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Abstract. Large-scale convection in planetary or stellar in-
teriors plays a significant role but it is difficult to reproduce
the central force field of those systems in experimental stud-
ies. A technique to approximate a central force field through
the magnetic field from magnets acting on a magnetic liquid
is presented. The thermomagnetic convection in a spherical
shell filled with a magnetic liquid is analyzed in the context
of a terrestrial laboratory using a 2D Finite Element model.
Two configurations of magnetic fields were investigated, one
resulting in a radially decreasing force field, and the other in
a radially increasing force field.

The results suggest that, while the actual force field does
not reproduce the central gravity in planetary interiors ac-
curately, it captures the essential qualitative character of the
flow unlike other terrestrial experiments, which were either
dominated by gravity or by a cylindrical radial force field. It
is therefore suggested that such an experiment would provide
a useful tool to investigate thermal convection in planetary
interiors.

1 Introduction

Large-scale convection in planetary or stellar interiors plays
a significant role both in the transport of heat from the deep
interior to the planet’s or star’s surface, e.g.Huppert(2000),
as well as the generation of the planetary magnetic fields by
geodynamo actions, e.g.Moffatt (2000). To simulate this
process in the laboratory is problematic as the gravity field in
the planetary or stellar interior is radially inwards towards the
centre of mass whereas the standard gravity in the laboratory
has a unidirectional and constant gravity downwards.

This paper suggests and evaluates a technique to approx-
imate a central force field through the magnetic field from
a magnet acting on a magnetic liquid using a Finite Ele-
ment analysis. The model of thermomagnetic convection in
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a spherical shell was developed from an earlier experimental
and numerical study byFrüh (2005) on the control of heat
transfer through a rectangular enclosure. That study demon-
strated successfully that thermomagnetic convection can ef-
fectively override a gravitationally stable thermal stratifica-
tion and mimic natural convection. Within the scope of this
paper, only the effect of the geometry of the effective buoy-
ancy force is considered but clearly any complete analysis
will have to consider a number of other strong effects, most
notably the effect of the background rotation of the system.
Other important factors are, for example, differential rotation
of the inner core relative to the outer shell, magnetohydrody-
namics, and phase changes such as solidification resulting
from the gradual cooling of the planet.

The remainder of this section gives a brief overview over
previous experimental approaches to reproduce a central
force field and the basic principle of thermomagnetic con-
vection in a magnetic liquid. Section2 describes the general
modelling approach. The results from the model of convec-
tion are then described in Sect.3, which is followed by the
discussion and conclusion.

1.1 Experiments for convection in spherical shells and ra-
dial force fields

The traditional laboratory realisation of a central gravity field
is either by a voltage difference across the spherical shell or
by placing an arrangement of permanent magnets within the
core of the shell. Using dielectric convection in a spherical
conductor results in a highly regular central force field which
decays rapidly with radius resulting in an effective gravity,
ge∝1/r5, as stated by, e.g. Beltrame et al. (2005)1. As a
result of this rapid decay and very high voltages required,
it is relatively easy to achieve a central force field near the
inner core which exceeds terrestrial gravity but not towards
the outer shell.Amara and Hegseth(2002) observed a flow

1Beltrame, P., Travnikov, V., Gellert, M., and Egbers, C., GE-
OFLOW: Simulation of convection in a spherical gap under central
force field, Nonlin. Processes Geophys., submitted, 2005.
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Table 1. Physical and nondimensional parameters of experimental sequence used for analysis.

Geometry, temperatures, and permanent magnets Fluid properties

Inner radius Ri 35 mm Density ρ 1180 kgm−3

Outer radius Ro 100 mm Kinematic viscosity ν 1.69×10−6 m2s−1

Domain radius 200 mm Thermal diffusivity κ 0.119×10−6 m2s−1

Mean Temperature T0 300 K Specific heat Cp 4200 Jkg−1K−1

Temperature Difference 1T ±10 K Volume expansion coefficient α0 0.18×10−3 K−1

Magnetisation, config. B M0 160×103 Am−1 Saturation magnetisation MS 15.61×103 Am−1

Magnetisation, config. C M0 480×103 Am−1 Magnetic moment of
ferromagnetic particles

m 2.93×10−25 JmA−1

Nondimensional parameters

Prandtl No. Pr 14.2 Magnetic Rayleigh No., conf. B RaM 5 × 106
− 5 × 108

Rayleigh No. Ra0 2.41× 107 Magnetic Rayleigh No., conf. C RaM 107
− 3 × 108

where the dielectric forces resulted in strong small-scale con-
vection in a thin layer around the inner core of a spherical
capacitor but standard convection everywhere else. To sim-
ulate a central force field everywhere in the fluid, such an
experiment must be carried out in a microgravity environ-
ment, which was first carried out byHart et al.(1986) in a
hemispherical shell, and is now being prepared to operate on
the International Space Station byEgbers et al.(2003). The
hardware analysis is supplemented by numerical modelling
by Travnikov et al.(2003) and a bifurcation analysis byBel-
trame et al.(2003). Recently, Beltrame et al. (2005)1 inves-
tigated a test of the experiment under terrestrial conditions
in a numerical simulation. Again they found that the electric
forces could not substantially alter the large-scale flow. How-
ever, they found that even a moderate electric force could
initiate oscillatory flow.

The use of magnetic fluids for geophysical experiments
was first presented byOhlsen and Rhines(1997) for inter-
nal equatorial waves. Using a permanent magnet results in a
spatially more complex field which depends in the near field
on the shape of the magnet and approaches that of a dipole
in the far field. Rosensweig et al.(1999) measured in their
experimental set-up a magnetic field ofH0∝r−2.64 on the po-
lar axis2 andH0∝r−3.71 on the equator which would lead to
a very complicated gradient field,|∇H |. Their setup con-
sisted of three stacked magnets occupying most of the core.
They observed that a magnetic force could result in a lon-
gitudinal variation of the convection cells. As they used a
rather thin shell, the occurrence of zonal waves is not sur-
prising. The thin shell case of thermal convection in a non-
rotating shell was recently presented byLi et al. (2005) who
investigated the effects of the co-existence of many unstable
modes. Unlike the experiments, which have all resulted in a
radially rapidly decreasing force,Li et al. (2005) employed
a linearly increasing gravitational field to model buoyancy
within a fluid shell, using the Earth’s mantle as an example

2Rosensweig et al.(1999) in fact quoter2.64 but this must be a
misprint.

of a moderately thin shell (withRi/Ro=0.5) and Mercury’s
mantle as a very thin shell (withRi/Ro=0.8475), compared
to a radius ratio for the Earth’s core of≈0.35.

1.2 Thermomagnetic convection

A magnetic liquid, also known as ferrofluidTM , is a suspen-
sion of ferromagnetic nanoparticles covered with a surfactant
and typically 10 nm in diameter in a carrier liquid of choice
(Rosensweig, 1985, Sect. 1.3). Depending on the application
the carrier liquid may, for example, be water, a hydrocarbon
oil, or a silicone fluid.

Thermomagnetic convection is based on the phenomenon
that a hotter magnetic fluid is less magnetised by an external
magnetic field than a cooler fluid. Since the fluid experiences
a force towards the magnet, cooler fluid experiences a net
force towards higher magnetic fields while the warmer fluid
experiences a net force away from the magnet. As such, ther-
momagnetic convection mimics natural convection where the
magnetic field gradient is equivalent to gravity and the dif-
ferential magnetisation equivalent to the thermal expansion
(Rosensweig, 1985, Sect. 7.9).

The heat transfer by natural convection, caused by buoy-
ancy of a warmer fluid underneath a cooler fluid is char-
acterised by the Nusselt number,Nu, whereNu=1 would
indicate heat transfer by conduction only, andNu>1 en-
hanced heat transfer by convection. The force balance of
buoyancy to, essentially, viscous dissipation is quantified by
the Rayleigh number, Ra, such thatNu=Nu(P r,Ra), with

Ra =
D3α0g1T

νκ
, (1)

whereD is the reference length which is the gap width for
the spherical shell. The other parameters areα0 the volume
expansion coefficient,g the gravity,1T the imposed temper-
ature contrast between the boundaries,ν the kinematic vis-
cosity, andκ the thermal diffusivity, with values for this case
as listed in Table1.
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A similar process is caused by the fact that a magnetic
fluid is magnetised and thereby attracted by magnets. In
other words, the fluid with a magnetisation,M , experiences
a body force towards higher magnetic fields, of the form
µ0 M |∇ H |, known as the Kelvin force. The magnetisation
of magnetic fluids is usually given by a Langevin equation,

M = MS

(
cothα −

1

α

)
, (2)

whereMS is the fluid’s saturation magnetisation andα=
mH
kT

with m the magnetic moment of the suspended ferromagnetic
particles,H the imposed magnetic field,k the Boltzmann
constant, andT the fluid’s temperature. This implies that
the magnetisation not only depends on the magnetic field but
also the temperature. An increase in temperature results in
a smaller magnetisation and thereby a smaller Kelvin force,
proportional to(∂M/∂T )H , known as the pyromagnetic co-
efficient. Thus, a cooler fluid is attracted to the magnet more
than a warmer fluid. If the warmer fluid is near the magnet,
there will be a net force for it to move away and make way
for cooler fluid. As such we have a direct equivalent between
this force and buoyancy if we replace gravity by the mag-
netic field gradient and the volume expansion coefficient by
the pyromagnetic coefficient. This leads to a corresponding
definition of a magnetic Rayleigh number as

RaM =
D3

νκ

µ0

ρ

(
∂M

∂T

)
H

|∇H |1T. (3)

2 Description of models

2.1 The physical system

The physical system studied here attempts to model a small-
scale laboratory based experiment of convection in the
Earth’s core. A diameter of 200 mm of the sphere containing
the fluid was chosen. This size is somewhat larger than that
by Rosensweig et al.(1999) and by Beltrame et al. (2005)1

and much larger than the original Spacelab experiment by
Hart et al.(1986). A radius ratio ofRi/Ro=0.35 resulted
in an inner radius of the fluid shell ofRi=35 mm. At this
stage of the study, only convection in a stationary fluid cell
was considered, and the other essential features of the rapid
background rotation and differential shear between the in-
ner core and mantle will be the focus of a follow-on study.
The only laboratory experiments carried out to date in ter-
restrial gravity conditions, byAmara and Hegseth(2002)
andRosensweig et al.(1999), have not considered a rotating
shell either and provide a useful comparison to the results
presented here.

All laboratory experiments so far have only considered a
rapidly decaying central force field. In the case of using
a spherical capacitor and an electrophoretic fluid, an effec-
tive gravity field ofge∝r−5 is a necessary consequence of
the experimental design, e.g.Amara and Hegseth(2002).
Rosensweig et al.(1999) generated a similar force field by
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Fig. 1. Variation of the pyromagnetic coefficient,(∂M/∂T )H (red
solid line, left axis), as a function of the magnetic field,H , at a
reference temperature ofT =300 K, and the scaling of the magnetic
Rayleigh number with the strength of the magnets,CR (blue dotted
line, right axis).

placing an arrangement of permanent magnets in the core of
the system. While gravity outside a body of mass does decay
with g∝r−2, it increases linearly within that body (Li et al.,
2005). This paper considers both cases by using different
arrangements of magnets as described in Sect.2.2.

Since the proposed experiment was inspired by an exper-
iment on thermomagnetic convection in a rectangular box
by Früh (2005), the same fluid properties of the water-based
Ferrotec

TM
EMG805 300 Gauss magnetic fluid and the spec-

ification of existing magnets were chosen for the initial anal-
ysis and are listed in Table1. Using a temperature contrast
across the shell of1T =10 K, the system is characterised
by a standard Rayleigh number ofRa=2.4×107 which is
only a little smaller than the estimate ofRa∼O(108) by
Rosensweig et al.(1999) for convection in the Earth’s mantle
but is much smaller than that for the Earth’s core, estimated
by Gubbins(2001) to be in excess of 1012, or evenRa>1020

as stated byAurnou et al.(2003).
To estimate the magnetic Rayleigh numbers anticipated

in the experiment, an analysis of the Rayleigh numbers
achieved by the chosen magnetic fluid and magnets was car-
ried out using the strength of the magnets,M0, as a control
parameter, which affects both the pyromagnetic coefficient,
∂M/∂T , and the field gradient,|∇H |. Varying the mag-
nets’ strength but maintaining their size and arrangement,
the field gradient scales linearly withM0, whereas the py-
romagnetic coefficient, obtained by differentiating Eq. (2)
with respect to temperature, depends on the local magnetic
field as shown by the solid line in Fig.1 with a rapid in-
crease to a maximum of about 18 Am−1K−1 near a local
field strength of about 20 kAm−1, followed by a decrease
which is asymptotically∝H−1. Since the magnetic Rayleigh
number is proportional to both, the pyromagnetic coefficient
and the field gradient, the dotted line in Fig.1 shows the
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quantityCR=D3µ0/(νκρ)×(∂M/∂T )×M0, taking into ac-
count all factors in Eq. (3) except the temperature contrast
and the normalised field gradient,RaM=CR|∇(H/M0)|1T .
As the dotted line shows, this factor increases rapidly un-
til about 40 kAm−1 and then levels off at a value of about
3.9×106 mK−1. For a typical dipole field of a magnet
of size 30 mm with unit magnetisation, the gradient is
O(100 Am−2) near the magnet andO(1 Am−2) at a distance
of about 100 mm. With a temperature contrast of1T =10 K,
we could therefore expect a magnetic Rayleigh number in the
range ofRaM≈107

−109 in the fluid domain.

2.2 Model formulation

Since this study was a proof-of-concept investigation rather
than an accurate prediction of flow fields in such a labora-
tory experiment, it was decided to consider only the axisym-
metric case of a 2D section through the shell. While it is
expected that the three-dimensional flow will differ from the
two-dimensional results, the force balance between gravity
and the Kelvin force would not be affected by this simplifi-
cation. Only with this simplified 2D approach was it possible
to explore the range of configurations presented here which
can be taken as a guide for further three-dimensional calcu-
lations.

The numerical model was a 2D Finite-Element model
which was developed using the package FEMLAB

TM
. Since

this package is a very flexible tool in which different phys-
ical systems can be coupled, the model included the field
equations for the magnetic field as well as the conduction-
convection equation for the temperature and the Navier-
Stokes equations for the fluid velocities. Unlike all previ-
ous studies, we could therefore calculate the actual magnetic
field from the permanent magnet, and the resulting magneti-
sation of the magnetic fluid, rather than imposing an arbitrary
or analytical field. The Kelvin force was then found by cal-
culating the pyromagnetic coefficient from an analytical dif-
ferentiation of the Langevin equation, Eq. (2), and the local
values of the magnetic field and the fluid temperature, and by
calculating the local gradient of the magnetic field,∇|H |.

Three types of convection were investigated; first, free
convection under specified central gravity fields, and then
two configurations of thermomagnetic convection with and
without natural convection under vertical gravity of a terres-
trial laboratory environment.

All cases consisted of a fluid domain in a spherical shell
with an inner radius ofRi=35 mm and an outer radius of
Ro=100 mm, where no-slip boundary conditions were ap-
plied to both boundaries and a zero pressure reference to the
left-most point on the outer boundary. Surrounding the outer
perspex shell of the modelled apparatus was a further shell
of radius 200 mm which was included in the magnetic field
calculations only.

The magnetic field equations were solved using the mag-
netic vector potential,A=(0, 0, Az), from which the horizon-

tal magnetic field is found byB=∇×A or Bx=∂Az/∂y and
By=−∂Az/∂x:

1

µ0µr

∇ × ∇ × Az = 0 (4)

with B=µ0µrH everywhere except in the magnet and the
magnetic fluid, whereµr is the relative permeability of the
material, metal for the inner core (µr=1.3), perspex for the
outer shell (µr=0.9998), and air for the surrounding space
(µr=1). The magnet and the magnetic fluid used

∇ ×

(
1

µ0
∇ × Az − M

)
= 0 (5)

with B=µ0(H+M), where the magnetisation of the magnet
was given asM=(0, M0) (or rotated by an appropriate angle
for configuration C), and the magnetisation of the fluid was
calculated using Eq. (2). Assuming the external boundary of
the whole domain was sufficiently far away from the magnet,
Dirichlet boundary conditions ofAz=0 could be applied.

The continuity and momentum equations were

∇·u = 0 (6)

and

ρ
∂u
∂t

+ ρ (u·∇) u = ∇

(
pI + η

[
∇u + (∇u)T

])
+ F (7)

with η the dynamic viscosity. The force termF could repre-
sent either the Kelvin force,

FK = µ0

(
∂M

∂T

)
H

∇|H |(T − T0), (8)

with or without the buoyancy,

Fb = ρgα0 (T − T0) ey, (9)

added to it, or the central force field,

Fc = ρgα0 (T − T0)
[(

x2
+ y2

)
/R2

o

]n/2
er , (10)

wheren is the scaling of the central force field, The fac-
tor Ro ensured that the local gravity at the outer boundary
was equal to the terrestrial gravity,g=g0≡9.81 ms−2. The
boundary conditions were no-slip conditions on both bound-
aries, together with a zero pressure reference at one point on
the outer boundary.

The heat equation, solving for the temperature,T ,

∂T

∂t
+ (u·∇)T = κ∇

2T (11)

was applied to the fluid part of the domain only, with Dirich-
let boundary conditions,Ti=T0+1T/2 andTo=T0−1T/2
at the inner and outer boundary, respectively.

Configuration A, which addressed free convection only,
solved the Navier-Stokes equations and the heat conduc-
tion and convection equation in the fluid domain. The
driving force was a central buoyancy force, Eq. (10) with
n=−5, −4, . . . 5. The case ofn=−2 corresponds to gravity
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Fig. 2. The magnitude and direction of the magnetic field and its gradient for either configuration B ((a) and(c)) or configuration C ((b)
and (d)). (a), (b) Field lines of the magnetic fieldH together with the direction of the magnetisation of the subdomains representing the
permanent magnets, shown by the cones placed at the centre of each magnet. (c), (d) Contour lines of the magnitude of∇|H |, with blue
indicating a weak gradient and red a strong gradient, and arrows of the gradient field.

outside a body whereasn = 1 corresponds to gravity within
the body.

To form the second system,configuration B, a single per-
manent magnet of square cross-section, with an edge length
of 35 mm and a magnetisation of 160 kAm−1 in the ver-
tical, was placed in the centre of the core. The full do-
main for configuration B had a radius of 200 mm to solve
the magnetic field equations with magnetic insulation at the
outer boundary. The conduction-convection equation and the
Navier-Stokes equations were solved only in the sub-domain
of the magnetic fluid, and the force to drive thermomagnetic
convection was the Kelvin force, Eq. (8), which was applied
in isolation as well as added to the buoyancy in a terrestrial
laboratory, Eq. (9).

Since the thermomagnetic convection in a laboratory is the
focus of this paper, the full thermomagnetic and natural con-
vection in configuration B was taken as the benchmark for
all other results. To start from identical, non-trivial initial
conditions, the following procedure was followed. Initially,
the magnetic field for configuration B was solved by a lin-
ear solver independent of the momentum and heat equations.
The field in the fluid domain was solved forM at the refer-
ence temperatureT0. This was possible since the changes of
the fluid’s magnetisation with temperatures would only have
a negligible effect on the overall magnetic field. The result
for the magnetic field due to the uniform magnetisation of
the magnet at the core is shown in Fig.2a.
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Fig. 3. Radial variation of the local Rayleigh number, az-
imuthally averaged for a range of magnetisation strengths of the
magnets surrounding the shell. The lowest line shows magnets
with M0=160 kAm−1 (same as for configuration B), the top line
with M0=1600 kAm−1. The spacing between the curves are
160kAm−1.

Once the magnetic field and the fluid’s magnetisation were
calculated. A relatively coarse resolution time marching in-
tegration of the momentum and heat equations incorporating
both, Eq. (8) and standard buoyancy, was performed. The
spatial structure of the field gradient used in Eq. (8), shown
in Fig.2b appears sufficiently symmetric to result in a central
force field, decaying with distance from the core. A regres-
sion of the magnetic field gradient to a power-law depen-
dence onr resulted in|∇H |=(200±20)r−3.0±0.05 where the
’uncertainty’ in the proportionality constant largely reflects
deviations from rotational symmetry. After a time of 500 s,
the solution appeared to have settled. To test whether the ini-
tial resolution of 972 elements was adequate, the resolution
in the fluid domain was increased such that the full domain of
configuration A and B contained 2050 elements. While this
resulted in a somewhat higher rate of heat transfer, the flow
field itself was not substantially changed. The adjustment to
the higher resolution was achieved within the first few sec-
onds of the integrations, and it was deemed adequate to use
the final time step of the lower resolution spin-up run as the
initial condition for all further integrations presented here.

To define the final system,configuration C, a set of eight
magnets of the same size as that used in configuration B
were placed in the outermost shell of the domain, equally
distributed in azimuth and with a distance from the centre
of 150 mm. They were orientated such that pole faces of
alternating polarity pointed to the centre of the domain, as
indicated by the cones in Fig.2b. Configuration C had 3582
elements due to the higher number of subdomains represent-
ing the eight magnets while keeping the resolution in the fluid
domain similar to that of configuration B. To achieve a mag-
netic field strong enough to overcome gravity within the fluid

domain, the magnetisation of the magnets was increased by
a factor of 3 as justified in Sect.2.3. Since the Kelvin force
now is directed radially outwards rather than inwards, the
temperature contrast was inverted; the surface at the inner
core was held at a cooler temperature while the outer surface
was heated. To give a comparable visual impression of the
temperature field, the results for these configurations show
−T so that the temperatures near the core are displayed in
warm colours and the temperatures near the outer surface in
cool colours, respectively.

2.3 The Rayleigh numbers

Since the local strength of gravity or the Kelvin force varies,
the local Rayleigh number also varies. Using the standard
definition of the Rayleigh number, Eq. (1), but varyingg with
radius for the different force fields, one can compute effec-
tively a local Rayleigh number and compare this to the local
magnetic Rayleigh number.

Based on the analysis of the pyromagnetic coefficient and
the scaling factor for the magnetic Rayleigh number, both
shown in Fig.1, a range of specifications for the magnets in
configuration C was analyzed. Figure3 shows the radial vari-
ation of the magnetic Rayleigh number for magnets with a
magnetisation ranging from 160 kAm−1 (as used in configu-
ration B) to 1600 kAm−1. The progression of the lines shows
that the magnetic Rayleigh number, or the Kelvin force, first
increases rapidly with the strength of the magnetic field but
that this increase becomes less and less for higher fields until
saturation sets in. Due to the spatial variation of the gradi-
ent field, the Rayleigh number for a fluid magnetised to its
saturation level reaches a peak within the fluid interior. To
maintain a sufficiently strong but largely radially increasing
force field, magnets with a magnetisation of 480kAm−1 were
chosen for the main analysis of configuration C.

The radial variation of the Rayleigh numbers for all con-
figurations is shown in Fig.4, where the thick lines represent
the magnetic Rayleigh numbers and the thin lines some of
the simple central “gravity” fields. The horizontal line for
g=Cer , at Ra=2.4×107, shows also the Rayleigh number
for natural convection in the shell under “normal” gravity.
The two solid lines show the realistic cases of gravity in-
creasing linearly within a mass and decreasing quadratically
outside the mass while the dotted and dashed lines are sim-
ple central force fields with similar scaling as the observed
magnetic configurations. The magnetic Rayleigh number for
configuration B exceeds standard gravity by a factor of 20
near the core but falls below it beyond a radius of about
70 mm, and has reduced to about 20% of standard gravity
at the outer boundary. While the field magnetic field gradi-
ent decayed∝r−3, the magnetic Rayleigh number followed a
decay∝r−5 very closely. This in fact is virtually identical to
that of the electrophoretic convection in spherical capacitors
but easily exceeds its strength. Configuration C, by virtue of
using the stronger magnets, exceeds gravity beyond a radius
of about 50 mm and rapidly increases to a strength of 10g0
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Fig. 4. Radial variation of the local Rayleigh number, azimuthally
averaged. The magnetic Rayleigh numbers are shown as the thick
lines for configuration B (dash-dotted, blue) and configuration C
(dotted, red). The reference cases of central force fields∝rn are
n=4 (dotted),n=1 (solid),n=0 (dashed),−2 (solid), and−5 (dash-
dotted).

at the outer boundary. The radial variation of this force field
is consistent with a scaling∝r4.3.

For the purpose of defining a global characteristic
Rayleigh number for each case, the local Rayleigh number at
mid-radius,r=Ri+(Ro−Ri)/2=67.5 mm was chosen. This
choice is somewhat arbitrary but was found to give a useful
measure of the overall behaviour for an approximate quanti-
tative cross-comparison of the different configurations.

3 Convection in a spherical shell

Since the aim of the paper was to explore configurations of
thermomagnetic convection to mimic central force fields in
a laboratory experiment, the majority of simulations were
carried out at a fixed temperature difference. For selected
configurations only, a parametric study of the effect of the
temperature difference was carried out. As a result, this sec-
tion describes only the results for the fixed temperature dif-
ference, while the effect of varying1T is only mentioned in
Sect.4.

The simulations are divided into three parts, first the free
convection under a range of basic radial force fields will be
presented, before thermomagnetic convection with the mag-
net at the core is discussed in Sect.3.2. The final sub-section
will then cover thermomagnetic convection where the mag-
nets surround the shell. The cases presented, and their re-
spective Rayleigh numbers, are listed in Table2.

3.1 Configuration A

As benchmarks for the simulation of thermomagnetic con-
vection, a range of central force fields of the formg=Crn

Table 2. Configurations tested at a temperature difference of1T =

10K.

Configuration Rayleigh No Comments

A, n=−5 1.721×108 closest to configuration B
A, n=−4 1.162×108

A, n=−3 7.84×107

A, n=−2 5.29×107 outside massive body
A, n=−1 3.57×107

A, n=0 2.41×107 constantg
A, n=1 1.628×107 Earth’s/ planetary/ stellar interior
A, n=2 1.099×107

A, n=3 7.42×106

A, n=4 5.01×106

A, n=4.3 4.45×106 closest to configuration C
A, n=5 3.38×106

B 7.18×107 magnet in core
C 7.56×107 magnets surrounding,1T =−10K

was investigated wheren ranged fromn=5 to n=−5, close
to the force field generated by our first configuration with the
magnet in the core. The constant of proportionality,C, was
chosen such that all cases had a magnitude ofg=9.81 m s−2

at r=Ro, the outer boundary of the shell. The temperature
and vorticity fields at the final iteration step for the three
cases ofn=−5, 1, 5 are shown in Fig.5a–c, respectively,
where the casen=1 represents the gravity field in the Earth’s
interior. All cases showed the same qualitative behaviour of
two warm currents flowing outward from the core and two
cool currents flowing inward from the outer boundary re-
sulting in four convection cells with alternating circulation.
However, a clear quantitative progression is observed from
very slow and broad currents at the radially increasing “grav-
ity” to very narrow jets and very strong convection at the
rapidly decaying “gravity”. As the force field is rotationally
symmetric, there was no preferred position for the hot jets.
During the equilibration period, the initial flow with no clear
symmetry settled into the symmetric pattern of opposite jets,
after which there was no noticeable rotational drift of that
pattern.

The temporal behaviour of the overall heat transfer, shown
by the Nusselt number in Fig.6, suggested an equilibration
towards a steady solution but attempts to calculate steady
state solutions failed to converge except for some spurious
cases at the lower resolution. As soon as the resolution was
increased, that steady solution disappeared again. Fluctua-
tions of the solution not clearly represented by the Nusselt
number appeared to be small but persistent fluctuations of
the position of the hot jets near the inner surface. As gravity
became stronger and stronger near the hot core, the intensity
of the convection increased, the jets became narrower, and
the Nusselt number increased.
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Fig. 5. Snapshot of the solution after 100 s of natural convection
under different radial gravity fields,(a) g∝r−5, (b) g∝r, and(c)
g∝r5, respectively. The shaded surface shows the temperature and
the contour lines the vorticity with a contour spacing of 0.1 s−1 for
(a) and of 0.025 s−1 for (b) and (c).
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Fig. 6. The Nusselt number as a function of time for all radial force
fields, f ∝rn with n ranging fromn=−5 to n=5 in integer steps.
The two extreme cases andn=0 are labelled, and the intermediate
values ofn form a monotonous sequence with a smaller exponent
leading to a higher Nusselt number.

3.2 Configuration B

This section presents the full simulation of a laboratory-
based experiment which combines thermomagnetic convec-
tion caused by the magnet at the core with natural convection
due to standard gravity of the terrestrial laboratory environ-
ment. As presented in Sect.2.3, the magnetic force decayed
∝r−5 with a strength of about 20% of the central “gravity”
with n=−5 presented in Sect.3.1.

The simulation of thermomagnetic convection in a terres-
trial laboratory, of which three time steps att=80, 90, 100 s
are shown in Fig.7, shows a much more complicated flow
structure than the convection in central force fields. The flow
tended to be organised into three hot jets originating from the
inner core, of which one jet tended to be fairly narrow and
similar to those found above and two weaker and broader
jets which also showed more temporal variation. A much
longer integration of configuration B with gravity, for a total
of 1000 s showed that the flow settled into a regular oscil-
lation as shown by the time series of the Nusselt number in
Fig. 8. While not limited to that area, the area underneath the
core, where buoyancy and Kelvin force oppose each other,
tended to show the greatest variability, with jets erupting and
then being deflected. A typical velocity in a hot jet was about
U=0.02 ms−1, with a maximum of about 0.03 ms−1.

Investigating the sensitivity of the solutions to the pres-
ence of the vertical buoyancy, an experiment was carried out
in which only the Kelvin force was present. This, in effect,
was a simulation of such an experiment in a microgravity en-
vironment. Without gravity, the solution, in Fig.9, became
very similar to those of the ideal central force fields, both in
global appearance and temporal behaviour. The strength of
the convection, as measured by the vorticity was most similar
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Fig. 7. Snapshots of the solution at 80, 90, and 100 s of thermo-
magnetic convection with vertical gravity of configuration B. The
shaded surface shows the temperature, and the contour lines the vor-
ticity with a contour spacing of 0.5 s−1.

to that with the similar central force field of the formr−5,
Fig. 5a. The only qualitative difference was that the con-
vection under the Kelvin force showed a clear alignment of
the hot jets with the axis of the magnetic dipole. Two sepa-
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Fig. 8. Time series of the Nusselt number of thermomagnetic con-
vection with gravity of configuration B.
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Fig. 9. Snapshot of the solution after 100 s of thermomagnetic con-
vection only of configuration B. The shaded surface shows the tem-
perature, and the contour lines the vorticity with a contour spacing
of 0.5 s−1.

rate integrations, one from the common initial condition, and
one continuing from the higher-resolution case att=100 s
(Fig. 7c) showed the same behaviour of the jet in the up-
per right quadrant rapidly moving counter-clock wise, over-
shooting the vertical line, and then returning to a vertical po-
sition.

A final control experiment of vertical gravity only, con-
firmed the expected convection pattern of a single hot plume
rising from the top of the core and setting up a large-scale re-
turn circulation in two left-right symmetric overturning cells.

The fact that the two separate cases appeared to converge
to (almost) steady solutions but that the full model did not
was not surprising as there will be a spatially varying com-
petition between buoyancy and the Kelvin force, both in
strength and direction. The Kelvin force is much stronger
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Fig. 10.Snapshot of the solution after 100 s of thermomagnetic and
natural convection of configuration C. The shaded surface shows
the temperature and the contour lines the vorticity with a contour
spacing of 0.5 s−1.

than buoyancy near the core but much weaker near the outer
boundary, and the direction of the Kelvin force is largely to-
wards the core while the buoyancy is vertical. Both factors
together lead to a complex pattern of the effective body force
on the fluid which provides an intuitive explanation, for ex-
ample, why the plume downwards from the bottom of the
core tended to be the weakest and shortest plume and why
it tended to be diverted into an upward direction once it ex-
tended somewhat into the fluid interior. While it provides
an explanation as to why an upward jet should be the most
intense, the superposition of the Kelvin force and buoyancy
does not give an immediately obvious explanation for the ob-
servation that this jet is not from the top of the core but at an
angle, whereas the two forces separately showed a clear pref-
erence for a vertical plume rising from the top of the core.
The reason for this is as yet not understood.

3.3 Configuration C

This section presents the alternative laboratory-based exper-
iment of thermomagnetic convection caused by magnets sur-
rounding the shell. Using the somewhat stronger magnets,
the magnetic forces in this configuration resulted in a ra-
dially increasing force equivalent to a central force field of
ge=20g0(r/Ro)

4.3 with an effective “gravitational” acceler-
ation of 20g0 at the outer boundary, as shown in Sect.2.3.

The convection caused by this radially increasing mag-
netic field is shown in Fig.10. As mentioned in the method-
ology, the temperature contrast is inverted, since the Kelvin
force has an outward direction, resulting effectively in an in-
ward buoyancy. This flow is closer to the ideal cases of the
central force fields described in Sect.3.1in that it settled in a
solution with two jets emerging from the inner core and two
return jets from the outer boundary, resulting in four con-
vection cells but there are some differences. The jets from

the thermomagnetic convection are much stronger, and the
convection cells are less symmetric. The solution shows a
pair of large cells and a pair of smaller cells. As with the
other configuration, the solution showed substantial persist-
ing temporal fluctuations.

As with the thermomagnetic convection of configuration
B, the superposition of buoyancy–which would result in a
single upward plume of warm fluid from the bottom–and the
Kelvin force, does not show the expected up-down prefer-
ence seen in the convection caused by the forces separately.
The simulation of this thermomagnetic convection without
gravity resulted in a flow pattern very similar to that of the
full case.

A test case using weaker magnets withM0=160 kAm−1,
resulted in a flow very similar to that of natural convec-
tion only. The other extreme case of strong magnets with
M0=1600 kAm−1 magnetisation showed very similar be-
haviour to that shown in Fig.10 for the intermediate mag-
nets. The heat transfer with the strong magnets was even
a little below that found for the intermediate case.Früh
(2005) demonstrated that a competition between buoyancy
and Kelvin force resulted in a competition where both forces
seemed to contribute only over a fairly small range of rela-
tive magnitude; once one of the two forces was about twice
the other, the flow was largely dominated by that force only.
Since the Kelvin force with the weaker magnets was notice-
ably larger than buoyancy near the outer surface but much
smaller near the core, it appears that the relative strength of
the two forces near the core determines whether natural con-
vection or thermomagnetic convection is seen. A full para-
metric investigation, however, is required to confirm this in-
dication.

4 Discussion of results

Both magnetic configurations resulted in substantial thermo-
magnetic convection. Both, the flow field pattern and its tem-
poral evolution, in configuration C were very similar to those
observed in the simple central force fields. Configuration B,
on the other hand, showed more differences in the structure
of the flow and persistent, stronger variability. Fig.11shows
the temporal evolution of the Nusselt number for thermo-
magnetic convection with gravity for configuration B (thick
solid line) and configuration C (thick dotted line), thermo-
magnetic convection without gravity (thin solid and dotted
lines, respectively), and the two central force fields follow-
ing the magnetic forces most closely,g=0.2g0(r/R0)

−5 for
configuration B (dashed line), andg=20g0(r/R0)

4.3 for con-
figuration C (dash-dotted line), respectively.

The difference between the presence and absence of grav-
ity in configuration C was very small (the two dotted lines in
Fig. 11), and it appears that terrestrial gravity at the chosen
strength of magnets had no significant effect on the convec-
tion, even though gravity was stronger by a factor of about
2, cf. Fig. 4, at the core. The corresponding central “grav-
ity” resulted in a much smaller heat transfer (the dash-dotted
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Fig. 11. The Nusselt number as a function of time for the two mag-
netic configurations. Red lines correspond to the radially decreasing
fields (B and A withn=−5) while blue lines show the radially in-
creasing fields (C and A withn=4.3) . The solid lines show the Nus-
selt number for configuration B with the magnet at the core, where
the thin line is the thermomagnetic convection by the Kelvin force
alone while the thick line is the convection caused by the Kelvin
force and laboratory gravity combined. The dotted lines are the cor-
responding cases for configuration C, with the magnets surround-
ing the shell. Two reference cases of a central field decaying∝r−5

(dashed line) and a force field increasing∝r4.3 (dash-dotted line)
are shown for comparison.

line). Even though the strength of the central field was in-
creased by a factor of 20 compared to the cases of configu-
ration A presented in Sect.3.1, the Nusselt number was very
close to those found for the cases withn=4 and 5. While
the central force fields had the symmetry that the imposed
temperature gradient was aligned with the gravity, the spatial
structure of the magnetic field, especially its azimuthal vari-
ation, resulted in components of the Kelvin force off the ra-
dial direction.Früh (2005) suggested that a spatial variation
of the Kelvin force, which may have a component perpen-
dicular to the imposed temperature gradient, could result in
enhanced convection, rather like the superposition of a fluid
heated from below and from the side.

Configuration B was more susceptible to the presence or
absence of gravity. This may be due to the magnetic forces
being smaller than gravity over a sizeable part of the do-
main. Gravity exceeded the magnetic forces by a factor of
5 at the outer boundary. In the absence of gravity, both,
the flow pattern and its time dependence, were qualitatively
the same as that of the central force fields. While the zero-
gravity case appeared to settle into an almost steady state, the
terrestrial laboratory case showed persistent fluctuations, as
demonstrated by the two solid lines in Fig.11. The presence
of gravity somewhat reduced the heat transfer, presumably
because the hot jets could not extend to the outer boundary
without being deflected. The quantitative agreement between
configuration B and the central force field (the dashed line)
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Fig. 12. The Nusselt number for selected configurations A with
n=−5, 0, 1, and 5, and for configurations B and C (both with ter-
restrial gravity), and against the reference Rayleigh number.

was much closer but the cases with the more similar force
fields showed the same qualitative difference as for config-
uration C; configuration B without gravity showed a higher
rate of heat transfer than the central force field. As with con-
figuration C, the heat transfer enhancement may have been
caused by azimuthal variations of the magnetic field and a
resulting spatial variation of both, the strength and direction,
of the driving force. Since the deviation from azimuthal sym-
metry of the magnetic field for configuration B was much
smaller than that for configuration C, as demonstrated in Fig-
ure2c and d, it is not surprising that the difference in the Nus-
selt number between configuration B without gravity and the
central force field was much less than for the other config-
uration. The larger difference between configuration B with
and without gravity can be explained by the facts that the
magnetic force was, on average, not as large as that for the
other configuration and that its azimuthal variation is much
smaller. As a result, adding gravity will have a much stronger
effect on the strength and direction of the overall body force.

The behaviour of the convection on changing the temper-
ature contrast between the boundaries was tested for a few
selected configurations, namely the full thermomagnetic con-
vection cases with added terrestrial gravity, B and C, and the
central force fields, configuration A, withn=−5, 0, 1, and
5. Temperature differences ranging from1T =0.1 K to 50 K
were tested, where the final solution at1T =10 K was the
initial condition for the next higher and next lower tempera-
ture difference. For each successively increased or decreased
temperature difference, the integration was then continued
from the last integration. The Nusselt number at the end
of each integration is shown against the reference Rayleigh
number in Fig.12. The onset of convection above a critical
Rayleigh number can be seen clearly after which the Nusselt
number rapidly increases toNu=O(10). On further increase
of the temperature difference, the Nusselt number varies only
slightly. Since the reference Rayleigh number was deter-
mined in a somewhat ad-hoc fashion as that at mid-radius,
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Fig. 13. The Nusselt number at the end of the integrations for all
types of convection discussed here. The x-axis is the reference
Rayleigh number of each case. The open circles joined by the dot-
ted line are the results from configuration A of central force fields.
The black triangle: Natural convection under vertical gravity. Blue
symbols for radially decreasing field, B: six-pointed star for ther-
momagnetic convection with gravity and “∗” without gravity. Red
symbols for the radially increasing field: the square is for thermo-
magnetic convection with gravity, the diamond without.

the fact that the convection sets in at different critical val-
ues should not be over-interpreted. However, one has to bear
in mind that there is no immediate reason why the critical
Rayleigh number should be the same as the force fields of
the different configurations are not dynamically similar. The
main conclusion to be drawn from this figure should be that
all configurations show qualitatively similar behaviour.

An attempt at a quantitative comparison between all cases
is presented in Fig.13 which shows the Nusselt number at
the end of each integration against the reference Rayleigh
number. Since the flow in some cases appears far from equi-
librium, and the choice of the Rayleigh number is somewhat
arbitrary, the figure has to be taken as an indication rather
than proof. The open circles, joined by the dotted line, are
the results for the benchmark configuration A, where the
low Rayleigh numbers correspond to the radially increasing
fields. The triangle is the case of natural convection under
terrestrial gravity only.

The blue stars in Fig.13 are for the configuration B, and
the square and diamond for configuration C. All cases includ-
ing thermomagnetic convection exceed the benchmark sig-
nificantly. Any variation of the field in latitude is hidden but
is likely to lead to some spots of higher local Rayleigh num-
ber which may lead to preferential formation of plumes and
increase the effective heat transfer. Another phenomenon,
also pointed out byFrüh (2005) is the enhancement of con-
vection due to the fact that the Kelvin force tends to have a
component perpendicular to the imposed temperature gradi-
ent. The perpendicular component will result in convection
analogous to that of a cavity heated from the side. Unlike
Rayleigh-B́enard convection, which only sets in above a crit-

ical Rayleigh number, a large-scale circulation occurs up for
any non-zero value of the Rayleigh number and tends to re-
sult in a higher Nusselt number than Rayleigh-Bénard con-
vection.

5 Discussion of approach

The results have demonstrated that thermomagnetic convec-
tion can be used to simulate a largely radially aligned force
field. Due to the spatial structure of the magnetic field, this
force field shows some deviation from rotational symmetry
where the magnitude of the deviation depends on the ar-
rangement of the magnets. The similar system of convec-
tion in a spherical capacitor does not show this imperfection
but it is limited both, to a single type of radial variation of
the force field, and in magnitude as it is difficult overcome
terrestrial gravity over a sufficient part of the fluid domain.
This restricts such experiments for the investigation of cen-
tral force fields to microgravity environments, as was used
by Hart et al.(1986) and is being taken further by Beltrame
et al. (2005)1. The approach of using magnets and a mag-
netic liquid offers more flexibility in the shape of the force
field, and it is much easier to generate sufficiently strong
magnetic forces. Configuration B was a marginal case, where
a clear competition between gravity and magnetic forces re-
sulted in a more complex pattern than was observed for the
forces separately. In configuration C, however, the magnetic
forces dominated over most (not all!) of the domain, and this
configuration did not seem to be susceptible to the presence
or absence of terrestrial gravity. The thermomagnetic con-
vection showed somewhat enhanced convection compared to
pure central force fields, which was attributed to the devia-
tion from rotational symmetry of the magnetic force field, but
the qualitative behaviour was the same as for truly symmetric
force fields.

While our system is that of a non-rotating shell, and thus
limited in its direct relevance to large-scale geophysical in-
terpretation, it is a first justification for developing this ap-
proach further. To substantiate this claim, it is worth com-
paring the results with other studies of non-rotating con-
vection cells which also point to their geophysical and as-
trophysical relevance.Li et al. (2005) mention that non-
linear thermal convection in a spherical shell does organ-
ise itself into convection rolls which may or may not have
a longitudinal modal structure. Since they aimed to un-
cover systematically the effect of co-existence of multi-
ple solutions, they concentrated on thin shells but mention
that such multiplicity reduces as the shell becomes thicker.
With a radius ratio ofRi/Ro=0.35, the system investigated
here is a thick shell, and the solutions found are consis-
tent with hemispherical convection rolls. The experiment by
Rosensweig et al.(1999) is almost a direct experimental ver-
sion of configuration B, though in a much thinner shell with
Ri/Ro=25 mm/17.5 mm=0.7, between the two cases stud-
ied by Li et al. (2005). The experimental results presented
a side view of natural convection in water and compared it
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Table 3. Physical and nondimensional parameters of experimental sequence used for analysis.

Nondimensional number Experiment Earth’s mantle Earths’ core

Rayleigh number Ra, Eq. (1), or RaM , Eq. (3) 107
− 109 O(108) > 1012

Ekman number E = ν/(�D2) O(10−4) O(1011) < 10−12

Prandtl No. Pr = ν/κ 14.2 O(1023) O(10−2)

Rossby number Ro = U/(2�D) O(10−1) < 10−4 O(10−1)

Reynolds number Re = UD/ν O(103) < 10−15 O(107)

to the top view of thermomagnetic convection for three tem-
perature gradients. As a result, no information on the verti-
cal structure of the thermomagnetic convection could be ex-
tracted.

A direct comparison with this experiment and the spherical
capacitor can be found in Beltrame et al. (2005)1 who studied
an experiment, to be flown on the International Space Station,
in a terrestrial laboratory without background rotation. Since
their dielectric Rayleigh number is rather moderate, their cal-
culations result in a single hot plume rising from the top of
the core. As the dielectric Rayleigh number is increased, the
structure remains largely unaffected but an oscillation was
observed. Their oscillation is consistent with the fluctuations
found in configuration B with gravity, although the magnetic
Rayleigh number in our case was strong enough to dominate
the overall flow structure. They argue that the onset of the
oscillation is a result of symmetry breaking caused by the
superposition of the vertical gravity and the central electric
force. This argument would also apply to our case.

6 Conclusions

This paper has presented a Finite-Element analysis of a sec-
tion through a spherical shell, where convection is driven ei-
ther by a specified central “gravity” or by thermomagnetic
convection. The results showed that thermomagnetic con-
vection alone was capable of simulating a central force field,
which could either follow a radial decay or a radial increase.
We also presented evidence that such thermomagnetic con-
vection could dominate the result if the system were placed
into the gravity field of a terrestrial laboratory if sufficiently
strong magnets were chosen. If the magnetic forces exceeded
gravity over most of the fluid domain, the effect of gravity
would be a minor modification but if the force balance was
not so clear, the result would be much more complicated.

If this experiment were placed on a rotating platform,
operating at a moderate rotation rate of�∼1 rad/s, then the
parameters listed in Table3 would be achieved. These are
clearly no direct match to either the Earth’s mantle or core
but the ranges of Rayleigh numbers would certainly allow a
useful investigation. Designing a somewhat larger and faster
system, it could be possible to reduce the available Ekman
number by two orders of magnitude, providing a system
which could provide useful insight.
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