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Abstract. A Hamiltonian formulation of nonlinear, paral- finer spatial oscillations and has been called an oscilliton for
lel propagating, travelling whistler waves is developed. Thethat reason. The linear dispersion relation yields the neces-
complete system of equations reduces to two coupled difsary condition for the formation of an oscilliton which arises
ferential equations for the transverse electron speedid  from the fact that the phase and the group speeds are equal at
a phase variable=¢, — ¢, representing the difference in afrequency of one half the electron gyrofrequency where the
the phases of the transverse complex velocities of the prophase speed is maximized. The analysis is carried out in the
tons and the electrons. Two integrals of the equations aréravelling wave frame in which the protons must be placed
obtained. The Hamiltonian integra, is used to classify the on an equal footing with the electrons since their Reynolds
trajectories in the(¢, w) phase plane, wher¢ and w=u? stresses are of the same order. In fact the protons and elec-
are the canonical coordinates. Periodic, oscilliton solitarytrons exchange momentum through the mediating Maxwell
wave and compacton solutions are obtained, depending omagnetic stresses.

the value of the Hamiltonian integral and the Alf\en Mach In the non-relativistic case, in which charge neutrality is an
numberM of the travelling wave. The second integral of appropriate assumption, Dubinin et al. (2003) showed that
the equations of motion gives the positienin the travel-  for the case where the background magnetic field and the
ling wave frame as an elliptic integral. The dependence oftravelling wave velocity are parallel, that the system could be
the spatial periodL, of the compacton and periodic solu- reduced to the following two coupled differential equations:
tions on the Hamiltonian integrall and the Alfen Mach

numberM is given in terms of complete elliptic integrals of

the first and second kind. A solitary wave solution, with an d):p

embedded rotational discontinuity is obtained in which the —= = 22 (1 + cos¢) — (1 — u?/u) Y/, (1.2)
transverse Reynolds stresses of the electrons are balanced

equal and opposite transverse stresses due to the protons. TWhere u, is the magnitude of the transverse electron ve-
individual electron and proton phase variabjesand¢, are  locity. The transverse electron and proton velocities have
determined in terms a@f andw. An alternative Hamiltonian  been written in the complex, amplitude and phase form as:
formulation in whichp=¢,+¢. is the new independent vari- uj+=uj, & iuj.=[u;| exp(+i¢;) wherej=e, p refer to the
able replacing is used to write the travelling wave solutions electron and proton species. The phassp,—¢, denotes
parametrically in terms ap. the difference of the phases for the protons and the electrons.
The above equations pertain to the case of a parallel mag-
netic field configuration in which the constant background
magnetic fieldBo=Boe, and the travelling wave velocity

are along the x-axis. In Eqsl.Q)—(1.2)

Recently (Sauer et al., 2002; Dubinin et al., 2003; McKen- X U

e

= M3u,sing, (1.1)

1 Introduction

1 T H H — K_ = P
zie et al., 2004) it has been shown that nonlinear, travellmgx L " P
whistler waves, can propagate at speeds in excess of the max-
imum, linear whistler speed in the form of a stationary struc—Q_ _eBgp _  mpm _my 13
ture in the travelling wave frame, within which is embedded **" = ~5 ™ "= 3, T, b T, B (1.3)
Correspondence tdos. M. Webb where X is the x-coordinate in the travelling wave frame,

(gmwebb@ucr.edu) m, andm, are the proton and electron masses, @pds the
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Fig. 1. Phase portraits of the system (Eg5) in the (u, ¥) phase

plane for:(a) § = 2 x 10~3 and(b) § = 0.

2
gyrofrequency corresponding to the geometric mean of thé'e
proton and electron masses Sincem,/m,=1836, then
m~m, to a good approximation. The equations:

U2 BZ
2 2 0
MA = V—z, VAﬁl = — —,

A Honpm

define the Alf\en Mach numberM 4, where V,; is the
Alfv én speed based on the geometric m@aor the proton
and electron masses. The normalizations used in Ed8—(

(1.4)
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al. (2003) (see Appendix A for the form of the equations us-
ing the Dubinin et al., 2003 normalizations).

Using the complex electron momentum equation for
Ue+=ueytiu,.; (Dubinin et al., 2003) we obtain the equa-
tion:

doe I

dx T (w+ DA —uZwi? Mi(1+cosp).  (15)

for d¢./dx throughout the wave. Combining Eq4.2) and
(1.5 for ¢ and¢. we obtain the equation:

dép _ 2 _

= M5 (1+ cose) G EDA—wZ i (1.6)
for d¢,/dx. Similarly,

40 nol F=dptoe @A)

dx ~ (u+ DA - w2

gives the variation of (¢, +¢.)/dx in the wave.

The assumption of charge neutrality, &n ,=n) implies
upx=uox=it, for thex-components of the fluid velocities of
the protons and the electrons. The total momentum and en-
ergy equations for the system yield the equations:
uy = (1-— ug/,u)l/z, up = Q (1.8)

"
Equations 1.8) show that there is a limitation on the value
of u, due to energy conservation constraints (the maximum
value ofu, is obtained whem,=0), and that the transverse
proton speed , < <u.. The normalized, complex, transverse
magnetic fieldsB1=B,+i B, in the wave are given by the
equations:

By = M3, (Mups +uer), (1.9)

where M 4,=U/V,,. is the Alfvén Mach number based on
the electron Alfen speed/s.=Bo/(onem.)Y2.

The basic Eqs.1(1)—(1.2) form an independent subsystem
of the complete set of Eqsl.()—(1.9. We show that the
system (Eqsl.1-1.2) is in fact a Hamiltonian system in its
own right. In this formulation, Eqs1(5—(1.9) for ¢., ¢, ux
and B+ appear as auxiliary equations describing the interac-
tion of the electron and proton fluids and magnetic fields in
the wave. Dubinin et al. (2003) obtained the phase portrait
integral:

(1+ cosg) + %(1 - uf/,ud)l/2 = ® =const. (1.10)
A

Thus, in the(¢, u.) phase plane, there is a family of periodic
solutions around a®-point limited by a heteroclinic trajec-
tory connecting two saddle points, which corresponds to the
oscilliton solution (see Figs. 1 and 2).

Consider the phase portraits of the system (Hgk-1.2)
for the case where the Aln Mach numbeM 4,=(1+6)/2,
whereé is a small parameter (Dubinin et al., 2003). For
small §<<1, the equation system has saddle critical points

(1.2 are slightly different than those used by Dubinin et at (u., ¢)=(0, £+4/85) and has a centre critical point at
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Fig. 2. Features of the oscilliton solution for the caise: 2 x 10-3. Panel(a) shows the heteroclinic phase plane trajectory connecting the
two saddle points(b) shows the soliton like profile far (solid curve) and) (dashed curve) obtained by integrating (Edp); (c) shows the
rate of change of the electron pha&g, /dr with normalized distancethrough the wave, an@) shows fine scale oscillations of the electron
transverse velocity components andu; within the large scale envelope for(u, is the solid curve and; is the dashed curve).

(ue, p)=(/2u8, 0). The equation system possesses aprox-and S» (Panel a). Figure 2b illustrates the solution profiles
imate solutions for whicht§< <u and|¢|<<1. Using the for u (the solid curve) ands (the dashed curve) obtained
new variables: by integrating Eqg.1.12. Panel (c) illustrated¢./dt, the

B U _ rate of change of the electron phagewith the normalized
v =Mach, u= Nz t=xMae, (1.11) space variable. Panel (d) shows the fine scale oscillations
. . . . . of the electron transverse velocity componemfsand u.,
in Egs. (.1)-(1.2) yields the approximate equation system: within the large scale envelope far(u, is the solid curve
du y dyr 25 — 2 — 2 (1.12) andu; is the dashed curve). The name oscilliton comes from
dt 7 dr ) ' the fact that although the envelope of the waveifdras the

The detailed analysis of the approximate equation Systenl.,lsual, sin_gle humped prof_ile characteristic of a soliton, ther_e
is given in Dubinin et al. (2003). Figure 1 illustrates the &€ al_so f|_ne_scale oscillations of the transverse electron fluid
phase portraits of the system (Egl2 in the (u, v) phase  Velocity within the envelope.
plane for the casé=2x10"2 (upper panel) and fo§=0 The main aim of the paper is to show that the exact sys-
(lower panel). In the casé=2x10"3, the centre critical tem (Egs.1.1-1.2) is a Hamiltonian system, that has two
point at (u, ¥)=(+/3,0) and the saddle critical points at integrals, and hence is completely integrable without the
(u, ¥)=(0, £/85M 4,) are evident. A8—0, the centre and need for any approximations. The first integral is the phase
saddle critical points merge 1@, 0) (lower panel of Fig. 1).  plane integral (Eq1.10 and is equivalent to the Hamilto-
Figure 2 illustrates the character of the oscilliton solution nian of the system. There is a further exact integral for
for the casé=2x10"3. The oscilliton solution corresponds the system, which gives as a function ofx as an ellip-
to the heteroclinic orbit connecting the two saddle pofits tic integral (Sect. 2). The fine scale variations¢gf and
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¢, throughout the wave envelope and the correspondingn terms ofA ande¢:

changes in the transverse complex velocitigs andu ,+
and complex transverse magnetic field variatidhs, are
controlled by Egs.1.5—(1.6). We determine the Hamilto-
nian critical points of Egs.1(1)—(1.2) (Sect. 2.1) and inves-
tigate the change in the phase portraits of the system wit
the Alfvén Mach numbenM 4 and the Hamiltonian integral
H (Sect. 2.2). The oscilliton (heteroclinic orbit) solution,

which has an infinite spatial period is studied in Sect. 3. The
dependence of the spatial period of the compacton and per

odic wave solutions oM 4 and H is determined in Sect. 4.
An alternative action-angle formulation of the Hamiltonian

system is described in Appendix B. Appendix C describesga M?2sing (1 — A?)

a Hamiltonian formulation, in whicli¢, A) are the canoni-
cal coordinatesd?=¢e+¢p is the new independent variable
andA=(1—u?/u)*2. In this formulation the travelling wave
solutions are given parametrically in termsdaf The trans-
formation simplifies the algebraic form of the solutions. Sec-
tion 5 concludes with a summary and discussion.

2 Hamiltonian formulation

The system of Eqs1(1)—(1.2) can be written in the Hamil-
tonian form:

d 0 H,
do _ 9Ho _ 2M%(1+ cosp) — (1 — w/w) Y2, (2.1)
dx ow
d d H .
40— 20 op2ysing, (2.2)
dx R0}
where
w = u2, (2.3)

Ho = 2M?w(1+ cosp) + 2u(l — w/p)Y? = 2M?®. (2.4)

In Egs. .)—(2.4 M = M, is the Alfvén Mach number
(Eq.1.4); u=u, is the transverse fluid speed for the electrons;
and @ is the phase space integral (Egl0 of Egs. (.1
and (.2). Here,(¢, w) = (g, p) are the canonical coordi-
nates anddy = 2M2® is the Hamiltonian. Note thatlg is
a rescaled version of the phase space intebrial Eq. (1.10
which is a constant of the motion.

The Lagrangian. and actionA for the system are given
by the standard Legendre transformation:

A= /L dx where L = w¢, — Hp. (2.5)
The Euler-Lagrange equations:

§A

i 2M%w sing — w, =0, (2.6)
A _

= - [2M2(1 +cosp) — (1 —w/w) 1/2] —0,(2.7)

are equivalent to the the equations of motion (Elg%-1.2)
or Egs. 2.1)—(2.2).

The question now arises of whether it is possible to obtainV (A).

a second integral or constant of the motion. To this end, w
introduce the variables:

A=QQ—w/wY?, =tan(®/2). (2.8)

Ho = 2u [M2(1 — A2)(1+ cosg) + A] —2uH.  (2.9)

Using standard, half-angle trignometric identities in E9(

HNe obtain:
2M2(1— A?)
=" " 1A, 2.10
1472 + ( )

as a re-normalized form of the Hamiltonidh. Hamilton’s
IEqs. @.D—(2.2) are equivalent the Hamiltonian system =
Hy andwz = —Hg wherex = 2ux. From Eq. 2.2) we find:

2M2(1 — ADt
dx A AL+ 12
Equation 2.11) can be reduced to an ordinary differential

equation, expressed solely in terms &f by solving the
Hamiltonian integral (Eg2.10 for 7 in terms ofA:

T:i( )/

Using Eqg. 2.12) in Eqg. (2.11) we obtain the differential equa-
tion:
dA __{(H - M[2M*(1 - A?) — (H - MH]}Y?
dx A

for A. Equation 2.13 can be formally integrated to give a
second integral for the system, namely:

A dA B
/ {(H — M[2M2(1 — A2) — (H — A)]}V/2 —
—oXx + const.,

(2.11)

2M2(1— A% — (H — A)
H— A

(2.12)

, (2.13)

(2.14)

whereo = sgn(t) = sgn(sing).

It is also straightforward to obtain a similar differential
equation forr by using Egs.Z.1) and @.8) to first obtain
the equation:

AP i
dx 2A
Then solving the Hamiltonian integral (Eg.10 for A in
terms ofr, and substituting the result in EqR.L5 yields
a differential equation fot in which the right handside of
Eqg. 2.15 is solely a function ot . This differential equation
is more complicated than the differential EQ.X3 for A
(note there are two solutions faras a function ot obtained
by solving Eq.2.10.

The integral in Eq.Z.14) is an elliptic integral. The nature
of the integral depends on the valuesMfand H. Equa-
tion (2.13 can also be written in the potential well form:

)ZZ(H—A)[

(2.15)

2M2(1— A% — (H — A)]
A2

dA

(5

X

(2.16)

%or real solutions of Eq2(16 we requireV(A) > 0. Also

note that for a physically relevant solution, EJ.8) implies
that A must lie in the range & A < 1.
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We note for later reference, th&it(A) may be factorized
in the form:

2M2(A — A_)(A — Ay)(A — H)

V(A) = = , (2.17)
where

1+ A12
Ar=—""—"1 A=16M*+1—8M?H, (2.18)

4M?

647

wheres¢ = ¢ — ¢. anddw = w — w, denote the deviations
of ¢ andw from the critical point. Equations2(24) have
eigen-solutions of the form:

5\ _
<8w> =TI exp(ix),

where the eigenvector= (r1, r)7 satisfies the eigenvector
equation:

(2.25)

(A—hr =0. (2.26)

and Ay are the roots of the quadratic factor in square braces

in Eq. 2.16).

Equations 2.26) have non trivial solutions for providedai

We could at this point proceed to consider the second intesatisfies the eigenvalue equation:

gral (Eq.2.14) in further detail. However, before proceeding,

it is useful first to establish the nature of the Hamiltonian crit-

ical points.
2.1 Hamiltonian critical points

The Hamiltonian critical points occur at locations in the
(¢, w) phase-plane, where
Hogp = How = 0. (2.19)

At these pointsp, = w, = 0. From Eqgs. 2.1)—(2.2) the
critical point conditions (Eg2.19 reduce to:

Hop = —2M?wsing = 0,
How = 2M?(1+ cosp) — (1 — w/u) Y2 = 0.

(2.20)
(2.21)
There are two families of critical point solutions of

Egs. 2.20—-(2.2)). The first family of critical points occur
at the pointg¢;1, we1):

we1 =0, ¢p1 =2nmw £ ¢,
1—2M?
—1
.= -~ |, H=H.q=1, 2.22
¢c = cos ( e ) 1 (2.22)

where H,; is the value of the Hamiltonian at the critical
points. Here: is an integer, and it is assuméfl > 1/2.

A second family of critical points occurs at the points
(P2, we2):

w(M* —1/16)
¢}’l2 = 2n7T’ wc2 = M4 / ’
1
_ 2
H.o =2M* + W, (223)

whereH,, is the value off at the critical points, and is an
integer. The solutions (E@.23 for w = w,» are positive
(0 < we2 < p)if M > 1/2. For solutions withM < 1/2,
we2 < 0 lies in the physically inadmissible region of the
(¢, w) phase-plane.
Linearization of Hamilton's Eqs2(1)—(2.2) about the crit-
ical points yields the matrix system:
(5¢>:< H0w¢ Howw ) <8¢) =A <8¢
dw —Hopp —Hopuw Sw /)™ Sw

d

e ) . (2.24)

det(A — Al) = 0. (2.27)
The solutions of Eq.4.27) for A are:
A=£G'? where G=—detA=Hg,,, — Hops Howw.  (2.28)

Thus, the critical points are saddlegdf> 0 and are centers

if G < 0. Itis interesting to note that the equatioh= G,
ie.al= H§¢w — Hopy Howw is the classical Monge-Ampere
equation, which arises in the description of the Gaussian
curvature of a 2D surface (e.g. Lipshutz, 1969; Von Mises,
1958; Ferapontov and Nutku 1994). Using the Hamiltonian

Eqg. 2.4 we find:
-3/2
(1-%) cos¢} , (2.29)

at a general poinip, w) in the phase plane.
Using Egs. 2.26) and .29 we obtain the eigensolutions:

G=M? |:4M2 sir? p— 2
n

12
A= (4M2 - 1) . n=@10",
5 1/2
(Brto wer) = @um + 90,0, dp= (42— 1),

T

r= (1, — 4 (4M? — 1)1/2) : (2.30)
for the eigenvalues and eigenvectors at the first family of crit-
ical points (Eqs2.22. For the first family of critical points
we also have the solutions:

1/2 T
A= — (4M2 - 1) L or= (1, Au(4M? — 1)1/2) ,
(Pn1, we1) = (2nw — ¢, 0),

Ay = (4M2 — 1)1/2, ry= (107, (2.31)
Equations 2.30—(2.31) show that the first family of critical
points are saddles i#7 > 1/2, and allow one to sketch the
trajectories in th&g, w) phase plane.

Similarly, from Egs. 2.26—(2.29 we obtain for the sec-
ond family of critical points (Eq2.23 the eigensolutions:

A = —8M2i (M4 - 1/16)1/2,

. 4 1/2
o (1’ in(M* — 1/16) )

v (2.32)
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Table 1. Critical points(¢,, wy,) of the Hamiltonian (2.4) or (2.10) for the casde > 1/2. H.o = 2M? + 1/(8M?) is the value of H at the

centre critical points.

bn Wy Singularity Type H Comments
2w + ¢ 0 saddles 1 cop. = (1—2M?)/(2M?)
2nm w(M* —1/16)/M* centres Hep Hp>1
M=0.4 M=0.51
0< ‘ = ]

1500

Y T T
T
i
N
>

1000

500

2 o
()

Fig. 3. Contours of the Hamiltonia# in the (¢, w) phase plane
for0 < M < 1/2. The arrows correspond to increasing

1/2

o = 8M2i (M“ - 1/16) ,
w(M* —1/16)1/2

r2:<1’_zu( /1612)

am4
The critical points are centre®{points) if M > 1/2. If

(2.33)

M < 1/2, the critical points are saddles, but in that case

w = we < 0 lies in the unphysical region of th@, w)-
plane (i.ew < 0).

The basic properties of the two families of critical points
(Egs.2.22and2.23 are summarized in Table 1.

2.2 Phase plane trajectories

The trajectories of the Hamiltonian system (ERsl)—(2.4)
using the canonical variablé®, w) = (¢, p) can be written
in the form;

2 _
d¢ _ (A" —2HA+D (2.34)
dx A — AP
dw 2 2 12
o= 2uo {(H — AN)[2M“(1— A°) — (H — A)]] (2.35)

Hence the trajectories in thép, w) phase plane from
Egs. @.34—(2.35 are governed by the differential equation:

dw
d¢

{(H=M)[2M*(1-A*)—(H—=N)]
8 AZ-2HA+1

= —2ucA(l— A?

}1/2

1500

\

1000

500

/2 Jis

Fig. 4. Contours ofH in the (¢, w) phase plane for2 < M <
1//2.

(2.36)

Equation .36 is equivalent to the equatiodw/d¢ =
—Hy/H, where H = const. is the Hamiltonian integral
(Egs.2.10.

The importance of Eq.2(36) is that it allows one to de-
termine the values of\, and hencaw = wu(l — A?), in
the phase plane where the phase trajectories are horizontal
(dw/d¢ = 0) or vertical (dw/d¢| — oo). Thus, for exam-
ple, in order to obtain periodic solutions it is necessary for
the phase trajectories to encircle tetype critical points
located at(¢,2, we2) in EQ. 2.23. In order for this to be
possible, it is necessary that the denominator:
D(A) = A2 —2HA +1, (2.37)
have real zeros fak and that these zeros must lie in the phys-
ically allowed range < A < 1. From Eq.2.37) D(A) =0
if

A=A p=H+VH2-1,

where the subscripts 1 and 2 are used to order the roots (i.e.
A1 < Ap). From Eg. 2.38 a necessary condition for peri-
odic solutions is that/ > 1.

Contours of the normalized Hamiltonidi in the (¢, w)
phase plane are illustrated in Figs. 3—6 for the cases: ) 0
M < 1/2,(b) Y2 < M < 1//2, (c) M = 1/+/2 and (d)

M > 1/+/2, respectively.

(2.38)
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1/2

M=(1/2)

4

1500
1500 [

1000
1000 L

500
500 s

TE‘/Z T

- o
¢

-m/2 0
¢

Fig. 6. Contours ofH in the (¢, w) phase plane foM > 1/+/2.

Fig. 5. Contours ofAH in the (¢, w) phase plane foM = 1/\f2.
For periodic closed orbits requires/Z < H < 2M2 + 1/(8M?).

Figure 3 shows phase-plane trajectories for the case 0 tories it is useful to have at hand sketches of the function:

M < 1/2 (M = 0.4 in the figure). In this case, there are
no critical points for the Hamiltonian, and @ H < 1in
the physically allowed region (& w < ). The phase tra-
jectories split up into trajectories with @ H < 2M2which
intersect the upper boundaryat= u (i.e. A = 0), where
d¢/dx — —oo, and a family of smooth solutions with
2M? < H < 1. The separatrixd = 2M? has an in-
finite derivatived¢/dx — —oo atw = u (A = 0), but
dw/dx = 0 at this point. The solutions withi2? < H <1 '_ (1 — A2)). The trajectories with 2 < H < 1 are
form solitary wave type structures with compact support (i'e'compacton type solutions for whiah = u? — u(1 — H?)
they have a finite spatial period, because the singularities of

. . ; . s finite asp — +x andw — w(l — A?) at the center of
the integrand in EqA.14) on the orbit are integrable). These the wave atp = 0.

solutions are analogous to compactons, which have been in- _.
vestigated in soliton theory (e.g. Rosenau and Hyman, 1993), Figure 5 shows contours a for the caseW = 1/v/2.

One can concatenate a sequence of compactons to produ!:feo?eﬂ'/[mig';‘ejicopg'nu?#5|y varylr;g( fro:n mﬂf‘s j 1/ \/Ed
a modulated wave train, in whiclh = |u,.| describes the up toM = 1/v2, then the separate contouts = 1 an

wave envelope. Small amplitude, modulated wave trains ofH = 2M? for 1/2 = M < 1/«/§_merge in the limit as
this type with 0< M < 1/2 were obtained by Dubinin et M — 1/3/2. Th_e solitary wave orbiti{ = 1) now ex_tends
al. (2003) (it turns out that one can also obtain compactongrom the footpoints (¢, w) = (+7/2, 0)] to the maximum
for 1/2 < M < 1/4/2). The phase trajectories in Fig. 3, allowed value okw = p at (¢, w) = (0, u). At the maxi-

show that one can obtain fully nonlinear compactons about umgmgtgliéd; _)Th_oo bl.Jtél.w/dx — '()\;\;?ereA =0
non-zero background state. see Eqgs2. .35. The periodic waves in this case corre-

spond to contours with ¥ H < H.» = 1.25. The contours
Figure 4 shows phase plane trajectories for a case withith 0 < H < 1 have the property thatp/dx — —oo as
1/2 < M < 1/4/2 (M=0.51). Closed periodic orbits oc- w —> 1 (A — 0).
curifl < H < H,p whereH., = 2M? + 1/(8M?) is the Figure 6 shows further evolution of the phase space trajec-
value of H at the centre critical point. Th& = 1 contour tories (contours oH) for a case with > 1/+/2 (M = 0.8).
corresponds to a solitary wave solution with an infinite spa-For M > 1/+/2, the H = 1 contour impinges on the upper
tial period and separates the periodic and non-periodic soboundaryw = p whent = tan(¢/2) = +(2M? — 1)1/2
lutions. Only one period of the phase trajectoriegpiare (see Eg2.12 and A = 0. At this pointdw/d¢ = 0 but
shown 7 < ¢ < 7). Note that the contoutd = 2M? d¢/dx — —oo. Hence it is not possible to obtain a soli-
is also a separatrix between the<0 H < 2M? solutions  tary wave solution in this case, unless one inserts a shock
which intersect the upper boundary= u (i.e. A = 0) from jump somewhere before the trajectory hits the upper bound-
the trajectories 2 < H < 1 which do not intersect the ary (see Sect. 3 for further discussion of this point). There
boundary. Notelw/d¢ = 0 atw = u whereA = 0. ¢ From  exists periodic travelling waves fd# contours in the range

Q(A) = (H — M[2M?*(L = A®) — (H — )]
= 2M?*(A — A_)(A — Ay)(A — H), (2.39)
versusA showing the relative ordering of the zeras= A1
and A = H, where A are given by Eq.4.18. From
Egs. €.39-(2.36 dw/dx = dw/d¢ = 0 at these points
(the corresponding values af are given by the formula

Eq. .34 d¢/dx — —occasw — puandA — 0. At
¢ = +m, w = pu(l— H? anddw/dx = dw/d$ = 0 for

1< 2M? < H < H., whereH.» = 2M? + 1/(8M?). The
H = 2M? contour is a periodic orbit in whicl¢/dx —

the 0< H < 1 contours. In assessing the phase plane trajec—oo at (¢, w) = (0, u). Howeverdw /dx = 0 at this point.
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2.3 Electron and proton phase variabfgsand¢,

From Egs. {.7) and @.8) we obtain:

dp  (n—1\1
dx  \p+1) A
for the variation ofp = ¢, + ¢, throughout the wave. Alter-
natively using Eq.Z%.13 we find:

o(u—1)

dp (u — 1) 1

dA \u+1) AdA/dx (n+DHJVOMR’

whereQ(A) is given by Eq. 2.39 ando = sgritan(¢/2)].

Thus, the solution fop = ¢, + ¢, obtained by integrating

Eq. @.4]) is:

ou—-1
(n+1)

(2.40)

(2.41)

A dn’
VO

¢ = (2.42)

Sinceg = ¢, + ¢, and¢ = ¢, — ¢, the proton and electron

phase variableg, and¢, are given by:

bp=2(0+9) and g=>(6-4). (@43

Equations 2.43 give the proton and the electron phase vari-

ables¢, andg, in terms of¢ and¢. The solution forg is
given by Eq. 2.42 and the solution fop is given by
¢ =2tan (1), (2.44)

wherer = t(A) is given by Eq. 2.12. The net upshot of
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family of critical points(¢,,2, w.2) in Eq. .23 are centres if

M > 1/2, and correspond t8 = H., = 2M? + 1/(8M?).

In this section, we first derive a solution connecting two sad-
dle critical points atw, ¢) = (0, ¢.) and(w, ¢) = (0, —¢,),
which is a heteroclinic orbit in théw, ¢) phase plane. This
solution is a solitary wave solution farwith an infinite spa-
tial period inx, which has a bell shaped profile similar to that
of the KdV soliton, and corresponds to the case where the
HamiltonianH = 1. The oscilliton solutions investigated in
this section correspond to th¢ = 1 contours in thé¢, w)
phase plane illustrated in Figs. 3—6.

Examples of both periodic and compacton wave packet so-
lutions are given in Dubinin et al. (2003). However, the com-
pacton type solutions were not identified as compactons as
such (see Figs. 5 and 6 of Dubinin et al., 2003). We give
further discussion of the compacton and periodic wave solu-
tions in Sect. 4, where we determine the dependence of the
wave period, L, onH andM.

3.1 Casei=1

From EQs. 2.16—(2.18), the integral (Eq3.2), for H = 1,
corresponds to the potential well equation:

the above analysis is that the solutions for electron and proare the roots of the quadratic equation:

ton phase variableg, and ¢, are given parametrically in

terms of A by Eqgs. .42—(2.43. This then allows the deter-

mination of the complex transverse velocities. andu ,+
and the complex transverse magnetic fieRis throughout
the wave.

3 Solution examples

From Egs. 2.12 and @.14) the travelling wave solution for

T = tan(¢/2) andA = (1 — u?/u)Y/2 can be expressed in

the parametric form:

2 v _ 1/2
()
AdA
x:x"_“/ (H—mM2a-2d—H —apie &2

dA\?  2MP(A —D2(A—A_)
where
1—2M?2
=z = cosp., Ay =1, 3.4
g(A) = —[2M*(A®— 1)+ H — A]=0, (3.5)

whereg(A) is the quadratic factor appearing in Eg3.1
and @.2).

There are two distinct cases to consider, depending on the
value of the Mach numbe¥/. For the case (a)/2 < M <
1/4/2, 0 < A_ < 1, whereas for the second case (b) with
M > 1//2,-1 < A_ < 0. Sketches of the potenti&l(A)
in these two cases are given in Fig. 7. For a physical solution
itis necessary that (A) > 0and O< A < 1.

¢From Egs.3.0)—(3.5):

T =~2Mo (A — A_)Y2, (3.6)

o /A AdA
V2Mm (1= A)(A — AHVZ

are the solutions fot = t(A) andx = x(A), wherexg is
an integration constant. We note for later reference, that the

X = xp— 3.7)

wheres = +1 corresponds to the two solution branches, inverse of Eq. 8.6) giving A as a function of is:

ando = sgn(r) = sgnsing). It is implicitly assumed in
Egs. 8.1 and @.2) that A is restricted so that = x(A) and
T = t(A) are real.

The Hamiltonian critical point analysis in EqQR.{9-

1472 -2m?
B 2m2
Using t to replaceA as integration variable in Eq3(7)

A (3.8)

(2.33 shows that there are two families of critical points. The We obtain:

first family of critical points(¢,1, w¢1) in EQ. .22 are sad-
dlesif M > 1/2 and occur whet{ = H.1 = 1. The second

dt,

1 [T1+72—2M?2
/ tr (3.9)

FEXTE | Tr 2 —amz
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for the solution forx in terms oft. The integral (Eq3.9)

1 1
may be obtained in closed form: a) —<M<—
2 V2
1 —4M? -1
X =x0+ Lz + In|Z . (3.10) V()
M 4M?2 -1 |t +4M?2 -1 A
Thus Egs. 8.8—(3.10 give an alternative parametric form
for the solution in terms of. SinceA = (1 — u?/)Y? we 0.2 7]
obtain:
2 2y M 2 2 2 ]
u :u(l—A):W[MM -1 —7711+7°), (3.11) /\
as the solution for? in terms ofz. 0.0 ' 10 ' 20 ;A

The phase variablé = ¢, + ¢p in Eq. 2.42 may be
expressed in the form:

8 -1 (A dA i
A / . @1 02
(n+1) V2ZM(1 — A)(A — A_)Y/2
Using Eq. 8.6), the integral (Eq3.12 reduces to: ]
~ 2u—1) [° dt’
(L+1 4M2-1) -t b) M>L
(u—1 |r—vanr—1 v 3.13) V(@A) V2
. . 4

(+DVaMZ—1 |t +vamz—1| ° . &‘ ,
The Eqg. 8.13 is similar to that forx in Eq. 3.10. Set-
ting the integration constantg and¢g equal to zero in these 7 :
equations, we obtain: 50
; p—1 T . i
Hence from Eq.Z.43 the electron and proton phase vari- : i : —>
ablesp, ande, are given by: 0i0 50 A

1[p—1 T i :
¢’e—§[—u+1(x—m)—¢] 5ol |

1fp—-1 T :
=3 [M—H (= 372) + ‘4 - (.19 - |
The variablesp, and ¢, govern the fine scale oscillations _10.0

in the transverse electron and proton velocitigs andu ,+

(see e.g. Fig. 2d). o Fig. 7. Potential well diagrams oV (A) versusA from Eq. 8.3
¢From Egs.1.8) and (.9 the transverse magnetic field for (a)1/2 < M < 1/+/2 and(b) M > 1/4/2.
componentsB, andB; in the wave are given by:

By=M3 u (cOS$,+ COSp,) = is the magnitude of the transverse field variations
1 1. — /B2 2
2M3,u cos<—¢) cos(—gb) , (3.16) (Bl—\/ B?+ B2).
2 2 Below, we consider in more detail the large scale charac-
teristics of the oscilliton travelling wave, with envelope gov-
B,=M3 u (sing,+sing,) = erned by the parametric solutions= x(z) andu = u(t) of
s . (1. 1 Egs. 8.10—(3.1)). Differentiating Eq. 8.9) implicitly with
2Mjeusin| 5¢ | cos| o (317)  respect tor we find satisfies the differential equation:
Thus, the transverse magnetic field components exhibit wavelt _ M?(1+ 1% — 4M?) (3.19)
beating between the electron and proton phases. Frondx = 1+ 12— 2M?2 '
Egs. 8.16-(3.17 Equation 8.19 shows thatit/dx = 0 att = 47, where

1 . = ~/4M? -1 = tan(¢./2). From Eq. 8.1) u = 0
_ 2 c c
B =2Mju C°S<§¢)’ (3.18) att = +1.. The points(u,t) = (0, £t.) correspond
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Fig. 9. Smooth travelling wave oscilliton profiles farandt =
tan(¢/2) for 1/2 < M < 1/4/2 (Case(a)). The maximum of
u occurs atx = 0 whereu = ,/using. and sinp, = (M2 -
1/4Y2,m2.

For the caseM > 1/4/2, t is not a monotonic, single
valued function ofc. This can be seen by sketchidg/dx
in Eq. 3.19 versusr in the two cases (see Fig. 8). For Case
(b),dt/dx is negative if2M2—1)1/2 < || < (4M?—1)Y/2,
but is otherwise positive. Note thét /dx diverges ast| —
(2M? — 1)1/2 which indicates possibile shock formation, and
multi-valued behaviour of as a function of.

Fig. 8. Sketches ofit/dx versusr for the cases(a) 1/2 < M <
1/+/2 and(b) M > 1//2.

In Case (a)dt/dx < 0 in the physically allowed region
to the saddle critical points atw, ¢) = (0, £¢.) in the  |t| < (4M? — 1H¥/2. From Eq. 8.10, x - —occ ast —
(w, ¢) phase plane corresponding to the Hamiltonian con-(4M? — %2 andx — oo ast — —(4M? — )2, Also
tour H = 1. Equation 8.19 also shows thait /dx| — oo x = 0 whent = 0 if we choose the integration constant
ast — +(2M2 - DHV2if M > 1/4/2. xo = 0. The solutions for (x) andu(x) are illustrated in

For a physically relevant solution we require<0A < 1.  Fig- 9 for the case/ = 0.51. The solutions show thatis
¢From Eq. 3.9) this requires that can only have a limited 2 monotonic decreasing function of and the solution for

range of values, namely: u(x) is reminiscent of the seét) profile characteristic of
the KdV soliton.
@ |t]<@M2=1)Y2 if 1/2<M<1/+/2, Inthe limitasM — (1/+/2)_, the profile fordt /dx steep-

(b) @M2—D)Y2<|7|<@M2-1)Y2 if M>1/v2. (3.20) ens, and has an infinite gradientat 0. For example, for
M = 1/4/2, Eq. B.19 reduces to:

For|z| < (2M? — 1)Y/2in Case (b) ¥ > 1/+/2), one ob-

tainsA < 0, which is not allowed. The implications of the

inequalities for the solutions can be seen, in part by sketchingiz 1 1

A andu? as functions of for the two cases. dx 2 <1 - _> ’ (3:21)
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“F 3 Fig. 11. Solution (Eq.3.10 for t(x) for H = 1 andM > 1//2.
E E The solution becomes triple valued in the region near the origin
3 E aboutx = 0.
=) g E
10%— 3 M=0.9
F 50F
0g | | | 2
-10 -5 0 5 10

Fig. 10. Oscilliton solutions forr (x) andu(x) for M = 1/\/2 and >
H=1.

and hencelt/dx — —oo ast — 0. The solution fon?
reduces to:

W=y (1 - r2) (1+ rz) . (3.22) X

Thus, the solutions for botl andz remain single valued as  Fig. 12. Solution profile ABEF (solid line) fou(x) for the rota-
M — 1/+/2. The maximum value af for this solution is  tional discontinuity shock solution of Fig. 11. Note B, E and O are
u = /i which is obtained at = 0 (we assumeg = 0). the same point on the profile.
The solution forM = 1/+/2 is illustrated in Fig. 10.

For M > 1/+/2 there does not exist a single valued solu-
tion for 7 (x) stretching fromx = —oco to x = +00. A so-
lution profile (Eq.3.11) for 7 (x) for a case with > 1//2 solution with a “shock jump” ing consists of the profile
(M = 0.9) is illustrated in Fig. 11. In the non-physical re- ABEF in Fig. 11 where there is a jump i at x = O.
gion|t| < M2 —1)Y2 dt/dx > 0 anddt/dx diverges as For this jump, there is no change in across the jump,
T — £(2M? — 1)¥/2. The solution could possibly be made Sinceu = ,/using. at B,O and E. Effectively the trans-
single valued by inserting a shock in the flow. In the allowed verse velocityu, = uyy + U8, undergoes a rotation of
physical region2M? — DY2 < |z7| < (4M? — 1)Y2 (see —2tarri[(4M? — 2)1/?] through the transition. This pro-
Eq.3.20, (x) is a monotonic decreasing function.af The posed solution is more akin to a rotational discontinuity than
nature of the shock could be complicated by the possibility@ shock. The solution far(x) for this jump transition is il-
of plasma heating, which would vitiate the cold plasma as-lustrated in Fig. 12.  The solution for(x) is given by the
sumption used in the model. Curve ABEF.

‘The points A,B and C on tr21e SOIT}L()” pr(;fille(x)lir; The proposed rotational discontinuity solution in Figs. 11
Fig. 11 correspond ta = (4M° — 1)Z%, (4M° — 2) / and 12, implies that there must be a compensating rotation
and (2M? — 1)Y/2 respectively. Similarly, D, E and F cor- in the proton transverse velocity in order to ensure trans-

respond tor = —(2M? — D)2, v = —(4M? —2)Y2and  verse momentum balance. Note that there is a discontinu-
T = —(4M? — 1)-lr/2 respectively. At points B, O and E, ity in du/dx at the jump, and that the maximum velocity

u = /using., and at C and Dy = ,/iu. One possible  uuqc = /it Sing, is obtained at the discontinuity at= 0.
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100.0 F

10.0 periodic

H=2M? +1/(8M?)

oscillitons

Fig. 13. Schematic of thgM, H) plane indicating the regions Y = (
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In the compacton regime §22 < H < 1and 0< M <
1//2), we find:
O<A_<H<l<Ay. (4.3)

Thus, Q(A) > 0if A liesintherange:A_ < A < H.
Hence in the compacton regime:

A A/
=- dA, 4.4
g ”fA, JO) 44

is the form of the solution fox = x(A), where we have set
the constant of integrationg, equal to zero.

Introducing the new integration variable:
A — A )1/2

A (4.5)

where smooth compactons, oscillitons and periodic waves are ob-

tained.

4 Elliptic integrals and spatial periods

In this section we discuss the nature of the solutions:
x(A) of the elliptic integral (Egq3.2) for x. The inverse of
the elliptic integral gives the solution fa® = (1 — A?)

as a function ofc. We show, that the elliptic integral can be
split up into a linear combination of elliptic integrals of the
first and second kind (Abramowitz and Stegun (1965), Ch

17). We illustrate the use of these results by deriving some
of the properties of the compacton solutions obtained in theE (UIv) =

parameter regime: @2 < H < 1and 0< M < 1/4/2
(see the(¢, w) phase plane trajectories in Figs. 3 and 4),

and the periodic solutions obtained in the parameter regim

max{1,2M?} < H < 2M? +1/(8M?) andM > 1/2. A
schematic of théM, H) plane in Fig. 13 illustrates the re-
gions where one obtains compactons and periodic solution
The oscillitons are seen to correspond to the limit of the com
pacton solutions a# 1 1, and the limit of the periodic so-
lutions in the limit asH | 1 in the Alfvén Mach number
regime ¥2 < M < 1/+/2. The oscillitons have an infi-
nite spatial period, but the periodic and compacton solution
have finite periods depending dih and M. We determine

the dependence of the spatial period of the compactons an

the periodic solutiongl,, on the parameterd and M.
4.1 Compacton solutions

¢From Eq. 8.2) the integral forx = x(A) can be written in
the form:

A A/ ,
X :xo—o/ Q(A’)dA , (4.1)
where
O(A) = (A — H)[2M?A? — A+ H — 2M?] =
2M?(A — A_)(A — AL)(A — H), (4.2)

andA . are given by Eq.Z.18 (see also ER.39. For phys-
ical solutions we require thg® (A) > O andthatO< A < 1.

S

the integral (Eq4.4) can be split up into a combination of
elliptic integrals of the first and second kind, to obtain the
solution forx = x(A) in the form:

2
where
¢ dy 1
U:/o Jadaws o “n
1/2
¢ 1—vy?
/0 dy<1_y2> , (4.8)
A—A_\Y2 H—A_
§= (=) = 0= 69

define standard elliptic integrals of the first and second kind
respectively (Abramowitz and Stegun, 1965). Because of

She ordering (Egq4.3), the parametep lies in the range:

0 < v < 1. InEqg. 4.9, snU|v) is one of the standard
Jacobian elliptic functions. The incomplete elliptic integral
of the second kind (E¢4.8) can be expressed in a variety
of different forms (e.g. by using the Jacobian Zeta function,
which in turn can be expressed in terms of the Jacobian Theta
fémction: Abramowitz and Stegun, 1965).

By noting that; = 0 whenA = A_ and¢ = 1 when
A = H, it follows from Eq. @.6) that the spatial period of
the compactonL, is given by:

2.2

L= M(Ay — A2 [A+K — (A —AE],  (4.10)
1 dy
K=K = / , (4.11)
0 VA= y)(A—1y?
1 _ 2 1/2
E=EKK|v) = / dy (ll vyz ) , (4.12)
0 -y

are complete elliptic integrals of the first and second kind.
The result (Eq4.10 for the periodL, corresponds to the
change int moving along the compacton phase space trajec-
tories from¢ = 7w to¢ = —x in Figs. 3 and 4 (not&A = H
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atg = 7 andA = A_ at¢ = 0. In effect, Eqs.4.10—-
(4.12 give the period of the compacton as a function of the
two parameteré/ andM characterizing the solution.

As an example of the use of E¢t.L0Q for0 < M < 1/2,
and for H ~ 1 (corresponding to the small amplitude com-
pacton limit investigated by Dubinin et al., 2003),- ~ 1,

Ay ~ (1—2M%/2M?), v ~ 0, K ~ 7/2, E ~ 7/2
(Abramowitz and Stegun (1965), formulae (17.3.11) and
(17.3.12), p. 591), we obtain:

27
V1—am?
Thus, inthelimitasy — 0,L ~ 27, whereasas8/ — 1/2,
L — oo (note that the limit a3/ — 1/2 in this case is also

the oscilliton solitary wave limit).
Similarly, for smallM we obtain:

2
b= u-TjTZH)M[H - M?(1—H)+ 0(M*)]. (4.14)

Thus, inthe limitas — 0, L ~ 27 H if H is o).
From Eq. .42 the composite phase varialgle= ¢.+¢,
in the wave may be written as:

Co(u-1 A dN
(w+1D Ja_ VO

Using the change of integration variable E4.5] we obtain:

B V2o(u -1
(Ar — AOZM(i+ 1)

L~ (4.13)

¢= + ¢o. (4.15)

¢ —do= snicly),  (4.16)

where sml(zjv) = U is the function of A defined in

Egs. 6.7)—(4.9). Equation 4.16 can be inverted to give:
1(A—A)Y2M

xsr?(‘” (Ay—AD)

it esn i o))

This latter formulation shows that the travelling wave solu-
tion can be written parametrically in terms of The vari-
ablesp, and¢, or ¢ and¢ describe the fine scale oscillations
inside the wave envelope.

A=A_+(H-A_)

(¢—¢0) (4.17)

4.2 Periodic solutions

has
The periodic solutions (see Figs. 4—6 and 13) are obtained i|£|) o

the regimes:

@1l<H<He and ¥2<M < 1/V2,

0 2M2 <H <Hg and M> 1/4/2. (4.18)

For physical solutions, we requi@(A) > 0and0< A <1
(see Eg4.2et seq.). Thus, for physical solutions:
O<A_<A<A;<l<H. (4.19)
For periodic solutiongf¢ /dx — 0 asA — A1, where

- (H? - D2,

Al=H (4.20)
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andA_ < A; < A4. The proof thatA1 lies in this range
can be proved using E4.(L8).

The solution forx = x(A) is again given by Eq.4(4),
but for the periodic solutionsA is restricted to the range
(Eg.4.19. Introducing the integration variable:

= )

the integral (Eg4.4) for x = x(A) reduces to the sum of two
elliptic integrals of the first and second kind, in the form:

A —A_

- = 4.21
. (4.21)

2 r 7 ~

B _ﬁ [HU —(H - A—>E<U|f»>] . (4.22)
where
. 3 dy L
’ 2/0 Jaona s oW (4.23)

- I3 .2 1/2

EWUPD) = /0 dy (11 _vyyz ) 7 (4.24)
~ A—A_ 1/2 - ) Ap— A
.= (H) =snU|b), V= ST (4.25)

whereU is an elliptic integral of the first kind andl (U|7)
is the corresponding elliptic integral of the second kind. The
parametem lies in the range O< v < 1 for the ordering
(Eq.4.18. Note thatv is the inverse of the parameterin
Eqg. @.9) which was used in describing the compactons.

By noting that; = 0 whenA = A_ and¢ = 1 when
A = A, itfollows from Eq. @.22) that the spatial period of
the wave,L, is given by:

2.2
MJH —A_

whereK (v) and E(K |v) are the complete elliptic integrals
of the first and second kind (c.f. Egé.11and4.12) with
parameted. The periodL corresponds to the changeiinn
moving around the closed phase space orbits in Figs. 36, in
an anti-clockwise fashion, starting @, w) = (0_, w_) at
the top of the trajectory where_ = (1— A2), and ending
at(¢, w) = (04, w-).

Using Eg. 4.15 and the transformations (E¢.21) the
b= + ¢, may be expressed in the form:

i ()

M(H — A_)Y/2
whereZ and? are given by Eq.4.25. Again, ¢ andé or
¢, and¢, govern the fine scale oscillations inside the wave
envelope.

L= [HK(V) — (H — AL)E(K|D)], (4.26)

nw—1

4.27
] (4.27)

sn (D) + o,

4.3 The solution familyf = 2M?

In order to obtain some idea of how the period of the waves
(both compactons and periodic waves) dependg/oit is
convenient to consider the solution family with = 2M?2.



656 G. M. Webb et al.: Nonlinear travelling Whistler waves

For this family, one obtains compactons ik0M < 1/+/2, Thus, the spatial period of the compactons, using E@J
and periodic waves foM > 1/4/2. These solutions have in this limit may be approximated by:

an infinite derivative fott¢,| whenA = 0 (i.e. whenu = u

atx = 0), but are otherwise a regular well behaved solution; _ 4

2
family. From Eq. 2.18): [In (,/1/4 — M4> - 1]

1 The Egs. 4.33 and @.35 show thatL — 0 in the limit as
T om2’ M — 0andL — oo asM 4 1/4/2. The periodL, shows

i ) 5. a logarithmic divergence as one approaches the oscilliton so-
for the solutions of interest. The curye = 2M“isthe lower | o for pr — 1/4/2.

limiting curve in the(M, H) plane in Fig. 13 describing the
compacton and periodic solution regimes.

as M1 1/v/2. (4.35)

A_=0, AL H = 2M?, (4.28)

The compacton solutions are characterized by:

_ w2, =u, ul, =upnl—-H?=1-4M%, (4.36)
4.3.1 Compacton solutions
and hence
The compacton solutions from Eq4.§) and .12 are de- 2_ 2 2 _ 4
scribed by the equations: AU =ty g — Uy = AUM, (4.37)
bod whereu ,qx andu,,;, are the maximum and minimum values
x=—35U-EUP], of u. Thus, the maximum change irf is obtained in the
o\ 172 oscilliton limit asM — 1/4/2 andAu? — p.
. A(A —1/(2M7))
T =tang/2) = V2o M ( A —2M2 ) - (429 4.3.2 Periodic solutions
wheres = sgn(sing) and The implicit solution for the periodic waves fdi = 2M?
andM > 1/+/2 is given by
4 A1/2

are the paramters used in the elliptic integfaland E (U |v) AA —1/(2M? 1/2
in Egs. Z.?)—(4.8). From Eq. 4.1qpthe spaﬁial period ofthe T = tan(/2) = V20 M ( ( A — 5‘42 ))> . (4.38)
compactons, L, is given by:

) whereo = sgn(sing) and
L=—][KW) —EK]|v)], 4.31

a2 KO = E(K]V)] (*.3) b= 4—14 and 7 =~2MAY?, (4.39)

whereK (v) and E(K |v) are the complete elliptic integrals M
(Egs.4.11:4.12. ltis useful to note thak (v) and E(K |v) are the values of theand to be used in the elliptic integrals
may be expressed in terms of Gauss’s Hypergeometric funcfEgs.4.23and4.24). From Eq. 4.37) the spatial period is

tion in the form: given by:

K(w) = %F (1/2,1/2: 1, 1), L=4[K®) — EK, D], (4.40)

E(K,v) = ZF (=1/2,1/2;1,v), (4.32) whereK (v) and E(K, v) are the c~:omplete elliptic integrals
2 (Egs.4.1and4.12 with parametep.

(Abramowitz and Stegun, 1965), we obtain: In the limit asM | 1/+/2, Eq. @.40 gives:

2

for the spatial period of the compactons for sméll The
resultL ~ 27 M? can also be derived by settirg = 2M?
in Eq. @.14. In the limit asM 1 1/+/2 andv — 1, we
obtain the equation:

which is similar to the compacton period (E435 in the
limitas M 1 1/+/2. Thus,L — oo in the oscilliton limit as
M | 1/+/2. In the limit asM — oo, » — 0 and we obtain
from Eqg. @.40 the result:

K()’\‘}m 16 —}In 1—6 L~ T 1+3 32M4 01M8 4.42
V=o"M1y ) T2 \1tamt ) —W[Jr/( )+ 01/ )], (4.42)
E(Kv) = 1. (4.34)  inthis limit. Thus,Z — 0 asM — oo,

The result (Eq4.34) for K (v) can be determined from a for- For the periodic waves we find:

mulafor F(a, b; a + b, v) in Abramowitz and Stegun (1965) 2 1 2 M
(formula 15.3.10, p. 559) with = b = 1/2 andv ~ 1.  Umax=H. U=t (1= g ). Auw'=rg. (4.43)
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Equations 4.37) and @.43 show thatAx? is an increasing a)

10

function of M for the compactons, but a decreasing function - ]
of M for the periodic waves. The maximum value/®fi? is 8- .
obtained in the oscilliton limit a3/ — 1/+/2 andAu? — i ]
M. 61— |

The dependence of the periddas a function ofM for 4T 1
both the compactons and the periodic wavesfor 2M2 is 4 -
illustrated in Fig. 14a. Figure 14b shows the corresponding i C P 1
change inAu? of the waves, as a function af. However, it 2~ 5
is important to note that these results strictly only apply for i O 1

_ op2 ‘

the case = 2M~“. o e 00

5 Concluding remarks 5000
Sauer et al. (2002), Dubinin et al. (2003) and McKenzie 1500
et al. (2004) used the equations of two-fluid, electron pro-
ton plasmas to study a variety of nonlinear, travelling wave
solutions of the equations, representing nonlinear station-
ary whistler and whistler oscilliton waves in the travelling
wave frame. Dubinin et al. (2003) showed that for the case 500
of parallel propagation, in which the constant background
magnetic fieldBg = Bpe, and the travelling wave veloc-
ity U are both along the x-axis, that the equations could be
reduced to two coupled differential equations for the trans-
verse electron speed = lue| and the phase difference Fig. 14. lllustrates(a) the variation of the spatial perioll of the
¢ = ¢, — ¢. characterizing the complex transverse veloc- ;omnactons() and the periodic wavesP) with the Alfvén Mach
tiesujr = ujy *iuj; = ujexp£ig;), j = e, p of the  nymbern for the solution familyH = 2M2, and(b) the variation
electrons and the protons. of Au? = u2,,, —u?, with M. The oscillitons () are obtained

In this paper it was shown that the integral of the equa-in the limit asM — 1/+/2.
tions® = ®(¢, u) = const. obtained by these authors, is
in fact the HamiltonianHy of the system (modulo a con-
stant), in whichy andw = u? are the canonical variables. 2M2 < H < 1and O< M < 1/+/2; periodic solutions are
A second integral of the equations was also obtained in theobtained in the region mak, 2M2) < H < 2M?+1/(8M?)
form x = I(A), wherel(A) is an elliptic integral, and andM > 1/2; and oscillitons are obtained on the common
A =1 —u?/)Y2 (u = m,/m, is the ratio of the proton boundaryH = 1 and ¥2 < M < 1/+/2 between the pe-
and electron masses, ands the transverse electron speed riodic and compacton regions. The detailed dependence of

N3
3 1000

o
sl ..
o

measured in units of the electron Affix speed/y4,). the spatial period. of the compacton and periodic solution
Hamilton’s equations for the systemp, = Hp, and families onH and M are given in terms of complete elliptic
w, = —Hpg have two families of critical points provided integrals of the first and second kind (Egs10and4.23.

M = My > 1/2 (M4 is the Alfvén Mach number (EdL.4) The periodL — oo as one approaches the oscilliton bound-
based on the geometric mean mass of the protons and thary regionH = 1 and ¥2 < M < 1/+/2.
electrons). One of the families consists of saddle points, and A detailed study of the oscilliton solutions wiiti = 1 as
the other family consists of centres (O-points) (Sect. 2.1).M varies from ¥2 to 1/+/2 was carried out (Figs. 7-11) us-
The solution trajectories in th@, w) phase plane (Hamilto- ing the analytical, implicit solution fox andt = tan(¢/2)
nian contours) reveal the existence of: (a) oscillitons (or soli-in terms of A (Sect. 3). ForM > 1/+/2, the solution for
tary wave) type solutions corresponding to heteroclinic or-t = tan(¢/2) becomes multiple valued near the origin. It
bits connecting neighbouring saddles; (b) periodic solutionswas suggested that a solitary wave type solution, with an
which encircle theO-points and (c) compacton type solu- embedded rotational discontinuity, in which the transverse
tions corresponding to solitary wave solutions with compactReynolds stresses of the electrons are balanced by equal and
support (i.e. with a finite wavelength and wittx /dx = 0 opposite transverse stresses of the protons is possible in this
at the endpoints of the wave). In addition, there exists othercase.
solutions, which intersect the boundary of the physically al- A Hamiltonian formulation using action-angle variables
lowed region at: = ./, at which poind¢ /dx — —oo (see s developed in Appendix B. In this formulation, the action
Figs. 3-6). I and angle variablé are the canonical variables, and the

A schematic of the(M, H) parameter plane in Fig. 13 Hamiltonian trajectories correspond to orbits on a torus. The
reveals that compacton solutions are obtained in the regiomction angle variables are also useful for determining the pe-
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riods of the periodic and compacton solutions. A further The analogue of Eqs1(5—(1.7) using the normalization

Hamiltonian formulation (Appendix C) use#, A) as the  (Eq.Al) are:

canonical variables anpl = ¢, + ¢, as the new independent dé 1
3

variable. In this development = x(¢) and the travelling I W - M§6(1+ cosp), (AB)
wave solutions are expressed parametrically in terngs of ¢

We have used the terms "solitons” and "compactons” in d¢ 1
this paper in a rather loose sense. In the mathematical Iit-d_x—p = M3, (1+cosp) - w@—u2/ )2’ (A7)
erature (e.g. Rosenau and Hyman (1993)) solitons and com- _
pactons are solitary waves which undergo elastic collisionsd¢ _ n—1 b=o,+o (A8)
when two waves collide. A more accurate characteriza-dx ~— (1 — u2/u)4/2’ e e

tion of the travelling waves in this paper would be “solitary .

waves” and “compact solitary waves”. Presumably in the The Egs. f6)—(A8) for ¢., ¢, and¢ = ¢, + ¢. were not
small amplitude limit at least, one might expect the travelling given explicitly in Dubinin et al. (2003), but are implicit in
waves to be solitons and compactons respectively. Spencdheir analysis.

(1982), Spencer and Kaufman (1982), Holm and Kupersh-

midt (1983) and Sahraoui et al. (2003) have derived the genAppendix B
eral, Hamiltonian Poisson bracket structure of the multi-fluid

plasma equations. This suggests that the Hamiltonian pef, this appendix we provide a discussion of the Hamiltonian
spective will also provide further insight into the travelling system (Eqs2.1-2.2) in terms of action-angle variables. For
wave oblique solitons in cold magnetized plasmas (McKen-«;|gsed orbit” solutions, the Hamiltonian system (Egsl—

zie and Boyle, 2001), oblique oscillitons (Dubinin et al., 5 2 can be written in terms of action-angle variableandd
2003; McKenzie et al., 2004; McKenzie, 2004a; Verheestwhere

et al., 2004) and associated nonlinear, travelling waves in 1 1
two-fluid plasmas (McKenzie et al., 2004a, b; McKenzieand ;] = — % pdg = — 7{ w(¢p, Hy)do (x), (B1)
Boyle, 2003: Sauer et al., 2001, 2002, 2003). 21 21

aS(¢p, 1)

¢
S:/ w(¢’, Ho)dg', 6 = Y (B2)

wherel is the action (e.g. Zaslavsky et al., 1991). Note that
In this appendix we provide the basic equations for the trav-I = I (Ho) is a function of the Hamiltonian integrélo. For
elling wave system (Eqsl.1-1.7) obtained by Dubinin et the compacton solutionsz < ¢ < = corresponds to one
al. (2003). Dubinin et al. (2003) used the normalized vari- period of the waves. For the periodic solutiong); < ¢ <

Appendix A

ables: ¢1 where(—¢1, w1) and(¢1, wy) are the points on the phase
D¢ U trajectories wher¢dw/d¢| — oo. The sense of integration
x=o o= (A1)  in Eq. BY) is that of increasing, which is indicated by the

. . . ) arrows on the phase space trajectories in Figs. 3—6.
where X is the x-coordinate in the travelling wave frame. Using Egs. 2.1—(2.2) and Egs. B1)—(B2) Hamilton's

Dubinin et al. (2003) use the Alénl '\ZA‘?‘Ch numbeMac = gquations in terms of the action-angle variables, takes the
U/ V. WhereVy, = Bo/(uonem.)Y? is the Alfvéen speed

form:
he el fluid. N h
based on the electron fluid oteJtr ilt 49 9Ho " Jl 9 Ho . &
- — = —=w , —=——=0,
T=ax, M3, =aM3 o= BT - (A2) dx oI dx 20

n . . .
o ) ) ) which demonstrates thab, I) are canonically conjugate
relates the coordinatesandx andM4 to M7,. The deriva-  yariables. In the derivation of EqBB), w = w(¢, Ho) is

tion of Eqgs. (.1)-(1.7) is based on EqsAB)—(A8) given  regarded as a function ¢f and Hy andI = 1(Hp). Also
below, which follow from the work of Dubinin et al. (2003). note that
Using the above normalizations, Eg$.1)—(1.2) are:

due 5 o) = dd}jo’ aw(d;;rHO) - aH1 - (B4)
Fria M3, uesSing, (A3) dHp o/0w .¢)x |

do ) s 1m where use ha; been made of the Hamilton equation=
e 2M4,(14cosp) —a(1—u,/u) /2, (A4) dHp/dw. The integrals of Eq.K3) are:
where 0 =w(l)x +6y, [ =1I1(Hp) = const.. (B5)
a=H +1 _Mp + me’ " (A5) Thus, in action-angle variables, the Hamiltonian trajectories

M mp ne lie on a torus. For periodic solutions, the trajectories form a

Equation @A4) slightly differs from the corresponding €losed curve on the torus. The spatial period of the wave is:
Eq. (30) of Dubinin et al. (2003) where — 1. The cor- 27 dl

rect version of Eq. (30) of Dubinin et al. (2003) is E44). L= o) - T aHy (B6)
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Using the expression (E&1) for the action in Eq.B6) we wherexg is an integration constant. The Hamiltonian system

find: (Eq.C2) has the integraH = const. (i.e. K = const.) and
dw(d. Ho) 1 the integral:
wl@, 1o / ’
L=¢p —— =P —— = Ax, (B7
?g ol 9P ™ 7€ aHo o ¥ x B w41\ [N dn -
where Ax is the change ix in moving around the orbit in H A-
the (¢, w) phase plane. _ where gp is an integration constant and(A) is given by
Using the results (Eq81-B7, 4.1, and4.2) we obtain: Eq. @.2).

The above formulation, is particularly useful, since it al-
dA', (B8) lows one to write the oscilliton, compacton and periodic,

!

H
L=x(—m,wy)—x(r,wy) = 2/

AoV O(A) travelling wave solutions parametrically in termsgof
w (HA?-2ANH+1 The oscilliton solution (Sect. 3.1) may be written paramet-
I = T /A Wd . (B9) rically in the form:

1 1
for the periodL and action/ of the compactons, where @ =2tan (1) = —2tan -z tanhike)!,

wy = u(l — H? and Q(A) is given by Eq. 4.9. The  _ (M + 1)
period L in Eq. B8) is equivalent to the result (E4.10. w—1
Similarly for the periodic waves, we obtain: VR

sechik@)[1 + =2 tant? (k$)]Y/2,

u —=
Ay , 2M2

A
— _ — ! 1/- 1/-

A 2 _ / 1
po M [TrATZ AL, Bl k= LD amz -1 (C5)
T Ja- Vo) 2(n—1)

for the spatial period. and the actior, wherewy = u(1—  Note thate, =tan(¢:/2). _
Ai)- Note that(¢, w) = (O_, w_) corresponds to the top of The compacton solution (Sect. 4.1) may be written para-

the orbit andi¢, w) = (0, w.,) corresponds to the bottom of Metrically in the form:

the orbit in the(¢, w)-phase plane. The period (EH§10) is 1T .14 ~ ~
equivalent to Eq.4.26). ¢ =—2tan [A / SC(k¢|V)dn(k¢IV)] :
+1 - (Ay—AD) -
=10 [A+¢ - +TEU«W)] ,
A dix C -
PRend A=A_+(H=A)sPkelv), u=I[ud—AH]"2
In this appendix we discuss an alternative Hamiltonian for- ; _ /s + - 1z ) C6
mulation of the system (Eqg.1-2.2) in which¢ = ¢. + ¢,, =3 (¢ ¢> P =3 <¢ ¢> (C6)

is used as the new independent variable to reptacérom  pere
Eq. 2.40 x = x(¢) satisfies the differential equation:

14 AY? 4 )
dp  (u—-1)° w+1\ A4 H—A_
k=\——|—%—, v=—"—-""-——, (C7)
,u—l 2 A+—A7

Noting thatw = u(1 — A2), the Hamiltonian system
(Egs.2.1-2.2) can be cast in the alternative canonical form: sox|v), dn(x|v), sn(x|v) are Jacobian elliptic functions;
E(U|v) is a standard elliptic integral of the second kind. One
dp 9K dA 93K K= (M + 1) H. (C2) period of the wave corresponds K (v) < k¢ < K(v)
N — ' whereK (v) is a complete elliptic integral of the first kind.
The periodic wave solutions (Sect. 4.2) can be written
Thus, the Hamiltonian system (Eg@.1-2.2) is equivalent  parametrically in terms af in the form:
to the Hamiltonian system (EqC2), with Hamiltonian K
and canonical variablgg, A), with independent variablg. 4 — _ptan? [A1/4,;1/2 snikd|v) cd(12¢3|\7)] ,
The transformation relating Eq.0)—(2.2) to Eq. C2) is a
type of canonical contact transformation (Goldstein, 1980)., _ (“ + 1) [Hq? (H — A~ )E(k¢| )}
¢From Eq.C1), n—1
A=A+ Ay — A)SIPk[D),  u=[u(d— A*]Y2,

x = (Z_JID /j’ A@)d§ + xo, C3) ¢, = ; (ib +¢) . e = % (q”s _ ¢) , (C8)

G @

)
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In Eq. (C8) McKenzie, J. F. and Boyle, T. B.: Obligue solitons in a cold magne-
tized plasma, Physics of Plasmas, 8, 4367-4374, 2001.
5 Ay — A i (M + 1) M(H — A_)Y/? (C9) McKenzie, J. F. and Boyle, T. B.: A unified view of acoustic-
H—-—A_" w—1 ﬁ ) electrostatic solitons in complex plasmas, New J. Phys., 5, 26.1—
~ 26.10, 2003.
One period of the wave corresponds to theange: 0 < McKenzie, J.F ., Dubinin, E., Sauer, K., and Doyle, T. B.: The ap-
kp < 2K (D). plication of the constants of the motion to nonlinear stationary
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