et al.,
1975).
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Both these basic solutions imply sinks and sources at in-
finitely large or at infinitely small scales and no genera-
tion and dissipation in the domain of cascades, in the so-
called inertial interval. In this case the nonlinear transfer
is the only mechanism of wave field evolution. Existence
of two Kolmogorov-type solutions that carry different con-
stants of motion in two opposite directions takes place in
two-dimensional turbulence of incompressible fluid (Kraich-
nan, 1967).

The development of weak turbulent theory proceeded in
parallel with the boom in wind-wave forecasting based on
the Hasselmann equation. Unfortunately, these two streams
of science interacted quite weakly. In 1983 Kitaigorodskii,
following the series of works by Zakharov and co-authors
(Zakharov and Filonenko, 1966; Zakharov and Zaslavskii,
1982, 1983), tried to persuade the oceanographic community
that the Kolmogorov-type approach is applicable to the wind-
driven sea. He was criticized byKomen et al.(1984), then
by Phillips (1985), and the concept of Kolmogorov-type sce-
nario was not accepted by majority of oceanographers. Criti-
cism was based on superficial arguments: the main point was
the difference in energy budgets for fully-developed turbu-
lence in incompressible fluid and for the wind-driven weak
turbulence of surface waves. Indeed, for sea waves wind in-
put may not be concentrated in small wave numbers (as it
is in 3-D turbulence of incompressible fluid) but is broadly
distributed in the whole spectral range. However, this cir-
cumstance does not affect significantly the weak turbulence
theory results and leads only to slow dependence of energy
and wave action fluxes on wave scales. In spite of this depen-
dence the weak turbulent theory correctly predicts exponents
for wind-driven spectra tails as well as the rate of spectral
peak downshift and the rate of energy growth with duration
and fetch.

In 1985 Phillips formulated an alternative scenario for the
energy budget. He argued that in the equilibrium range three
major input terms in the Hasselmann equation – nonlinear
transfer, wind input, and white-cap dissipation – are of the
same order of magnitude and, thus, balance each other. Def-
initely, our numerical experiments do not support this view-
point. They show thatthe nonlinear transfer term always
surpasses income termsfor growing wind-waves. This fact
validates our approach. We have to stress once more that
the validity of the kinetic equation for wind-driven waves is
a problem of great concern and requires an extensive study
of theoretical, experimental and numerical aspects in their
intimate linkage. Phase-resolving models of wave field pro-
posed recently (Annenkov and Shrira, 2005; Dyachenko et
al., 2004; Onorato et al., 2002) have given indispensable
tools of exploring this problem.

In this paper we apply systematically the weak-turbulent
theory to the wind-driven sea. The wind-driven waves are
generated by Cerenkov-type instability but it is not easy to
calculate the growth rate of this instability. The atmospheric
boundary layer near the sea surface is typically very turbu-
lent, therefore, all theoretical models for instability, that is
excited by a real air flow, are vulnerable for critics and can-

not be justified without serious problems. Numerous experi-
mental studies were carried out to determine the wind-wave
generation rates. Actually, these complicated and very ex-
pensive experiments do not provide reliable estimates for the
rates dealing with the effect of the wind. The dispersion of
magnitudes for the wind input rates given by different au-
thors is more than the rates themselves.

The situation with experimental background for the wave
dissipation rates is even worse. Physical mechanisms of dis-
sipation are still not clear, especially for long waves. At low
winds, the generation of capillary waves is likely to be the
major mechanism of dissipation. For moderate winds cap-
illary waves generate micro-breakers that increase dramati-
cally the dissipation in small wavelengths. The dissipation
of dominant waves becomes noticeable for high winds (more
than 6 m·s−1) when the breaking of waves occurs. Quanti-
tative comparison of different dissipation mechanisms is not
done yet, hence, all available formulas for nonlinear dissipa-
tion rates can be subject of criticism.

An additional unclear point is the following: how to sep-
arate wave generation and wave dissipation in the real sea
experiments? In experiments the wave input is measured
for special conditions of initial growth of short waves or
by measuring the wave-induced pressure field above waves
of any length (Plant, 1982). In the first case the nonlinear
transfer and wave dissipation are assumed to be small. In
the latter, the momentum and energy fluxes due to turbulent
wind are thought to be absorbed completely by wind waves,
drift currents, turbulence etc. The quantifying the fluxes to
the various physical processes, certainly, requires sophisti-
cated experimental setup or/and (ratherand than or) addi-
tional hypotheses. Evidently, in this case the separation of
wave growth and the dissipation is extremely difficult prob-
lem. In fact, less than 5% of the fluxes contribute into wave
growth and the dissipation is generally measured as a resid-
ual quantity to provide a stationarity of wind-wave spectra in
a particular spectral range (Komen et al., 1984). The effect
of nonlinear transfer is ignored completely in this case (e.g.
Eq.15 inPlant, 1982; Donelan and Pierson-jr., 1987; Tolman
and Chalikov, 1996).

The key point of the theory we develop in this paper:
Wind-wave growth does not depend on details of wind-wave
generation and dissipation.We believe that this statement
will be the starting point for further progress in our under-
standing the wind-driven waves. This statement requires a
few notes. As far as the weak turbulent approach is relevant,
the evolution of the wave spectra is governed by the follow-
ing kinetic equation

∂Nk

∂t
+ ∇kωk∇rNk = Snl + Sf (2)

HereSnl is the nonlinear interaction term due to four-wave
processes and

Sf = Sin + Sdiss . (3)

describes non-conservative effects due to generation by
wind-wave interactionSin and dissipationSdiss . The indices
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of gradient symbols define the corresponding Fourier (k) or
coordinate (r) spaces.

The main point is: in a short time (or in a short fetch)
the collision integralSnl becomes greater than the non-
conservative termSf . Thus, in the first approximation Eq. (2)
can be reduced up to the form

∂Nk

∂t
+ ∇kωk∇rNk = Snl (4)

This equation looks similar to the Boltzmann equation for
gas dynamics. However, there is a dramatic difference be-
tween these equations. The Boltzmann equation is complete
and self-sustained. It has a unique solution at any initial
data. Temporal evolution of this solution preserves energy,
momentum, and total action (number of particles).

On the contrary, the Hasselmann kinetic Eq. (4) preserves
energy and momentum “formally” only (Pushkarev et al.,
2003, 2004). Due to presence of the Kolmogorov-type cas-
cades, the energy and the momentum can “leak” at high
wavenumber region. This region can also work as a source of
wave action, energy and momentum. Thus, the conservative
Eq. (4) is not “complete”. It describes an “open system” and
has to be accomplished by a “boundary condition”, suppose,
in the form of wave action flux at high frequencies. The full
Eq. (2) with sufficiently large dissipation term at high fre-
quencies appears to be well-posed. The former constants of
motions cease to be constants but the balance equations for
total wave action can be written trivially in the form

〈
∂Nk

∂t
+ ∇kωk∇rNk〉 = 〈Sf 〉 (5)

where brackets mean the total wave action or the total wave
forcing (integrated in the whole Fourier space). Similar bal-
ance equations can be written for energy and momentum.

Our basic statement is: the conservative kinetic Eq. (4)
with the corresponding boundary conditions (Eq.5) at
|k|→∞ is a fairly good approximation to the exact kinetic
Eq. (2). The “effective” boundary condition is defined by the
integral source term〈Sf 〉 and is not defined by the details of
this term.

The analysis for the conservative kinetic Eq. (4) is incom-
parably simpler than the analysis for the full Eq. (2). The
approximate Eq. (4) has a rich family of self-similar solu-
tions. In this paper we discuss self-similar solutions of the
“duration-limited” equation

∂Nk

∂t
= Snl (6)

and of “fetch-limited” equation

∇kωk∇rNk = Snl (7)

Analytical properties of both classes of solutions are quite
similar. In both cases we have two-parameter families of self-
similar solutions. Parameters of these solutions are defined
by the flux of wave action at|k|→∞.

Using different versions of the source termSf , we ex-
tend our analytical results with numerical analysis of the full
duration-limited equation

∂Nk

∂t
= Snl + Sf (8)

then solve this equation with different initial conditions:
small “white” noise, step-like function of frequency, and
JONSWAP spectral form. Irrespective of initial conditions
we observe that nonlinear transfer termSnl starts to dominate
in a very short time. Numerical solutions of the full Eq. (8)
tend to self-similar solutions of the conservative Eq. (6) very
rapidly. The corresponding indexes of self-similar solutions
that are determined by boundary conditions (Eq.5) (wave
action flux from high wavenumbers) match the theoretical
dependencies fairly well.

We compare the numerical results with experimental pa-
rameterizations of fetch-limited wind wave spectra, first of
all, with the JONSWAP spectrum. Regardless quite differ-
ent forms of the governing Eq. (7) the spectra appear to be
surprisingly close to the self-similar solutions for duration-
limited growth (Eq.6). In addition, we find that shapes of
numerical solutions depend very slightly on the indexes of
self-similarity.

It is useful to reproduce main points of the paper in Intro-
duction.

In Sect. 2 we present the “first principles” of weakly non-
linear approach for surface gravity waves. We follow strictly
the Hamiltonian approach proposed by Zakharov (1968) (see
also Zakharov, 1999; Krasitskii, 1994) for dynamical and
statistical description of water waves.

In Sect. 3 we discuss experimental parameterizations of
wind-driven waves spectra (first of all, the JONSWAP spec-
trum). These parameterizations postulate a universal depen-
dence of spectra on non-dimensional frequencyω/ωp and
monotonic dependence of the spectra magnitudes on the only
parameter – the wave ageCp/Uwind . This is an implicit con-
firmation of our concept of spectral self-similarity. In the
same section we discuss different models for the input (Sin)
and dissipation (Sdiss) terms and compare these terms with
the collision integralSnl . For this comparison we use ex-
perimentally observed spectra obtained in JONSWAP exper-
iments. Simple calculations show that for all conventional
models ofSf=Sin+Sdiss the nonlinear termSnl is strongly
dominating.

Section 4 is devoted to weak-turbulent Kolmogorov spec-
tra (or the Kolmogorov-Zakharov spectra). We show that in
general case the spectra are governed by three independent
parameters: the fluxes of wave action, energy, and momen-
tum, i.e. are defined by a function of three variables. In the
simplest case this function can be found in the explicit form.
Quantitative dependence of spectra on fluxes is defined by
fundamental constants, the so-called Kolmogorov constants.
We finalize the section by qualitative analysis of the effect of
spectrally distributed forcing and dissipation on fluxes and,
hence, on spectral forms of stationary solutions of the kinetic
equation.
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In Sect. 5 we introduce self-similar solutions for duration-
limited and fetch-limited versions of the Hasselmann kinetic
equation. In proper variables, self-similar spectra satisfy the
stationary homogenous kinetic equation with some sophis-
ticatedSf that, formally, includes forcing and dissipation
and, thus, can arrest the downshift. The structure of the self-
similar solutions is rather complicated. They are anisotropic
and are determined, at least, by two free parameters. All
these solutions (excluding special case of swell) correspond
to wave action flux from high frequency region. Being in-
tegrated ink-space this flux is a power-like function of time
(fetch) which exponent and pre-exponent can be related eas-
ily with parameters of the self-similar solutions. It is easy to
show that the solutions for special cases of the self-similarity
indexes tend to the Kolmogorov-Zakharov stationary spectra
at t→∞.

In Sect. 6 the results of numerical solutions of the ki-
netic equation are presented. We refer to our previous pa-
pers (Pushkarev et al., 2003; Badulin et al., 2002) in a brief
description of numerical approach. Then we analyze the re-
sults of the so-called “academic” numerical experiments on
duration-limited growth of wind-driven waves. The purpose
of the “academic” experiments is to justify theoretical results
of previous section and to demonstrate the tendency of the
kinetic equation solutions to self-similar behavior. In addi-
tion, these somewhat artificial experiments serve as a refer-
ence for experiments with realistic conditions of wind-wave
evolution.

A number of numerical experiments was performed for the
duration-limited Hasselmann Eq. (8) with “realistic” wind
input parameterizations (Snyder et al., 1981; Stewart, 1974;
Plant, 1982; Hsiao and Shemdin, 1983; Donelan and Pierson-
jr., 1987). Our analysis is based essentially on theoretical
analysis of self-similarity (Sect. 5) and “academic” runs de-
scribed in Sect. 6. In terms of non-dimensional parameters –
non-dimensional frequencyω/ωp (ωp is a frequency of spec-
trum peak) and wave ageg/(U10ωp) – we found very good
agreement for all considered parameterizations of wind wave
input. Different criteria of the agreement could be applied for
comparison. First, we analyze the agreement in terms of self-
similarity indexes, then in terms of the shapes of solutions.
All solutions appear to be very close to the shapes of “aca-
demic” solutions and are reasonably close to experimental
parameterizations of JONSWAP.

Properties of self-similarity of numerical solutions in
terms of fluxes of motion constants are presented in Sect. 7.
This analysis shows that the self-similar solutions can be con-
sidered as a generalization of the Kolmogorov-Zakharov so-
lutions: the generic feature of the KZ cascading – a rigid de-
pendence of spectral magnitudes on spectral fluxes – keeps
validity for the non-stationary (inhomogeneous) anisotropic
solutions.

In Sect. 8 we present an overview of our results and their
possible applications for the problem of wind-wave forecast-
ing.

2 Weakly nonlinear approach for water waves – Back-
ground and definitions

2.1 Dynamical equations for water waves

Equations for potential wave motion in incompressible in-
finitely deep water with a free surface can be written in terms
of velocity potential8(x, z, t) and surface elevationη(x, t)
as follows

48 = 0; −∞ < z < η(x, t) (9)
∂η

∂t
+ ∇8∇η = −

∂8

∂z
z = η(x, t) (10)

∂8

∂t
+ gη +

1

2
(∇8)2 +

1

2
82
z + P = 0 z = η(x, t) (11)

We split coordinates to the horizontal wavevectorx and the
vertical coordinatez. Here the Laplace equation (Eq.9)
comes from the condition of incompressibility, the kine-
matical boundary condition (Eq.10) describes continuity of
the surface elevation, and the dynamical boundary condition
(Eq. 11) corresponds to continuity of pressure across water
surface. As shown by Zakharov (1968), Eqs. (9)–(11) can be
presented in the Hamiltonian form for two canonically con-
jugated variablesη andψ

∂η

∂t
=
δH

δψ
;

∂ψ

∂t
= −

δH

δη
(12)

Here the canonical coordinateη(x, t) is the surface elevation
and the canonical conjugated coordinate defined as

ψ(x, t) = 8(x, η(x, t), t)

is the velocity potential at the water surface. Symbolδ in
Eq. (12) is used for variational (Fréchet) derivative. Further
transformation to the Fourier amplitudes ofη andψ con-
serves the Hamiltonian form of Eq. (12) because of canon-
icity of the Fourier transform. Define this transformation as
follows

η(x) =
1

2π

∫
η(k) exp(ikx)dk, η(k) = η∗(−k);

ψ(x) =
1

2π

∫
ψ(k) exp(ikx)dk, ψ(k) = ψ∗(−k)

While the Hamiltonian and the canonical variablesψ , η are
real-valued, one can introduce complex normal variables.
The conventional definition of these variables (Zakharov,
1968; Krasitskii, 1994)

η(k) = ϒ(k)[a(k)+ a∗(−k)];

ψ(k) = −i3(k)[a(k)− a∗(−k)]
(13)

ϒ(k) =

[
|k|

2ω(k)

]1/2

; 3(k) =

[
ω(k)

2|k|

]1/2

ω(k) = [g|k| tanh(|k|H)]1/2
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is used in numerous papers on the Hamiltonian weakly non-
linear approach. Introduce the alternative definition of the
normal variables

η(k) = 2πϒ(k)[A(k)+ A∗(−k)];

ψ(k) = −2π i3(k)[A(k)− A∗(−k)]
(14)

or, simpler as

A(k) =
1

2π
a(k)

This emphasis on notation may seem somewhat trivial but
different notations can lead to mutual misunderstanding and
grave mistakes. The advantage of normalization (Eq.14)
comes from the linear wave theory that gives

η(x, t) =

√
2|k|

ω(k)
A0 cos(kx − ω(k)t − θ0),

ψ(x, t) =

√
2ω(k)

|k|
A0 sin(kx − ω(k)t − θ0) (15)

for the simplest plane wave solution and the simple expres-
sion for the plane wave energy

E = ωA2
0

By definition,A2
0 = E/ω is the density of wave action. The

definition of normal variablesa(k) (Eq. 13) is common for
theoretical studies whileA(k) (Eq.14) are useful for practi-
cal needs such as wave forecasting.

Starting with linear approximation one can obtain the fol-
lowing explicit expression for the Hamilton functionH in
terms of integral power series in normal amplitudesa(k)

H = H0 +H1 +H2 . . .

where

H0 =
∫
ω0a

∗

0a0dk0

H1 =
1

2

∫
V
(1)
012(a

∗

0a1a2 + c.c.)δ0−1−2dk012

+
1

3

∫
V
(3)
012(a0a1a2 + c.c.)δ0+1+2dk012

H2 =
1

2

∫
T
(1)
0123(a

∗

0a1a2a3 + c.c.)δ0−1−2−3dk0123

+
1

4

∫
T
(2)
0123(a

∗

0a
∗

1a2a3 + c.c.)δ0+1−2−3dk0123

+
1

8

∫
T
(4)
0123(a

∗

0a
∗

1a
∗

2a
∗

3 + c.c.)δ0+1+2+3dk0123 (16)

We follow the kernel notations byZakharov(1999) and the
abbreviations for arguments byKrasitskii (1994). Notation
“c.c.” means complex conjugate terms. Corresponding dy-
namical equations for variablesa(k)

i
∂a(k)

∂t
=

δH

δa∗(k)
(17)

contain a number of “unessential” terms. Both cubic terms
with kernelV (3) and quartic terms withT (1) andT (3) are

not resonant: they correspond toslave harmonics. Slave har-
monics are corrections to linear approximation solutions that
we call master modes. Slave harmonics are strongly linked
with master modes. One can perform a canonical transforma-
tion to new variablesb(k) in order to cumulate slave harmon-
ics in dynamically essential master modes. The general form
of the transformation (Krasitskii, 1994; Zakharov, 1999)

a0 = b0 +

∫
A
(1)
012b1b2δ0−1−2dk12

+

∫
A
(2)
012b

∗

1b2δ0+1−2dk12

+

∫
A
(3)
012b

∗

1b
∗

2δ0+1+2dk12

+

∫
B
(1)
0123b1b2b3δ0−1−2−3dk123

+

∫
B
(2)
0123b

∗

1b2b3δ0+1−2−3dk123

+

∫
B
(3)
0123b

∗

1b
∗

2b3δ0+1+2−3dk123

+

∫
B
(4)
0123b

∗

1b
∗

2b
∗

3δ0+1+2+3dk123 +O(b4)

(18)

is cumbersome but makes possible to simplify essentially
the dynamic Eq. (17) and the Hamiltonian function (Eq.16).
This transformation cancels a number of non-resonant terms
in Eq. (16) and leads tothe effective Hamiltonian

H(bk, b
∗

k) =
∫
ωk bk b

∗

k
dk

+
1

4

∫
T̃
(2)
0123b

∗ b∗

1b2b3δ0+1−2−3dk0123

and to the equation known asthe Zakharov equation(Za-
kharov, 1968)

i
∂bk

∂t
=
∂H

∂b∗

k

= ωk bk

+
1

2

∫
T̃
(2)
0123b

∗

1b2b3δ0+1−2−3dk123

(19)

Explicit expressions for the coefficients of the Hamilton
function and for canonical transformation (Eq.18) can be
found in (Krasitskii, 1994; Zakharov, 1999) and in Ap-
pendix A.

In terms of master modes, the classic Stokes solution for
deep water waves looks trivial

bStokes = b0 exp(i�t)δ(k − k0);

� = ω(k)+
1

2
T0000|b0|

2 (20)

Hereb0=const and the superscript for kernelT (2) is omitted.
This gives the well-known Stokes expansion for the surface
elevation

η(x) = −
1

2π

√
2|k0|

ω(k0)
b0 cos(�t − k0x − θ0)

+
1

2π2

(
|k0|

ω(k0)

)2

b2
0 cos[2(�t − k0x − θ0)] +O(b3

0)
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that can be rewritten easily in conventional terms of the am-
plitude of the first linear harmonic (compare Eq.15)

η(x) = −η0 cos(�t − k0x − θ0)

+
|k0|η

2
0

2
cos[2(�t − k0x − θ0)] +O(η3

0)

(21)

where

� = ω[1 + (η0|k|)2/2] (22)

As we see, the weak nonlinearity leads to weak correction of
linear frequencyω(k) in the Stokes solution (Eqs.21and22)
and to appearance of new slave harmonics. Evidently, mean
values such as mean energy, wave action etc. are corrected
in a similar way.

2.2 Statistical description – the Hasselmann equation

The Hasselmann kinetic equation is the basic theoretical
model for statistical description of gravity surface waves.
This equation can be obtained within the Hamiltonian ap-
proach in a consistent way. A few important notes should be
made for the correct treatment of this equation.

The basic assumption of weak nonlinearity (small wave
steepness)

µ = ak � 1

is usually considered as a validity condition of the Hassel-
mann equation for water waves. Sea waves are weakly non-
linear, their typical steepness is less than 0.1 even in se-
vere storm conditions and much less than critical water wave
steepness

µcr = 0.4019

Assuming the wave field as a superposition of statistically
independent harmonics (that is true in linear wave approxi-
mation) one can define thespectral wave action densityin
terms of alternative normal variablesA(k) (Eq.14)

N(k) =
1

g
〈A(k)A∗(k′)〉δ(k − k′) (23)

According to “oceanographic definition”, the spectral wave
energy density is

E(k) =
ω(k)

g
〈A(k)A∗(k′)〉δ(k − k′) (24)

Spectral densities (Eqs.23and24) are known as asymmetric
spectra. Their symmetric counterparts can be introduced as

I (k) =
1

2
ω(k)[N(k)+N(−k)]

and

〈η(k)η(k′)〉 = I (k)δ(k + k′) (25)

Then the wave amplitude dispersionσ is given by evident
formula

σ 2
= 〈η2

〉 =

∫
ω(k)N(k)dk =

∫
I (k)dk

The weak nonlinearity assumption must be completed by hy-
pothesis on wave field uniformity. Thus, the correlation func-
tion for normal variables containsδ-functions (see Eqs.23
and25). This is true for presentation both in variablesa(k)
and in master modesb(k):

〈a(k)a∗(k′)〉 = na(k)δ(k − k′)

〈b(k)b∗(k′)〉 = nb(k)δ(k − k′) (26)

The same is true for “observable”A(k) and its “master”
counterpart. Similarly to the dynamical description, the dif-
ference betweenna andnb is small

|na − nb|

na
' µ2

and can be ignored in a number of cases. However, this is
correct for the infinite depth case only (Zakharov, 1999). It
should be stressed that the kinetic equation is derived for cor-
relation functionnb(k), that is, for the master mode decom-
position of wave field as it was introduced above. Hereafter
we omit the subscript forn(k) andN(k).

The kinetic equation requires theclosure hypothesisim-
posed on correlation functions. We assume that

< b1 . . . bnb
∗

n+1 . . . b
∗
n+m >= 0 if m 6= n

It is easy to check that this assumption is compatible with
Eq. (19). Correlation functions

< b1 . . . bnb
∗

n+1 . . . b
∗

2n >

= I1,...,n,n+1,...,2n · δ(k1 + · · · + kn − kn+1 − · · · − k2n)

can be decomposed by a standard way to a sum of products
of some low-order functions and cumulants. In particular,

I1234 = n1n2 [δ(k1 − k3)+ δ(k1 − k4)] + Ĩ1234

where Ĩ1234 is irreducible part of the forth-order cumulant.
The closure hypothesis claims that the irreducible parts of
the next six-order cumulants are plain zeroes and, thus, the
imaginary part ofĨ1234can be expressed followingZakharov
(1999) as follows

Im(Ĩ1234) = πT1234[n3n4(n2 + n1)− n1n2(n3 + n4)]

This hypothesis leads to the Hasselmann kinetic equation that
we will write for N(k) = n(k)/(4π2)

∂Nk

∂t
+ ∇kωk∇rNk = Snl + Sin + Sdiss (27)

Here the collision integral has the form

Snl = 16π5g2
∫

|T0123|
2

×(N1N2N3 +N0N2N3 −N0N1N2 −N0N1N3)

×δ(ω0 + ω1 − ω2 − ω3)

×δ(k + k1 − k2 − k3)dk1dk2dk3

Note, that inhomogeneity ofN(k) is assumed to be weak in
Eq. (27), i.e. the wave field uniformity conditions (Eq.26)
are satisfied “locally” and the collision integral does not de-
pend explicitly on coordinates. Cumbersome expressions for
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the kernelT0123 can be found in a number of papers (see
Hasselmann, 1962; Zakharov, 1968; Webb, 1978; Krasitskii,
1994). Different forms ofT0123 can be used as far as the
kernel is unique in the resonant subspace and is arbitrary be-
yond the subspace. The collection of formulas is given in
Appendix A.

The most important fact we will use further:in the deep
water case the kernelT (k0, k1, k2, k3) is a homogeneous
function of order six:

|T (κk, κk1, κk2, κk3)|
2

= κ6
| T (k, k1, k2, k3)|

2 (28)

This gives the well-known re-scaling property of the collision
integral for deep water waves

Snl ' g3/2
|k|

19/2N3
∗ (29)

whereN∗ is a “characteristic” scale of wave action density,
say, its peak or mean value.

2.3 Notes on canonical and oceanographer’s definition of
wind wave spectra

Let us introduce notations and definitions that we use further
in this paper. We accept “oceanographer’s” definition of the
total wave energy as follows

E =

∫
k

E(k)dk =

∫
+∞

0

∫
+π

−π

E(ω, θ)dωdθ = 〈η2
〉 (30)

In these terms the total energy has dimension[L2
], the en-

ergy spectral densityE(k)–[L4
] and the frequency spectral

densityE(ω, θ)–[L2T ]. We refer to the spectral density of
wave actionN(k, t) as a solution for the kinetic equation
(27). Following Eq. (30) one gets

N =

∫
E(k, t)

ω(k)
dk =

∫
N(k, t)dk

where the wave action spectral density has dimension[L4T ].
The wave action densities in frequency–angle space are de-
fined by evident relations obtained from equivalence of the
corresponding differentials

N(ω, θ)dωdθ = N(k, t)|k|d|k|dθ

= N(k, t)|k|
∂|k|

∂ω
dωdθ

Then for the deep water waves one has

N(ω, θ) =
2ω3

g2
N(k)

Energy spectral density can be introduced quite similarly

E(ω, θ)dωdθ = ω(k)N(k)dk =
2ω4

g2
N(ω, θ)dωdθ

Later we refer to frequency one-dimensional spectra as func-
tions of one argument only

N(ω) =

∫ π

−π

N(ω, θ)dθ; E(ω) =

∫ π

−π

E(ω, θ)dθ

2.4 On fine structure ofSnl

Estimate Eq. (29) is very rough and applicable only in vicin-
ity of the spectral peak for smooth spectral distributions sim-
ilar to the Pierson–Moskowitz spectrum. Usual spectra have
power-like “tails” for |k|>|kp|. To estimateSnl on such rare
face of the spectral peak one has to present the collision inte-
gral as

Snl = Fk − γkNk (31)

where

Fk = 16π5g2
∫

|T0123|
2

×N1N2N3δ(k + k1 − k2 − k3)

×δ(ωk + ω1 − ω2 − ω3)dk1dk2dk3 (32)

γk = 16π5g2
∫

|T0123|
2(N1N2 +N1N3 −N2N3)

×δ(k + k1 − k2 − k3)

×δ(ωk + ω1 − ω2 − ω3)dk1dk2dk3 (33)

From a physical view-pointγk is the imaginary part of fre-
quency that appears due to four-wave nonlinear interaction or
inverse relaxation timeτ−1. On the rear faces of the spectral
peakNk'|k|

−s , s'4. For these powerlike spectra, integrals
(Eqs.32 and33) diverge at small wavenumbers and major
contribution to these integrals is given by a vicinity of the
spectral peak. For|k|�|kp|, γk can be estimated as follows

γk ' 32π5g2
∫

|Tkkpkkp |
2N1N2δ(ω1 − ω2)dk1dk2

For |kp| < |k| one has (seeLavrova, 1983)

Tkkpkkp =
1

4π2
|kp|

2
|k|

that gives

γk '
2πω4

ω2
pδω

(
|kp|

2E
)2

One can see thatγk is a fast growing function ofω and

γk Nk ' |k|
−s+2 (34)

At the same time the “naive” estimate Eq. (29) gives

Snl ' 3(s) |k|
19
2 −3s (35)

where3(s) is a function of the exponents of the spectrum
tail. For a typical cases = 4, one has

γkNk ' |k|
−2

; Snl ' 3(s) |k|
−5/2

Thus,γk Nk decays at|k|→∞ slower thanSnl .
Actually in the “inertial range” differentSnl terms (see

Eq. 31) compensate each other. As a result, divergences at
small wavenumbers are exactly cancelled. The dimension-
less factor3(s) depends strongly ons and in the case of
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isotropic spectra becomes plain zero for the Kolmogorov ex-
ponentss=4, s=23/6:

3(4) = 3(
23

6
) = 0

We can make the following conclusion: estimate Eq. (29) can
lead to a grave mistake for the inertial range. In this range
Snl→0, while different parts ofSnl are definitely not zeroes.

In many cases the spectrumN(k) is narrow near the spec-
tral peak (has “peakedness”). Then, estimate Eq. (29) is also
not valid and should be replaced by the following one

Snl ' 3g3/2
|k|

19/2N3

Here3 is a large dimensionless constant (3�1) and can be
called “enhancing factor”. To calculate the enhancing factor,
we suppose the spectral width to be small (δω�ωp). Near
the peak one can perform the following replacement

δ(ω0 + ω1 − ω2 − ω3) →

2

ω′′

kk

δ((dk)2 + (dk1)
2
− (dk2)

2
− (dk3)

2)

Moreover, for the “peaked” spectrum the mean frequency
ω̄ differs from the peak frequencyωp. Taking into account
both factors, one obtains the following expression for3 from
Eq. (29):

3 ∼
ωp

δω

(
ω̄

ωp

)9

The typical ratioω̄/ωp'1.25 is close to unity but its ninth
power is not a small factor:(ω̄/ωp)9≈7.45. Our calcu-
lation shows that the enhancing factor3 can be of order
3'50÷100 near the spectral peak, while in the inertial range
3→1.

3 On dominant role of nonlinear interactions in Hassel-
mann equation

In this section we give an overview of different parameteriza-
tions for wind-wave spectra and for generation terms in the
Hasselmann equation. These parameterizations accumulate
essential features of wind-wave behavior in the most com-
pact form and can be adequately related to the “first princi-
ples” presented above.

First we consider JONSWAP parameterizations of wind-
wave spectra that will be used further as a basis for com-
parison of experimental and numerical spectra. In addition,
we pay attention to the self-similarity features of the JON-
SWAP parameterization that is the key point of the study.
Actually, the idea of self-similarity of the wind-wave spec-
tra was introduced by experimentalists (seeKitaigorodskii,
1962) long before its theoretical understanding (Hasselmann
et al., 1973).

Conventional parameterizations of input and dissipation
terms in the Hasselmann equation are based on rather poor
quantitative knowledge of different physical processes that

govern the wind-wave evolution (wind-wave interaction, tur-
bulence and mixing in sea upper layer etc). Empirical de-
pendencies proposed by different authors differ from each
other: the difference is at least of the same order as the mag-
nitudes themselves. Thus, the problem arises:how to choose
a “true” forcing (input and generation) term?

In the final part of the section the collision integralSnl and
source functionsSin andSdiss are compared. This compari-
son does not require the solution of the evolution problem: it
is enough to make “snapshots” of terms for different experi-
mentally measured spectra. We used JONSWAP spectra for
the comparison and came to the following basic statement
regarding the wind-wave evolution:as compared to wind-
wave generation and dissipation, the nonlinearity dominates
in rather wide range of physical conditions.

As it was pointed out by Plant (1982, p. 1961), the role of
nonlinearity in formation of wind-wave spectra is substan-
tially underestimated.

3.1 Experimental approximations for wind-wave spectra.
JONSWAP spectrum

Similarity analysis is widely used in the wind-wave studies
since 1962, when Kitaigorodskii proposed to use dimension-
ality analysis to construct a shorter set of non-dimensional
arguments of wind-wave spectra. In the simplest case of deep
water waves the dimensional variables are: wave frequency
ω, gravity accelerationg, friction velocityu∗ (or wind speed
at some height), timet and fetchx. The wind-wave fre-
quency spectra (Sect.2.3) are written in non-dimensional
variables as follows

E(ω, t, x)g3

u5
∗

= F
(
ωu∗/g, gt/u∗, gx/(u

∗)2
)

HereF
(
ωu∗/g, gt/u∗, gx/(u

∗)2
)

is a non-dimensional fun-
ction of non-dimensional frequency, time and fetch. Such
characteristic scales of the spectra as the frequency of spec-
tral peakωp and the wave height dispersion<E>1/2 are as-
sumed to be functions of non-dimensional “external” vari-
ables only:gt/u∗ (time) or/andgx/(u∗)2 (fetch). We should
stress that almost in all experimental parameterizations of
wind-wave spectra the dependencies on “external” parame-
ters containing explicitly time or fetch are replaced by an
“internal” parameter – the spectral peak frequencyωp. In
such formulation the wind-wave spectra cease to depend ex-
plicitly on “external” time or fetch. As an example let us
consider the JONSWAP spectrum (Hasselmann et al., 1973)
that summarized experimental measurements of wind waves
in the Northern Sea

E(ω) = αJ g
2ω−5 exp

[
−

5

4

(
ω

ωp

)−4
]

× exp

{
ln γ · exp

[
−
(ω − ωp)

2

2σ 2
pω

2
p

]}
(36)

This formula is based on measurements that were carried out
for the case of fetch-limited growth of waves. At the same
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time (Eq.36) does not contain the dependence on fetch ex-
plicitly. The JONSWAP spectrum was proposed as a general-
ization of thePierson and Moskowitz(1964) spectrum for the
case of developing wind-wave field. Parameterωp is directly
connected with the wave agec=g/(ωpU10) (U10≈u

∗/28
is the wind velocity at standard anemometry height 10 m).
ParameterαJ also depends on the wave age, contrary
to the constant Phillips’ parameterαPM≈1.17×10−2 and
fixed characteristic frequencyωPM=g/U20 of the Pierson-
Moskowitz spectrum (U20 is the wind speed at 20 m height).
Parametersγ andσp are introduced to describe an impor-
tant feature of the developing wind-wave spectra – their pro-
nounced peakedness. These parameters are assumed to be
dependent on wave agec.

Formally one can consider spectral parameterizations
(Eq. 36) irrespective of the method of wind wave measure-
ments. Additional arguments for unique parameterizations
of fetch- and duration-limited growth data can be found in
paper byKahma(1981), where correlations of measured pa-
rameters with the fetch were analyzed.

A modified version of parameterizations in the same fetch-
free form was proposed for the same JONSWAP data after
re-analysis (Donelan et al., 1985; Battjes et al., 1987). The
modified JONSWAP spectrum is written as

E(ω) = αT g
2ω−4ω−1

p exp

[
−

(
ω

ωp

)−4
]

× exp

{
ln γ · exp

[
−
(ω − ωp)

2

2σ 2
pω

2
p

]}
(37)

that keeps the high frequency tail asymptoticsω−4 in full
accordance with predictions of weak turbulence theory (Za-
kharov and Filonenko, 1966). It should be stressed that the
spectrum (Eq.37) has been proposed with no influence of the
theoretical work, basing on experimental facts only.

The total energy parameterαT differs fromαJ in Eq. (36).
The standard shape parameters are

γ = 3.3;

σ =

{
σa = 0.07 for ω ≤ ωp;

σb = 0.09 for ω > ωp
(38)

Here ωp is the characteristic frequency, i.e. an “internal”
parameter of the wind-wave field. ParameterαT depends
on “external” parameters. This dependence is expressed in
terms of non-dimensional parameter, the wave ageCp/U10,
so does not contain dependence on time and fetch explicitly.
Parametersγ , σp, strictly speaking, depend on “external” pa-
rameters and they are fetch-free (duration-free) functions of
the wave age as well (Babanin and Soloviev, 1998). In this
paper we assume parametersγ andσp to be constant (see
Eq.38) when comparing with numerical results.

The dependence of parameterαT on the inverse wave age
U10/Cp=ωpU10/g is generally fitted by power-like approx-
imation (Young, 1999)

αT = α0(U10ωp/g)
κα (39)

Forα0 we accept the following estimate (Eq. 25 inBabanin
and Soloviev, 1998):

α0 = 0.08/(2π) (40)

The exponentκα can vary in rather wide range depending on
wind conditions.

Emphasize two features of almost all wind wave spectra
parameterizations including Eqs. (36) and (37):

– There are two non-dimensional arguments: the wave
frequencyω/ωp (“internal” argument) and the wave age
(“external” argument);

– The dependence of wind-wave spectra on these two ar-
guments is split.

The JONSWAP parameterization (Eqs.37and39) yields:

E(ω) =
α0g

2

ω5
p

Fnl

(
ω

ωp

)
Fext

(
U10ωp

g

)
=
α0g

2

ω5
p

(
U10ωp

g

)κα
Fnl

(
ω

ωp

)
(41)

where

Fnl(x) = x−4 exp(−x−4)× exp

{
ln γ ·

[
−
(x − 1)2

2σ 2
p

]}
is the universal function ofx=ω/ωp. This function has a
freakish form, while its counterpartFext is a power-like func-
tion of the “external” wave age argument.

Integrating Eq. (41) over frequency one has

Etotω
4
p

g2
= α0

(
U10

Cp

)κα
Ftot (42)

Putting κα=1 into Eq. (42) we get exactly the Toba’s law
(Toba, 1997) in terms of significant wave heightas and mean
wave periodTs :

as = B(gu∗)
1/2T

3/2
s (43)

The Toba’s constant

B = (2πα0FtotU10/u∗)
1/2/(2π)2

can be easily calculated assumingU10≈28u∗. For
α0=0.08/2π (Babanin and Soloviev, 1998) one has

B = 0.095(Ftot )
1/2

= 0.0632

that is very close to Toba’s valueB=0.062 (Toba, 1973).
We must stress again that Eq. (41) describes the typi-

cal case of “incomplete” self-similarity, when the spectrum
shape depends on internal self-similar argumentx=ω/ωp in
very complicated way but dependence on key external pa-
rameter – wave age – has essentially asymptotic nature of
a monotonic power-like dependence. As new experimen-
tal data become available, the self-similarity of wind wave
spectra and the universality of spectra parameterizations are
discussed more and more widely (seeBabanin and Soloviev,
1998). We use the idea of self-similarity of wind-wave spec-
tra as a basis for comparison of our numerical results with
experimental data.
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3.2 Conventional parameterizations of wind-wave input
termSin

A number of parameterizations is proposed for the wave in-
put termSin. They are based on the simplest physical models
and on results of experimental studies. Generally, all param-
eterizations imply linearity or quasi-linearity of the wave in-
put

Sin = β(k)N(k) (44)

Growth rateβ(k) is usually related to a resonant mechanism
of surface wave generation, i.e. it takes a form

β(k) = %ω(k)F (ς) (45)

where small parameter of wave generation

% = ρa/ρw

is a ratio of air and water densities. Resonant nature of wave
generation is associated with the ratio of wind speedUh at
some heighth (or its substitute friction velocityu∗) to the
wave phase speed. The dependence ofβ on angle is taken
into account in a Cerenkov-like form as follows

ς = s
Uh

Cph
cosθ (46)

Heres is a coefficient close to 1, angleθ is related to wind
direction.

Let us describe the commonly used parameterizations of
wave input that we will refer to later in the paper.

Snyder et al. (1981) proposed the following formula for
the wind wave generation rate

β =

{
(0.2 ÷ 0.3)

ρa

ρw
ω(ς − 1), s = 1, 1< ς < 3

0, otherwise
(47)

HereUh is the wind speed at 5 m height. The rateβ is linear
in ς near the low-frequency limit of the generation domain
and likely overestimates the generation at peak frequency for
the developing wave field. This formula is obtained for rel-
atively narrow wave frequency band 1<ς<3 while in many
wave models these restrictions are completely ignored. For
ς→∞ the non-dimensional incrementβ/ω grows linearly.

Plant (1982) proposed stronger growth ofβ with fre-
quency

β =


(0.04± 0.02)ω

(
u∗

Cph

)2

cosθ,

for
g

2πU10
<

ω

2π
< 20Hz, cosθ > 0

0, otherwise

(48)

or in terms ofU10 (u2
∗/U

2
10≈ρa/ρw)

β =


(0.04± 0.02)

ρa

ρw
ω

(
U10

Cph

)2

cosθ,

for
g

2πU10
<

ω

2π
< 20Hz, cosθ > 0;

0, otherwise

(49)

In Eq. (49) the non-dimensional growth rateβ/ω depends
quadratically on wave frequency. Plant emphasizes that this
behavior is consistent with experimental results at high fre-
quencies, while at the low-frequency cut-off the increment
does not vanish but has a finite magnitude.

Then Plant (1982) refers to Stewart’s (1974) theoretical
model, where the wave generation rate vanishes at low-
frequency cut-off

β = 0.04
ρa

ρw
ω
Uh

Cp
(ς − 1) (50)

Plant(1982) stresses the agreement of Eqs. (50) and (48) in
the high frequency limit, while near the low-frequency cut-
off their behavior is essentially different.β/ω in Eq. (50)
grows linearly in(ς − 1) as Snyder’s formula (Eq.47) pre-
dicts.

Hsiao and Shemdin (1983) proposed the following param-
eterization based on their own experimental data

β =

{
0.12

ρa

ρw
ω(ς − 1)2, s = 0.85, 1< ς < 7.4

0, otherwise
(51)

The wind speedUh is taken at 10 m height. Two features
of Eq. (51) are important:β vanishes quadratically at the
low-frequency end and the maximal phase speed of amplified
waves is lower than the wind speed. This is consistent with
idea of vanishingly small generation near the spectral peak
(Plant, 1982), or even of a rather strong wave damping in the
peak vicinity (Hasselmann and Hasselmann, 1985). Equa-
tion (51) is justified for a wider frequency band as compared
to Eq. (47). At the same time, authors accentuate the prob-
lem of high-frequency cut-off for the wind-wave increment
β.

Donelan and Pierson-jr. (1987) summarized previous at-
tempts to parameterize the wind wave input and came with
the following formula

β =

{
0.194

ρa

ρw
ω(ς − 1)2, s = 1, ς > 1

0, otherwise
(52)

Here the high-frequency limit is not specified explicitly and
Uh is taken at one-half of wavelength,Uh=Uλw/2. Except
the particular multipliers Eq. (52) is identical to Hsiao and
Shemdin formula (Eq.51).

Thus, we have in total five different models forSin. These
models differ dramatically from each other. ExceptSnyder
et al.(1981) they predict for short waves growth rates

β/ω → β∞

ρa

ρw

(
ωU10

g

)2

at ω � g/U10 (53)

The same behavior ofβ is predicted by Miles theory. How-
ever, different authors of the experimental formulas offer
quite different values ofβ∞ as it is seen in Table 1. The
lowest value (Plant’s and Stewart’s models) is 5 times less
than the highest one (Donelan’s model). The distinction near
the low-frequency cut-off is also dramatic: the parameteriza-
tion by Plant(1982) predicts a finite growth rateβ at ς→1,
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Table 1. Multipliers in high-frequency asymptotics (Eq.53) for different parameterizations of wind-wave growth rates.

Model Plant (1982) Stewart (1974) Hsiao and Shemdin (1983) Donelan and Pierson-jr. (1987)

β∞ 0.04 0.04 0.087 0.194

formulas bySnyder et al.(1981) andStewart(1974) are lin-
ear in(ς−1)while Donelan and Pierson-jr.(1987) andHsiao
and Shemdin(1983) dependencies are quadratic in(ς−1).

Figure1 presentsβ(ω) for different models plotted in lin-
ear and in logarithmic scales and shows how limited our
knowledge ofβ is.

3.3 Wave dissipation termSdiss – “white-capping” mecha-
nism

All existing forecasting models (WAM, SWAN) include
strong dissipation termSdiss , which is comparable withSin
and may surpassSnl . However, physical mechanisms of
wave energy dissipation are not studied properly: actually
we know aboutSdiss much less than aboutSin.

Certainly dissipation is essentially nonlinear process. Wa-
ves shorter than 1 m generate trains of gravity-capillary
forced harmonics (Longuet-Higgins, 1995, 1996). Due to
these harmonics the energy transfers to capillary waves,
then the capillary waves dissipate due to viscosity. For the
“smooth sea” in absence of white-capping this process is
the leading mechanism of dissipation. In typical conditions
the sea is “smooth” if the wind speedU10<5÷6 m·s−1. For
stronger winds the generation of gravity-capillary slave har-
monics turns to micro-breaking – the formation of quasi-
periodic patterns of breakers with periods much less than
ones of energy-containing waves (see, for example,Melville,
1996).

These mechanisms take away the energy from the high-
frequency range of wave spectrum. Does there exist any
mechanism of absorbtion of energy from the spectral peak
range? From the physical view-point the answer to this ques-
tion is unclear. Usually the mechanism of energy dissipa-
tion is associated with white-capping. The white-capping
appears if the wind velocity is higher than 5÷6 m·s−1. Den-
sity of white-capping grows fast with the wind velocity and
at U10>15 m·s−1 each leading wave has a white cap. Cer-
tainly, the white caps present the area of energy dissipation.
However, the assumption that this dissipation is also concen-
trated in high wave numbers is very natural. The white cap,
persisting at the crest of a long energy-containing wave at
strong wind, can be interpreted in a following way. There is
some nonlinear mechanism that tries to form a wedge-type
singularity on the surface and the white-capping smoothes
this singularity. If this mechanism takes place on the crest of
limiting Stokes wave asPhillips (1958) assumed, it should
take away the energy from the spectral peak. However, char-
acteristic steepness of the leading wave withµ≤0.1 is much
less than the steepness of limiting Stokes wave (µ>0.4). For
waves of such small steepness the short and long waves are

not connected directly and dissipation of short waves does
not lead immediately to dissipation of long waves.

Another argument against the white-capping mechanism
for the long-wave dissipation is the structure of turbu-
lence. The wave-induced turbulence is concentrated in a thin
boundary layer beneath the surface. There are no traces of
long vortices that should appear due to dissipation of long
waves. In fact, the only visible argument in support of
white-capping mechanism for long-wave dissipation is phe-
nomenon of “sea maturity”. It is considered that the spectral
downshift is arrested when the spectral peak frequencyωp is
somewhat below the characteristic frequencyω0=g/U10.

The concept of “mature sea” was offered byPierson and
Moskowitz(1964). Since that time this concept is still a sub-
ject of discussions. Some authors (Glazman, 1994), by re-
mote sensing of ocean, reported observations of very long
waves with phase velocities several times higher than wind
speed. However, most authors agree that the maturing of the
sea is a real phenomenon that takes place at very high fetches
(of order 104 wave lengths). For wave lengthsλ∼100 m this
yields 1000 km. We must stress that very weak dissipation
β/ω∼10−5 can provide this effect. Indeed, the origin of this
dissipation could be white-capping but existence of this dissi-
pation does not mean that this is essential for shorter fetches
which are more interesting from the practical view-point.

We will not discuss in this paper all empirical models for
Sdiss . We will mention two most popular ones only. The first
model, offered byHasselmann(1974) and widely used since
that time is the following:

Sdiss = −Cfω
(ω
ω

)2
(

α

αPM

)2

N(k) (54)

HereCf=3.33×10−5 andαPM=4.57×10−3 is the theoret-
ical “Pierson-Moskowitz steepness” and both the mean fre-
quencyω and the non-dimensional energyα

α =
Etotω

4

g2
(55)

depend on the wave field state. The ratioα/αPM in Eq. (54)
can be estimated easily for conventional parameterizations
of wind-wave spectra (e.g. JONSWAP,Hasselmann et al.,
1973) using their property of self-similarity. While these
parameterizations split the dependence of wave spectra on
internal and external parameters – the non-dimensional wave
frequency and the wave age – the mean valuesω and the non-
dimensional energyα can be expressed in terms of wave age
g/(U10ωp). One gets (see Eqs.39and42)

α

αPM
∼

(
U10ωp

g

)κα
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Fig. 1. Dependence of wind-wave growth rate on non-dimensional frequencyωU10/g in log- and linear scales given by different experimental
parameterizations (see legends).

and, finally, a fairly simple expression for the dissipation rate

βdiss

ω
= −Cβ

(
ωU10

g

)
×

(
ωpU10

g

)2κα−1

(56)

ConstantCβ is close to the multiplier 3.33×10−5 in Eq. (54).
Toba’s law for developing sea corresponds toκα=1. That
gives the dissipation rate in Eq. (56) growing with frequency
asω2 similarly to the generation rate bySnyder et al.(1981).
Note, that the wave input rates in other models of the pre-
vious section grow faster, asω3. The result looks paradoxi-
cally: the termSdiss (Eq.54) cannot balance the wave input
in small scales, where the dissipation due to wave breaking
must dominate.

In fact, in wave forecasting models the high frequency dis-
sipation is introduced in implicit form in order to achieve nu-
merical stability in small scales (Tolman, 1992) or it is intro-
duced explicitly to keep correct quasi-stationary asymptotics
of wave spectra in high-frequencies (e.g.Tolman and Cha-
likov, 1996). In the latter case the relative contribution of
Snl , Sin andSdiss into the balance becomes a key problem.

Results of numerical experiments with mature wind waves
(Komen et al., 1984) are considered usually as a justifica-
tion of the Hasselmann white-capping mechanism (Hassel-
mann, 1974). Komen et al.(1984) calculated wave inputSin
and collision integralSnl for the Pierson-Moskowitz spec-
trum and found the dissipation termSdiss as a residual one
to provide a balance in the kinetic equation. All the three
terms of wind-wave balance appeared to be close to each
other in magnitudes near the spectral peak. Additionally, it
was found that the dissipation can be parameterized surpris-
ingly well by the white-capping formula (54) with slightly
smaller coefficientCf . In fact, the authors do not consider
these results as a justification of the leading role of white-
capping mechanism in wind-wave evolution. They stress that

their consideration is “. . . based on extrapolation . . . ” of ex-
perimental parameterizations obtained for developing wind-
wave sea at rather weak winds (4−6 m·s−1 in experiments of
Snyder et al., 1981) on the case of mature sea where so far
there are no direct measurements of wave input and dissipa-
tion. Severe hypotheses underlying the analysis byKomen et
al. (1984) were ignored by many followers. Unintentionally,
this milestone paper became “a misguiding star”: the prob-
lem of physical roots is replaced by the problem of tuning of
wave dissipation to fit some superficial non-physical criteria.

This is seen in another model ofSdiss , offered byPhillips
(1985) and used by some authors in their theoretical con-
structions (seeHara and Belcher, 2002). The result

Sdiss = α′′ ωk Nk (|k|
2Ek)

2 (57)

(α′′ is a constant) coincides exactly with a simplistic estimate
of Snl (Eq.29). The form (Eq.57) was taken deliberately to
obtain the Zakharov-Filonenko spectrumω−4 as a solution
of the balance equation in the universal range. In fact, the
spectrumω−4 is a solution of equationSnl=0: to obtain this
spectrum there are no reasons to include dissipation terms
into consideration!

Some practical reason to include an artificialSdiss term
into the Hasselmann equation does exist. As we mentioned
above, there is a big diversity of wind-input termsSin and the
results of numerical simulation of the Hasselmann equation
depend essentially on the choice ofSin. It is shown (Komen
et al., 1984; Pushkarev et al., 2003) that if Sin is taken in
Eq. (47) proposed bySnyder et al.(1981) or Eq. (52) by
Donelan and Pierson-jr.(1987) the waves grow too fast as
compared to experimental data. In this case includingSdiss
can fix the situation. However, this is not a “physical” argu-
ment. We will show that numerical simulations with less ag-
gressive form ofSin (Eqs.51and48) by Hsiao and Shemdin
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(1983) or Plant(1982) make possible to obtain good agree-
ment with experiment without using any artificialSdiss .

3.4 Nonlinearity vs. wave input and dissipation – direct
comparison of the terms

The problem of dominating mechanisms of the wind-wave
balance can be easily solved by numerical simulation of the
Hasselmann equation. Comparison of terms in the kinetic
equation does not require the solution of the evolution prob-
lem. It is enough to make “snapshots” of terms for different
spectra. While the “snapshot” is unique for the “first prin-
ciple term”Snl , different forms of empirical dependence for
Snl , Sdiss can be used for the comparison.

3.4.1 Comparison of different parameterizations for wave
input

Comparison of source terms for different parameterizations
of wave growth rate (Eqs.47–52) is given in Fig.2. The
JONSWAP forms of frequency spectraE(ω) (Donelan et al.,
1985) for wind speedU10=10 m·s−1 and three different wave
ages are taken for the comparison. To calculate the corre-
sponding spatial spectrum the simplest form of angular de-
pendence was chosen

N(k) =

{
N(|k|) cos2 θ, for − π/2< θ < π/2
0, otherwise

In fact, the observed wind wave spectra have more compli-
cated dependence on angle but the above form is sufficient
to fix important problems of wind input parameterizations.
The source terms are calculated as they appear in the kinetic
Eq. (27) for wave action (left column in Fig.2). In the right
column the spectral density of the input term averaged in an-
gle is shown.

Figures for three different wave ages show clearly a rather
strong difference of wave input terms. For young waves (top
row), all formulas show similar behavior and the agreement
can be achieved by simple tuning of the corresponding multi-
pliers. Parameterizations byDonelan and Pierson-jr.(1987);
Plant (1982); Snyder et al.(1981) have close magnitudes
while Hsiao and Shemdin(1983) andStewart(1974) param-
eterizations form an alternative group with essentially lower
values.

The difference of parameterizations for the wave input be-
comes dramatic for “old” waves:ωpU10/g=1 (middle row)
andωpU10/g=0.9 (bottom row). We emphasized this prob-
lem in Sect. 3.2: the parameterizations have perfectly dif-
ferent behavior (constant, linear or quadratic in (ς−1)) near
the low-frequency cut-off ofβ(ω). Both magnitudes and
forms of dependencies are essentially different. The annoy-
ing question of the comparison is: “What parameterizations
should be used in the kinetic equation? Which formula is
true?”

3.4.2 Nonlinearity vs. wave input for JONSWAP spectra

The similar term-to-term comparison can be performed for
the collision integralSnl calculated for a “reference” spec-
trum JONSWAP. Results are presented in Fig.3 for the
same spectra as in the previous section and for inverse wave
agesωpU10/g=2 and ωpU10/g=1.5. The first point to
be stressed isnonlinear transfer dominates at rather early
stages of wind wave evolution.

In fact, this is true near the spectral peak, where
Snl exceedsSin significantly: approximately 4 times for
ωpU10/g=2 and 8 times forωpU10/g=1.5. In order to
fix this difference definitely we showSnl (middle, right in
Fig. 3) andSf=Sin+Sdiss (bottom, right in Fig.3) in the
same scales in Fig.4.

Note the strong effect of spectra peakedness onSnl : for
γ=1 (the Pierson-Moskowitz spectral form) the difference of
Snl andSin is noticeably less than for higher values ofγ . In
perfect agreement with results of Sect. 2, we see that peaked-
ness amplifies the nonlinear transfer dramatically. Underes-
timation of peakedness effect is likely a source of misleading
results on secondary role of nonlinear transfer in the kinetic
equation (see discussion in Sect.3.3).

In the inertial interval, comparison of different terms in the
kinetic equation is not a trivial problem. In this spectral range
whenSnl → 0 andSnl+Sf→0 a term-to-term comparison
can be misleading. To find which term is more important one
has to impose a small perturbation to the stationary solution

N = N0 + δN

and study the kinetic equation in variational form (Balk and
Zakharov, 1988, 1998)

∂δN(k)

∂t
= βin(k)δN(k

′)+ βdiss(k)δN(k
′)

+

∫
R(k, k′)δN(k′)dk′ (58)

where

R(k, k′) =
δSnl(k)

δN(k′)

is the Fŕechet derivative of the collision integral. The effect
of local (in wavevector space) terms of wave input and dissi-
pation can be estimated as a characteristic time of exponen-
tial growth (decay) – the relaxation time

τf =
1

βin + βdiss
; βdiss < 0

For the collision integralSnl a crude approximation of the
similar time scale gives

τnl =

(∫
R(k, k′)dk′

)−1

∼
1

γk

Hereγk is introduced by Eq. (31). It should be stressed that
the relaxation timeτnl depends essentially on the solution
and this dependence is not local in wavevector space. Relax-
ation times were estimated numerically byResio and Perrie
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Fig. 2. Wave input functions as they appear in the right-hand side of the kinetic equation for wave action (left column) and the averaged
one in angle (right column) for different wave ages and different parameterizations of wind input (shown in legends) (U10ωp/g=2 – top,
U10ωp/g=1 – center,U10ωp/g=0.9 – bottom) as functions of non-dimensional wave frequencyω/ωp. The JONSWAP spectrum with the
standard set of parameters is taken for wind speedU10=10 m·s−1(see Sect. 3.1).
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Fig. 3. Upper row – instantaneous JONSWAP spectra, middle row – wave input termSin by Donelan et al. (1987), bottom row – collision
integralSnl as they appear in the kinetic Eq. (2) for down-wind direction. Wind speedU10=10 m·s−1, angular dependence of JONSWAP
spectra is cos2 θ . Left column shows results for inverse wave ageU10ωp/g=2 and right – forU10ωp/g=1.5. Results for three values of
peakedness parameterγ=1, 3.3, 5 are shown by different curves (dash-dot, solid, dashed, correspondingly). The abscise is non-dimensional
wave frequency. Note, that the term scaling is different for the columns: the spectrum peak is approximately 10 times, the input term is 2 times
and the collision integral is approximately 4 times higher for “older” waves (U10ωp/g=1.5 (right column). Collision integral amplitudes
grow faster than the wave input term and exceed the term by factor 8 for the sharpest (γ=5) JONSWAP spectrum atU10ωp/g=1.5.

(1991, see Figs. 18 and 19). Their calculation gives rather
short times in a range 102

−103 s. We do not present similar
estimates in this paper. The dominating role ofSnl (shortτnl)
will be demonstrated as an inherent property of the resulting
solutions – their tendency to self-similar behavior.

As we mentioned, the JONSWAP spectrum have self-
similarity features. Together with re-scaling property of the
collision integral (Eq.29) it gives a simple dependence ofSnl
on wave age (see Eq.37)

Snl ∼ (ωpU10/g)
3κα−8 (59)

Forκα=1 (Toba’s law) Eq.59gives 3κα − 8=−5, i.e. a very
rapid growth ofSnl with spectrum downshift. Figure3 (bot-
tom row) follows this scaling fairly well.

The input termSin=β(k)N(k) does not allow the self-
similar re-scaling. For JONSWAP spectrum this term grows
slower thanSnl because the growth rateβ(k) sharply de-
creases when the wave phase speed is tending to the wind

speedU10. At the same time, the dissipation termSdiss
(Eq.56) grows faster than the nonlinear transfer term

Sdiss ∼ (ωpU10/g)
3κα−9

and, formally, can dominate for sufficiently old waves. How-
ever, this term appears to be small for reasonable wave ages
g/(ωpU10)<1.5 because of small multiplier in Eq. (54). The
effect of wave spectra saturation due to the white-capping
dissipation has been observed in numerical experiments (Ko-
matsu and Masuda, 1996).

3.4.3 Nonlinearity of “natural” spectra at early stages of
wave field evolution

As we will show below, the JONSWAP parameterization ap-
pears to be close to our numerical solutions for the kinetic
equation. At the same time, this parameterization and the
“natural” spectra obtained in our numerical experiments are
not identical. The minor difference of the spectra are of
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no practical importance but this difference can affect signifi-
cantly the magnitudes of the kinetic equation terms.

Figure 5 shows “snapshots” of the collision integralSnl
and the input termSin for the solutions of kinetic Eq. (2)
for the same values of wave ages as in Fig.3. The details
of numerical approach will be given below. The point to be
stressed here is that small difference in spectral forms can
affect significantly our quantitative results. First, the peak
values of both JONSWAP and numerical solutions appear to
be very close to each other for the standard peakedness pa-
rameterγ=3.3. The minor difference is in the wave age def-
inition: the peak of JONSWAP distribution is shifted slightly
to lower frequencies as compared to the parameterωp, while
for “natural” spectraωp corresponds exactly to the spectral
peak. This tiny mismatch leads to 20−30% excess in peak
values of the input termSin and 50% of growth ofSnl as
compared to the JONSWAP spectra.

As a summary of the section two points should be stressed.
First, the collision integral in the kinetic equation starts to
dominate at very early stages of wind wave evolution. We
demonstrated this fact for the JONSWAP parameterization of
wave spectra. Second, we showed that details of spectral dis-
tributions can affect the magnitude of the collision integral
significantly. Thus, the question on contribution of differ-
ent terms of the kinetic equation goes hand in hand with the
question how these terms evolve within the kinetic equation.
The comparison of “snapshots” of the terms for some “repre-
sentative” parameterizations of wave spectra can be mislead-
ing as it was the case for the Pierson-Moskowitz spectrum
(Komen et al., 1984, Sect.3.3).

4 Weak-turbulent Kolmogorov’s spectra

We presented preliminary arguments in favor of dominant
role of nonlinear transfer in the Hasselmann equation. This
statement implies applicability of basic results of weak tur-
bulence theory for the case of wind-driven waves. The weak
turbulence theory describes the transport of motion con-
stants: energy, momentum and wave action along the spec-
trum. So far many members of the wind-wave community
believe in “local balance” of energy ink-space. According
to this “local mentality”, instability that causes exponential
growth of wave in certain spectral range has to be arrested by
nonlinear dissipative mechanism that takes place in the same
spectral range. This concept is reasonable if nonlinear en-
ergy transport is a mechanism of secondary importance and
its role is just to fix some mismatch between linear instability
and nonlinear dissipation. However, if nonlinear interactions
dominate such view-point is not tenable yet. Nonlinear inter-
action leads to migration of energy along different spectral
ranges. Now, the energy balance is nonlocal: the energy be-
ing generated in one spectral range (say, 2÷3ωp) can be ab-
sorbed by some dissipative mechanisms (at 6÷ 7ωp or so).
The energy, momentum and wave-action transfer along the
spectrum is described by the Kolmogorov (or Kolmogorov-
Zakharov) spectra, which play the central role in the theory
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Fig. 4. Comparison of nonlinear transfer termSnl (hard line) and
the term of forcingSf=Sin + Sdiss (dotted line) in the kinetic
Eq. (2) for the case of left panel Fig.3 (U10ωp/g=2) and differ-
ent peakedness (see Fig.3 caption).

of weak turbulence. The Kolmogorov spectra are exact solu-
tions of stationary homogenous kinetic equation

Snl = 0 (60)

Basic features of the Kolmogorov solutions are reproduced
in a number of numerical and experimental studies. The best
known result of the theory – the exponent(−4) for high-
frequency tail of wind-wave spectra – is in perfect agree-
ment with available experimental data. The same spectrum is
systematically observed in numerical experiments. However,
the majority of wind-wave community does not associate so
far this spectrum with the weak-turbulent theory. Meanwhile,
this is the simplest weak-turbulent Kolmogorov spectrum.
This spectrum was found analytically byZakharov and Filo-
nenko(1966), in 1972 this spectrum was observed experi-
mentally byToba(1973). Since that time theω−4-spectrum
was observed many times in the ocean, in laboratory and in
numerical experiments. This spectrum describes the direct
cascade of energy that migrates from small to high wavenum-
bers.

An opposite tendency – migration of wave action from in-
finitely small to large scales is presented by the inverse cas-
cade solution that gives close exponent 11/3 for frequency
spectra. This solution was found by Zakharov (1966) in
sixties, in seventieth it was studied as a particular case of
non-equilibrium stationary distributions of particles (quasi-
particles) in a number of physical problems (Katz and Kon-
torovich, 1971, 1974; Katz et al., 1975). Just in eighties
the inverse cascade solution has been related to the problem
of wind-wave spectra evolution (Zakharov and Zaslavskii,
1982; Zakharov and Zaslavsky, 1983), in particular, to the
well-known phenomenon of wave spectra downshift.

In this section we give basic results of the theory of the
Kolmogorov-Zakharov cascade solutions.
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Fig. 5. The same as in Fig.3 for spectra resulting from evolution within the Hasselmann equation. The wave input termSin is given twice:
in middle (solid line) and in bottom row (dashed) for direct comparison with magnitudes of the collision integralSnl .

4.1 Definitions of constants of motion and their fluxes

Let us consider basic properties of conservative homoge-
neous kinetic equation

∂N(k, t)

∂t
= Snl (61)

i.e. Eq. (27) in absence of wind forcing, dissipation and spa-
tial inhomogeneity. The following quantities are constants of
motion for Eq. (61)

N =

∫
N(k, t)dk =

∫
N(ω, t)dω

E =

∫
ω(k)N(k, t)dk =

∫
ωN(ω, t)dω

M =

∫
kN(k, t)dk =

∫
kN(ω, t)dω

Let us formulate this statement more accurately. Actually,
conservation of motion constants means that the following
differential relations are valid

∂N(ω, t)

∂t
=

∂Q(ω, t)

∂ω
∂E(ω, t)

∂t
= −

∂P (ω, t)

∂ω

∂M(ω, t)

∂t
= −

∂K(ω, t)

∂ω

where the corresponding fluxes of wave action, energy and
momentum production are defined as follows

Q(ω) =

∫ ω

ωl

∫ π

−π

2ω3

g2
Snl(k)dωdθ (62)

P(ω) = −

∫ ω

ωl

∫ π

−π

2ω4

g2
Snl(k)dωdθ (63)

Kx(ω) = −

∫ ω

ωl

∫ π

−π

2ω5

g3
Snl(k) cosθdωdθ (64)

We assume that momentumM and its fluxK have only one
component aligned along the x-axis. Positive signature ofQ

corresponds to wave action flux to small wavenumbers, while
positive fluxes of energyP and momentumKx are directed
to high wavenumbers.

It is useful to present the “flux form” of the kinetic equa-
tion in polar coordinates as

∂N(ω, θ, t)

∂t
= LA (65)

where

L =
1

2

∂2

∂ω2
+

1

ω2

∂2

∂θ2
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and the auxiliary functionA can be found as a result of action
of nonlinear integral operator onN(ω, θ)

A(ω, θ) =
∫
F(ω,ω1, ω2, ω3, θ − θ1, θ − θ2, θ − θ3)

×N(ω1, θ1)N(ω2, θ2)N(ω3, θ3)

×dω1dω2dω3dθ1dθ2dθ3

(66)

The explicit expression ofF is given in Appendix B. An ad-
ditional auxiliary function can be introduced in a similar way
for the “flux form” of the kinetic Eq. (2) rewritten for energy
spectral density

B(ω, θ) =
∫
ωF(ω, ω1, ω2, ω3, θ − θ1, θ − θ2, θ − θ3)

×N(ω1, θ1)N(ω2, θ2)N(ω3, θ3)dω1dω2dω3dθ1dθ2dθ3

For angular mean values one gets

A(ω) =
1

2π

∫ 2π

0
A(ω, θ)dθ

B(ω) =
1

2π

∫ 2π

0
B(ω, θ) cosθdθ

(67)

Useful relation between energy, wave action and momentum
fluxes can be obtained for spectral fluxes (Eqs.62–64)

Q(ω) =
∂A

∂ω

P (ω) = A− ω
∂A

∂ω
(68)

Kx(ω) =
ω

g

(
2B − ω

∂B

∂ω

)
4.2 Kolmogorov’s solutions

Finding solutions for the Hasselmann kinetic equation is the
subject of the theory of weak turbulence. The main point of
this theory is investigation of the stationary Eq. (60).

4.2.1 Local balance solutions

Thermodynamic spectra correspond to local in wavevector
(frequency) space balance. In this case nonlinear interactions
vanish for each quartet of interacting waves. In other words,
amplitudes of an interacting quartet

N0N1N2 +N0N1N3 −N0N2N3 −N1N2N3 = 0

are balanced at every point of resonant surface{
k0 + k1 = k2 + k3
ω0 + ω1 = ω2 + ω3

This balance does not depend on interaction kernels that re-
sults in thermodynamic solution

N(k) =
T

ωk + µ
(69)

where temperatureT andµ are arbitrary parameters. This
Rayleigh-Jeans solution appears in a great number of physi-
cal problems. However, this solution is completely irrelevant
to the problems of wind-driven sea because the correspond-
ing energy spectrum does not decay at|k|→∞.

4.2.2 Constant flux Kolmogorov’s solutions

Stationary kinetic Eq. (60) has a vast family of exact so-
lutions completely different from the Rayleigh-Jeans spec-
trum (Eq.69). These solutions were found by Zakharov with
co-authors (Zakharov and Filonenko, 1966; Zakharov, 1966;
Zakharov and Zaslavskii, 1982). In these articles authors
used the so-called Zakharov conformal mapping to construct
the solutions (see alsoKatz and Kontorovich, 1971; Katz et
al., 1976). For the same purpose much more simple tech-
nique was offered in (Zakharov, 1999). The stationary ki-
netic Eq. (60) is equivalent to

LA = 0

(see Eq.65) that can by integrated as follow

A(ω, θ) = ωQ+ P + 2
Kg cosθ

ω
(70)

HereP andK are constants of integration andA is integral
operator given by Eq. (66). Using homogeneity of function
F in Eq.(66)

F(εω, εω1, εω2, εω3) = ε12F(ω, ω1, ω2, ω3) ∼ g−4ω12(71)

one can define the most general stationary Kolmogorov-type
solution of the kinetic Eq. (60)

N(ω, θ) =
g4/3P 1/3

ω5
R(
ωQ

P
, 2
gK

ωP
, θ) (72)

with the energy spectrum

E(ω, θ) =
g4/3P 1/3

ω4
R(
ωQ

P
, 2
gK

ωP
, θ)

Let us study the most important special cases. Homogeneous
solutions with vanishing fluxes of wave action and momen-
tum (Q=0, K=0) give the well known direct cascade solu-
tion (Zakharov and Filonenko, 1966)

E(ω, θ) = Cp
g4/3P 1/3

ω4
(73)

HereCp=R(0, 0, 0) is the Kolmogorov constant (the first
Kolmogorov constant). Scaling invariance of the problem al-
lows for constructing other power-like solutions correspond-
ing to constant fluxes of wave action and momentum. Sup-
poseN(ω, θ) is an isotropic power-like function of fre-
quency

N(ω) ∼ ω−x

From Eq. (70) and homogeneity property (Eq.71) one gets

A(ω) = f (x)ω(15−3x)

Heref (x) is a function of one variable to be calculated nu-
merically. In fact,f (x) can be expressed through3(s) (see
and Geogjaev and Zakharov, 20051 and Eq.35). For the di-
rect cascade (P 6=0,Q=0,K=0)

A(ω) ∼ const; x = 5; C3
p = f (5) (74)

1 Geogjaev, V. V. and Zakharov, V. E.: Hasselmann equation
revisited, in preparation, 2005.
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The inverse cascade solution (Q 6=0) with a constant wave
action flux gives (Zakharov and Zaslavskii, 1982)

A(ω) ∼ ω; x = 14/3; C3
q = f (14/3) (75)

and

N(ω, θ) = Cq
g4/3Q1/3

ω14/3
(76)

E(ω, θ) = Cq
g4/3Q1/3

ω11/3
(77)

Quite similarly for constant momentum flux (K 6=0) one gets

A(ω, θ) ∼ ω−1
; x = 16/3; C3

m = f (16/3)

N(ω, θ) = Cm
g5/3K1/3

ω16/3
h(θ) (78)

E(ω, θ) = Cm
g5/3K1/3

ω13/3
h(θ)

From the symmetry consideration one has

h(θ) = −h(π − θ)

i.e. the solution (Eq.78) is not positive at all anglesθ . Thus,
general solution (Eqs.70and72) is unlikely to be realized in
a whole range of(ω, θ)-plane. An anisotropic generalization
of the solution can be found assumingQ=0 and momentum
flux to be small (Katz and Kontorovich, 1974; Katz et al.,
1976)

E(ω, θ) =
g4/3P 1/3

ω4
(Cp + CmgK cosθ/(ωP )+ . . .) (79)

Cm is known as the second Kolmogorov constant. Eq. (79)
predicts isotropy of the Kolmogorov spectrum atω→∞. In
fact, the observed wind wave spectra are anisotropic for ar-
bitrary large frequencies. A possible explanation is that in
real situations the momentum fluxK is a growing function
of frequency.

There is an additional restriction on power-like solutions.
Convergence of integrals in expression (Eq.66) for A re-
quires (Geogjaev and Zakharov, 2005)1

5/2< x < 19/4

Thus, Eqs. (73) and (78) are just formal solutions that can
be valid in a finite domain on(ω, θ)-plane. This is a case
of the direct cascade solution (Eq.73) that is an analogue of
the classical Kolmogorov spectrum of turbulence in incom-
pressible fluid. The energy source is assumed at some small
but finite wave frequencies and the energy dissipates in high
frequency domain.

In our further consideration the spatial presentation of Kol-
mogorov’s solutions will be useful for the direct cascade of
energy

N(k) = Cp
P 1/3

2g2/3|k|4
, E(k) = Cp

P 1/3

2g1/6|k|7/2
(80)

and for the inverse cascade of wave action

N(k) = Cq
Q1/3

2g1/2|k|23/6
, E(k) = Cq

Q1/3

2|k|10/3
(81)

4.3 Stationary solutions for the kinetic equation in presence
of sources and sinks

In this section we discuss briefly stationary homogenous so-
lutions of the Hasselmann equation in presence of forcing
and dissipation, more details for the consideration can be
found in (Zakharov, 2004). For simplicity we study the
isotropic case only. In this case the Hasselmann equation
is written in the form

Snl + β(ω)N = 0 (82)

or in terms of auxiliary functionA

1

2

d2A

dω2
+ β(ω)N = 0 (83)

Integrating Eq. (83) overω one gets evident formulas∫
∞

−∞

β(ω)N(ω)dω = 0∫
∞

−∞

ωβ(ω)N(ω)dω = 0 (84)

Conditions (Eq.84) are satisfied only ifβ(ω) changes the
sign at least twice. Ifβ(ω) is negative for small and high
frequencies, i.e. there are both low- and high-frequency dis-
sipation, the energy spectrumE(ω), fluxes of wave action
and energy take the forms presented in Fig.6. The distribu-
tions for stationary solutions can be found from numerical
integration of Eq. (82) or analysed qualitatively starting with
a spectrum and using evident identities (Eq.68). One gets

Q(ω) = −

∫ ω

0
β(ω̃)N(ω̃)dω̃

A(ω) =

∫ ω

0
Q(ω̃)dω̃ (85)

P (ω) = A(ω)− ωQ(ω)

The qualitative analysis is illustrated by Fig.6 basing on our
numerical experiments where results byKomatsu and Ma-
suda(1996) have been reproduced. The Hasselmann white-
capping dissipation arrested the spectrum downshift in these
experiments for rather long time (approximately 100 h for the
sketch discussed). This is the well-known effect of satura-
tion (maturity) of wind-wave spectra studied numerically by
Komen et al.(1984). Here we treat it as a balance of spec-
tral fluxes due to nonlinear transfer and local (in wave scales)
forcing. Both direct and inverse cascading coexist in the pre-
sented example.

The saturated spectrum has no pronounced peakedness in
contrast to developing wave case. Nonlinear transfer termSnl
is balanced by source function (Fig.6b) but keeps “weakly
turbulent” high-frequency tailω−4 perfectly well (Fig.6a).
Limits of positive ratesβ(ω) are not easy to relate with
generic properties of the stationary problem (Eq.85) due to
weak non-stationarity and anisotropy of the numerical exam-
ple, this is why maxima of fluxes of wave actionQ (Fig. 6c)
and energyP (Fig.6d)P are slightly upper-shifted relatively
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Fig. 6. (a)– Energy spectrumE(ω); (b) – nonlinear transferSnl(ω)
and forcing termSf (ω); (c) – wave action fluxQ; (d) – energy flux
P ; (e)– auxiliary functionA(ω) for quasi-stationary solution of the
kinetic equation withKomatsu and Masuda(1996) setup: wave in-
put (Eq.47) by Snyder et al.(1981) atU5=20 m·s−1, Hasselmann’s
white-capping dissipation (Eq.54), time 100 h. Domains of positive
β, Q andP are shaded. Vertical straight lines are given for maxi-
mal and zero wave action to show that the numerical solution obey
identities for spectral fluxes (Eqs.68and85).

to β(ω) zero-crossing. All other relations between fluxes
and auxiliary functionA(ω) are in excellent agreement with
Eq. (85).

An additional example of “flux nature” of the Hassel-
mann equation solutions in presence of forcing is presented
in Fig. 7. The structure of the solution is especially simple
as far as domains of dissipation and input are well-separated.
The dissipation takes place in the region of small frequencies
ω<ω0 and high frequenciesω>ω2, the forcing is concen-
trated in a narrow range nearω'ω1, andω0�ω1�ω2. Then
in the rangeω0<ω<ω1 one gets a pure inverse cascade that
describes the spectrumω−11/3, while in the rangeω1>ω>ω2
– a pure direct cascadeNω'ω−4. This situation is illustrated
by Fig. 7 where the results of a numerical experiment are
presented. Note that despite of strong anisotropy of input the
numerical solution reflects the robust features of nonlinear
transfer in wind-wave spectra fairly well. In more realistic
situation (e.g. Fig.6), when the wave forcing occupies a wide
frequency domain the direct and the inverse cascades coex-
ist and their discrimination does not manifest itself in such
pronounced form.
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Fig. 7. Form of the energy spectraE(ω, θ) and its directional dis-
tribution (bottom) for an “artificial” source function. The solution
is tending to Kolmogorov’s asymptotics, i.e. to the inverse cascade
in low frequencies and to the direct cascade in high frequencies.

5 Self-similar solutions for kinetic equation

In this section we present new theoretical results on wind-
wave spectra evolution based on the theory of weak turbu-
lence. These results can be considered as a generalization
of the Kolmogorov-Zakharov constant flux solutions for the
case of non-stationary (non-homogeneous) isotropic wind-
wave spectra. The exponents of wind-wave spectra are usu-
ally discussed as a justification of physical relevance of the
Kolmogorov spectra approach. At high frequency tails, the
wind wave spectra keep exponent(−4) that corresponds to
the direct cascade solution (Eq.73). At the same time, a
part of wind wave community considers the KZ solutions
as physically irrelevant because two key features of wind-
wave spectra – the pronounced peakedness and the strong
anisotropy – are, evidently, beyond the stationary isotropic



912 S. I. Badulin et al.: Self-similarity of wind-driven seas

power-like Kolmogorov-Zakharov solutions. In fact, the
Kolmogorov-Zakharov exponents remain extremely robust
for wind-wave spectra strongly localized in wave scales and
directions. Figure7 mentioned above illustrates an “unreal-
istic” case when relatively strong generation is localized in
a narrow frequency range to leave more space for cascading
regimes at lower and higher frequencies, i.e.

β(ω, θ) =

{
Const, ω1 < ω < ω2; θ1 < θ < θ2

0, otherwise

This forcing, as well as the resulting spectrum, is strongly
anisotropic. In spite of this fact, this spectrum keeps the
Kolmogorov-Zakharov exponents in a rather wide range of
angles and frequencies.

In low frequencies (relatively to generation domain) the
solution is approximated by power-like dependenceω−11/3

corresponding to the inverse cascade regime. For high fre-
quencies the solution tends to the lawω−4, i.e. to the direct
cascade asymptotics. Thus, both features of real wind-wave
spectra and of basic weak turbulence models are coexisting
within this numerical solution.

The key point of our theoretical analysis isscaling in-
variance (Eq.28) of the conservative kinetic Eq. (4) for the
case of deep water waves. This invariance allows to con-
structa family of anisotropic self-similar solutions for non-
stationary and non-homogeneouskinetic equation. The sta-
tionary Kolmogorov-Zakharov solutions can be considered
as special solutions of the family att→∞. Thus, the KZ so-
lutions can be treated not only as mathematical objects but as
physically relevant states of the wave field at infinitely long
time t→∞.

5.1 The kinetic equation for deep water waves – homo-
geneity of collision integral and routes to self-similarity

For deep water case there is no specific scaling and non-
dimensional variables can be introduced in arbitrary way

t = τ/ω0, x = χ/k0, k = k0κ;

ω = ω0�, � =
√

κ, ω0 =
√
gk0

Non-dimensional wave action takes a form

N(k) =
1

ω0k
4
0

ñ(κ) =
g4

ω9
0

ñ(κ)

Correspondingly

N(ω, θ) =
g2

ω6
0

ñ(ω); E(ω, θ) =
g2

ω5
0

ε̃(ω, θ) (86)

Below we omit tilde in non-dimensional wave action nota-
tions. We shall relate characteristic scalesk0, ω0 to the only
“external” parameter of wave generation – wind speedU10 at
standard height (u∗ – friction velocity can be used as well).
Thus, unless otherwise is specified, we define characteristic
wavenumber and wave frequency scales as follows

k0 = g/U2
10, ω0 = g/U10

The non-dimensional energy and frequency become

ε =

∫
√

κn(κ)dκ = k2
0σ

2
= g2σ 2/U2

10

ν =

∫
κn(κ)dκ∫ √
κn(κ)dκ

= ω/ω0

The non-dimensional cyclic frequency of spectral peak is the
well known inverse wave age

ω∗ = ωp/ω0 = ωpU10/g

The kinetic equation for water waves in homogeneous ocean
(Eq.2) can be rewritten in non-dimensional form as follows

∂n

∂τ
+

κ∇n

2|κ |3/2
= S̃nl + S̃in + S̃diss (87)

It is of primary importance for further analysis that collision
integralSnl is homogeneous in wavenumber (see Eq.29) as
well as the terms in left-hand side of Eq. (87). It gives an
idea to construct self-similar solutions for stationary (fetch-
limited) and homogeneous (duration-limited) cases. Unfor-
tunately, termsSin andSdiss are not homogeneous functions
of κ . Thus, the analysis of self-similar solutions of the con-
servative kinetic Eq. (4) can give physically relevant results if
external forcing terms are small. Look for such solutions as-
suming formally the smallness of generation and dissipation
terms.

5.2 Self-similar solutions for duration-limited wave growth

Consider the waves generated in homogeneous sea by sta-
tionary wind from an initial state. The so-called duration
limited case gives the following kinetic equation

∂n

∂τ
= S̃nl + S̃f

Searching for the solutions in the form

n(ξ , τ ) = aταUβ(ξ , τ ) (88)

whereξ=bκτβ , one gets after simple algebra

τ
∂U

∂τ
+ βξ∇ξUβ(ξ , τ )+ αUβ(ξ , τ ) =

a2

b19/2
τ2α+1−19β/2S̃nl[Uβ(ξ , τ )] +

Sf (ξ , τ )

aτα−1
(89)

Condition

α =
19β − 2

4

leaves two terms only in Eq. (89) that contain dependence on
time explicitly: the term with time derivative and the term
of external forcingSf . For α>1 the latter term vanishes
asymptotically with time (we detail this point below), thus,
one can look for approximate stationary solutions of the ki-
netic Eq. (89) in variables(ξ , τ ). After re-scaling

a = b19/4 (90)
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the stationary “shape” functionUβ(ξ) obeys the following
integro-differential equation[

αUβ + βξ∇ξUβ
]

= π

∫
dξ1dξ2dξ3|Tξξ1ξ2ξ3

|
2

× δ(ξ + ξ1 − ξ2 − ξ3)

× δ(
√

|ξ | +
√

|ξ1| −
√

|ξ2| −
√

|ξ3|) (91)

×
[
Uβ(ξ1)Uβ(ξ2)Uβ(ξ3)+ Uβ(ξ)Uβ(ξ2)Uβ(ξ3)

− Uβ(ξ)Uβ(ξ1)Uβ(ξ2)− Uβ(ξ)Uβ(ξ1)Uβ(ξ3)
]

Total amount of solutions for Eq. (91) is not known. For-
mally we have a two-parametric family of self-similar solu-
tions with independent parametersα anda. The parameter
a can be related to initial conditions while parameterα is
specified by conditions of consistency with higher approxi-
mations in a formally small parameter of wave pumping%
(see Eq.45).

Let the total wave actionN is a power-like function of time

Ntot ∼

∫
n(ξ , τ )dk ∼ b11/4τ rτ

Using the self-similar form ofn(ξ , τ ) one gets for the total
wave action growth rate

rτ = α − 2β = (11β − 2)/4 = (11α − 4)/19 (92)

Solutions of this type make sense if “perturbation” term deal-
ing with the effect of generation/dissipation in Eq. (89) van-
ishes with time, i.e.

α > 1; rτ > 7/19 (93)

and solutions do not grow infinitely in the frequency range
of wave generation. More accurate estimates of the effect of
forcing, and, hence, of validity of our approximation can be
carried out for particular cases of wave growth.

5.2.1 Swell – “purely nonlinear” evolution of wave field

The special case of wave swell when generation and dissipa-
tion are absent gives (see Eq.92)

rτ = 0; β = 2/11; α = 4/11

The solution

n = aτ4/11U2/11(bκτ
2/11)

describes downshift of spectral peak as

|kp| ∼ τ−2/11

The total energy decreases as

Etot ∼ τ−1/11

Note, that the total wave action is real constant of motion in
this case while the wave energy leaks to small scales as it was
described in previous section.

We cannot guarantee that the corresponding self-similar
solutions appear as a result of evolution from an arbitrary
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Fig. 8. Numerical solutions for the swell case. Both directional (top
panel) and one-dimensional (bottom – averaged in direction) spectra
demonstrate features of self-similarity. Time in hours is shown in
legends.

initial conditions. Fortunately, this is not our case. Below
we present numerous justifications of self-similarity features
for variety of initial data and for different conditions of wave
generation and dissipation. Here we give just the first illus-
tration as a motivation for further study.

Figure8 shows the evolution of step-like initial spectrum
with no dissipation or generation. The initial state corre-
sponds to rather steep waves (ak=0.225) and mean wave-
length 5 m. After 64 h the dominant waves become ap-
proximately 3 times longer and their steepness 5 times less.
The numerical solution for the kinetic equation shows self-
similarity features perfectly well (Fig.8). The peak fre-
quencyωp and “shape function”U2/11 can be extracted eas-
ily to justify these features (Fig.9). Top Fig.9 shows that
the solution peak is travelling very close to the theoretical
self-similar dependence

(ξp)
1/2

∼ ωp t
1/11
p ∼ |kp|

1/2t
1/11
p = const
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Fig. 9. Self-similarity of the kinetic equation solutions for the case
of swell. Top – dependence of mean (circles), peak (triangles) and
front (squares – maximal positive spectral slope) frequencies on
time. The exponents of downshiftβ are close to the theoretical
value β/2=1/11. Bottom – functionU2/11(ξ) (ξ=ω2t2/11) ex-
tracted from the numerical solutions at different times (see legend,
in hours). The direct cascade slopeξ−4 is shown by hard line

The “shape function”U2/11(ξ) extracted for different times
(Fig. 9, bottom) shows remarkably strong tendency to self-
similar behavior: after half an hour no difference is seen for
the functions. All the evolution occurs for the low-frequency
pedestal only. This is illustration of a trivial fact: the nonlin-
earity is stronger – the evolution to self-similar form is faster.

As we noted above, the total wave action is conserved for
the swell case while the energy leaks. This leakage provides
a direct cascade of energy to high-frequency range described
by theZakharov and Filonenko(1966) spectrumE(ω)∼ω−4

as it is clearly displayed by Fig.9.

5.2.2 Self-similar solutions for time-dependent wave input

The self-similar solution for the swell (Sect.5.2.1) is an ex-
act solution of the kinetic equation. For wind-driven waves

the self-similar solutions are nothing but approximate ones.
In fact, we havea large family of the approximate solutions
corresponding to different exponents of wave action growth
raterτ . This family gives a basis for comparison and inter-
pretation of numerical results of next sections.

Defining integrals

Aβ =

∫ √
|ξ |Uβ(ξ)dξ Bβ =

∫
|ξ |Uβ(ξ)dξ . (94)

one can express mean frequency and total energy for self-
similar solutions (Eq.88) as follows

ε = uτ τ
pτ ν = vτ τ

−qτ

uτ = b9/4Aβ; vτ = b−1/2Bβ/Aβ

with exponents

pτ = (9β − 2)/4; qτ = β/2

For the wave action growth raterτ one has

rτ = α − 2β = (11β/− 2)/4

Total wave action grows as

ntot =
ε

ν
= b11/4τ r

∫
Uβ(ξ)dξ

and for total momentum one has

Mtot =

∫
|ξ | n(ξ , τ ) cosθ dk ∼ Mθ b

7/2 τmτ (95)

where

mτ = α − 3β = (7β − 2)/4

Additional dimensionless parameterMθ is introduced in
Eq. (95) to emphasize dependence of total momentum on
angular spreading of self-similar solutions. For isotropic
spectraMθ=0. There might exist some “most anisotropic”
self-similar spectrum with maximalMθ . We can guess that
exactly this spectrum that provides the maximal momentum
transport is realized in the real sea.

Dependence of mean energy on mean frequency gives

ε = uτv
pτ /qτ
τ ν−2T (96)

Parameters

BT oba = b9/4−TB2T
β ; T =

9/2 − 1/β

2
(97)

can be related to the well-known Toba’s law (see Eqs.43, 94
andToba, 1973). Note, that for the definition (Eq.97) the
Toba exponent depends on wave growth ratepτ (or rτ ). Two
particular cases are of special interest.
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5.2.3 Constant wave action input and the Kolmogorov-
Zakharov inverse cascade solution

For the case of linear growth of total wave action one has the
following set of exponents

α = 23/11; β = 6/11;

rτ = (11β − 2)/4 = 1; pτ = 8/11 ≈ 0.73;

qτ = 3/11 ≈ 0.27; T =
9/2 − 1/β

2
= 4/3

i.e. the amplitude growth is slower than Toba’s law predicts
(Toba, 1973). Assuming that the self-similar solution

n = aτ23/11U6/11(bκτ
6/11)

has power-like high-frequency asymptotics one can find
the exponent corresponding exactly to the inverse cas-
cade solution (Eq.81). Thus, the homogeneous station-
ary Kolmogorov-Zakharov solution (Eqs.76 and81) can be
related quite naturally with this non-stationary self-similar
regime. This link becomes more definite if we substitute the
inverse cascade solution into Eq. (91). Left- and right-hand
sides of the equation vanish simultaneously. We come to re-
markable physical (and mathematically trivial) result:The
Kolmogorov-Zakharov inverse cascade solution is the exact
solution for the homogeneous kinetic equation in self-similar
variables (Eq.91)! For the inverse cascade KZ solution
(Eqs.76 and 81) the balance of non-stationarity (left-hand
side of Eq.91) and nonlinearity (right-hand side of Eq.91)
is split for the “shape function”Uβ(ξ).

5.2.4 Constant wave energy input and the Kolmogorov-
Zakharov direct cascade solution

Quite similar to the previous paragraph one can obtain for the
regime of constant wave energy inputrτ=4/3 (pτ=1)

α = 8/3; β = 2/3;

rτ = (11β − 2)/4 = 4/3; pτ = 1;

qτ = 1/3; T =
9/2 − 1/β

2
= 3/2

The Toba exponent 3/2 appears to be consistent with the set
of exponents and corresponds to the wave action input grow-
ing with time while energy input remains constant.

Once again, assuming power-like high-frequency tails for
the non-stationary self-similar solution one gets that the
Kolmogorov-Zakharov direct cascade solution (Eq.80) is its
stationary counterpart. Quite similar to the previous section
the Kolmogorov-Zakharov direct cascade appears to be the
exact solution for the homogeneous kinetic equation in self-
similar variables (Eq.91)!

The special cases of duration-limited wind wave growth
are summarized in Table2.

It should be emphasized, that the self-similar solutions
(88) are not necessary isotropic. The contributions of non-
linear transfer and wave input can differ dramatically for dif-
ferent directions and, hence, self-similar behaviour can be

reached in different ways for different directions or cannot
be reached at all. The result depends on interplaying of non-
linear and input terms, that forms some kind of “magic cir-
cle”: low input means low nonlinear transfer and, thus, the
regime of dominating nonlinear transfer may be unattainable
for reasonable time: this is a subject of numerical analysis.

5.3 Self-similar solutions and flux balance in the kinetic
equation

Equation (91) for Uβ(ξ) has a form

Snl(Uβ(ξ)) = βξ∇ξUβ(ξ)+ αUβ(ξ) (98)

(see Eq.89 at t→∞) and can be considered as a basic one
in the weak turbulence theory. It can be treated quite nat-
urally as a stationary kinetic equation with specific external
forcing quite similarly to the stationary equation in primitive
variables (Eq.82). In contrast to Eq. (82) the external forcing
is not small yet because the right-hand term describes strong
effect of non-stationarity. Equation (98) gives an accurate
account of interplaying of spectral distributions and spectral
fluxes for wind wave field. Note, that the coefficientsα andβ
are constants and the right-hand-side of Eq. (98) is linear in
functionUβ . Thus, the qualitative analysis of Sect. 4.3 can
be amplified by explicit and mathematically correct results
for the family of approximate self-similar solutions.

The first important result is a behaviour of the collision
integralSnl at large time. If our hypothesis on dominating
nonlinear transfer is correct and the solutions do tend to the
asymptotic self-similar forms that satisfy (Eq.98), theSnl is
simply a linear combination of the spectral form and its first
derivative. Assume the JONSWAP spectrum to be close to an
asymptotic self-similar solution. As soon as the right-hand
side of Eq. (98) is linear inUβ one can take (see Eq.37)

Uβ(ξ) = ξ−4 exp(−ξ−2) exp

{
ln γ · exp(−

(
√
ξ − 1)2

2σ 2
p

)

}
and to reconstruct the corresponding asymptotic behavior of
collision integralSnl and spectral fluxes. The results are
shown in Fig.10. Parameterσp=0.08 and three different
peakednessγ=1, 3.3, 5 have been taken for calculations.
Left column of Fig.10 shows results for the inverse cascade
set of exponentsrτ=1, pτ=8/11, α=23/11, β=6/11 and
the swell case (rτ=0, pτ=−1/11, α=4/11, β=2/11) is il-
lustrated by the right column of plots. One can see a strong
effect of peakedness on all the patterns presented in Fig.10.
The caseγ=1 (an analogue of the Pierson-Moskowitz spec-
trum) does not give a typical strongly localized pattern for
Snl (Fig. 10c) in contrast to other cases. Stress the resem-
blance of the patterns and the exact collision integral for
JONSWAP spectra in Fig.3 and in previous papers (Has-
selmann et al., 1985; Masuda, 1986; Komatsu and Masuda,
1996). The similarity is more pronounced for sharp spectra
(γ=3.3, 5) than forγ=1 (the Pierson-Moskowitz spectrum).
The latter implies that JONSWAP spectra are rather close to
inherent wind-wave spectral shapes.
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Table 2. Exponents of self-similar solutions in duration-limited case.

rτ α =
19r + 4

11
β =

4r + 2

11
pτ =

9r − 1

11
qτ =

2r + 1

11
T Regime

0 4/11 2/11 −1/11 1/11 −1/2 Swell
1 23/11 6/11 8/11 3/11 4/3 Constant wave action input

4/3 8/3 2/3 1 1/3 3/2 Constant wave energy input

Table 3. Exponents of fluxes evolution for self-similar solutions in duration-limited case.

rτ
Snl(k, t) ∼ tsSnl(ξ)

s = (19r − 7)/11
Q(k, t) ∼ tsqQ(ξ)

sq = (r − 1)
P (k, t) ∼ tspP(ξ)

sp = (9r − 12)/11
Regime

0 −7/11 −1 −12/11 Swell
1 12/11 0 −3/11 Constant wave action input

4/3 5/3 1/3 0 Constant wave energy input

Spectral fluxes for the stationary Eq. (98) can be calculated
explicitly as integrals of its right-hand side (see Eqs.62–64).

Q =

∫ π

−π

∫
|ξ |

0
(β|ξ |

2∂Uβ

∂|ξ |
+ α|ξ |Uβ)d|ξ |dθ

=

∫ π

−π

β|ξ |
2Uβdθ

∣∣∣∣|ξ |

0
+ rτ

∫ π

−π

∫
|ξ |

0
|ξ |Uβd|ξ |dθ

P = −

∫ π

−π

∫
|ξ |

0
(β|ξ |

5/2∂Uβ

∂|ξ |
+ α|ξ |

3/2Uβ)d|ξ |dθ =

−

∫ π

−π

β|ξ |
5/2Uβ(ξ)dθ

∣∣∣∣|ξ |

0

− pτ

∫ π

−π

∫
|ξ |

0
|ξ |

3/2Uβd|ξ |dθ

K = −

∫ π

−π

∫
|ξ |

0
(β|ξ |

3∂Uβ

∂|ξ |
+ α|ξ |

2Uβd|ξ |)dθ =

−

∫ π

−π

β|ξ |
3Uβ(ξ)dθ

∣∣∣∣|ξ |

0
−mτ

∫ π

−π

∫
|ξ |

0
|ξ |

2Uβd|ξ |dθ

The result of the integration is of fundamental interest: for
positive exponents of wave action, energy and momentum
growth rτ , pτ , mτ the signs of fluxesQ, P andK are fixed
and correspond to inverse cascade regime, i.e.Q>0, P<0,
K<0. Note, that small ratesrτ<7/19 are of little interest for
our analysis because the smallness of source terms is ques-
tionable in this case (see Eqs.93, 89).

The case of swell is of special interest. Parameterspτ ,
mτ are negative and both types of cascades are co-existing
for wave energy and momentum: inverse cascade in low fre-
quency band (small|ξ |) and leakage of energy and momen-
tum (direct cascade) in high frequencies.

We assumed no angular dependence ofUβ(ξ) for Fig. 10
because of no qualitative differences for anisotropic distri-
butions. Note a remarkable coincidence of our calculations
with results of qualitative analysis of saturated wave spec-
trum in Sect. 4.3: the effect of non-stationarity can be treated

as a source term in the framework of spectral peak (in other
words, in self-similar variables). The “external forcing” in
Eq. (98)

S∗

in = βξ∇ξUβ + αUβ

arrests wave action and energy fluxes in low frequency band
as it was described in Sect. 4.3 (see Fig.6). Permanent forms
of the self-similar solutions are reached due to this arrest. In
high-frequency range the arresting effect of termS∗

in vanishes
for power-like tails of the Kolmogorov-Zakharov solutions
(see notes in Sects. 5.2.3 and 5.2.4 given byitalic). Thus,
fluxes in high-frequencies are not vanishing for the patterns
of Uβ that implies a production of wave action and energy in
the range. The physically important arrest of fluxes in small
scales cannot be described within the asymptotic theory (the
only exception is the swell case).

In Fig. 10d, e fluxes are tending to constant values quite
rapidly. Note, that self-similar argumentξ in the fig-
ure corresponds exactly to non-dimensional wavenumber
|k|/|kp|=ω

2/ω2
p and for ξ=2 the fluxes reach their 95%

level of asymptotic values for the case of wave pumping
(left column). The same tendency to the basic Kolmogorov-
Zakharov solutions (Eq.70) is seen for the auxiliary function
A(ξ) (A(ω)).

Evidently, the full dependencies on time and primitive
wavenumberk can be obtained easily for collision integral
and fluxes. The corresponding transformation is a power-
like stretching of Fig.10 in abscise and ordinate with time .
The exponents of the transformation are given in Table3.

Note, that fluxes depend on time. The special caserτ=1
(Table 3) corresponds to constant flux of wave action and
can be associated with the inverse cascade KZ solution. The
inverse cascade of energy decays asτ−3/11 in this case. The
constant (in time) flux of energy gives the wave action flux
growing with time asτ1/3.
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Fig. 10. Patterns of wave spectra, auxiliary functionA(ξ), collision integralSnl(ξ) and fluxes of wave actionQ(ξ) and energyP(ξ) for the
balance Eq. (98) for shape functionUβ . The JONSWAP-like function of non-dimensional argumentξ=|k|/|kp| is taken as a shape function
Uβ . Curves for different peakedness parameterγ=1 (dashed),γ=3.3 (hard) andγ=5 (dash-dotted line) are given. Left column – linear
wave action growth (rτ=1, α=23/11, β=6/11, pτ=8/11), right column – swell (rτ=0, α=4/11, β=2/11pτ= − 1/11).

5.4 Self-similar solutions for fetch-limited case

Extend the previous section analysis and recent results by
Zakharov(2002) for the case of fetch-limited wave growth.

Consider an idealized problem of fetch-limited growth
when constant offshore wind is perpendicular to the straight
coast line and wind wave spectra depend on the only spatial
coordinateχ . The first-order “conservative” approximation
(%=0) gives the balance

cosθ

2κ1/2

∂n

∂χ
= S̃nl (99)

Hereκ=|κ | – wavenumber,θ – polar angle of the wavevector
relatively to wind direction,χ – x-coordinate – fetch. The
family of self-similar solutions for Eq. (99) can be written
as:

n(κ, χ, θ) = a χα Pβ(b χ
β κ, θ) (100)

Substituting Eq. (100) into Eq. (99) one finds

α = 5β − 1/2, a = b5 (101)

Quite similarly to the previous section the “shape function”
Pβ depends on two variables –θ and ζ=bχβκ. Function
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Pβ(ζ ) is independent of parametersa andb (see Eq.101)
and satisfies the following integro-differential equation:

cosθ

2
√
ζ

[
αPβ + βζ

∂Pβ

∂ζ

]
= π

∫
|Tζ ζ1ζ2ζ3,θ θ1θ2θ3|

2

× δ(ζ cosθ + ζ1 cosθ1 − ζ2 cosθ2 − ζ3 cosθ3)

× δ(ζ sinθ + ζ1 sinθ1 − ζ2 sinθ2 − ζ3 sinθ3)

× δ(
√
ζ +

√
ζ 1 −

√
ζ 2 −

√
ζ 3)

×

[
Pβ(ζ1, θ1) Pβ(ζ2, θ2) Pβ(ζ3, θ3) (102)

+Pβ(ζ, θ) Pβ(ζ2, θ2) Pβ(ζ3, θ3)

−Pβ(ζ, θ) Pβ(ζ1, θ1)Pβ(ζ2, θ2)

−Pβ(ζ, θ) Pβ(ζ1, θ1) Pβ(ζ3, θ3)
]

× ζ1ζ2ζ3dζ1dζ2dζ3dθ1dθ2dθ3.

Similarly to the previous case (see Eq.94) define:

Aβ =
∫ √

ζPβ(ζ, θ)ζdζdθ

Bβ =
∫
ζPβ(ζ, θ)ζdζdθ.

For mean frequency and energy one has

ε = uχχ
pχ ; ν = vχχ

−qχ

where

qχ =
2pχ + 1

10
, pχ =

5β − 1

2
;

uχ = b5/2Aβ; vχ = u1/5
χ

Bβ

A
4/5
β

.

Quite similarly to the duration-limited case one can treat
Eq. (102) in self-similar variables as stationary and homoge-
neous equation that describes equilibrium of nonlinear trans-
fer (termSnl) and a specific source term

S∗

in(Pβ(ζ )) =
cosθ

2
√
ζ

[
αPβ(ζ )+ βζ

∂Pβ(ζ )

∂ζ

]
The source term is linear in functionPβ and not small be-
cause it appears from strong effect of non-homogeneity. This
balance equation gives a family of self-similar solutions.
The higher order “non-conservative” approximation should
be considered to specify parameters (self-similarity indexes)
of these solutions quite similarly to the duration-limited case.
Integrating Eq. (99) overκ andθ one gets the balance

1

2

∫
cosθ

�

∂n

∂χ
κdκdθ =

∫
S̃inκdκ = Qχ (χ) (103)

HereQχ is the total input of wave action – a net result of
wind forcing and wave breaking dissipation. The condition
(Eq. 103) is consistent with self-similar forms of solutions
(Eq. 100) if the total input is a power-like function of fetch
χ . The corresponding exponents are obtained easily from
re-scaling properties of the collision integralSnl (Eq.29)

Qχ ∼ χ
7β−3

2 . (104)

For total growth of wave action one gets

Ntot =

∫
n(k)dk ∼ χα−2β

∼ χ3β−1/2 (105)

Basic cases can be specified for particular sets of exponents
quite similarly to the duration-limited case. First, the swell
case when total wave action is constant gives (see Eq.105)

rχ = α − 2β = 0; pχ = −1/12;

qχ = 1/12; T = pχ/2qχ = −1/2 (106)

The case of constant total input of wave actionQχ=const;
β=3/7 (see Eq.104) has been studied byZakharov and Za-
slavsky(1983) and byGlazman(1994). The corresponding
exponents are

rχ = 11/14; pχ = 4/7;

qχ = 3/14; T = pχ/2qχ = 4/3 (107)

While the wave action input is constant the total wave action
for the case (Eq.107) grows slower than linear function of
fetch

Ntot ∼ χα−2β
∼ χ11/14

The exponents (Eqs.106and107) differ slightly from ones
for the duration-limited case (compare Table2). This differ-
ence can be explained easily by the effect of wave spectra
downshift in spatially nonuniform wave field: wave input is
damped by dispersion of longer waves propagating offshore.

The case of linear growth of total wave action
can be associated with constant input of wave energy
(ω̄Qχ (χ)=const, rχ=1 )

rχ = 1; pχ = 3/4;

qχ = 1/4; T = pχ/2qχ = 3/2 (108)

The special cases of fetch-limited growth are summarized
in Table 4. In spite of quantitative difference of expo-
nents (compare Table2) there is a key common feature of
duration-limited and fetch-limited cases: the exponents for
constant wave action and wave energy inputs make left- and
right-hand sides of the corresponding balance Eqs. (89 and
102) vanishing separately for the stationary isotropic power-
like Kolmogorov-Zakharov solutions. The KZ solutions
split the effect of non-homogeneity and nonlinear transfer in
Eq. (102) in self-similar variables and, thus, can be treated
as asymptotic solutions of the self-similar family (Eq.100)
at infinitely long fetchesχ→∞.

Similarly to the duration-limited case one can show that
self-similar solutions of this section are governed by inverse
cascades of wave action and energy. In the special case of
swell inverse and direct cascades of energy coexist. The ex-
ponents of dependencies of fluxes and of collision integral on
fetch are given in Table5 (compare Table3).
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Table 4. Exponents of self-similar solutions in fetch-limited case.

rχ α =
5rχ + 1

3
β =

2rχ + 1

6
pχ =

10rχ − 1

12
qχ =

2rχ + 1

12
T Regime

0 1/3 1/6 −1/12 1/12 −1/2 Swell

11/14 23/14 3/7 4/7 3/14 4/3 Constant wave action input

1 2 1/2 3/4 1/4 3/2 Constant wave energy input

Table 5. Exponents of fluxes evolution for self-similar solutions in fetch-limited case.

rχ
Snl(k, χ) ∼ χ sSnl(ζ )

s = (22rχ − 7)/12
Q(k, χ) ∼ χ sqQ(ζ)

sq = (14rχ − 11)/12
P(k, χ) ∼ χ spP(ζ )

sp = (rχ − 1)
Regime

0 −7/12 −11/12 −1 Swell
11/14 6/7 0 −3/14 Constant wave action input

1 5/4 1/4 0 Constant wave energy input

5.5 Self-similarity and experimental exponents of wind-
wave growth

Power-like approximations of parameters of wind-wave
growth are of common use in wind-wave studies (e.g.Ba-
banin and Soloviev, 1998). The question is: “How the ex-
perimental approximations can be related to our theoretical
findings?” For total energy and mean frequencyω̄ one has

Etot ∼ ω̄−p/q

We omit subscripts forpτ , qτ , pχ , qχ here to show inde-
pendence of the trivial relation on conditions of generation
(duration- or fetch-limited growth). For JONSWAP spectra
(Eq.37) the exponent of energy growthκα can be determined
easily

κα = 5 − r/q = 4 − p/q = 4 − 2T (109)

Surprisingly, the exponentsκα for basic regimes presented
in Tables2 and 4 are the same in time-limited and fetch-
limited cases:κα=1 for constant wave energy input, i.e. ex-
actly Toba’s law (Toba, 1973) andκα=4/3 for constant wave
action input.

Our exercises with exponentsκα, p, q look like a jug-
gling by notations with no reference to the Hasselmann equa-
tion. In fact, very strong hypotheses underly this juggling:
the self-similarity of the asymptotic solutions for the Hassel-
mann equation and self-similar form of JONSWAP spectrum
(see Sect. 3.1). Real wind-wave spectra are, evidently, not
self-similar. They can manifest their self-similarity features
partially only, say, for certain range of directions and wave
frequencies where nonlinearity dominates as compared to in-
put and dissipation. Beyond this range the wave spectra are
affected heavily by details of wind input and dissipation, by
initial and boundary conditions etc. The magnitudes of the
non-self-similar fraction of wave field are likely relatively
small but total energy content and mean wave frequency
can differ significantly from predictions of self-similar be-
haviour. In other words, the exponent of spectral growthκα

(Eq. 39) can be determined by different methods: first, in
terms of total energy and mean frequency (see Eq.109), i.e.
taking into account both self-similar and “background” frac-
tions of wind-wave field and, second, in terms of local char-
acteristics of wind-wave growth: peak frequency exponent
(downshift exponent)β and spectral peak magnitude expo-
nentα. In terms of these two quantities Eq. (109) can be
rewritten as

κα = 9 − 2α/β (110)

This presentation is valid for both duration and fetch-limited
growth and can be useful as an alternative definition ofκα
in analysis of numerical results. Comparing exponents de-
termined from “global” characteristics of wind-wave field
(mean frequency and total energy – Eq.109) and from “lo-
cal” exponents of spectral peak evolution (frequency and am-
plitude of spectral peak – Eq.110) one can quantify self-
similarity features of wave spectra. This gives us a solid basis
for analysis of our numerical results.

6 Numerical solutions for the kinetic equation

In this section we present results of numerical solutions of
the kinetic equation for the case of duration limited growth
(Eq. 6). Details of numerical algorithm used in this paper
have been published in many papers (e.g.Webb, 1978; Resio
and Perrie, 1991; Pushkarev et al., 2003). The code based
on this algorithm has been developed byTracy and Resio
(1982) and modified recently by Pushkarev (Pushkarev et al.,
2003). Extensive numerical studies performed with this code
(Pushkarev et al., 2003; Badulin et al., 2002) showed its ade-
quate accuracy and stability in a wide range of parameters of
wave field and external forcing. In this paper we give just a
brief overview of features of the algorithm and the numerical
approach.

The numerical study is based on the algorithm of calcula-
tion of the collision integralSnl proposed byWebb(1978).
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The resonant subspace is parameterized by a series of reso-
nant curves – locii with a fixed pairs of wavevectorsk1 and
k3 in conditions of resonance (Eq.1). Alternative approaches
(e.g.Komatsu and Masuda, 1996; Lavrenov, 2003) perform
an analytical integration ofSnl in order to reduce dimension
of integration domain. It leads to a complicated form of the
resulting domain and, hence, to additional problems with ac-
curacy and time of calculations.

In a majority of our numerical experiments the following
parameters have been used:

1. Range of wave scales – 0.02–2 Hz (wavelengths approx-
imately 40 cm – 4 km);

2. Grid is regular in angle with 10◦ step and logarithmic
in frequency with increment 1.068 (71 points in fre-
quency);

3. 30 points are taken to calculate contour integrals along
each locus;

4. Harmonics of essentially different scales are not taken
into account, i.e. quadruplets with frequency ratio more
than 3 (factor 9 for wavelength) are ignored. Addi-
tionally, quadruplets with magnitude of kernels below
a certain small threshold are ignored. Effectively, about
50 000 quadruplets are taken into account inSnl calcu-
lations.

An explicit integration scheme with adaptive time step has
been used. All the parameters given above are consistent
with ones recommended byKomatsu and Masuda(1996).
Comparison with their results of the kinetic equation solu-
tions showed reasonable quantitative agreement for mean en-
ergy, frequency and for features of spectral distributions. The
exact coincidence could not be achieved because some pa-
rameters of their numerical runs were not specified in the
paper explicitly. The results of the comparison are not dis-
cussed here and will be presented in a separate paper.

Calculations have been made for water depth 2000 m and
wind speeds from 5 to 30 m·s−1. High-frequency cut-off
of wave generation was at 1 Hz or as it is required by the
conventional parameterizations considered in Sect. 3 of the
paper. Strong dissipation is assumed for frequencies higher
than 1 Hz.

Time of spectra evolution was generally limited by 105 s
(slightly more than 1 day). In cases of slow evolution (low
winds, wave swell) this time was extended up to 106 s. Cal-
culation time was typically one-to-one with time of evolution
(CPU AMD Barton 3000, Fortran77 under Linux).

6.1 “Academic” series

The justification of the theoretical background given above
remains our red line. In this section we start with “academic”
numerical experiments. The conditions of generation in these
experiments can be considered as unrealistic but they allow
one to focus on fundamental qualitative and quantitative fea-
tures of the problem. The idea of the academic runs is not

new and was exploited, for example, for numerical estimates
of fundamental Kolmogorov’s constants (Pushkarev et al.,
2003; Lavrenov et al., 2002). The features of self-similarity
are reproduced in our academic experiments perfectly well
as it will be seen below. They give a very good reference to
study “realistic” cases where the self-similarity is contami-
nated by effects of strong anisotropy and wave forcing in a
wide frequency domain.

In this section we present a series of numerical runs that is
specially designed to detail self-similarity properties of the
kinetic equation solutions. Starting with very low “white
noise” as initial conditions we put a time-dependent source
function into high-frequency range in order to reproduce in-
verse cascade regimes corresponding to the family of self-
similar solutions considered above. In this setup one can con-
trol easily the total wave action flux as a power-like function
of time in full accordance with the asymptotical procedure of
previous section.

6.1.1 “Academic” series with isotropic source function

We start with absolutely unrealistic problem of isotropic
source function in order to relate our numerical results with
the Kolmogorov-Zakharov solutions for direct and inverse
cascades which are essentially isotropic. This unrealistic
setup has a long story, recently it has been used in numer-
ical studies of the direct cascade (Pushkarev et al., 2003;
Lavrenov et al., 2002). The idea is very simple: to reproduce
key features of the theoretical model in numerical experi-
ments, first of all, to leave maximal space for the so-called
inertial frequency range where the nonlinear transfer is the
only physical mechanism of wave evolution.

The initial conditions in all the experiments (excluding the
case of zero wave input – swell ) corresponded to very low
initial wave amplitudes – the significant height was approx-
imately 1 cm. The source function in the experiments has
been set up as a time-dependent function

Sin = β(k)N(k) = β0(t/t0)
R−1N(k) (111)

in a frequency range 1−1.5 Hz. The constantβ0 was chosen
sufficiently high to provide essential evolution for reasonable
time of calculations. In fact, all these “unrealistic” experi-
ments can be related to realistic temporal and spectral scales
of wind wave evolution. For example, the significant wave
heights up to 10 m were reached for very reasonable physical
time 1 day in these runs. Frankly speaking, the only “unre-
alistic” feature of these experiments is strong localization of
wave input domain in frequency.

Calculations have been carried out for a series of expo-
nentsR in the range 1/2≤R≤4/3 that approximately corre-
sponds to “acceptable” rates of wave action growth for the
self-similar solutions (see Sect. 5.2 and Eq.93) and for the
special case of wave swell. The most important advantage
of the source function is seen in Fig.11. Very large iner-
tial interval has been provided thanks to very narrow domain
of generation and strong relaxation of solutions to some “in-
herent” state beyond the domain. A good agreement with
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Fig. 11. Isotropic solutions in “academic” runs for different val-
ues of exponentR (see Eq.111). Generation domain limits are
shown by vertical solid lines. Asymptotics for inverse (dotted line)
and direct (dash-dotted) cascades are shown. Top –R=1, bottom –
R=4/3.

Kolmogorov’s inverse cascade solution was found in terms
of slopes of the spectra in the inertial interval (asymptotes
ω−11/3 are shown by dotted line in Fig.11) in all the range
of parameterR.

The source function (Eq.111) provides very good fit to
power-like wave action input and makes possible to extract
the self-similar dependencies from numerical solutions. The
self-similarity of the solutions is illustrated quite well by
Fig. 11 where solutions taken at approximately log-spaced
times appear to be log-spaced both in amplitudes and in fre-
quencies. Figure12 gives quantitative analysis of the self-
similarity features for the case of constant wave action in-
put R=1. First, mean and peak frequencies show power-
like dependencies on time with exponents which are very
close to the theoretical exponentβ/2=3/11 (top panel). Bot-
tom panel in Fig.12 presents the shape functionUβ(ξ) (see
Eq.88) extracted from numerical solutions at different times.
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Fig. 12. Self-similarity of the kinetic equation solutions for the
“academic” case atR=1. Top – dependence of mean (circles), peak
(triangles) and front (squares – positive maximum of spectral slope)
frequencies on time. The exponents of downshiftβ are close to the
theoretical valueβ/2=3/11. Bottom – functionU(ξ) (ξ=ω2t6/11)
extracted from the numerical solutions at different times (see leg-
end, in hours). Slopesξ−4 andξ−23/6 for direct (dash-dotted) and
inverse (dotted) cascades are shown.

The theoretical valuesα=23/11, β=6/11 were taken for the
corresponding transformation. One can see relaxation to a
permanent form for extremely short time: no visible differ-
ence of solutions is seen fort≥0.45 h.

All the experiments with different wave input ratesR show
the same strong tendency to self-similar behaviour. A re-
markable result of our study:Shape functionUβ(ξ) does not
depend (more conservatively, does not depend within the ac-
curacy of our numerical approach) on index of self-similarity
β. This result is illustrated in top Fig.13. Uβ(ξ) normal-
ized on their peak magnitudes were traced as functions of
the normalized argument – non-dimensional wave frequency
|ξ |=2 log(ω/ωp). For different parameters of wave input
R (shown in legend) these functions are amazingly close to
each other.
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– the scaling of the solution peaks and the peak positions. Fitting
formula and the corresponding fitting line are given.

The high-frequency tails are found to be very close to the
inverse cascade Kolmogorov’s exponent(−23/6) for runs
with wave input. In fact, the difference between exponents
of direct and of inverse cascades(−4) and(−23/6) is rather
small and the above conclusion seems speculative in view of
the problem of correct estimates of these exponents within
the numerical approach. Nevertheless, a clear evidence that
the spectral slopes are less than one of the direct cascade Kol-
mogorov solutionξ−4 can be acquired from Fig.11. For
R=1 (top) the solution is stationary in the domain of genera-
tion while forR=4/3 (bottom) the solution is growing with
time in this frequency range. The solution in the generation
domain can be estimated from the self-similar dependence
(Eq.89) as

N(kinput ) ∼ tα−κββ

whereκβ is exponent of the solution power-like tail. Thus,
generally,N(kinput ) depends on time ifκβ does not fit the

proper relations. The stationarity of generation domain for
R=1 means thatκβ=α/β=23/6. In bottom panelN(kinput )
is definitely growing with time, that is,κβ<α/β=4.

Unlike the case of wave input the swell solution has high-
frequency asymptotics visibly closer to the direct cascade
asymptoticsξ−4. This difference can be treated as a key dif-
ference of regimes governing the solutions: in case of wave
input one has a purely inverse cascading in the domain of
self-similarity while swell corresponds to a hybrid regime
when domains of direct and inverse cascades coexist.

The universality ofUβ (quasi-universality – weak depen-
dence on self-similarity indexβ) allows one to verify eas-
ily other important property of the self-similar solutions –
the relation between wave scales and spectra amplitudes
(Eq. 90). Strictly speaking, this property should be checked
for fixed exponent of wave input by changing initial condi-
tions or rate of wave growthβ0 (Eq. 111). Bottom panel of
Fig. 13 shows fairly well validity of scalinga∼b19/4 where
parametersa and b have been estimated from characteris-
tics of spectral peaks for different exponentsR of wave in-
put. A small deviation of the power-like fit exponent in bot-
tom Fig. 13 (4.63<19/4) can be considered as a measure
of quasi-universality of functionUβ(ξ). Thus, the scaling
(Eq.90) can be considered as universal one irrespectively to
the particular regime of self-similar evolution.

6.1.2 Anisotropic self-similar solutions in “academic” nu-
merical experiments

The kinetic equation admits of anisotropic self-similar solu-
tions as it was pointed out in Sect. 5. Two evident questions
arise:

– Do these anisotropic solutions emerge from arbitrary
initial data?

– What are features of these solutions as compared to
isotropic solutions?

Anisotropic source function for the series has been set up
similarly to Eq. (111) in a semi-ringπ/2<θ<−π/2

Sin =

{
β0 cosθ(t/t0)R−1N(k), π/2< θ < −π/2
0, otherwise

The strong tendency to the self-similar behavior has been
demonstrated for the same parameter set 1/2≤R≤4/3 as for
isotropic “academic” runs.

Figure 14 shows tendency of the numerical solution to
self-similar behaviour for different angles atR=1. The ex-
ponent of total wave action growth appears slightly lower
(r=0.97) than in the isotropic case whenR=r=1. This lit-
tle difference is dealing with anisotropy when a fraction of
wave input “leaks” to periphery of the self-similar “core”
of solution. In fact, this negligible, at the first glance, ef-
fect results in rather strong qualitative and quantitative con-
sequences. The leakage to domains where amplitudes of the
solution and the generation rates are weak leads to forma-
tion of non-self-similar background. The exponent of total
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Fig. 14. Tendency to self-similar asymptotics for different angles to wind direction 0◦, 30◦, 60◦, 90◦, 150◦, 180◦, the “academic”
anisotropic run withR=1 (total wave action growth rater=0.97). The exponentrexp=α−2β=0.89 determined from exponents of the
solution peak growthα andβ was used to extract the self-similar dependence (see comments in Sect. 5.5).

wave action growthr becomes inadequate to the self-similar
“core” of the solution. In this case, exponents of local growth
can be more relevant to the problem. In Fig.14the exponents
α andβ of the self-similar solution (Eq.88) have been deter-

mined by tracing peak frequency and peak magnitude and
the corresponding parameterrexp has been determined from
evident relationrexp=α−2β given by Eq. (92). It gave es-
sentially lower valuerexp=0.89 for the caseR=1. Evidently,
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Fig. 15. The same as in Fig.13 for anisotropic academic numerical
solutions.

the non-self-similar background exists in the isotropic exper-
iments as well, for example, in low-frequency domain which
is not affected by the self-similar “core” but the effect is in-
comparably smaller than in the anisotropic case.

We see again an illustration of the problem of “magic cir-
cle”: self-similarity requires strong nonlinearity and, in its
turn, the strong nonlinearity requires strong wave input. In
anisotropic case we always have a situation when nonlinear-
ity is not strong enough to provide pronounced self-similarity
features. It can be seen in Fig.14 for oblique directions. The
strongest tendency to a permanent shape functionUβ(ξ) ex-
tracted from the numerical solution is observed for down-
wind direction where the wave pumping is maximal: the so-
lution for 1 h, actually, fits solutions for larger times remark-
ably well, i.e. it is very close to a limiting functionUβ (if this
limit exists). The tendency to a limiting shape is slower for
oblique directions, but, unexpectedly, the tendency for up-
wind direction appears more pronounced than for the direc-
tion 90◦. The latter can be explained by stronger nonlinear
transfer from maximal down-wind components to up-wind
ones.
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Fig. 16. The same as in previous figure for non-dimensional fre-
quency spectraE(ω)/E(ωp). The JONSWAP spectrum for the
standard peakednessγ=3.3 is shown by dashed curve. The de-
pendence of the solutions parametersa andb is presented in bottom
panel, swell scaling is given byF.

Looking for functionsUβ(ξ) of the anisotropic solutions
in Fig. 15 we find differences with isotropic solutions of the
previous section. First, the low-frequency front is essen-
tially steeper for the anisotropic solutions. Secondly, high-
frequency spectral slopes show a weak dispersion. This ques-
tion is to be studied more carefully with more accurate nu-
merical approach. At the moment, one can conclude that
the qualitative behaviour is well within the theoretical pre-
diction: for lower wave input exponents (smallR) the tails
of solutions are closer to the direct cascade spectral slope
(−4), while for higher values ofR the tails are more flat.
The spectral tails of swell show definitely the direct cascade
exponents(−4).

The solutions’ scaling for differentR manifests a remark-
able agreement with the theoretical relation (Eq.90) as it is
seen in Fig.15 (bottom). It should be noted that the scaling
parameters of isotropic and anisotropic solutions appear very
close to each other (compare multipliers in fitting formulas in
bottom Figs.13and15).
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An important result of the analysis of the “academic”
anisotropic solutions has been found calculating normalized
frequency spectra for different ratesR (Fig. 16). One can see
closeness of the frequency spectra shapes to each other and,
more, to the experimental JONSWAP spectrum (shown by
dashed line). Thus, the self-similarity features of “academic”
solutions are very close to ones of experimentally observed
spectra of growing wind waves.

6.2 “Real” wave input

In this section we present results of numerical solutions for
the kinetic Eq. (27) with parameterizations of wind-wave
source functionSf=Sin+Sdiss given by conventional formu-
las of Sect. 3. Taking the results of previous “academic” stud-
ies as a reference we show that details of the source function
is of little importance for qualitative, and, more, for quan-
titative features of wind-wave evolution. It contradicts to
the streamline of wind wave studies where tremendous ef-
forts are mounted to describe details of wind-wave gener-
ation in different wave scales. In many cases it complicates
essentially mathematical and physical approaches but give no
gain for the problem understanding and for practical needs of
wind wave forecasting.

The critics of the attempts to solve the problem of wind-
wave modelling by “tuning” source function is not a point
of the section. We try to fix some “trigger” points in order
to understand where such tuning can lead to physically im-
portant results and where we have to switch our attention to
other ways of the problem solution.

In spite of great number of numerical studies of wind wave
evolution within the kinetic equation there is no a substantial
foundation for analysis of the results. We use the concept of
wind-wave spectra self-similarity as such foundation.

We start with analysis of initial stage of wind-wave evolu-
tion when nonlinearity is relatively weak, wave spectra evo-
lution is not self-similar and depends essentially on details of
initial data and of the source functionSf . This stage is typ-
ically very short in time for realistic wind wave conditions.
Further evolution of wind wave field can be described quite
well by self-similar dependencies.

6.2.1 Solutions at initial stages

The solution of the kinetic equation at initial stages of wind
wave evolution is accompanied by a number of difficulties.
The effects of initial data and details of source function are
very important at this stage. Figure17 illustrates this re-
mark. The growth rates are identical for both examples pre-
sented in the figure. In left panel the evolution starts from
“white noise” with significant wave height approximately 10
cm. These conditions correspond to Rayleigh-Jeans equilib-
rium, the collision integral is plain zero for the initial state
and, thus, linear pumping dominates at small times. When
the solution deviates from the equilibrium state far enough,
the nonlinear transfer becomes important. The direct cascade
tail appears in an explosive way in high frequencies and the

inverse cascade mechanism forces the solution to propagate
to low frequencies in a front-like manner.

Qualitatively the same evolution is seen for the case
of right panel. The Pierson-Moskowitz spectrum for
U20=5 m·s−1 is taken as an initial condition (significant
wave height is approximately 28 cm) and wind speed
U10=20 m·s−1. Strong dissipation is introduced for frequen-
cies higher than 1 Hz. Note, that for these initial conditions
the collision integral does not vanish as in the previous case.
Additionally, 2.8 times higher initial wave amplitudes means
potentially 2.86

≈482 times higher nonlinear transfer term or
2.84

≈61.5 higher ratio of the nonlinear term to linear wave
input. This is why the solution evolves essentially faster than
in the first case. Even though the evolution is faster the result-
ing levels of solutions in a quasi-stationary high-frequency
range are approximately the same in both cases: the solution
“forgets” the initial data in a very short time.

The validity of the kinetic equation for the examples is
questionable. The solutions evolve very rapidly with a typi-
cal time scale of only few hundreds periods tending to some
inherent form of solutions which scales of evolution are com-
patible with the kinetic description of wave field. Addition-
ally to the conceptual problem of applicability of the kinetic
equation at small times the fast evolution gives rise to com-
putational problem when time step has to be very small to
provide adequate accuracy and stability of calculations.

6.2.2 Solutions at large time – Self-similarity of solutions

The most impressive feature in a relatively short time of evo-
lution is similarity of the solutions in a wide range of condi-
tions of wave generation. Figure18demonstrates this obser-
vation for wind speeds 10 m·s−1 and 20 m·s−1. Equation (51)
by Hsiao and Shemdin(1983) for wind-wave growth rate was
used in both cases. Solutions are different for different phys-
ical times, but in terms of wave age parameterg/(ωpU10)

these solutions are very close to each other. This can be seen
for solutions at final times in top and bottom panels of Fig.18
(curve 6 in top and curve 5 in bottom one): the peak values
of these solutions are the same for the same (approximately)
wave agesg/(ωpU10)≈1 while physical times are essentially
different – approximately 32 (left) and 16 (right) h. Solutions
in Fig.18are log-spaced in time and show clearly power-like
dependence of peak frequency on time in perfect agreement
with our theoretical analysis of self-similar solutions (see
Eq. 88). Additional argument for the weak turbulence the-
ory is in spectral slopes which are close to the Kolmogorov-
Zakharov exponents.

Two-dimensional wave spectra in Figs.19 and 20 show
that the Kolmogorov’s power-like dependencies and similar-
ity features of solutions are essential for anisotropic solutions
as well. Energy spectra contours are shown for two differ-
ent wind speeds as functions of non-dimensional frequency
ω̃=ωU10/g (see Fig.18). The corresponding wave ages are
calculated for spectral peak frequency without interpolating
in frequency grid (this is why wave ages are slightly different
for pairs of contours for different wind speeds). Contour lev-
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Fig. 17. Non-dimensional frequency spectraE(ω,0) vs. non-dimensional frequencỹω=ωU10/g for small times. Left column – initial
condition is a “white noise” (equipartition) of energyE(ω) (significant wave height approximately 10 cm). Input rate (bottom panel) is given
by Snyder’s et al. formula (Eq.47) for wind speedU10=20 m·s−1, dissipation is absent. Right column – initial condition is the Pierson-
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left column, strong dissipation is introduced for frequencies higher than 1 Hz. Solutions for down-wind direction are given for a sequence of
non-dimensional times 408 (t=200 s)), 816, 1250, 1680, 3860, 7370 (physical time approximately 1 h). Dotted and dashed lines correspond
to inverse and direct cascade exponents 11/3 and 4 (for frequency spectra of energy).
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and 20 m·s−1 (right). Wave input is given by Hsiao and Shemdin (1983) (Eq.51), strong dissipation is taken forf>1 Hz. Solutions are
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exponent(−4)) and inverse (dotted,(−11/3)) cascades are shown. Vertical dash-dotted lines correspond to wave ageg/(ωU10)=1.

els are log-spaced and, thus, power-like dependence on wave
frequency is clearly seen in these figures. Asymptotics of
isotropic Kolmogorov’s solutions are likely consistent with
what we see in a wide range of angles±40◦ near wind direc-
tion. Wave spectra for different wind speeds but for the same

wave ages look very close to each other. Stress, that wave age
is responsible for the scaling of these solutions but not phys-
ical time! Again we come back to the idea of self-similarity
of these solutions.
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Fig. 19. Energy spectra for different inverse wave agesω̃=ωpeakU10/g (shown in legends) as functions of nondimensional fre-

quency ω̃=ωU10/g, source function is given by Eq.51 for wind speeds 10 m·s−1 (left column) and 20 m·s−1 (right column).
Peak frequencies are calculated by interpolating between grid knots. Levels are normalized by peak values and log-spaced as
10−1/2, 10−3/4, 10−1, 10−5/4, 10−6/4, 10−7/4. Charts show impressive similarity of contours for spectral densities exceeding
10% of peak values.

Great difference of the solutions in left and right columns
in Figs.19 and20 for large angles to the wind gives nothing
but justification of our guideline on effect of dominating non-
linearity. The difference is great for the solutions peripheries
where magnitudes are less than 3% of peak values. The small
magnitudes mean dramatic (as magnitude in cube!) decrease
of nonlinearity while linear terms of input and dissipation fall
much slower. Existence of the non-self-similar background

can contaminate links of our numerical results with theoret-
ical models presented above. We faced this problem in the
anisotropic academic runs but for “real” input it is compli-
cated by a large domain of wave input.

Following the previous section approach one can extract
shape functionUβ . The question is: how to determine the
corresponding index of self-similarity for a particular numer-
ical solution? The parameter of wave action growthr appears
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Fig. 20. Same as in previous figure for small inverse wave ages (shown in legend).

to be not adequate in this case because of the contaminating
effect of essentially non-self-similar background. An alterna-
tive way to specify the self-similarity parameter is to extract
it from local features of the solution (see notes of Sect. 5.5)
as it was employed for academic runs using the exponents of
the solution peak growthα andβ.

Results are presented in Fig.21for different directions rel-
atively to the wind. The directly calculated total wave growth
rater=0.919 in this case. The corrected value determined by
exponentα givesrexp=0.878. In Fig.21we see qualitatively
the same behavior as in Fig.14 – very rapid tendency of so-
lution to keep a limiting form: it takes less than 2 h to fit this

form within a few percents near the spectral peak. At the
solution periphery (both in frequency and in direction) the
tendency to the limiting form is essentially weaker.

The comparison of Fig.21with its “academic” counterpart
Fig. 14 illustrates the effect of source function – the only vis-
ible effect of “real” input as compared with “academic” one
is in different evolution of non-self-similar background while
the self-similar cores evolve in a universal way in both cases.
Figures22 and23 illustrate the universality features of solu-
tions quite similarly to Figs.15 and16. The “real” input so-
lutions show the same universal shapes and the same scaling
properties (bottom figures). Stress the remarkable closeness



S. I. Badulin et al.: Self-similarity of wind-driven seas 929

1 1.5 2
−12

−11

−10

−9

−8

−7

ξ=log
10

(ω2tβ)

lo
g 10

(U
(ξ

))
0.53
2.22
8.07
32.1
64.0

1 1.5 2
−12

−11

−10

−9

−8

−7

ξ=log
10

(ω2tβ)

lo
g 10

(U
(ξ

))

0.53
2.22
8.07
32.1
64.0

1 1.5 2
−12

−11

−10

−9

−8

−7

ξ=log
10

(ω2tβ)

lo
g 10

(U
(ξ

))

0.53
2.22
8.07
32.1
64.0

1 1.5 2
−12

−11

−10

−9

−8

−7

ξ=log
10

(ω2tβ)

lo
g 10

(U
(ξ

))

0.53
2.22
8.07
32.1
64.0

1 1.5 2
−12

−11

−10

−9

−8

−7

ξ=log
10

(ω2tβ)

lo
g 10

(U
(ξ

))

0.53
2.22
8.07
32.1
64.0

1 1.5 2

−11

−10

−9

−8

−7

ξ=log
10

(ω2tβ)

lo
g 10

(U
(ξ

))

0.53
2.22
8.07
32.1
64.0

Fig. 21. FunctionU(ξ) (ξ=|k|tβ ) for angles 0◦, 30◦, 60◦, 90◦, 150◦, 180◦ for different times (see legend, in hours). Wave input is given
by Eq. (51) for wind speed 10 m·s−1.

of fitting coefficients of the scaling in “academic” and “real”
cases. There is nothing strange in this fact because the scal-
ing parameters are determined by evident relation between
parameters of self-similar solutions (Eqs.94–96). They do
not depend on details of source function but are determined
by some integral characteristics of wind wave input only. The

details of wind input, of course, are important at early stages
of wave evolution and specific features of non-self-similar
background are determined by these details but evolution of
the self-similar core of solutions is identical in “academic”
and “realistic” numerical experiments.
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Fig. 22. FunctionU(ξ)/U(ξp) as function of non-dimensional
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case is given by solid line. Bottom – the scaling of the solution
peaks and the peak positions. Fitting formula and the corresponding
fitting line are given.

A trivial but rather important result of all the above discus-
sion is that wind speedUh in expressions for wave growth
rates (Eqs.47–52) is, evidently, not useful quantity for scal-
ing wind-wave spectra. This characteristic can specify a
freakish form of wave growth rates, while all our theoretical
and numerical results show dependence on integral features
of wave pumping, on fluxes.

6.2.3 Solutions at large time – Evolution of mean values

The evolution of mean wave field characteristics is a way
to trace generic features of interplaying of nonlinearity and
wave input. Figure24 shows typical dependencies of basic
wave parameters on time. In view of above remark on wind
speed scaling we presented these dependencies in dimen-
sional form for wave input byHsiao and Shemdin(1983) and
wind speed 10 m·s−1. The characteristics in Fig.24 can be
fitted by simple power-like dependencies for large times. The
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Fig. 23. Nondimensional frequency spectraE(ω)/E(ωp) as func-
tions of non-dimensional wave frequency for different wave inputs
(in legend). The JONSWAP spectrum for the standard peakedness
γ=3.3 is shown by dashed curve. The dependence of the solutions
parametersa andb is presented in bottom panel, swell scaling is
given byF.

corresponding exponents shown in legend have been calcu-
lated for timest>4 h to remove effect of initial stage. Char-
acteristic frequencies are traced as mean frequencyfm and
as a frequency of the solution peakfp. One can see a small
difference between two estimates of the corresponding expo-
nents for these frequencies and for wave slopes.

This difference is illustrated by Table6 for basic models of
wave input and different wind speeds. The exponentsr, p, q

were calculated for times more than 4 h in order to eliminate
the contaminating effect of initial stage of evolution. Similar
exponents (with indices“exp” ) were calculated from theo-
retical expression (Eq.92) by power-like fit of peak values of
numerical solutions (exponentα). While exponentsp, r, q
are responsible for global features of solutions, the exponents
pexp, rexp, qexp can be associated with self-similar cores of
numerical solutions. The corrections of exponents of energy
p and of characteristic frequencyq are of opposite signs, i.e.
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Table 6. Exponents of wind wave growth calculated for mean values (r, p, q) and for peak characteristics (rexp, pexp, qexp) of numerical
solutions of the kinetic equation. Data fort>4 h only are taken for the power-like approximations. Toba’s exponents are given in the last
column.

Wave input
r

N(t)

p

E(t)

q

ν(t)

rexp

N(ωp)

pexp

E(ωp)

νexp

ωp

T =
p

2q
(Toba’s exponent)

10 m·s−1

Hsiao (1983) 0.92 0.69 0.23 0.88 0.63 0.25 1.50
Stewart (1974)

and Plant (1982)
0.99 0.74 0.25 0.85 0.58 0.27 1.48

Donelan (1987) 0.93 0.70 0.23 0.93 0.69 0.24 1.52
Snyder (1981) 0.98 0.73 0.25 0.95 0.69 0.26 1.46

20 m·s−1

Hsiao (1983) 0.94 0.70 0.24 0.91 0.66 0.25 1.46
Snyder (1981) 1.05 0.79 0.26 0.98 0.70 0.28 1.52

30 m·s−1

Hsiao (1983) 0.98 0.73 0.25 0.92 0.66 0.26 1.46
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Fig. 25. Top – exponentsp andq for power-like approximations
of total energy and mean frequency of the kinetic equation solu-
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of the solutions peaksα andβ. © – Isotropic “academic” runs;♦ –
Anisotropic “academic” runs;4 – Swell;� – “Real” wave pump-
ing. Exponents for constant wave action and wave energy inputs are
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wave energy and action of self-similar core grow slower than
ones for the whole solution while characteristic frequency
of the core falls faster. A possible explanation of the effect
is that non-self-similar background is stronger for shorter
waves where wave input is relatively strong and nonlinear
transfer is weak due to low magnitudes of solutions.

Figures25 gives a summary of directly calculated expo-
nentsp andq and their counterpartspexp andqexp derived
from local features of the numerical solutions. Cases of
swell, “academic” and “real” inputs are presented. One can
see that all “academic” and swell cases follow perfectly the
theoretical dependencep(q) in a wide range of parameters of
wave growth, i.e. the non-self-similar background affects the
corresponding exponents rather slightly. In contrast, “realis-
tic” runs have stronger dispersion. Corrected values (right
panel) are fitted by theoretical dependence somewhat bet-
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Fig. 26. Non-dimensional energyε=g2σ2/U4
10 (top) and

frequency ν=fpU10/g (bottom) vs non-dimensional duration
ξ=gt/U10. Numerical results for different wave input parame-
terizations are shown: wave input Hsiao and Shemdin (1983) –
curve 1 –U10=10 m·s−1, 2 –U10=20 m·s−1, 3 –U10=30 m·s−1;
4 – Donelan et al. (1987) with fixedUλ/2=10 m·s−1; 5 – Stewart

(1974) and Plant (1982) wave input atU10=10 m·s−1. Recapitula-
tive experimental data and their fit curve from Young’s book (1999)
are shown by symbols and hard line.

ter than by empirical Toba’s law (Toba, 1973). The problem
is that for “realistic” experiments these exponents are vary-
ing in very narrow range and difference between the exper-
imental Toba law and the theoretical dependence cannot be
demonstrated in full measure.

Figure26 can be considered as an illustration of reason-
able agreement of our numerical results with experimental
data discussed in monograph byYoung(1999). The disper-
sion of our numerical results is of the same order as disper-
sion of experimental points. A possible source of the disper-
sion is in normalization of results. Normalization of mean
energy asU−4 (wind speed in power minus four!) requires
rather high accuracy of measurements of wind speed. More-
over, as we concluded above, not the wind speed itself but
some integral properties of wind input are responsible for
wave growth. An additional reason for mismatch is the use of
explicit dependence on timet . Duration of initial (non-self-
similar) stage depends essentially on initial state that can lead
to incorrect comparison of results.

Figure25 and Table6 show clearly that local features of
solutions (position of the solution peak and this peak magni-
tude) are likely more adequate for comparison of results.
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Fig. 27.Comparison of JONSWAP (dashed) and numerical (hard line) spectra for different wave input.(a), (b), (c)wave input by Hsiao and
Shemdin (Eq.51) for wind speeds 10, 20, 30 m·s−1 correspondingly;(d) wave input by Donelan and Pierson-jr. (Eq.52) for U=10 m·s−1;
(e), (f) wave input by Snyder et al. (Eq.47). Time in hours, inverse wave ageU/Cp and wind speedU are shown in plots. Exponentκα
(Eq.39) was estimated by power-like dependence of the solution peak on time. Solutions fort>4 h was taken to reduce the effect of initial
stage of wave growth. Ratio of JONSWAP and numerical spectra peak magnitudes is given asαN/αJ .

6.3 Numerical solutions vs. JONSWAP spectrum

Basing on theoretical results and on observations made in
the above subsections one can perform a comparison of nu-

merical and JONSWAP spectra for the same values of wave
ages. Results of the comparison are shown in Fig.27. Nu-
merical spectra (frequency spectra integrated in angle) were
calculated for different parameterizations of wind input and
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Fig. 28.Down-wind spectra of wave action, nonlinear transfer term
Snl and fluxes of wave actionQ(ω), wave energyE(ω) and wave
momentumKx(ω) as functions of nonlinear frequencyω̃=ωU10/g

at different time (in hours in the center panel). Wave input as in
Hsiao and Shemdin (1983), wind speed 10 m·s−1.

wind speeds presented in Table6. For the JONSWAP spec-
tra peakedness parameters were fixed (γ, σ , in Eq.38) while
the exponents of wave growthκα (Eq. 39) have been calcu-
lated in accordance with (Eq.110), i.e. for exponents that
characterize evolution of self-similar core of solutions. The
parameterα0=0.08/(2π) was fixed (see Eq.40 in Babanin
and Soloviev, 1998)). Thus, we fix ratio of peak magnitudes
of numerical and JONSWAP spectra for large times when nu-
merical solutions keep self-similar forms. The ratio shown in
plots asαN/αJ varies in a wide range. At the same time it is
well within dispersion of parameterαJ found in sea measure-
ments (Babanin and Soloviev, 1998, Table 2). The ratio is
lower for wave input byHsiao and Shemdin(1983) (Fig.27a,
b, c) and higher for generation rates byDonelan and Pierson-
jr. (1987) (Fig. 27d) andSnyder et al.(1981) (Fig. 27e, f).
This is in perfect agreement with our comparison of different
generation rates in Sect. 3.4.1. Besides thatαN/αJ depends
on wind speed for the same input parameterization (compare
Figs.27a, b, c for wave input by Hsiao and Shemdin, 1983,
or Fig. 27e, f for input by Snyder et al., 1981). This is an
additional illustration of trivial remark made above: not the

wind speedU10 itself but the integral value of input termSin
is responsible for scaling of wind-wave spectra.

Figure 27 demonstrates rather good conformance of nu-
merical and JONSWAP spectral shapes (compare with “aca-
demic” Figs.16 and23). At the same time, shapes of fre-
quency spectraE(ω) are not universal for numerical spectra
– plateaus or, sometimes, peaks are seen in the spectra at fre-
quencies approximately 40% higher than the peak ones (e.g.
Fig. 27b, d). This deviation from universality looks quite
natural for the frequency spectra that can cumulate both self-
similar core and non-self-similar wave background in the
same frequency range.

7 Self-similarity of nonlinear transfer

7.1 Asymptotics of collision integral and of spectral fluxes

The discussion of self-similarity features of nonlinear trans-
fer is extremely important to finalize our study. The term
Snl itself and the resulting fluxes of constants of motion de-
termine predominantly the evolution of wind-wave spectra.
The typical evolution of all the terms is presented in Fig.28.
In the whole frequency range (0.02−2 Hz) we see a combi-
nation of fluxes of different signs. Near the spectral peak the
behaviour of fluxes agrees with the above theoretical scheme:
all fluxes (action, energy and momentum) are directed to
large scales. The domain of inverse cascades is expanding
with time to low frequencies while the boundary of direct
cascades is tending to some limit. These direct cascades of
wave action, energy and momentum are maintained by strong
dissipation that arrests all the fluxes in high frequencies (at
ω̃>6.5).

The time dependence of the terms for fixed nondimen-
sional frequencies is shown in Fig.29. Four values of̃ω are
taken: 0.9, 1.0, 1.2, 1.5. The particular case of wave input
corresponds approximately to the case of slowly decaying
wave action input withr = 0.92, rexp=0.88 (see Table6).
Power-like theoretical dependencies are shown in bold for
the constant wave action input (r = 1). One can see rather
good agreement with theoretical predictions.

The self-similar form of the kinetic Eq. (98) allows to de-
tail the relevance of our numerical experiments to theoretical
results. After re-scaling the collision integral takes a form

lim
t→∞

Snl(k, t) = [αN(k)+ βk∇kN(k)]/t

Thus, the asymptotics of nonlinear transfer quantitiesSnl ,Q,
P , Kx can be calculated from instantaneous solutions and
than be compared with direct calculations ofSnl and fluxes.
Such comparison can be considered both as theory verifica-
tion and as a test of numerical approach.

Results of the comparison are presented in Fig.30 for
swell solutions. As it was mentioned above the transition
to “inherent” wave spectra occurs for rather short time. For
the swell case considered above this time is about half an
hour (see Sect.5.2.1and Fig.9). Patterns for 0.5 h and 100 h
of swell evolution are almost identical. Small differences
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Fig. 29. Nonlinear transfer termSnl (a), wave action fluxQ (b), energy fluxP (c) and momentum fluxK∗
x (d) as functions of time for

different non-dimensional frequenciesω̃=ωU10/g: ω̃=0.9, 1.0, 1.2, 1.5 (shown as curve markers). Wind speedU10=10 m·s−1, wind
input (Eq.51). Power-like asymptotics for constant wave action input are shown (see Table3).

appear near peaks of distributions. The hybrid nature of
weakly nonlinear cascading in the swell case is clearly seen
in these patterns – energy flux changes its sign atκ/κp≈2
(ω/ωp≈1.4). For momentum flux the point of the cascade
inversion is closer to the spectral peak atκ/κp≈1.5.

For the case of wave input the tendency to an asymptotic
behaviour is slower but it is still pronounced. Figure31 il-
lustrates it quite well. The nonlinear transfer termSnl for
down-wind direction is shown to be very close to its asymp-
totic form while for fluxes, which are averaged in angle val-
ues, the tendency is essentially slower. The explanation is
rather simple. We see again the effect of averaging in angle
when non-self-similar background contaminates the strong
features of self-similarity.

7.2 Self-similar solutions and the Kolmogorov-Zakharov
cascades

In our analysis of self-similar solutions in Sect. 5.2 we noted
the generic relationship of self-similar non-stationary (non-
homogeneous) solutions and the Kolmogorov-Zakharov sta-
tionary solutions of the kinetic equation: formally, the KZ
solutions are exact solutions of the kinetic equation in self-
similar variables: the term corresponding to non-stationarity
(non-homogeneity) and nonlinear transfer term vanish inde-
pendently for these special solutions. We concluded quite
naturally, thatthe KZ solutions can be treated as stationary
limits of non-stationary (non-homogeneous) self-similar so-
lutions for the two particular cases – constant wave action
input and constant wave energy input.There is nothing be-
hind the above statement but behaviour of slopes of spec-
tral tails of these solutions. In fact, in addition to the fun-
damental exponents there are fundamental coefficients – the
so-called Kolmogorov’s constants that are responsible for ra-
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Fig. 30. Direct calculation ofSnl and fluxes for swell (solid lines) vs. their asymptotical profiles predicted by Eq. (98) (dashed). Left panel
– time 0.5 h; right – time 100 h.

tio of spectra magnitudes to spectral fluxes (in power 1/3).
These constants can be estimated analytically (Geogjaev and
Zakharov, 2005)1 for the KZ solutions. A number of ques-
tions arises when we try to estimate the Kolmogorov con-
stants numerically.

The Kolmogorov constantsCp, Cq are introduced by
Eqs. (74 and75) for isotropic stationary solutions. The nu-
merical solutions are essentially non-stationary and, more,
anisotropic. The effect of anisotropy is eliminated automati-
cally in definitions themselves where frequency spectral dis-
tributions are used (Eqs.73 and 77). More burning ques-
tions are:How to define the Kolmogorov constants for non-
stationary (non-homogeneous) case? Does the definitions
make a physical sense? How the corresponding values can
be related to “true” Kolmogorov constants?.

Probably, these constants can be estimated for quasi-
stationary parts of solutions – their high-frequency tails. It
was made numerically for the direct cascade constantCp
(Pushkarev et al., 2003; Lavrenov et al., 2002) within the spe-
cially designed “academic” runs. Isotropic (or anisotropic)
wave generation was put at the low frequency end of the cal-
culation domain while strong dissipation was set up at the
high frequency end. The wide inertial frequency domain
provided a quasi-constant spectral flux of energy from large
to small scales. In this case the solution reaches a quasi-
stationary state in an explosive way and leaves no questions
on the first Kolmogorov constantCp: the numerical estimate
tends quite rapidly to some limiting value.

The situation is quite different in case of our key inter-
est – self-similar inverse cascade. The corresponding non-
stationary solutions propagate in front-like manner with fi-
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Fig. 31. Direct calculation ofSnl and fluxes for swell (solid lines) vs. their asymptotical profiles predicted by Eq. (98) (dashed) for wave
input (Eq.51), wind speed 10 m·s−1. Left panel – time 4.15 h; right – time 65 h.

nite speeds (see Fig.31). Moreover, for the family of
self-similar solutions with different exponents of wind wave
growth the wave action flux depend on time essentially. The
prospects for building a bridge from the KZ solutions to the
families of non-stationary and non-homogeneous self-similar
solutions look illusory.

A straightforward trick to overcome the difficulty is to as-
sume the valueCq be slowly dependent on time (fetch). In
fact, the correct solution of the problem does not require this
trick: The ratios of the self-similar solutions to fluxes for the
self-similar solutions defined as the KZ constantsCp andCq
do not depend on time!

Consider, first, numerical evidence of the result. In Fig.32
the calculation of the Kolmogorov constantCq for two cases
of wave input is presented. Wave inputs (Eqs.51 and 47)
for U10=10 m·s−1 are taken for comparison. Despite great
quantitative difference of the examples (wave action by fac-
tor 3, fluxQ – 5–7 times) the resulting estimate for the Kol-

mogorov constantCq shows evident tendency to an asymp-
totic valueCq≈0.35. The range where this value depends
slightly on wave scales (constant flux domain) correspond to
non-dimensional wavenumbersκ/κp≈2−4 (1.5−2 in non-
dimensional frequencies).

Even more cogent argument for the constantCq is given in
Fig.33. Two “academic” runs with essentially different wave
growth ratesr=1/2 (wave action input decays) andr=4/3
(growing wave action, constant wave energy input) are pre-
sented. Variations of wave action flux reach 4 times in these
two examples but the valuesCq remain very close to the pre-
vious estimates.

The dependence ofCq on time (fetch) can be found eas-
ily for self-similar solutions using scaling relations given in
Tables2–5.

Cq(ω, t) = lim
t→0

E(ω, t)ω11/3

g4/3Q(ω, t)1/3
= Cq(|ξ |) (112)
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Fig. 32. Down-wind solutionN(k), compensated frequency spectra of energyE(ω)ω11/3, wave action fluxQ and the resulting estimate of
the Kolmogorov constantCq . Left – wave input (Eq.51), wind speed 10 m·s−1, time 8 (dotted), 16 (dash-dot), 32 (dashed), 64 h (hard line);
right – wave input (Eq.47), wind speed 10 m·s−1, time 4 (dotted), 8 (dash-dot), 16 (dashed), 32 h (hard line).

Thus, the analogue of the inverse cascade Kolmogorov con-
stantCq does not depend on time, it depends on self-similar
argument only. Quite similarly, for the direct cascade con-
stantCp one has

Cp = lim
t→0

E(ω, t)ω4

g4/3P (ω, t)1/3
= Cp(|ξ |) (113)

Thus, the basic property of the KZ solutions – constant ra-
tio of the solution to the fluxes (in power 1/3) is dealing
with self-similarity of solutions of the Hasselmann equation.
It remains valid in a general case irrespectively to the case
of wave pumping. This extends essentially the applicability
of the concept of Kolmogorov’s cascading for non-stationary
(non-homogeneous) evolution of wind-wave spectra.

Figure34 (left) illustrates this conclusion for an artificial
“hybrid” solution of coexisting direct and inverse cascades
presented above (Fig.7). In ranges of weak variability of
fluxes the corresponding functions of self-similar argument
Cq(ξ), Cp(ξ) tend to some limiting values. Inverse cascade
of wave action in a rangeκ/κp≈2−5 (ω/ωp≈1.5−2.2) is
governed by slowly varying parameterCq≈0.35. In a large

high-frequency domain the direct cascade is described per-
fectly well by the KZ solution withCp≈0.38−0.4. The do-
mains of inverse and direct cascades in this case are deter-
mined by wave input features. These domains coexist in the
swell case as it was pointed out above but the inverse cas-
cade domain for energy is rather narrow (κ/κp<2). Figure34
(right) illustrates this special “hybrid” cascading. The ratios
(Eqs.112 and113) give values which are very close to nu-
merical and theoretical estimates of the “true” Kolmogorov
constants found previously (Lavrenov et al., 2002; Geogjaev
and Zakharov, 20051; Pushkarev et al., 2003).

8 Discussion

In this paper we have attempted to address important ques-
tions of wind-driven eave dynamics based on “first princi-
ples” of the statistical description of waves. We recognize
that to some researchers these principles may appear too re-
strictive for current needs. On one hand, hypotheses, approx-
imations, and simplifications are unavoidable. On the other
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Fig. 33. Down-wind solutionN(k), compensated frequency spectra of energyE(ω)ω11/3, wave action fluxQ and the resulting estimate of
the Kolmogorov constantCq . Left – “academic” wave inputNtot∼t1/2 time 4 (dotted), 8 (dash-dot), 16 (dashed), 32 h (hard line); right –
“academic” wave inputNtot∼t4/3, time 4 (dotted), 8 (dash-dot), 16 (dashed), 32 h (hard line).

hand, we argue here that first principles can provide an ex-
cellent framework for properly considering these hypotheses,
approximations and simplifications.

We started with formulation of the basic principles in
Sect. 2 of the paper. In Sect. 3 we fixed common points and
points of disagreement in experimental and theoretical ap-
proaches. The experimental parameterizations of wind-wave
spectra are based on the concept of self-similar evolution of
wave field, they are implying independence of the resulting
spectra on details of wind-wave generation and dissipation.
At the same time, a great portion of efforts in parameteriza-
tions of wind-wave growth and dissipation is aimed at detail-
ing frequency dependences of the rates. It should be realized
quite clearly, that any “new” form of these dependencies im-
plies an extra scaling. Physical reasons for the extra scaling
are usually absent in the models. Great dispersion of mag-
nitudes of the rates is just one side of the problem. Other
side of the problem, mentioned in Sect. 3: the forms of input
functions (e.g. their low-frequency cutoff) are not consistent
with self-similar scaling of wind-wave spectra.

Often in numerical models of wind waves known physi-
cal principles are sacrificed for speed of computations, al-
gorithm stability, and “plausibility” of the results. Evi-
dently, it is easier to achieve the plausibility by tuning gener-
ation/dissipation terms in the kinetic equation. The resources
of such “diagnostic” patching (Tolman and Chalikov, 1996)
of the physical problem are rather short and, additionally,
the patching being applied for particular conditions does not
guarantee adequate results in general case. We propose our
“first principles” – the theory of weak turbulence – as a physi-
cal basis, as a system of criteria for verification of wind-wave
models but not as a barrier for experiments with different
models.

The theory of weak turbulence predicts correctly many
features of wind-wave evolution, first of all, the well-known
power-like asymptotics of wind wave spectra. This fact
is usually ignored because the corresponding KZ solutions
are considered as physically irrelevant – these solutions are
isotropic and are not localized in wave scales. But the KZ
solutions are not “the first and the last” result of the theory
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Fig. 34. Correlation of wave spectra and spectral fluxes. Compensated spectra for direct (dashed) and inverse (hard line) cascades, wave
energy flux, wave action flux and estimates for the Kolmogorov constantsCq andCp (Eqs.113, 112). Left column – “artificial” wave input
(see Fig.7), both direct and inverse cascade regimes are presented by wide domains of quasi-constant fluxes. Right column – swell case,
direct cascade with quasi-constant (in frequency) flux of wave energy allows for reliable estimate of the Kolmogorov constantCp. The
domain of inverse cascade is relatively narrow.

of weak turbulence. In fact, they represent basic physical
mechanism of wind-wave evolution – cascading of wave ac-
tion, energy and momentum in wave scales. Evidently, this
mechanism works in general case and, more, it dominates in
many cases of interest.

The theoretical analysis in Sect. 5 assumes that wave non-
linearity is a dominant process in wind-wave generation. As
the first step of the approximation procedure we consider so-
lutions of “conservative” Hasselmann Eq. (4) for deep water
waves to describe shapes of self-similar solutions. The next
step – the balance Eq. (5) just selects a self-similarity index
that is consistent with the growth of total wave action (en-
ergy). We show that the families of self-similar solutions for
duration-limited and fetch-limited wave growth are nothing
but generalization of the KZ solutions where spectral fluxes
are not yet constant but power-like functions of time (fetch).
These solutions describe inverse cascades of wave action, en-
ergy and momentum for “acceptable” rates of wave growth.
Particular case of swell corresponds to “hybrid” regime when

wave action propagates to low frequencies while inverse cas-
cade of wave energy and momentum fluxes occur in a narrow
band near spectral peak only. The direct cascades of wave en-
ergy and momentum play a key role in wave evolution: they
provide leakage of wave energy and momentum in high fre-
quencies without any dissipation in the system.

The self-similarity of experimental parameterizations of
wind-wave spectra (e.g. JONSWAP) makes possible to relate
the indexes of self-similar solutions with experimental expo-
nents of wind-wave growth. The experimental dependencies
are shown to be consistent with the theoretical results. This
is an important point for further numerical analysis.

Numerical approach of Sect. 6 was described in previous
papers (seeTracy and Resio, 1982; Resio and Perrie, 1991;
Pushkarev et al., 2003) and is presented in the paper briefly.
The point of the present numerical study is in formulation
of physical models basing on the concept of self-similarity.
The “academic” series allows one to obtain the self-similar
behaviour in “naked form” in a whole range of indexes of
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self-similarity. The main result of the section and of the pa-
per as a whole:Shapes of spectra depend very slightly on the
indexes.This result can be considered as a theoretical argu-
ment for universal parameterization of shapes of wind-wave
spectra. In fact, the universality of the spectral forms is a
starting point of all experimental parameterizations of wind-
wave spectra (e.g.Hasselmann et al., 1973).

Proceeding with “realistic” wave inputs we, first, justify
the effect of strong tendency to self-similar behaviour, and,
then, the universality of the spectral shape. Again, we find
rather small differences of spectral shapes for different mod-
els of wave generation. Quite evidently, this results from
dominating nonlinear transfer as compared to wave input and
dissipation but the possibility itself of this domination is not
evident a priori. The situation looks like a magic circle –
high non-linearity requires high magnitudes of wave field
and these magnitudes, in their turn, require high wave in-
put. Fortunately, nonlinearity is likely a permanent winner in
this conflict in a wide range of conditions of wave input and
dissipation.

For “realistic” wave inputs the nonlinearity cannot domi-
nate globally, in the whole domain of wave scales and direc-
tions. There are frequencies and directions where nonlinear-
ity is relatively small and, hence, does not provide the strong
tendency to self-similarity. In this case it is useful to model
the wind-wave field as a composite of self-similar “core” and
non-self-similar “background”. This composite model al-
lows to explain differences of exponents of wave growth ob-
served in experiments and in numerical runs. Spectral peaks
are described better by behaviour of self-similar core of solu-
tions while evolution of total energy and mean frequency can
be affected essentially by non-self-similar wave background.
Taking into account this simple observation we obtain very
good coincidence of our numerical results with JONSWAP
parameterization of wave spectra. We extract parameterκα
of wind-wave growth from numerical solutions. Generally it
appears significantly higher than in experiments. The expla-
nation is trivial: we used spectral peak features as a reference
for the comparison while experimentalists operate usually by
total energy and mean frequency that are affected heavily by
non-self-similar wave background.

The final part of the paper brings us back to the fundamen-
tal role of the Kolmogorov-Zakharov solutions. We find rela-
tionship of the non-stationary (nonhomogeneous) anisotropic
self-similar solutions and stationary and isotropic KZ solu-
tions in terms of spectral fluxes. The result looks paradoxi-
cal: spectral cascading in both cases is governed by the same
set of fundamental physical valuesCp andCq . Former Kol-
mogorov’s constantsCp andCq become functions of self-
similar argumentξ which is nothing but non-dimensional
wave scale (ξ=|k|/|kp|=ω

2/ω2
p) for the self-similar solu-

tions. These functions characterize ratios of wave spectra
magnitudes to spectral fluxes. Our result show that these ra-
tios are independent, or, more carefully, depend weakly on
wave input, i.e. the problems studied in this paper show adi-
abatic development of spectral fluxes.

We presented numerical results for duration-limited

growth only. At the moment numerical solution of the fetch-
limited problem for the Hasselmann kinetic equation cannot
be obtained with accuracy which is adequate to the ques-
tions considered above. At the same time, the present study
gives a hope that essential features of self-similar evolution
of wind wave spectra remain valid in this particular case and,
very likely, can facilitate essentially description of spatio-
temporal wind-wave growth in general case.

Appendix A Kernels for the kinetic equation

The four-wave interaction coefficient for gravity waves, sat-
isfying all the symmetry conditions at the resonance curve as
well as elsewhere, has the form

Ṽ
(2)
1234 = T1234+ (ω1 + ω2 − ω3 − ω4)N1234, (A1)

whereT1234 can be presented in a relatively compact way as

T1234 = −
1

32π2

1

(q1q2q3q4)1/4

×

{
(−k2k3 + q2q3)(−k1k4 + q1q4)

+ (−k1k3 + q1q3)(−k2k4 + q2q4)

+ (k1k2 + q1q2)(k3k4 + q3q4)

+ ω1ω2ω3ω4

×

[
q2

1 + q2
2 + q2

3 + q2
4 − q1−3(ω2 − ω4)

2

−q2−3(ω2 − ω3)
2
− q1+2(ω3 + ω4)

2

]

+
(ω2 − ω4)

2

q1−3 − (ω2 − ω4)2

×[2k1k3 + ω1ω3(q1 + q3 − q1−3)]

×[2k2k4 + ω2ω4(q2 + q4 − q1−3)]

+
(ω2 − ω3)

2

q2−3 − (ω2 − ω3)2

×[2k1k4 + ω1ω4(q1 + q4 − q2−3)]

×[2k2k3 + ω2ω3(q2 + q3 − q2−3)]

+
(ω3 + ω4)

2

q1+2 − (ω3 + ω4)2

×[2k1k2 + ω1ω2(q1 + q2 − q1+2)]

×[2k3k4 + ω3ω4(q3 + q4 − q1+2)] (A2)

Note that:

1. Perhaps it is not the shortest possible form (see below),
but it is indeed remarkably symmetric;

2. g=1. Otherwize,g would appear in places.

3. Krasitskii’s notation is used, in particular|k|=q.
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There are two other versions ofT1234. One, somewhat longer,
is suggested byZakharov(1999). Correcting a number of
misprints and omittingg, it can be written as

Z1234 = −
1

32π2

1

(q1q2q3q4)1/4

{
−12q1q2q3q4

− 2(ω1 + ω2)
2

× [ω3ω4 (k1k2 − q1q2)+ ω1ω2 (k3k4 − q3q4)]

− 2(ω1 − ω3)
2

× [ω2ω4 (k1k3 + q1q3)+ ω1ω3 (k2k4 + q2q4)]

− 2(ω1 − ω4)
2

× [ω2ω3 (k1k4 + q1q4)+ ω1ω4 (k2k3 + q2q3)]

+ (k1k2 + q1q2)(k3k4 + q3q4)

+ (−k1k3 + q1q3)(−k2k4 + q2q4)

+ (−k1k4 + q1q4)(−k2k3 + q2q3)

+ 4(ω1 + ω2)
2 (k1k2 − q1q2)(k3k4 − q3q4)

q1+2 − (ω1 + ω2)2

+ 4(ω1 − ω3)
2 (k1k3 + q1q3)(k2k4 + q2q4)

q1−3 − (ω1 − ω3)2

+ 4(ω1 − ω4)
2 (k1k4 + q1q4)(k2k3 + q2q3)

q2−3 − (ω1 − ω4)2

}
(A3)

There exists yet another version ofT1234 that can be found in
the monograph byLavrenov(2003) and used in his derivation
of the specific algorithm for the solution of the Hasselmann
equation. Apparently, it is eventually inherited from paper by
Webb(1978). Following the above normalization and again
omittingg, the following formula is obtained:

L1234 = −
1

32π2

1

(q1q2q3q4)1/4

{
5q1q2q3q4

+ 2(ω1 + ω2)
2(ω1 − ω3)

2(ω1 − ω4)
2

×(q1 + q2 + q3 + q4)

+ (k1k2)(k3k4)+ (k1k3)(k2k4)+ (k1k4)(k2k3)

−
1

2

[
(ω1 + ω2)

4(k1k2 + k3k4)

−(ω1 − ω3)
4(k1k3 + k2k4)

−(ω1 − ω4)
4(k1k4 + k2k3)

]
+

4(ω1 − ω3)
2 (k1k3 + q1q3) (k2k4 + q2q4)

q1−3 − (ω1 − ω3)2

+
4(ω1 − ω4)

2 (k1k4 + q1q4) (k2k3 + q2q3)

q2−3 − (ω1 − ω4)2

+
4(ω1 + ω2)

2 (q1q2 − k1k2) (q3q4 − k3k4)

q1+2 − (ω1 + ω2)2
(A4)

ThoughT ,Z andL look quite differently, they are all numer-
ically equivalentat the resonance curve. However, it is im-
portant to note that they arenot equivalent out of it, i.e. they
differ on certain functions proportional to(ω1+ω2−ω3−ω4).

The expression forN1234 depends on the specific choice
of the canonical transformation. Using the transformation

of Krasitskii, the following expression (unfortunately, rather
long) can be obtained (certainly, it is valid forT1234only, and
not valid forZ andL):

N1234 =
1

32π2

1

(q1q2q3q4)1/4

×

{
ω1ω2ω3ω4

[
q1ω1 + q2ω2 − q3ω3 − q4ω4

− q1−3(ω2 − ω4)− q2−3(ω2 − ω3)

+ q1+2(ω3 + ω4)
]

+
(ω2 − ω3)

q2−3 − (ω2 − ω3)2

×[k1k4 + q1q4 + ω1ω4(q1 + q4 − q2−3)]

×[2k2k3 + ω2ω3(q2 + q3 − q2−3)]

+
(ω2 − ω4)

q1−3 − (ω2 − ω4)2

×[k1k3 + q1q3 + ω1ω3(q1 + q3 − q1−3)]

×[2k2k4 + ω2ω4(q2 + q4 − q1−3)]

−
(ω3 + ω4)

q1+2 − (ω3 + ω4)2

×[−k1k2 + q1q2 − ω1ω2(q1 + q2 − q1+2)]

×[−2k3k4 − ω3ω4(q3 + q4 − q1+2)]

+
[
ω2−3(q2q3 − k2k3)

−ω2(k3k2−3 + q3q2−3)

+ω3(q2q2−3 − k2k2−3)
]

×
[
ω2−3(q1q4 − k1k4)

+ω1(q4q2−3 − k4k2−3)

− ω4(k1k2−3 + q1q2−3)
]

×[4ω2−3 (ω2−3 + ω1 − ω4) (ω2−3 − ω2 + ω3)]
−1

−
[
ω2−3(−k2k3 + q2q3)

+ω2(k3k2−3 + q3q2−3)

−ω3(−k2k2−3 + q2q2−3)
]

×
[
ω2−3(−k1k4 + q1q4)

−ω1(−k4k2−3 + q4q2−3)

+ω4(k1k2−3 + q1q2−3)
]

×[4ω2−3 (ω2−3 − ω1 + ω4) (ω2−3 + ω2 − ω3)]
−1

+
[
ω1−3(−k2k4 + q2q4)

−ω2(k4k1−3 + q4q1−3)

+ω4(−k2k1−3 + q2q1−3)
]

×
[
ω1−3(−k1k3 + q1q3)

+ω1(−k3k1−3 + q3q1−3)

−ω3(k1k1−3 + q1q1−3)
]

×[4ω1−3 (ω1−3 + ω1 − ω3) (ω1−3 − ω2 + ω4)]
−1

−
[
ω1−3(−k2k4 + q2q4)

+ω2(k4k1−3 + q4q1−3)

−ω4(−k2k1−3 + q2q1−3)
]

×
[
ω1−3(−k1k3 + q1q3)
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−ω1(−k3k1−3 + q3q1−3)

+ ω3(k1k1−3 + q1q1−3)
]

[4ω1−3 (ω1−3 − ω1 + ω3) (ω1−3 + ω2 − ω4)]
−1

+
[
ω1+2(k1k2 + q1q2)

+ω2(−k1k1+2 + q1q1+2)

+ω1(−k2k1+2 + q2q1+2)
]

×
[
ω1+2(k3k4 + q3q4)

+ω4(−k3k1+2 + q3q1+2)

+ω3(−k4k1+2 + q4q1+2)
]

×[4ω1+2 (ω1+2 + ω1 + ω2) (ω1+2 + ω3 + ω4)]
−1

−
[
ω1+2(k1k2 + q1q2)

−ω2(−k1k1+2 + q1q1+2)

−ω1(−k2k1+2 + q2q1+2)
]

×
[
ω1+2(k3k4 + q3q4) (A5)

−ω4(−k3k1+2 + q3q1+2)

−ω3(−k4k1+2 + q4q1+2)
]

×[4ω1+2 (ω1+2 − ω1 − ω2) (ω1+2 − ω3 − ω4)]
−1

The expressionT1234+(ω1+ω2−ω3−ω4)N1234 coincides
with Krasitskii’s Ṽ (2)1234 globally.

Appendix B Green function for function A(ω, θ)

Solution for the equation

LA =

(
1

2

∂2

∂ω2
+

1

ω2

∂2

∂θ2

)
A = f (ω, θ) (B1)

is given by Green function

A(ω, θ) =

∫
∞

0

∫ 2π

0
G(ω,ω′, θ − θ ′)f (ω, ω′)dω′dθ ′ (B2)

where

G(ω,ω′, θ − θ ′) = −
1

2π

∞∑
n=−∞

√
ωω′

1n
exp[in(θ − θ ′)] (B3)

×

[(
ω′

ω

)1n
θ

(
1 −

ω′

ω

)
+

( ω
ω′

)1n
θ

(
ω′

ω
− 1

)]

Here

1n =

√
1

4
+ 2n2

and

θ(ξ) =

{
1 ξ > 0
0 ξ < 0

}
Equation (66) appears after substituting ofSnl(ω′, θ ′) as
f (ω′, θ ′) in Eqs. (63) and (62).

Appendix C Formal solution for function A(ω, θ)

To determine the equation, describing the general Kolmogo-
rov solution one defines the following function:

F(ω, θ) = 4π

∞∫
0

dω1

ω3∫
0

dω2

∞∫
ω

dω3

2π∫
0

dθ1

2π∫
0

dθ2

2π∫
0

dθ3

×δ(ω + ω1 − ω2 − ω3) (C1)

×δ(ω cosθ + ω1 cosθ1 − ω2 cosθ2 − ω3 cosθ3)

×

[
ω3Nω1Nω2Nω3 + ω3

1NωNω2Nω3

−ω3
2NωNω1Nω3 − ω3

3NωNω1Nω2

]
· |Tωω1ω2ω3,θθ1θ2θ3|

2

and find its Fourier coefficients

Fn(ω) =

2π∫
0

Fn(ω, θ) cosnθdθ (C2)

A general Kolmogorov spectrum is defined by the following
system of equations:

P + ωQ =

ω∫
0

(ω − ω1)F0(ω1)dω1 (C3)

M =
1

g

ω∫
0

ω2
1F1(ω1)dω1 (C4)

Fn(ω) = 0 if n ≥ 2 (C5)

Now εω(θ) = ωNω(θ). One can presentN in a form of the
Fourier series

N(ω, θ) =
1

2π

∑
Nn(ω) cosnθ (C6)

and turn Eqs. (C3)–(C5) into an infinite system of nonlinear
integral equations imposed onNn(ω).
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