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Abstract. A numerical model for long-term simulation of
gravity surface waves is described. The model is designed as
a component of a coupled Wave Boundary Layer/Sea Waves
model, for investigation of small-scale dynamic and ther-
modynamic interactions between the ocean and atmosphere.
Statistical properties of nonlinear wave fields are investigated
on a basis of direct hydrodynamical modeling of 1-D poten-
tial periodic surface waves. The method is based on a non-
stationary conformal surface-following coordinate transfor-
mation; this approach reduces the principal equations of po-
tential waves to two simple evolutionary equations for the el-
evation and the velocity potential on the surface. The numer-
ical scheme is based on a Fourier transform method. High
accuracy was confirmed by validation of the nonstationary
model against known solutions, and by comparison between
the results obtained with different resolutions in the horizon-
tal. The scheme allows reproduction of the propagation of
steep Stokes waves for thousands of periods with very high
accuracy. The method here developed is applied to simu-
lation of the evolution of wave fields with large number of
modes for many periods of dominant waves. The statistical
characteristics of nonlinear wave fields for waves of different
steepness were investigated: spectra, curtosis and skewness,
dispersion relation, life time. The prime result is that wave
field may be presented as a superposition of linear waves is
valid only for small amplitudes. It is shown as well, that non-
linear wave fields are rather a superposition of Stokes waves
not linear waves.

Potential flow, free surface, conformal mapping, numeri-
cal modeling of waves, gravity waves, Stokes waves, break-
ing waves, freak waves, wind-wave interaction.

1 Introduction

One of the most important problems of geophysical fluid dy-
namics is the interaction of wind waves and the atmospheric
boundary layer. Until recently, the investigations of the ma-
rine boundary layer were based on the standard theory of
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a boundary layer above an infinite, flat, rigid surface (see
review by Geernart, 1990). In fact, the presence of waves
was considered a minor inconvenience forcing one to mod-
ify the roughness parameter affecting the wind profile. How-
ever, Wave Boundary Layer (WBL) has very specific proper-
ties, created by the presence of multi-mode moving surface.
Waves modify the basic dynamic and thermodynamic inter-
actions of air and water and, as well, the exchange by gases.
Investigation of the interaction of wind and waves is impor-
tant for parameterizing of micro-scale ocean-atmosphere in-
teraction for weather and wind waves forecasting, and for
climate modeling. This problem has been intensively inves-
tigated experimentally, theoretically, and numerically (see
Chalikov, 1986; Donelan, 1990; Belcher and Hunt, 1998).
All numerical investigations, based on Reynolds equations
(begun by Gent and Taylor, 1976; Chalikov, 1978) were per-
formed for 2-D turbulent flow above monochromatic waves,
so they refer to an essentially steady motion. Application of
monochromatic experimental and theoretical results for real
nonlinear and multimode wave fields was based on a linear
assumption. That is, all variables may be obtained by simple
superposition of linear modes with different amplitudes. An
evident extension of this monochromatic approach might be
based on a multi-mode presentation of dispersive wave fields
with preassigned spectrumS (see review Chalikov, 1986).
Generally, however, this presentation is also incorrect: with
increasing the resolution of spectrum1k, the geometrical
properties of surfaceη approximated by relation

η =

∑
(2Sk1k)1/2 sin(kx − ωt) (i)

depend essentially on1k, and do not converge with1k→0.
The waves, assigned by (i) do not describe the typical shape
of dominant waves, which usually have sharp crests and
gentle troughs. It was establish long time ago in technical
fluid mechanics that even small modifications of obstacles
change the form drag significantly. Evidently, sharp-crested
waves create form drag much larger that do smooth waves.
Additionally, surface unsteadiness supports the strong non-
steadiness of both flow and pressure fields. This is presented
correctly in perturbation theory only for very small ampli-
tudes. A new approach was needed for generation of wave



672 D. Chalikov: Statistical properties of nonlinear one-dimensional wave fields

surfaces based on the principal equations for potential mo-
tion with an interface. Surely, actual sea waves are rotational.
And they are affected by turbulence, because they are gener-
ated, migrate, and break in a shifted drift flow. However,
potential approximation describes the wave dynamics better
than (i), because it is not sensitive to resolution in Fourier
space. Even in potential approximation, the wave surface
appears as a real physical object, whereas spectral presen-
tation obscures its nonlinear nature. Actually, as resolution
1k increases, the differentk-th modes assigned in the initial
conditions do not move as separate wave modes with spe-
cific dispersion relation: waves separated in a Fourier space
join together, forming a superposition of nonlinear waves.
The spectrum therefore describes a finite number of nonlin-
ear waves rather than a continuous spectrum of linear waves.
The experimental and simulated spectra appear continuous,
because of the essential linearity of Fourier analysis and be-
cause of the amplitudes of these discrete nonlinear waves
change in time. Contrary to (i), the solution of the wave equa-
tions converges with increasing spectral resolution (Chalikov
and Sheinin, 1995), what proves the applicability of a such
approach to the simulations of wind-wave interaction.

This study describes the results of numerical simulations
of multi-mode wave fields based on a scheme developed by
Chalikov and Sheinin (1996, 1998, 2005). The air/water
model has been also completed (Chalikov, 1998); and nu-
merical investigation of wind-wave interactive dynamics is
underway. Because wave development of waves occurs at
distances which are much larger than the length of the domi-
nant wave, the periodic boundary conditions have been used.
This assumption simplifies the construction of a numerical
scheme, because it makes possible the application of the
Fourier transform method. In this paper, we consider 1-D
nonlinear waves only. The scheme here developed is exact,
allowing simulating of waves for periods much longer than
the period of the dominant wave.

The primary advantage of the potential approximation is
that the system of Euler equations is reduced to the Laplace
equation. However, the solution to the flow problem of sur-
face wave motion is complicated by the required applica-
tion of kinematics and dynamic boundary conditions (both
nonlinear) onto the free surface, the location of which is un-
known at any given time,t .

Numerical simulation of surface waves has a long history.
The most general approach to simulate a motion with a free
surface is based on a marker and cell (MAC) method (Har-
low and Welch, 1965). This approach assumes the tracing
of a variable surface within a fixed grid with different order
accuracy (for example, Noh and Woodward, 1976; Hirt and
Nichols, 1981; Prosperetti and Jacobs, 1983; Miyata, 1986).
Currently, the applicability of this method is restricted to sim-
ulations over relatively short-term periods. Accuracy of this
method will increase significantly, however, when very high
resolution becomes possible. An advantage of this method
is that it can be used for simulation of 3-D rotational mo-
tion of viscous fluids even for non-single value interface. A
motion with a single-value 1-D and 2-D interface is readily

simulated using the simplest surface-following coordinates
(x, y, z−η(x, y)), where (x, y, z) are Cartesian coordinates
andη is surface elevation (Chalikov, 1978). This system of
coordinates is unsteady and non-orthogonal, so equations of
motion become complicated. Still, this method has been ap-
plied for the simulation of wave interaction with a shear flow
(Dimas and Triantafyllou, 1994). Evidently, this approach
may be combined with the MAC method, applied locally in
the intervals with large steepness. Waves on finite depth have
been investigated by transforming the volume occupied by
fluid into a rectangular domain (Dommermuth et al., 1993).
Much more complicated surface-following transformations
have been constructed, including a case of a multiple-valued
surface (Thompson et al., 1982). The grid method was gener-
alized with adaptive grids (e.g. Fritts et al., 1988), and using
a finite-volume approach (Farmer et al. (1993).

Fortunately, many observed properties of surface waves
are reproduced well based on a a potential approach, which
makes possible a reduction in dimensionality by one. The
numerical methods for inviscid free-surface flow have been
reviewed by Mei (1978), Yeung (1982), Hyman (1984), and
for viscous flows by Floryan and Rassmussen (1989). The
most recent review of numerical methods for incompress-
ible nonlinear free-surface flow was presented by Tsai and
Yue (1996). The scope of this review is limited to those
works published after the last-mentioned review, which is
devoted to free periodic waves and is based on the principal
equation for potential waves.

The simulation of nonlinear unsteady potential flow with
a free surface began with the development of the Eulerian-
Lagrangian boundary integral equations by Longuet-Higgins
and Cokelet (1976) for steep over-turning waves. Wave in-
stability was generated by asymmetric pressure applied on a
surface. This method, in principle, may be generalized for
3-D motion, but it demands considerable computational re-
sources. A boundary method based on the Cauchy integral
formulation for 2-D problem was developed by Vinje and
Brevig (1981), Baker et al. (1982) and by Roberts (1983).
This method was used by Tanaka et al. (1987), to study the
instability and breaking of a solitary wave. Dommermuth et
al. (1998) compared the solution based on the Cauchy inte-
gral method with precise measurements in an experimental
wave tank. Good agreement was obtained. The boundary in-
tegral method was extended by Dold and Peregrine (1986,
hereafter DP); they constructed a precise scheme for per-
forming simulations of wave evolution with good conserva-
tion of invariants. A detailed description of this method was
given by Dold (1992). Stability was confirmed by simula-
tions of steep Stokes wave for several wave periods. This
scheme was used successfully for simulation of nonlinear
group effects (Henderson, et al., 1999); of dynamics of steep
forced waves (Bredmose et al., 2003), and for investigating
the onset of breaking (Banner and Tian, 1996, 1998; Song
and Banner, 2002). An advantage of this model is extreme
efficiency: reliable results can be obtained with low resolu-
tion using modest computer resources. For short-term peri-
ods, is possible to distribute the points non-uniformly; thus
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allowing the model to reproduce sharpening and overturning
waves. To increase stability, the authors applied very selec-
tive smoothing. Dold (1991) noted, however, that the ad-
vantage conferred by non-uniformity of the grid is absent for
long-term integration. Wave sharpening results from nonlin-
ear group effects, which generate a convergence of energy in
physical space (Song and Banner, 2002), though is impossi-
ble to predict the location of these events. Nonetheless, Hen-
derson et al. (1999) demonstrated good results from long-
term simulations of nonlinear evolution of wave field with an
initially uniform grid.

Another group of numerical methods is based on tradi-
tional perturbation expansions (often combined with Fourier
transform method); in principle, these include arbitrary high
orders of interactions (Watson and West, 1975; Dommer-
muth and Yue, 1987; West et al., 1987). However, the num-
ber of needed Fourier modes in this scheme multiplies with
increasing steepness. Indeed, this method becomes inappli-
cable when waves approach overturning. Modification of
the high-order spectral method was suggested by Fenton and
Rienecker (1982).

Craig and Sulem (1993) improved stability by using the
expansion for vertical velocity instead of potential. This
method was later generalized for 2-D potential waves (Bate-
man et al., 2001). A numerical scheme for 1-D potential
waves, based on non-orthogonal surface-following coordi-
nate system and Fourier transform, was developed by Cha-
likov and Liberman (1991). The method is based on iterative
transfer of the potential from a fixed coordinate system onto
free surface; it was used to simulate the bound waves dy-
namics observed by Yuen and Lake (1982). This method
is also applicable to 2-D potential waves; however, it be-
comes ineffective for large numbers of modes with highly
variant amplitudes (also true for many methods based on ex-
pansions). The reason for this limitation restriction: the small
waves overrun the surfaces of large waves. The amplitudes
of wave disturbances with large wave numbers attenuate with
depth quickly, becoming insignificant for the depth of domi-
nant wave height (Zhang et al., 1993). In this case, restoring
the high-order modes on a free surface becomes inaccurate.
Still, the high- order perturbation methods (and all methods
based on the surface-following coordinates) represent a huge
advance over quasi-linear theories based on small-amplitude
assumption.

A numerical scheme for direct hydrodynamical model-
ing of 1-D nonlinear gravity and gravity-capillary periodic
waves was developed by Chalikov and Sheinin (1996, 1998).
This scheme is based on conformal mapping of a finite-
depth water domain. For the stationary problem, this map-
ping represents the classical complex variable method (e.g.
Crapper, 1957, 1984) originally developed by Stokes (1847).
In a stationary problem, this method employs the velocity
potential8 and the stream function9 as the independent
variables. A nonstationary conformal mapping was intro-
duced also by Whitney (1971), then considered by Kano
and Nishida (1979) and by Fornberg (1980). Tanveer (1991,
1993) used this approach for investigating Rayleigh-Taylor

instability and the generation of surface singularities. A
new way of deriving equations, a description of a numerical
scheme (and its validation) as well as the results of long-term
simulations were presented at ONR meeting held in Arizona
in 1994 (Sheinin, Chalikov, 1994). Later, this scheme was
described in detail by Chalikov and Sheinin (1996; 1998) and
in Sheinin and Chalikov (2000). The ChSh numerical ap-
proach is based on nonstationary conformal mapping for fi-
nite depth. This allows rewriting of the principal equations of
potential flow with a free surface in a surface-following coor-
dinate system. The Laplace equation retains its form, and the
boundaries of the flow domain (i.e. the free surface and, in
the case of finite depth, the bottom) are coordinate surfaces
in the new coordinate system. Accordingly, the velocity po-
tential in the entire domain receives a standard representa-
tion based on its Fourier expansion on the free surface. As
a result, the hydrodynamical system (without any simplifi-
cations) is represented by two relatively simple evolutionary
equations that can be solved numerically in a straightforward
way. The advantages of this approach were briefly discussed
by Dyachenko et al. (1996); later, the method was used by
Zakharov et al. (2002) to demonstrate the nonlinear proper-
ties of steep waves. In principle, the ChSh method is similar
to method developed by Meiron et al. (1981). They con-
cluded that this method is applicable only to “moderately
distorted geometry”. For simulations of the Stokes wave
with peak-to-trough amplitude at 80% of the theoretical max-
imum, they found that “time stepping errors can cause modu-
lation of the steady waves for times longer thant=4π ” (time
is normalized with the length scale and gravity acceleration).
Our scheme, in contrast, allows simulation of the propaga-
tion of Stokes wave with amplitude at 98% of the maxi-
mum for hundreds of periods (and much longer) without no-
ticeable distortions (see Fig. 1, below). Because Meiron et
al. (1981) used the same accuracy time-stepping scheme as
the 4th order Runge-Kutta scheme applied here, we conclude
that their errors were generated simply by low resolution: for
an approximation of Stokes wave profile onlyN=64 points
were used. We exploited thousands of points. (Zakharov et
al. (2002) used up to one million Fourier modes). Impre-
cise approximation of the initial shape of a Stokes wave also
might result in instability. The stability of Stokes wave de-
pends largely on the degree of truncation of the Fourier series
used to describe the wave. This effect is better pronounced
for large steepness. For example, for the case a=0.42 (half of
crest-to-trough height), the Stokes wave initially assigned by
five modes (with resolution 2000 modes, 8000 grid points)
collapses to time t=1. Exact Stokes wave (assigned by the
hundreds of modes) runs stably for the same resolution the
thousands of periods.

Note that a model based on high resolution is very fast, so
most problems can be investigated with a personal computer.

This model is a rarity in geophysical fluid dynamics when
the equations describing the real process can be solved with
unusual accuracy (see Fig. 1). This statement is fully cor-
rect if steepness is not high. Increasing local steepness
often results in a developing instability thence overturning
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Fig. 1. Long-term evolution of amplitudes of the first 880 con-
stituents of the Stokes waves: (ak=0.42; each 10th constituents is
shown) during 2 686 500 time steps (932 periods).

of sharp crests. Formally, conformal mapping exists up to
the moment when an overturning volume of water touches
the surface (Dyachenko, 2004, personal communication). In
such an evolution, the number of Fourier modes needed in-
creases very quickly. If the special measures (smoothing) are
not taken, the calculations typically terminate much earlier,
due to strong crest instability (Longuet-Higgins, 1996) mani-
fested by splitting of the falling volume into two phases. This
phenomenon is obviously non-potential. Hence, as in many
branches of geophysical fluid dynamics, special measures
must be taken to prevent numerical instabilities while con-
currently accounting on the physical consequences of these
events.

Our method is applied to the simulation of wave fields
represented in initial conditions by superposition of running
waves with random phases assigned by linear theory. We
show that wave fields lose their initial structure and soon de-
velop new, specific features. These become pronounced the
larger the nonlinearity of the initial state. Of course, this de-
veloping of waves influences significantly the air flow above
wave surface.

2 Equations

Consider the principal 2-D equations for potential waves
written in Cartesian coordinates, i.e. the Laplace equation for
the velocity potential8

8xx + 8zz = 0, (1)

and the two boundary conditions at the free surface
h=h(x, t): the kinematic condition

ht + hx8x − 8z = 0, (2)

and the Lagrange integral

8t +
1
2(82

x + 82
z) + h + pe − σhxx(1 + h2

x)
−

3
2 = 0, (3)

wherepe is the external surface pressure. (Independent vari-
ables in subscripts denote partial differentiation with respect
to these variables.)

The equations are to be solved in the domain

− ∞ < x < ∞ − H ≤ z ≤ h(x, t), (4)

whereH is either a finite depth or infinity. The variables8

andh are considered to be periodic with respect tox:

8(x + 2π, z, t) = 8(x, z, t) h(x + 2π, t) = h(x, t), (5)

and a normal velocity condition at the bottom is assumed to
be zero:

8z(x, z = −H, t) = 0 (6)

Equations (1)−(3) are written in the nondimensional form
with the following scales: lengthL, where 2πL is the (di-
mensional) period in the horizontal, timeL1/2g−1/2 and the
velocity potentialL3/2g−1/2 (g is the acceleration of grav-
ity). Pressure is taken to be normalized by water density (so
its scale is Lg). The last term in Eq. (3) describes the effect
of surface tension, and

σ =
0

gL2

is a nondimensional parameter (0≈8·10−5 m3s−2 is the kine-
matic coefficient of surface tension for water).

System in Eqs. (1)−(6) is solved as an initial-value prob-
lem for the unknown functions8 andh, with initial condi-
tions 8(x, z=h(x, t=0), t=0) andh(x, t = 0). Note that
although Eqs. (2) and (3) are for the free surface, there are no
straightforward ways to reduce the problem to a 1-D because,
to evaluate8z, one has to solve the Laplace equation (1) in
the domain (4) with a curvilinear upper boundary that may
be any function ofx. This difficulty is known to render inte-
gration of the system in Cartesian coordinates either insuffi-
ciently accurate or too expensive computationally (Chalikov
and Liberman, 1991). So, for time periods much greater than
the time scale, it is quite impractical.

To realize a feasible numerical solution, we introduce
a time-dependent surface-following coordinate system that
conformally maps the original domain (4) onto the strip

− ∞ < ξ < ∞ − H̃ ≤ ζ < 0 (7)

with a periodicity condition given as

x(ξ, ζ, τ ) = x(ξ + 2π, ζ, τ ) + 2π,

z(ξ, ζ, τ ) = z(ξ + 2π, ζ, τ ),
(8)

whereτ is the new time coordinateτ=t .
According to complex variable calculus, conformal map-

ping (7)→(4) exists and is unique up to an additive constant
for x. Note that for the stationary problem, this mapping rep-
resents the classic complex variable method (e.g. Crapper,
1984) originally developed by Stokes (1847).

Due to periodicity condition (8), the required conformal
mapping can be represented by the Fourier series:

x = ξ + x0(τ ) +

∑
−M≤k<M,k 6=0

η−k(τ )
coshk(ς + H̃ )

sinhkH̃
ϑk(ξ), (9)
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z = ζ + η0(τ ) +

∑
−M≤k<M,k 6=0

ηk(τ )
sinhk(ς + H̃ )

sinhkH̃
ϑk(ξ), (10)

whereηk are the coefficients of Fourier expansion of the free
surfaceη(ξ, τ )with respect to the new horizontal coordinate
ξ :

η(ξ, τ ) = h(x(ξ, ζ = 0, τ ), t = τ) =

∑
−M≤k≤M

ηk(τ )ϑk(ξ), (11)

ϑk denotes the functions

ϑk(ξ) =

{
coskξ, k ≥ 0
sinkξ, k < 0

; (12)

M is the truncation number (so farM=∞ is assumed);x0(τ )

can be chosen arbitrarily, though it is convenient to assume
thatx0(τ )=0.

Nontraditional presentation of the Fourier transform with
definition (12) is, in fact, more convenient for calculations
because(ϑk)ξ =kϑ−kand

∑
(Akϑk)ξ =−

∑
kA−kϑk. So

the Fourier coefficientsAk form the arrayA(−M : M), thus
making possible a compact programming in Fortran90.

The lower boundaryζ=−∼H can not be chosen arbitrar-
ily, since the relation

z(ξ, ζ = −H̃ , τ ) = −H (13)

must hold; after substituting expansion (10), (13) yields:

H̃ = H + η0(τ ) . (14)

Sinceη0 is determined by the Fourier expansion (11), and,
generally, is an unknown function of time,̃H also is time-
dependent. Note that the definition of both coordinatesξ and
ζ is based on Fourier coefficients for surface elevation. It fol-
lows then from (9) and (10), that the time derivativeszτ and
xτ for Fourier components are connected by the simple rela-
tion

(xτ )k = (zτ )−k coth(kH̃ ), (15)

Due to conformity of the mapping, Laplace equation (1) re-
tains its form in(ξ, ζ ) coordinates. It is shown in ChSh that
the system (1) – (3) can be written in the new coordinates as
follows:

8ξξ + 8ζ ζ = 0 (16)

zτ = xξg + zξf (17)

8τ = f 8ξ −
1
2J−1(82

ξ − 82
ζ ) − z − pe+

σJ−3/2(−xξξzξ + zξξxξ ), (18)

where (17) and (18) are written for the surfaceζ=0 (so that
z=η, as represented by expansion (11)), J is the Jacobian of
the transformation

J = x2
ξ + z2

ξ = x2
ζ + z2

ζ , (19)

g = (J−18ζ )ζ=0; (20)

andf is a generalization of the Hilbert transform ofg, which
for k 6=0 may be defined in Fourier space as

fk = g−k cothkH̃ , (21)

following in fact from Eq. (15).
Boundary condition (6) is rewritten as

8ζ (ξ, ζ = −H̃, τ ) = 0 . (22)

The solution to the Laplace equation (16) with boundary con-
dition (22) is readily yields to Fourier expansion, which re-
duces the system (16)−(18) to a 1-D problem:

8 =

∑
−M≤k≤M

φk(τ )
coshk(ζ+ ∼ H)

coshk ∼ H
ϑk(ξ), (23)

where φk are Fourier coefficients of the surface potential
8(ξ, ζ=0, τ ). Thus, Eqs. (17), (18), and (20) constitute a
closed system of prognostic equations for the surface func-
tionsz(ξ, ζ=0, τ )=η(ξ, τ ) and8(ξ, ζ=0, τ ). It may also be
regarded as a system of ordinary differential equations for the
Fourier coefficientsηk, φk. Its explicit form would be some-
what complicated; however, it is not needed. As described in
the next section, we use the Fourier transform method to cal-
culate the nonlinearities. Indeed, the transform method may
be called an exact method if the order of nonlinearity is finite.
Otherwise, the accuracy of the method should be established
empirically.

Thus, the original system of Eqs. (1)−(3) is transformed
into two evolutionary Eqs. (17) and (18) which are written
for the free surface and, thus, are essentially 1-D (both spa-
tial derivatives of8 are obtained by differentiating the series
(23)) and can be solved using the Fourier transform method
(see next Sect. 3 and also ChSh).

For deep water (H=∞), the coefficients in expansions (9),
(10) and (23) become simpler. The domain (7) turns into the
semi-planeζ<0(z→−∞ whenς→−∞, a condition which
replaces (14)); and the conformal mapping (9) and (10) ac-
quires the form

x = ξ + x0(τ ) +

∑
−M≤k<M,k 6=0

η−k(τ ) exp(kζ )ϑk(ξ), (24)

z = ζ + η0(τ ) +

∑
−M≤k<M,k 6=0

ηk(τ ) exp(kζ )ϑk(ξ); (25)

and the solution (23) of the Laplace equation (16) reduces to

8 =

∑
−M≤k≤M

φk(τ ) exp(kζ )ϑk(ξ); (26)

In the absence of capillarity, the upper boundary condition is
p=pe. All model simulations presented herein hold the pre-
scribed external surface pressure constant. One may there-
fore assume

p(ξ, ζ = 0, τ ) = pe = 0. (27)



676 D. Chalikov: Statistical properties of nonlinear one-dimensional wave fields

The lower boundary condition readily follows from the La-
grange integral, written for the bottom in the (nondimen-
sional) Cartesian coordinates:pz=−1. So, in the new co-
ordinates we have

zζ pζ = −J at ζ = −H̃ . (28)

For deep water, this condition becomes

pζ → −1 at ζ → −∞. (29)

3 Numerical scheme and its accuracy

For spatial approximation of system (32) and (33) we use a
Galerkin-type (or “spectral”) method based on a Fourier ex-
pansion of the prognostic variables with a finite truncation
numberM. The problem is thus reduced to a system of ordi-
nary differential equations for 4M+2 Fourier coefficients

ηk(τ ), φk(τ ),−M ≤ k ≤ M :

η̇k = Ek(η−M , η−M+1, ..., ηM , φ−M , φ−M+1, ..., φM) (30)

φ̇k = Fk(η−M , η−M+1, ..., ηM , φ−M , φ−M+1, ..., φM) (31)

whereEk, Fk are, respectively, the Fourier expansion coeffi-
cients for the right-hand sides of Eqs. (17) and (18) as func-
tions ofξ .

To calculateEk, Fk as functions of the prognostic vari-
ablesηk, φk, differentiation of the Fourier series is used (the
spatial derivatives are thus evaluated exactly) and the nonlin-
earities are calculated with the so-called transform method
(Orszag, 1970; Eliassen et al.., 1970), by their evaluation
on a spatial grid. IfY (u(ξ), v(ξ), w(ξ), ...) is a nonlinear
function of its arguments represented by their Fourier ex-
pansions, grid-point valuesu(ξj ), v(ξj ), w(ξj ),. . . are first
calculated (in other words, inverse Fourier transforms are
performed).ThenY (j)

=Y (u(ξ (j)), v(ξ (j)), w(ξ (j)), ...) are
evaluated at each grid point. Finally, the Fourier coefficients
Yk of the functionY are found by a direct Fourier transform.
Here ξ (j)

=2π(j−1)/N−N is the number of grid-points.
This approach is largely exploited extensively in geophysical
hydrodynamics, in global atmospheric modeling particularly.

For the method to be a purely Galerkin one, that is, to
ensure the minimum mean square approximation error, the
Fourier coefficientsEk, Fk must be evaluated exactly for
−M≤k≤M. For this purpose, one must choose

N > (ν + 1)M (32)

whereν is the maximum order of nonlinearities. Since the
right-hand sides of Eqs. (17) and (18) include division by the
Jacobian, the nonlinearity is of infinite order such that the
above condition onN can not be met. However, numerical
integrations show that if one chooses a value ofN ensuring
exact evaluation of cubic nonlinearities (ν=3 in Eq. (32)), a
further increase inN (with a fixedM) does not affect the
numerical solution. For the results presented in Section 5,
N=4M was chosen.

However high the spectral resolution might be, long-term
simulations of strongly nonlinear waves require that the en-
ergy flux be parameterized into the severed part of the spec-
trum (|k|>M). If ignored, spurious energy accumulations at
large wave numbers can corrupt the numerical solution. Sim-
ple dissipation terms were therefore added to the right-hand
sides of Eqs. (43) and (44):

η̇k = Ek − µkηk (33)

φ̇k = Fk − µkφk (34)

with

µk =

{
rM

(
|k|−kd

M−kd

)2
if |k| > kd

0 otherwise
(35)

wherekd=M/2 andr=0.25 were chosen for all runs dis-
cussed below. We found the sensitivity of the results to rea-
sonable variations ofkd and r to be low. The dissipation
effectively absorbs energy at wave numbers close to the trun-
cation numberM while leaving longer waves virtually intact
and as well as modes with wave numbers|k| ≤kd unaffected.
Note that an increase of the truncation numberM shifts the
dissipation area to higher wave numbers (and, withM→∞,
the energy sink due to dissipation tends to zero). Therefore,
the scheme with the dissipation incorporated retains an ap-
proximation of the original (non-dissipative) system.

For time integration, the fourth-order Runge-Kutta scheme
was used. The choice of time step was done empirically.
For example, for M=100, a time step was equal to 0.01. For
M=1000, it was 0.002. Increasing local steepness and surface
curvature often forces to apply smaller time steps. Capillarity
effects were not included in this study. If these are taken into
account, the restrictions on time step become more severe
(ChSh).

A separate problem is initial data normally given in the
Cartesian coordinates. These need to be converted to the
(ξ, ζ ) coordinates. For this purpose, and for processing of the
results, an algorithm based on the periodic high-order spline
functions has been developed. The algorithm carries out the
transformation with computer accuracy.

The effective method of validating the numerical scheme
is to compare the results of integration of the nonstation-
ary Eqs. (16)−(20) (or, equivalently, Eqs. (1)−(3)) with the
analytical solution obtained in a moving coordinate system.
Only for Crapper’s waves (Crapper, 1957) such solutions can
be written analytically. Other stationary solutions, such as
Stokes waves (progressive, pure gravity waves on deep wa-
ter) have previously been obtained with various degrees of
approximation. The most accurate calculations of Fourier
coefficients for Stokes waves were performed by Drennan,
et al. (1988). To obtain stationary solutions with computer
accuracy (crucial for model validation), we developed an it-
erative algorithm that is based on operators of integration
and generalized Hilbert transformation in Fourier space. It
employs the Fourier transform method to calculate nonlin-
earities. This algorithm for calculation gravity and capillary
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gravity waves for deep water was described in detail in ChSh
(Sect. 3). The results for the case of finite depth were ob-
tained in Sheinin and Chalikov (2000). These solutions (as
well as Crapper’s waves) may be considered exact. They
were used for validation of the nonstationary model (system
Eqs. (16)−(18)).

Discussion of long-term validation runs is found in ChSh.
The model was validated against the three types of waves:
pure capillary deep-water (Crapper’s) waves (analytical so-
lutions), pure gravity, and also gravity-capillary waves, the
latter obtained numerically with the algorithm referred to
above. For all test cases, visual comparison of instantaneous
wave profiles showed that the waves moved with no any spu-
rious perturbations. To estimate “steadiness” of the numeri-
cal solution quantitatively, we calculated the phase velocities
and amplitudes of the Fourier components for consecutive
moments of time, and obtained their temporal means and
standard deviations over the period of integration. Results
in ChSh (Table 4) show that even for steep waves the calcu-
lated phase velocities were very close to their exact values
(i.e. those obtained for the stationary solutions) for all three
types of waves. Conservation of the amplitudes was also
very accurate: deviations during the simulations from initial
values were always less than 10−7 for the Stokes wave, and
less than 10−11 for the capillary and gravity-capillary waves.
The modes retained their initial energies and remained con-
sistent in phase; consequently, the simulated waves did not
change their shapes during the integration. This confirms that
these waves are stable with respect to truncation errors, and
also that the numerical solutions approximate the solutions
of the original differential equations with high accuracy. For
all model simulations described in (Chalikov and Sheinin,
2005), differences between the solutions presented and their
versions obtained withM twice as large were nearly absent,
confirming a convergence of numerical scheme.

Additional validation was performed by simulating of very
steep Stokes waves forak=0.42 (M=1000, 1τ=0.0025).
The evolution of first 880 amplitudes is shown in Fig. 1. This
boring picture shows that amplitudes, and, consequently, the
shape of Stokes wave remained unchanged with very high
accuracy. These integrations can be continued much longer
without of noticeable changes in amplitudes. After 2 686 500
time steps (932 periods), the total energy forak=0.42 and
M=1000 decreased merely at 3·10−8%. The analogous cal-
culations forak=0.42 performed by Dold (1992) quickly
collapsed due to numerical instability. Exact phase veloc-
ity of Stokes waves with ak=0.42, obtained for the stationary
solution is 1.089578. Direct calculation of phase velocity of
simulated Stokes wave gave value 1.089579±10−6.

Note that validation based on simulation of running Stokes
waves is complete and not trivial, because nonstationary
equations “do not know” the stationary solution obtained in a
moving coordinate system via a different method. However,
the results shown in Fig. 1 were obtained for demonstration
of accuracy of scheme only. High stability of steep Stokes
wave was determined by its position in a Fourier space: the
modes were connected with wave numbersk=1, 2, 3. . .M.

So, all Fourier modes were the modes of Stokes wave, and
there was no room for developing of an instability. Another
situation takes place when the modes of the Stokes wave are
the Fourier modes withk=n, 2n, 3n. . .M (n is any integer
number), and the intermediate modes in initial conditions
equal to zero. In this case, the errors of approximation can
initiate the Benjamin-Feir instability (Benjamin, Feir, 1967),
and a train of the Stokes waves can loose its initial shape
or come to breaking instability (if steepness is large). This
phenomenon is a subject of forthcoming paper.

Remarkably, conformal mapping made possible a repro-
duction of the essential stages of the breaking process when
the surface ceases to be a single-valued function (Chalikov
and Sheinin, 2005). This initial stage of wave breaking ex-
hibits a sharp jet originating from a wave crest. The inte-
gration in this case is always terminated; but due to high
accuracy of the scheme, however, the numerical and phys-
ical instabilities follow each other very closely. Two ways of
treating breaking were exploited. When breaking is the sub-
ject of investigation, it is simulated explicitly to the point of
instability. (The last, unrealistic phase of breaking is easily
eliminated from consideration of the energy conservation.)
The final stage of breaking is evidently a non-potential phe-
nomenon. This direct method is inapplicable when used for
long-term simulation of the evolution of multi-mode wave
fields and, for modeling of wave/wind interactions (Chalikov,
1998). For these reasons we developed a method of parame-
terization of breaking effects based on a high-order selective
smoothing (Chalikov, Sheinin, 2005). However, in calcula-
tions considered here, we did not use this parameterization;
all cases in which breaking instability took place were simply
excluded from consideration.

4 Statistical properties of wave field

In this study, we applied the method for numerical simulation
of surface waves developed in ChSh to investigation of sta-
tistical properties of nonlinear wave fields. Generally, this in-
vestigation confronts complications associated with specific
wave instability – wave breaking. If initial wave energy is
large, the onset of wave breaking leads inevitably to termi-
nation of calculations. Still, this instability can be eliminated
with algorithms of breaking parameterization. If such algo-
rithms are applied, however, the statistics of free waves can
be distorted. For example, this smoothing algorithm elimi-
nates the appearance of high, sharp waves.

Therefore, we first investigated the dependence of time
to the onset of wave breaking on the initial conditions.
The appropriate integral characteristics for fixed length scale
might be the initial energy. For different length scales, this
characteristic is incomplete. More appropriate is the initial
steepness of surfaces:

s ∝

 M∫
0

k2S(k)dk


1
2

(36)
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Fig. 2. Dependence of time to onset of breaking instability on rms
steepnesss. Dotted line is approximation Eq. (39)

Initial conditions were assigned as superposition of linear
waves with amplitudes

ak =

{
a0

(
k
k0

)−m

k0 ≤ k ≤ kd .

0 otherwise.
(37)

and random (different for each case) sets of phases. The
mode with wave numberk0 has amplitudea0, with ampli-
tudes abovek0 decreasing ask−m. The value ofk0 defines
the resolution of the spectrum, so it cannot be too small. In
most calculations,k0=10 andm=6 were chosen. Further in-
creases ofk0 did not change the results, which are described
below. The statistical results were also very close whenm=5
was chosen. Because the steepnesss for steep (but not yet
breaking) waves decreases slightly during long-time simula-
tions (due to tail dissipation (33)-(35)), the effective steep-
ness for each run was obtained by averaging over time. The
number of modesM was 400, with grid pointsN=1600, time
step1τ=0.0025. Calculations were performed for 70 cases

al = 0.09+ 0.001· l, l = 1, 2, 3... 70 (38)

Onset of breaking was recognized when total energy started
growing then exceeded its initial value by 1%. This criteria
specifies time of breaking onset with high accuracy, because
the 4th order Runge-Kutta scheme develops instability very
quickly. The onset of breaking depends not only on total
nonlinearity of the initial wave field but, as well, on the ini-
tial set of phases. However, this dependence is much weaker
than the dependence on steepness. To incorporate the effect
of initial phases, the calculations Eq. (38) were repeated with
different sets of phases. Total number of runs: 980. The de-
pendence of time to breakingTl(timeτ normalized by period
of peak waveTp=2π/

√
k0) on effective steepness is demon-

strated in Fig. 2. Each point was obtained by averaging over
the sampling set with a total length of 160 000 values (100
wave profiles).

As we show, the stability of a wave field and its exis-
tence without breaking decreases quickly with increasing the

steepness. For large initial steepness of the order of 1, break-
ing occurs immediately and dependence on initial phases be-
comes much more significant. However, for effective steep-
nesss less than 0.11 the breaking was virtually absent. This
statement can not be considered as an unequivocal. Still, our
results confirm that breaking onset below s=0.10 in runs up
to t=2,500 was not observed. The dependence ofTk ons may
be approximated by the formula

Tk = 4.6 · 10−4s−5.61, (39)

Approximation (39) has a right asymptotic behavior (Tk→∞

at s→0); it is unlikely that the specific form of this depen-
dence is correct for values ofs smaller than here explored.
The number of modes used in our calculations was, much
larger than in calculations made by Song and Banner (2002),
but a value of threshold for onset of breaking s=0.10 is close
to that in their paper.

For calculations of statistical characteristics of waves, the
10 long-term runs were performed up to 1 000 000 time steps
(790 periods of peak wave) with initial peak steepness in
the range ofa0k0=0.0001÷0.09, corresponding to an ef-
fective steepness in the ranges=0.0001÷0.106. The num-
ber of modesM for the cases 1÷7 was 400, the number
of grid pointsN=1600, time step was 0.0025. For cases
8÷10 (corresponding to large steepness), the tail dissipation
Eqs. (33)−(35) for M=400 was large. To reduce this ef-
fect, the number of modes for these cases was increased to
M=1000 (N=4000), although time step and the number of
steps were the same as for M=400. The amplitudesakand
corresponding effective steepness are outlined in Table 1.

The wave spectra and rate of dissipation are represented
in Fig. 3. The high wave-number part of spectrum fluctu-
ates within the range of its averaged values, the amplitudes
of these fluctuations grow with increasing of initial steepness
and wave number. Gray areas in right part of the frames cor-
respond to the tail dissipation function (See Eq. 35).

Dk = µk

(
z2
k + z2

−k

)
(40)

Tail dissipation is located in the high- frequency part of the
spectrum. It removes the fast growing but very small modes
in a vicinity of the cut wave numberM. This dissipation
is so weak that it does not influence significantly the con-
servation of total energy. For the cases 1÷7, the energy de-
creases during a period of integration in 10th decimal digits;
for the steepest initial conditions (case 10) the energy de-
creased at 10−3%. Generally, the accuracy of conservation
the total energy rises quickly with increasing spectral resolu-
tion (and shifting of the tail dissipation into the higher wave
numbers). The straight line in Fig. 3 corresponds to the spec-
trumS∝k−6. Clearly, the averaged spectrum adheres closely
to this dependence. Note that this property is independent
of initial conditions (37). We assigned the valuem=6 sim-
ply because it corresponds to the spectrum developing in the
process of integration. The initial spectrum may be assigned
arbitrarily providing the rms steepness lies beyond critical
values s=0.11. The same spectrum as in Fig. 3 was obtained
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Table 1. Parameters of numerical experiments.

# 1 2 3 4 5 6 7 8 9 10

a0 0.00001 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

s 0.0001 0.013 0.026 0.029 0.039 0.052 0.079 0.089 0.099 0.106

M 400 400 400 400 400 400 400 1000 1000 1000

Fig. 3. Averaged for t=2500 (790 wave-peak periods) wave spectra, initially assigned by Eq. (37). The curves in the right side of each panel
are rates of dissipation of potential energy (Eq. (40)). Straight line corresponds toS=k−6 function. The grey vertical bars are the scatter of
the rms of the spectra, and the rate of dissipation.

for m=5 andkd=10. As will be shown below, fast adjust-
ment of the spectrum to its quasi-equilibrium shape is due
to a strong nonlinearity, which makes the time scales for the
individual high wave-number components very short.

Fast modification of the wave field due to nonlinearity is
clearly seen in Fig. 4, in which the long-time evolution of the
amplitudes of the first six components (with the wave num-
bersk=10÷15) for different rms steepness are given. Only
for extremely flat waves with rms steepness of the order of
10−4, the wave amplitudes remain constant over a long time.
For the rms steepnessak=0.013, the 15th amplitude fluc-
tuates significantly. With increasing steepness these fluctu-
ations spread between all modes in a spectral peak, further

the amplitudes of fluctuations grow with increasing steep-
ness. A portion of these fluctuations may be attributed to
exchange between potential and kinetic energy. However,
because the fluctuations are much larger than sum of kinetic
and potential energy for each component, the explanation of
such behavior musr consider the fast energy exchange be-
tween wave modes. Strong variation of the energy of wave
components occurs at very strict conservation of total energy
(we recall that cases with development of breaking instability
were excluded). Qualitatively, this process is similar to con-
vergence of energy in physical space studied by Song and
Banner (2002).
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Fig. 4. Evolution of five consequent amplitudes starting from peak wave numberk=10 for different steepness during 790 peak periods.

It is useful to consider the time scaleTl , characterizing the
typical “life time” of the wave components

Tk = Ep

k
1
2

2π

((
∂Ep

∂t

)2
)−

1
2

, (41)

whereEp=
1
2

(
h2

k+h2
−k

)
is the potential energy ofk−th wave

component in the Cartesian coordinate system. Time scale
Tk is normalized by the period of linear wave component
2πk1/2. Dependences ofTk on the wave numbers for dif-
ferent rms steepness are given in Fig. 5, together with their
scatter. Again, all wave components are stable for very small
steepness only: their amplitudes remains constant over hun-
dreds, even a thousand of periods. As frequency increases,
time scaleTk near the wave peak decreases up to 100 for
s=0.026, then up to 10 for s=0.106. For k>20, the time
scales are very small (of the order of one period of linear
wave with the same wave number) for all steepness consid-
ered. An exception is the case withs=10−4. The spectral
energy of wave components fork=20 is smaller at three dec-
imal orders than in a wave peak. Evidently, such transient
fluctuations cannot be attributed to the free surface waves,
rather to wave turbulence (Zakharov, et al., 2004; Dyachenko
et al., 2004).

This result becomes more evident if one considers the
phase velocities of waves. One way to calculate an instanta-
neous value of the phase velocity of the k-th wave component
can be done with the relation

ck =
z−k

∂zk

∂τ
− zk

∂z−k

∂τ

k
(
z2
k + z2

−k

) , (42)

where the derivatives on time are just right side of equation
(17) written for Fourier components ofz. It is convenient to
use Eq. (42) for calculations by the rms method

ck =
AD

D2
, (43)

(ck is a mean phase velocity, A is the numerator and D is the
denominator in (42)), and rms of phase velocityck

crms =

(
(ck − ck)

2
) 1

2
(44)

The dependencies of the phase velocities and their rms on
wave numbers for different steepness are shown in Fig. 6.
Each value of the phase velocity is calculated over an en-
semble of 2500 wave records. Each record has a length
N=1,600 (for cases 1÷7) or N=4,000 (for cases 8–10). A
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Fig. 5. “Life time” of the components of the wave field∼Tk expressed in periods for every specific component (Eq. (41); solid lines). Grey
lines indicate the scatter of∼Tk . Dotted lines are the averaged wave spectrum. The numbers in the right upper corner are the effective
steepness.

linear dispersion relationck=k−1/2 is perfectly accurate only
for s=0.0001. For waves with s=0.013, the fluctuations of
phase velocity fork=20 become noticeable. Further increase
of steepness increases the phase velocity of the high modes
and its fluctuations grow. A simple explanation of these phe-
nomena was given in ChSh. In fact, at each wave num-
ber several modes coexist: one a free wave, others so-called
“bound waves” corresponding the additional modes attached
for every steep enough wave. The calculation of phase ve-
locity based on Eqs. (42) and (43) gives a weighted value
between the velocities of free and several bound modes. A
separation of bound waves and free waves was conducted
in ShCh by calculation a wave number-frequency spectrum.
Bound waves are attributed to different carrying waves, so
some have identical wave numbers. The amplitudes of car-
rying waves change in time, due to nonlinearity (see Fig. 4),
so a situation becomes very complicated. In order to under-
stand how shape of wave differs from what it is assumed in
linear theory, calculations of high-order moments for differ-
ent steepness were performed.

The functionz(ξ)was transferred from conformal coordi-
nates to functionη(x) in Cartesian coordinates, using 4th
order periodic polynomial spline (providing an accuracy of
the order of 10−11) and then recorded for processing. Every
hundred such records were linked in single set with length
of L=160,000, which then was used for calculation of statis-
tical characteristics: meanη; varianceV ; skewnessS; and
curtosisK:

η=
1

L

L−1∑
j=0

ηj ,V =
1

L − 1

L−1∑
j=0

(
ηj−η

)2
,S=

1

L

L−1∑
j=0

(
ηj−η
√

V

)3

,

K=
1

L

L−1∑
j=0

(
ηj−η
√

V

)4

− 3, (45)

The value ofη is very small and remains constant (strict con-
servation of volume, see ChSh), andV is a doubled potential
energy. When a wave field is a superposition of a large num-
ber of harmonic waves, both the skewness and curtosis are
equal to zero. SkewnessS characterizes the asymmetry of
the distribution of probability. If the positive values ofη are
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Fig. 6. Phase velocities of wave components as function of wave number (see Eq. (43)). Dashed line is a linear dispersion relation. Grey
vertical bars correspond to rms of phase velocities (Eq. (44)). Dotted line is a wave spectrum (right axis).

larger than the negative values, then S>0. Curtosis is positive
if the crests are sharper and the troughs are smoother than in
a case of linear waves. As seen in Fig. 7, the skewness is
very close to zero for s=0.001 only; with increasing nonlin-
earity it grows rapidly and reaches as large a value as S=0.35
– corresponding to significant exceeding of heights of crests
over depth of troughs. Qualitatively, these properties are sup-
ported by data on curtosis (Fig. 8) growing with increasing
nonlinearity, and confirming that wave crests become sharper
and troughs more gentle for steep waves.

Data on skewness and curtosis (Figs. 7 and 8), observa-
tions of wave height records as well as the results of sim-
ulations based on principal wave equations (as in Fig. 12)
always exhibit the fundamental properties of nonlinear wave
fields: the waves tend to be sharper and higher than harmonic
waves.

A question arise: do the Stokes waves posses any prac-
tical utility or they are simply example of an analytical so-
lution for stationary gravity waves – waves so unstable that
they never exist? Does a routine Fourier presentation used in
most of theoretical and experimental investigations miss the
nonlinear nature of steep waves?

Attempting to answer, a presentation of nonlinear wave
field as superposition of Stokes waves was tried. Naturally

the functionsSk corresponding to the Stokes waves are not
orthogonal, so calculation of coefficients in expansion

h(x) =

M∑
o

σkSk(σk) (46)

converts to minimization problem. Because the shape of
Stokes wavesSkdepends on its amplitudeσk, this is a non-
linear problem – complicated but still resolvable. However,
a more elegant solution was found.

Let us to consider the conformal coordinates for upper do-
mainz>η.

x=ξa−

∑
−M≤k≤M,k 6=0

ν−k (τ )
coshk([Ha ] −ςa)

sinhkH
ϑk(ξa)

z=ζa+

∑
−M≤k≤M,k 6=0

ν−k (τ )
sinhk([Ha ] −ςa)

sinhkH
ϑk(ξa) (47)

whereνk are the Fourier coefficients of presentation of the
interface,ξa, ζa are the conformal coordinates in upper do-
main. The transformations Eqs. (9), (10), and (47) have
somewhat opposite behavior: where the Jacobean in a lower
coordinates is large (in the crests), in upper coordinates it
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Fig. 7. Skewness of wave field as a function of the effective steep-
ness (Eq. (45) third formula). Each point is obtained by averaging
over a sampling set with total length of 160 000 values (100 wave
profiles).

Fig. 8. The same as in Fig. 7, but for Curtosis of wave field
(Eq. (45), forth formula).

is small. The opposite applies for the troughs. The system
of coordinates Eq. (47) is used now for modeling of turbu-
lent flow above waves and wind-wave interactions (Chalikov,
1998). In this paper, however, the first formula of Eq. (47) is
used for introducing dependenceξa(ξ) for infinite heightHa .
An advantage of this transformation is that for the same ac-
curacy of approximation the sharp waves in the lower coordi-
nate need more of modes than in the upper coordinates. The
number of modes for the approximation with the same accu-
racy in Cartesian coordinates lies somewhere between. This
statement is illustrated in Fig. 9, representing the spectrum
of Stokes waves with steepnessak=0.42 andak=0.43 (for
infinite depths) calculated in the lower coordinates with the
method ChSh. These solutions were transferred in the Carte-
sian and upper coordinates with an accuracy of the order of
10−11. The convergence of Fourier expansion is fastest in
the upper coordinates, and lowest in a lower coordinates. For
k=10, the value of Fourier mode in upper coordinates is two

Fig. 9. Spectra of Stokes waves: (1) – in lower coordinates; (2)
– in Cartesian coordinates; (3) – in upper coordinate. Thin lines
correspond to ak=0.42, thick lines to ak=0.43.

Fig. 10. Profiles of Stokes waves in Cartesian coordinates for
ak=0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 (k=1, solid lines).
Dashed curves correspond toacos(kθ) (see Eqs. (47)).

decimal orders smaller than in Cartesian coordinates and by
three decimal orders than in lower coordinates.

It is reasonable to consider what shape obtains the single
modea cos(ξa) in upper coordinate transferred to Cartesian
coordinate. The results for a=0.05, 0.10, 0.15, 0.20, 0.25,
0.30 and 0.35 are represented by a dashed line in Fig. 10.
Solid lines represent the exact Stokes wave profiles calcu-
lated in lower coordinates (with method ChSh) and trans-
ferred in Cartesian coordinates. As shown, the shape of
Stokes wave fora≤0.25 coincides with the shape of a sin-
gle mode in upper coordinates. Fora=0.30 anda=0.35,
the difference between the two curves is noticeable but yet
small. Typically, the steepness of sea waves rarely exceeds
the valueak=0.30. So, a Fourier presentation of wave sur-
faces in the upper coordinate may be considered with rea-
sonable accuracy as expansion over Stokes waves, which are
nearly orthogonal in the upper coordinate system. These
modes are orthogonal in Cartesian coordinate system with
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Fig. 11. Upper panel – the same as in Fig. 3 spectra in linear k-
scale; Lower panel – difference between spectra and “spectrum”
over Stokes waves.

weights corresponding to the inverse Jacobian of conformal
mapping to upper coordinates. The left panel in Fig. 11 rep-
resents the averaged wave spectra calculated in Cartesian co-
ordinates for ten cases (Table 1), and the bottom panel is the
difference between averaged wave “spectrum” in upper co-
ordinates and spectrum in Cartesian coordinates. Plainly, the
difference at low wave numbers is large and positive, in high

wave numbers negative. This means that representation of a
surface as a superposition of Stokes waves is more compact
than routine representation as superposition of linear waves.
It is well known that sea waves usually have sharp crests and
gentle roughs. All quasi-linear theories ignore this evident
property of actual wave fields. This reality explains, qual-
itatively, the increasing the skewness and curtosis for steep
waves shown in Figs. 7 and 8.

Visual observations of long-term evolution of wave sur-
face shows that steep enough wave fields has quasi-periodic
behavior: a period of more or less smooth waves followed
by period when large waves becoming sharper (the same ef-
fect as observed by Song and Banner, 2002). In our calcula-
tions, the length of domain was equal to ten lengths of peak
wave. During the period of sharpening, the several waves
may become sharper simultaneously; more often, however,
only one wave become sharper. In Fig. 12 (panel 1), the evo-
lution of kinetic and potential energies for s=0.089 is given.
Both energies fluctuate with amplitude up to 10%, their sum
remains constant within many decimal digits. In panel 2,
the top curve represents the evolution of the maximum wave
height defined over whole period for 2,500 wave profiles sep-
arated by interval1t=1; the bottom curve depicts evolution
of the minimum value of the second derivative∂2η/dx2 for
the same set. The intervals of increasing wave height always
coincide with minimums for the second derivatives, corre-
sponding to sharpening of crests. In panel 3, the “sharpest”
wave profile for time t=815 (corresponding the minimum of
∂2η/dx2) is drawn (dotted curve); solid line is the smoothest
wave profile (minimum of absolute value of∂2η/dx2). Both
profiles are equally smooth, except that the first has single
high peak. The wave-number spectra of these profiles are
given in panel 4. The spectrum corresponding to the first
case has much larger high wave-number values. All these
components were needed for correct approximation of a in-
gle sharp peak in a domain. In sum, for large number of
cases for developed wave fields a considerable part of high
frequency does not correspond to actual waves, but artifact,
created by attempting a linear presentation of a strongly non-
linear process. In reality, a concentration of energy occurs in
a physical space, rendering its Fourier presentation meaning-
less. This conclusion strongly supports the results of Song
and Banner (2002). This also explains, why formally cal-
culated time scales (Eq. 41 and Fig. 5) for high frequency
waves are so small.

The nonlinear properties of waves create specific integral
probability distribution. In Fig. 13, the probability of trough-
to-crest heightsHtc(normalized by significant wave height
Hs) for large waves is displayed. Trough-to-crest height of
large waves was defined as maximum minus minimum wave
heights in a moving window with width equal to 1.5Lp for
each of 2500 wave profiles. The probability of large waves
increases significantly with increasing steepness. For large
waves, the dependence of maximum wave height on effec-
tive steepness is not monotonic. one reason is that very large
waves are rare, so the calculation of accurate statistics re-
quires a larger dataset.
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Fig. 12. (1) – The evolution of kinetic and potential energy (thin lines). Their sum (thick line) remains constant throughout simulation. (2)
– The top curve represents evolution of the maximum wave height defined over an entire period for 2500 wave profiles separated by interval
1t=1; bottom curve – evolution of minimum value of the second derivative∂2η/dx2 for the same data set. (3) – the “sharpest” wave profile
for time t=815, corresponding to the minimum of∂2η/dx2 (dotted curve); the “smoothest” wave profile for time=2,224, corresponding to
the maximum (minimum of absolute value) of∂2η/dx2 (solid line). Equation (4) – the wave spectrum corresponding the “sharpest” wave
profile (dotted line) and the “smoothest” wave profile (solid line).

5 Discussion and conclusions

In this study, we applied the method for numerical simula-
tion of periodic surface waves, developed in ChSh, to long-
range simulation of multi-mode wave fields. The principal
equations are the standard equations of hydrodynamics for
potential flow with a free surface. The method is based on a
nonstationary conformal transformation that maps the orig-
inal domain (which may be of finite or infinite depth) onto
a domain with a fixed rectilinear upper boundary. For the
stationary problem, the method is identical with the classic
complex variable method. In the transformed coordinates,
the solution to the Laplace equation for the velocity potential
is represented with Fourier series. This eliminates the need
for finite-difference approximation of spatial derivatives and
reduces the problem to 1-D. Numerical solution of the initial-
value problem for the transformed system thus becomes a
straightforward task, and is reduced to time integration of
two simple evolutionary equations for the surface velocity
potential and surface height. These variables are represented
by their Fourier expansions with time-dependent coefficients.

The Fourier transform method used for calculation of the
nonlinear terms provides excellent computational efficiency.

This model has important advantages: (1) comparison
with an exact solution shows that the scheme demonstrates
extremely high accuracy (see Fig. 1); (2) it preserves pre-
cisely the integral invariants; (3) it is very efficient: perfor-
mance decreases as Mlog(M) (M is the number of modes);
(4) the scheme demonstrates stability over millions of time
steps (thousands of the periods of dominant wave); (5)
the speed of calculations is fast enough to perform any
reasonable numerical experiments on a personal computer.
This model is able to reproduce a nonlinear concentration
of energy in physical space resulting in the appearance of
large and steep (freak) waves and an approaching to wave
breaking. Remarkable, the initial equations (not necessarily
potential, but adiabatic) preserve similarity over the length
scale (outside of capillary range). Accordingly, wave model
– by simple scaling – may be applied to any scales. The
breaking waves and the freak waves therefore have the same
nature, the breaking waves appearing as the freak waves in
the Lilliputian country.
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Fig. 13. Integral probability of the trough-to-crest wave height, normalized by significant wave height.

A consideration of time scales for the multi-mode wave
field with initially random phases confirms that low-
frequency waves preserve their individuality, though their
“life time” decreases with increasing steepness. The total
energy of each mode always fluctuates, because of quasi-
periodic energy exchanges between wave components. For
high frequencies “life time” is an order of one period. These
disturbances cannot be attributed to waves, rather to “wave
turbulence”. Applicability of the 1-D approach and poten-
tial assumption to high frequency waves is very question-
able. This approach obviously cannot simulate properly the
processes where irreversible 2-D nonlinear interactions are
of the essence. However, based on results of this work, the
important conclusion follows for 2-D waves also. Of course,
all nonlinear effects in the 2-D case should be pronounced
clearer because of an infinitely larger number of interacting
modes and physically because of a complexity of the orbital
velocity field. However, for wind-wave interaction prob-
lems, 1-D wave model is acceptable because it reproduces
a broad spectrum of waves and surface disturbances; these,
in turn, generate rich statistics of nonlinear fluctuations in an
air flows above waves.

The model developed may be applied to a broad range of
situations in which the 1-D approximation is acceptable. For-
tunately, many wave phenomena are largely controlled by
strong nonlinear interactions which are relatively fast and for
which the 1-D approximation is often adequate. Formation
of extreme waves is one such phenomenon. As yet, model
simulations of vary large waves are far from academic in-
terest only. It has long been known that nonlinear redistri-
bution of energy can result in the abrupt emergence of very
large and steep waves. commonly known as freak or rogue
waves. Amplitude and phase modulations create especially
favorable conditions for their formation.

It is well known that in a real wave field the dominate
waves have more or less sharp crests and gentle troughs.
When a routine Fourier presentation is used, for approxima-
tion of such waves the additional modes are needed which
are sometimes called “bound waves”. This unfortunate ex-
pression obscures the essence of the phenomena; real waves
are single nonlinear modes which preserve their individu-
ality over time. For reasons not yet understood, the shape
of such waves is close to harmonic modes in the “upper”
coordinate system. These modes form an orthogonal basis
in the “upper” coordinate system and are also orthogonal
in the Cartesian coordinate system with the weights equal
to the inverse Jacobian of transformation to “upper” coordi-
nate. Remarkable, that Fourier expansion for stationary so-
lutions for potential waves in the “upper” coordinate system
(Stokes waves) converges faster than in Cartesian coordinate
system. For actual wave field with moderate steepness, the
superposition of Fourier modes in “upper” coordinate is very
close to superposition of Stokes waves in Cartesian coordi-
nates. Probably, this fast convergence for Stokes solution
for potential waves in upper coordinate is a rational result.
Nonlinear transformation “absorbs” somehow the nonlinear-
ity. And the single mode in upper coordinate (contrary to
that in usual coordinates) well approximates the solution of
strongly nonlinear equations. The derivation of equations
in “upper” coordinates is tricky, because “there is no fluid”.
However, this idea may be not fully impractical because po-
tential waves equations are essentially “surface” equations.
As well, these coordinates correspond the case of two-layer
flow with the interface with density of the upper liquid ap-
proaching zero. Important additional advantage of the “up-
per” coordinate system is that singularities of interface may
disappear or at least can weaken.



D. Chalikov: Statistical properties of nonlinear one-dimensional wave fields 687

The most important application of the scheme developed
here is the coupled modeling of waves and wave boundary
layer (see Chalikov, 1998). It can not be proved that mul-
timode wave surface interacts with atmosphere as a set of
independent waves, and that the integral result can be ob-
tained by simple superposition of monochromatic cases. It
is well known that even a single wave can produce a broad
spectrum of pressure fluctuations which affect the flow. At-
mospheric response to a strongly nonstationary wave field is
also essentially nonstationary. The structure of nonstation-
ary flow (e.g. a distribution of surface pressure) is different
of stationary. First attempt to take into account these nonlin-
earity and group effects was done with our finite-difference
model (see review Chalikov, 1986), in which wave surface
was assigned as superposition of running linear waves with
different frequencies. That approach is much closer to re-
ality than approach based on stationary models, because it
allows reproducing a group structure of waves and its non-
linear consequences. However, although better (and more
complicated) than the monochromatic stationary approach,
that model proved imperfect as well, because the specifics
of real wave shapes and nonlinear group structure were not
represented.

Majority of works devoted to wind-wave interaction con-
sider a single-mode surface. This approach is oversimpli-
fied – to be used for simple qualitative analysis only. Lin-
ear approaches are wholly inapplicable for such complicated
issues as type of closure scheme to apply to a full nonlin-
ear problem. Many works use a nonlinear approach based
on Reynolds equations, with most considering the station-
ary flow above monochromatic waves (e.g. the simulations of
Mastenbroek et al., 1996, Meirlink and Makin, 2000 - both
based on model, created by Chalikov, 1976). This approach
is not full, because even small disturbances of obstacles (like
sharpening of crest) produce dramatic changes in pressure
field and form drag (this effect is well known in engineer-
ing fluid mechanics). Simple group effect generates high and
steep waves (in physical space) with deep minimum of pres-
sure behind their crests. Nonlinearity enhances the effect of
sharpening, thereby, strongly increasing the pressure anoma-
lies. The averaged wave drag and energy exchange result
from an ensemble effect of what are essentially nonstationary
fluctuations of pressure and surface stresses. These processes
are absent in routine monochromatic stationary models.

The main disadvantage of 1-D approach is a weak nonlin-
earity resulting in the formation of a fast decreasing spec-
trum (S∝k−6). Unfortunately, the 1-D model cannot tol-
erate more saturated spectrum. 2-D waves has spectrum
S∝k−3/2(Dyachenko et al., 2004).

Still, the prime conclusions from this work, as to the
inapplicability of a linear dispersive relation and the tran-
sient character of high-frequency waves remain valid for 2-D
waves as well.
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