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Abstract. A Hamiltonian formulation of nonlinear, paral-
lel propagating, travelling whistler waves is developed. The
complete system of equations reduces to two coupled dif-
ferential equations for the transverse electron speedu and
a phase variableφ=φp − φe representing the difference in
the phases of the transverse complex velocities of the pro-
tons and the electrons. Two integrals of the equations are
obtained. The Hamiltonian integralH , is used to classify the
trajectories in the(φ,w) phase plane, whereφ andw=u2

are the canonical coordinates. Periodic, oscilliton solitary
wave and compacton solutions are obtained, depending on
the value of the Hamiltonian integralH and the Alfv́en Mach
numberM of the travelling wave. The second integral of
the equations of motion gives the positionx in the travel-
ling wave frame as an elliptic integral. The dependence of
the spatial period,L, of the compacton and periodic solu-
tions on the Hamiltonian integralH and the Alfv́en Mach
numberM is given in terms of complete elliptic integrals of
the first and second kind. A solitary wave solution, with an
embedded rotational discontinuity is obtained in which the
transverse Reynolds stresses of the electrons are balanced by
equal and opposite transverse stresses due to the protons. The
individual electron and proton phase variablesφe andφp are
determined in terms ofφ andw. An alternative Hamiltonian
formulation in whichφ̃=φp+φe is the new independent vari-
able replacingx is used to write the travelling wave solutions
parametrically in terms of̃φ.

1 Introduction

Recently (Sauer et al., 2002; Dubinin et al., 2003; McKen-
zie et al., 2004) it has been shown that nonlinear, travelling
whistler waves, can propagate at speeds in excess of the max-
imum, linear whistler speed in the form of a stationary struc-
ture in the travelling wave frame, within which is embedded
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finer spatial oscillations and has been called an oscilliton for
that reason. The linear dispersion relation yields the neces-
sary condition for the formation of an oscilliton which arises
from the fact that the phase and the group speeds are equal at
a frequency of one half the electron gyrofrequency where the
phase speed is maximized. The analysis is carried out in the
travelling wave frame in which the protons must be placed
on an equal footing with the electrons since their Reynolds
stresses are of the same order. In fact the protons and elec-
trons exchange momentum through the mediating Maxwell
magnetic stresses.

In the non-relativistic case, in which charge neutrality is an
appropriate assumption, Dubinin et al. (2003) showed that
for the case where the background magnetic field and the
travelling wave velocity are parallel, that the system could be
reduced to the following two coupled differential equations:

due

dx
= M2

Aue sinφ, (1.1)

dφ

dx
= 2M2

A(1 + cosφ)− (1 − u2
e/µ)

−1/2, (1.2)

where ue is the magnitude of the transverse electron ve-
locity. The transverse electron and proton velocities have
been written in the complex, amplitude and phase form as:
uj±=ujy ± iujz=|uj | exp(±iφj ) wherej=e, p refer to the
electron and proton species. The phaseφ=φp−φe denotes
the difference of the phases for the protons and the electrons.
The above equations pertain to the case of a parallel mag-
netic field configuration in which the constant background
magnetic fieldB0=B0ex and the travelling wave velocityU
are along the x-axis. In Eqs. (1.1)–(1.2)

x =
X

`m̄
, `m̄ =

U

�m̄
,

�m̄ =
eB0

m̄
, m̄ =

mpme

mp +me
, µ =

mp

me
, (1.3)

whereX is the x-coordinate in the travelling wave frame,
mp andme are the proton and electron masses, and�m̄ is the
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Fig. 1. Phase portraits of the system (Eq.1.5) in the (u, ψ) phase
plane for:(a) δ = 2 × 10−3 and(b) δ = 0.

gyrofrequency corresponding to the geometric mean of the
proton and electron masses̄m. Sincemp/me=1836, then
m̄≈me to a good approximation. The equations:

M2
A =

U2

V 2
Am̄

, V 2
Am̄ =

B2
0

µ0npm̄
, (1.4)

define the Alfv́en Mach numberMA, where VAm̄ is the
Alfv én speed based on the geometric meanm̄ of the proton
and electron masses. The normalizations used in Eqs. (1.1)–
(1.2) are slightly different than those used by Dubinin et

al. (2003) (see Appendix A for the form of the equations us-
ing the Dubinin et al., 2003 normalizations).

Using the complex electron momentum equation for
ue±=uey±iuez (Dubinin et al., 2003) we obtain the equa-
tion:

dφe

dx
=

µ

(µ+ 1)(1 − u2
e/µ)

1/2
−M2

A(1 + cosφ), (1.5)

for dφe/dx throughout the wave. Combining Eqs. (1.2) and
(1.5) for φ andφe we obtain the equation:

dφp

dx
= M2

A(1 + cosφ)−
1

(µ+ 1)(1 − u2
e/µ)

1/2
, (1.6)

for dφp/dx. Similarly,

dφ̃

dx
=

µ− 1

(µ+ 1)(1 − u2
e/µ)

1/2
, φ̃ = φp + φe, (1.7)

gives the variation ofd(φp+φe)/dx in the wave.
The assumption of charge neutrality (ne=np=n) implies

upx=uex=ux for thex-components of the fluid velocities of
the protons and the electrons. The total momentum and en-
ergy equations for the system yield the equations:

ux = (1 − u2
e/µ)

1/2, up =
ue

µ
. (1.8)

Equations (1.8) show that there is a limitation on the value
of ux due to energy conservation constraints (the maximum
value ofux is obtained whenue=0), and that the transverse
proton speedup<<ue. The normalized, complex, transverse
magnetic fieldsB±=By±iBz in the wave are given by the
equations:

B± = M2
Ae

(
µup± + ue±

)
, (1.9)

whereMAe=U/VAe is the Alfvén Mach number based on
the electron Alfv́en speedVAe=B0/(µ0neme)

1/2.
The basic Eqs. (1.1)–(1.2) form an independent subsystem

of the complete set of Eqs. (1.1)–(1.9). We show that the
system (Eqs.1.1–1.2) is in fact a Hamiltonian system in its
own right. In this formulation, Eqs. (1.5)–(1.9) for φe, φp, ux
andB± appear as auxiliary equations describing the interac-
tion of the electron and proton fluids and magnetic fields in
the wave. Dubinin et al. (2003) obtained the phase portrait
integral:

u2
e(1 + cosφ)+

µ

M2
A

(1 − u2
e/µ)

1/2
= 8 = const. (1.10)

Thus, in the(φ, ue) phase plane, there is a family of periodic
solutions around anO-point limited by a heteroclinic trajec-
tory connecting two saddle points, which corresponds to the
oscilliton solution (see Figs. 1 and 2).

Consider the phase portraits of the system (Eqs.1.1–1.2)
for the case where the Alfvén Mach numberMAe=(1+δ)/2,
whereδ is a small parameter (Dubinin et al., 2003). For
small δ<<1, the equation system has saddle critical points
at (ue, φ)=(0,±

√
8δ) and has a centre critical point at
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Fig. 2. Features of the oscilliton solution for the caseδ = 2 × 10−3. Panel(a) shows the heteroclinic phase plane trajectory connecting the
two saddle points;(b) shows the soliton like profile foru (solid curve) andψ (dashed curve) obtained by integrating (Eq.1.5); (c) shows the
rate of change of the electron phasedφe/dt with normalized distancet through the wave, and(d) shows fine scale oscillations of the electron
transverse velocity componentsuy anduz within the large scale envelope foru (uy is the solid curve anduz is the dashed curve).

(ue, φ)=(
√

2µδ,0). The equation system possesses aprox-
imate solutions for whichu2

e<<µ and |φ|<<1. Using the
new variables:

ψ = MAeφ, u =
ue

√
2µ
, t = xMAe, (1.11)

in Eqs. (1.1)–(1.2) yields the approximate equation system:

du

dt
= ψ,

dψ

dt
= 2δ − ψ2

− u2. (1.12)

The detailed analysis of the approximate equation system
is given in Dubinin et al. (2003). Figure 1 illustrates the
phase portraits of the system (Eq.1.12) in the (u, ψ) phase
plane for the caseδ=2×10−3 (upper panel) and forδ=0
(lower panel). In the caseδ=2×10−3, the centre critical
point at (u, ψ)=(

√
δ, 0) and the saddle critical points at

(u, ψ)=(0,±
√

8δMAe) are evident. Asδ→0, the centre and
saddle critical points merge to(0,0) (lower panel of Fig. 1).

Figure 2 illustrates the character of the oscilliton solution
for the caseδ=2×10−3. The oscilliton solution corresponds
to the heteroclinic orbit connecting the two saddle pointsS1

andS2 (Panel a). Figure 2b illustrates the solution profiles
for u (the solid curve) andψ (the dashed curve) obtained
by integrating Eq. (1.12). Panel (c) illustratesdφe/dt , the
rate of change of the electron phaseφe with the normalized
space variablet . Panel (d) shows the fine scale oscillations
of the electron transverse velocity componentsuy and uz,
within the large scale envelope foru (uy is the solid curve
anduz is the dashed curve). The name oscilliton comes from
the fact that although the envelope of the wave foru has the
usual, single humped profile characteristic of a soliton, there
are also fine scale oscillations of the transverse electron fluid
velocity within the envelope.

The main aim of the paper is to show that the exact sys-
tem (Eqs.1.1–1.2) is a Hamiltonian system, that has two
integrals, and hence is completely integrable without the
need for any approximations. The first integral is the phase
plane integral (Eq.1.10) and is equivalent to the Hamilto-
nian of the system. There is a further exact integral for
the system, which givesx as a function ofu as an ellip-
tic integral (Sect. 2). The fine scale variations ofφe and
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φp throughout the wave envelope and the corresponding
changes in the transverse complex velocitiesue± andup±

and complex transverse magnetic field variationsB±, are
controlled by Eqs. (1.5)–(1.6). We determine the Hamilto-
nian critical points of Eqs. (1.1)–(1.2) (Sect. 2.1) and inves-
tigate the change in the phase portraits of the system with
the Alfvén Mach numberMA and the Hamiltonian integral
H (Sect. 2.2). The oscilliton (heteroclinic orbit) solution,
which has an infinite spatial period is studied in Sect. 3. The
dependence of the spatial period of the compacton and peri-
odic wave solutions onMA andH is determined in Sect. 4.
An alternative action-angle formulation of the Hamiltonian
system is described in Appendix B. Appendix C describes
a Hamiltonian formulation, in which(φ,3) are the canoni-
cal coordinates,̃φ=φe+φp is the new independent variable
and3=(1−u2

e/µ)
1/2. In this formulation the travelling wave

solutions are given parametrically in terms ofφ̃. The trans-
formation simplifies the algebraic form of the solutions. Sec-
tion 5 concludes with a summary and discussion.

2 Hamiltonian formulation

The system of Eqs. (1.1)–(1.2) can be written in the Hamil-
tonian form:
dφ

dx
=
∂H0

∂w
≡ 2M2(1 + cosφ)− (1 − w/µ)−1/2, (2.1)

dw

dx
= −

∂H0

∂φ
≡ 2M2w sinφ, (2.2)

where

w = u2, (2.3)

H0 = 2M2w(1 + cosφ)+ 2µ(1 − w/µ)1/2 ≡ 2M28. (2.4)

In Eqs. (2.1)–(2.4) M ≡ MA is the Alfvén Mach number
(Eq.1.4); u≡ue is the transverse fluid speed for the electrons;
and8 is the phase space integral (Eq.1.10) of Eqs. (1.1)
and (1.2). Here,(φ,w) ≡ (q, p) are the canonical coordi-
nates andH0 = 2M28 is the Hamiltonian. Note thatH0 is
a rescaled version of the phase space integral8 in Eq. (1.10)
which is a constant of the motion.

The LagrangianL and actionA for the system are given
by the standard Legendre transformation:

A =

∫
L dx where L = wφx −H0. (2.5)

The Euler-Lagrange equations:

δA

δφ
= 2M2w sinφ − wx = 0, (2.6)

δA

δw
= φx −

[
2M2(1 + cosφ)− (1 − w/µ)−1/2

]
= 0, (2.7)

are equivalent to the the equations of motion (Eqs.1.1–1.2)
or Eqs. (2.1)–(2.2).

The question now arises of whether it is possible to obtain
a second integral or constant of the motion. To this end, we
introduce the variables:

3 = (1 − w/µ)1/2 , τ = tan(φ/2) . (2.8)

In terms of3 andφ:

H0 = 2µ
[
M2(1 −32)(1 + cosφ)+3

]
= 2µH. (2.9)

Using standard, half-angle trignometric identities in Eq. (2.9)
we obtain:

H =
2M2(1 −32)

1 + τ2
+3, (2.10)

as a re-normalized form of the HamiltonianH . Hamilton’s
Eqs. (2.1)–(2.2) are equivalent the Hamiltonian systemφx̄ =

Hφ andwx̄ = −Hφ wherex̄ = 2µx. From Eq. (2.2) we find:

d3

dx
= −

M2 sinφ(1 −32)

3
≡ −

2M2(1 −32)τ

3(1 + τ2)
. (2.11)

Equation (2.11) can be reduced to an ordinary differential
equation, expressed solely in terms of3, by solving the
Hamiltonian integral (Eq.2.10) for τ in terms of3:

τ = ±

(
2M2(1 −32)− (H −3)

H −3

)1/2

. (2.12)

Using Eq. (2.12) in Eq. (2.11) we obtain the differential equa-
tion:

d3

dx
= ∓

{(H −3)[2M2(1 −32)− (H −3)]}1/2

3
, (2.13)

for 3. Equation (2.13) can be formally integrated to give a
second integral for the system, namely:∫

3 d3

{(H −3)[2M2(1 −32)− (H −3)]}1/2
=

−σx + const., (2.14)

whereσ = sgn(τ ) = sgn(sinφ).
It is also straightforward to obtain a similar differential

equation forτ by using Eqs. (2.1) and (2.8) to first obtain
the equation:

dτ

dx
= 2M2

−
1 + τ2

23
. (2.15)

Then solving the Hamiltonian integral (Eq.2.10) for 3 in
terms ofτ , and substituting the result in Eq. (2.15) yields
a differential equation forτ in which the right handside of
Eq. (2.15) is solely a function ofτ . This differential equation
is more complicated than the differential Eq. (2.13) for 3
(note there are two solutions for3 as a function ofτ obtained
by solving Eq.2.10).

The integral in Eq. (2.14) is an elliptic integral. The nature
of the integral depends on the values ofM andH . Equa-
tion (2.13) can also be written in the potential well form:(
d3

dx

)2

=
(H −3)[2M2(1 −32)− (H −3)]

32
≡

V (3). (2.16)

For real solutions of Eq. (2.16) we requireV (3) > 0. Also
note that for a physically relevant solution, Eq. (2.8) implies
that3 must lie in the range 0≤ 3 ≤ 1.
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We note for later reference, thatV (3) may be factorized
in the form:

V (3) =
2M2(3−3−)(3−3+)(3−H)

32
, (2.17)

where

3± =
1 ±11/2

4M2
, 1 = 16M4

+ 1 − 8M2H, (2.18)

and3± are the roots of the quadratic factor in square braces
in Eq. (2.16).

We could at this point proceed to consider the second inte-
gral (Eq.2.14) in further detail. However, before proceeding,
it is useful first to establish the nature of the Hamiltonian crit-
ical points.

2.1 Hamiltonian critical points

The Hamiltonian critical points occur at locations in the
(φ,w) phase-plane, where

H0φ = H0w = 0. (2.19)

At these pointsφx = wx = 0. From Eqs. (2.1)–(2.2) the
critical point conditions (Eq.2.19) reduce to:

H0φ = −2M2w sinφ = 0, (2.20)

H0w = 2M2(1 + cosφ)− (1 − w/µ)−1/2
= 0. (2.21)

There are two families of critical point solutions of
Eqs. (2.20)–(2.21). The first family of critical points occur
at the points(φn1, wc1):

wc1 = 0, φn1 = 2nπ ± φc,

φc = cos−1

(
1 − 2M2

2M2

)
, H = Hc1 = 1, (2.22)

whereHc1 is the value of the Hamiltonian at the critical
points. Heren is an integer, and it is assumedM ≥ 1/2.

A second family of critical points occurs at the points
(φn2, wc2):

φn2 = 2nπ, wc2 =
µ(M4

− 1/16)

M4
,

Hc2 = 2M2
+

1

8M2
, (2.23)

whereHc2 is the value ofH at the critical points, andn is an
integer. The solutions (Eq.2.23) for w = wc2 are positive
(0 < wc2 < µ) if M ≥ 1/2. For solutions withM ≤ 1/2,
wc2 < 0 lies in the physically inadmissible region of the
(φ,w) phase-plane.

Linearization of Hamilton’s Eqs. (2.1)–(2.2) about the crit-
ical points yields the matrix system:

d

dx

(
δφ

δw

)
=

(
H0wφ H0ww

−H0φφ −H0φw

)(
δφ

δw

)
≡A

(
δφ

δw

)
, (2.24)

whereδφ = φ − φc andδw = w−wc denote the deviations
of φ andw from the critical point. Equations (2.24) have
eigen-solutions of the form:(
δφ

δw

)
= r exp(λx), (2.25)

where the eigenvectorr = (r1, r2)
T satisfies the eigenvector

equation:

(A − λI) r = 0. (2.26)

Equations (2.26) have non trivial solutions forr providedλ
satisfies the eigenvalue equation:

det(A − λI) = 0. (2.27)

The solutions of Eq. (2.27) for λ are:

λ=±G1/2 whereG=− detA=H 2
0φw−H0φφH0ww. (2.28)

Thus, the critical points are saddles ifG > 0 and are centers
if G < 0. It is interesting to note that the equationλ2

= G,
i.e.λ2

= H 2
0φw−H0φφH0ww is the classical Monge-Ampere

equation, which arises in the description of the Gaussian
curvature of a 2D surface (e.g. Lipshutz, 1969; Von Mises,
1958; Ferapontov and Nutku 1994). Using the Hamiltonian
Eq. (2.4) we find:

G=M2

[
4M2 sin2 φ−

w

µ

(
1−
w

µ

)−3/2

cosφ

]
, (2.29)

at a general point(φ,w) in the phase plane.
Using Eqs. (2.26) and (2.29) we obtain the eigensolutions:

λ1 = −

(
4M2

− 1
)1/2

, r1 = (1, 0)T ,

(φn1, wc1) = (2nπ + φc, 0), λ2 =

(
4M2

− 1
)1/2

,

r2 =

(
1,−4µ(4M2

− 1)1/2
)T
, (2.30)

for the eigenvalues and eigenvectors at the first family of crit-
ical points (Eqs.2.22). For the first family of critical points
we also have the solutions:

λ1 = −

(
4M2

− 1
)1/2

, r1 =

(
1,4µ(4M2

− 1)1/2
)T
,

(φn1, wc1) = (2nπ − φc, 0),

λ2 =

(
4M2

− 1
)1/2

, r2 = (1, 0)T , (2.31)

Equations (2.30)–(2.31) show that the first family of critical
points are saddles ifM > 1/2, and allow one to sketch the
trajectories in the(φ,w) phase plane.

Similarly, from Eqs. (2.26)–(2.29) we obtain for the sec-
ond family of critical points (Eq.2.23) the eigensolutions:

λ1 = −8M2i
(
M4

− 1/16
)1/2

,

r1 =

(
1,
iµ(M4

− 1/16)1/2

4M4

)
, (2.32)
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Table 1. Critical points(φn, wn) of the Hamiltonian (2.4) or (2.10) for the caseM ≥ 1/2.Hc2 = 2M2
+ 1/(8M2) is the value of H at the

centre critical points.

φn wn Singularity Type H Comments

2nπ ± φc 0 saddles 1 cosφc = (1 − 2M2)/(2M2)

2nπ µ(M4
− 1/16)/M4 centres Hc2 Hc2 ≥ 1

Fig. 3. Contours of the HamiltonianH in the (φ,w) phase plane
for 0< M < 1/2. The arrows correspond to increasingx.

λ2 = 8M2i
(
M4

− 1/16
)1/2

,

r2 =

(
1,−

iµ(M4
− 1/16)1/2

4M4

)
. (2.33)

The critical points are centres (O-points) if M > 1/2. If
M < 1/2, the critical points are saddles, but in that case
w = wc2 < 0 lies in the unphysical region of the(φ,w)-
plane (i.e.wc2 < 0).

The basic properties of the two families of critical points
(Eqs.2.22and2.23) are summarized in Table 1.

2.2 Phase plane trajectories

The trajectories of the Hamiltonian system (Eqs.2.1)–(2.4)
using the canonical variables(φ,w) ≡ (q, p) can be written
in the form:

dφ

dx
= −

(32
− 2H3+ 1)

3(1 −32)
, (2.34)

dw

dx
= 2µσ

{
(H −3)[2M2(1 −32)− (H −3)]

}1/2
.(2.35)

Hence the trajectories in the(φ,w) phase plane from
Eqs. (2.34)–(2.35) are governed by the differential equation:

dw

dφ
= −2µσ3(1 −32)

×

{
(H−3)[2M2(1−32)−(H−3)]

}1/2

32−2H3+1
.

Fig. 4. Contours ofH in the (φ,w) phase plane for 1/2 < M <

1/
√

2.

(2.36)

Equation (2.36) is equivalent to the equationdw/dφ =

−Hφ/Hw whereH = const. is the Hamiltonian integral
(Eqs.2.10).

The importance of Eq. (2.36) is that it allows one to de-
termine the values of3, and hencew = µ(1 − 32), in
the phase plane where the phase trajectories are horizontal
(dw/dφ = 0) or vertical (|dw/dφ| → ∞). Thus, for exam-
ple, in order to obtain periodic solutions it is necessary for
the phase trajectories to encircle theO-type critical points
located at(φn2, wc2) in Eq. (2.23). In order for this to be
possible, it is necessary that the denominator:

D(3) = 32
− 2H3+ 1, (2.37)

have real zeros for3 and that these zeros must lie in the phys-
ically allowed range 0≤ 3 ≤ 1. From Eq. (2.37) D(3) = 0
if

3 = 31,2 = H ±

√
H 2 − 1, (2.38)

where the subscripts 1 and 2 are used to order the roots (i.e.
31 < 32). From Eq. (2.38) a necessary condition for peri-
odic solutions is thatH > 1.

Contours of the normalized HamiltonianH in the (φ,w)
phase plane are illustrated in Figs. 3–6 for the cases: (a) 0<

M < 1/2, (b) 1/2 < M < 1/
√

2, (c)M = 1/
√

2 and (d)
M > 1/

√
2, respectively.
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Fig. 5. Contours ofH in the(φ,w) phase plane forM = 1/
√

2.

Figure 3 shows phase-plane trajectories for the case 0<

M < 1/2 (M = 0.4 in the figure). In this case, there are
no critical points for the Hamiltonian, and 0< H < 1 in
the physically allowed region (0< w < µ). The phase tra-
jectories split up into trajectories with 0< H < 2M2which
intersect the upper boundary atw = µ (i.e.3 = 0), where
dφ/dx → −∞, and a family of smooth solutions with
2M2 < H < 1. The separatrixH = 2M2 has an in-
finite derivativedφ/dx → −∞ at w = µ (3 = 0), but
dw/dx = 0 at this point. The solutions with 2M2

≤ H < 1
form solitary wave type structures with compact support (i.e.
they have a finite spatial period, because the singularities of
the integrand in Eq. (2.14) on the orbit are integrable). These
solutions are analogous to compactons, which have been in-
vestigated in soliton theory (e.g. Rosenau and Hyman, 1993).
One can concatenate a sequence of compactons to produce
a modulated wave train, in whichu = |ue| describes the
wave envelope. Small amplitude, modulated wave trains of
this type with 0< M < 1/2 were obtained by Dubinin et
al. (2003) (it turns out that one can also obtain compactons
for 1/2 < M < 1/

√
2). The phase trajectories in Fig. 3,

show that one can obtain fully nonlinear compactons about a
non-zero background state.

Figure 4 shows phase plane trajectories for a case with
1/2 < M < 1/

√
2 (M=0.51). Closed periodic orbits oc-

cur if 1 < H < Hc2 whereHc2 = 2M2
+ 1/(8M2) is the

value ofH at the centre critical point. TheH = 1 contour
corresponds to a solitary wave solution with an infinite spa-
tial period and separates the periodic and non-periodic so-
lutions. Only one period of the phase trajectories inφ are
shown (−π < φ < π ). Note that the contourH = 2M2

is also a separatrix between the 0< H < 2M2 solutions
which intersect the upper boundaryw = µ (i.e.3 = 0) from
the trajectories 2M2 < H < 1 which do not intersect the
boundary. Notedw/dφ = 0 atw = µ where3 = 0. ¿From
Eq. (2.34) dφ/dx → −∞ asw → µ and3 → 0. At
φ = ±π , w = µ(1 − H 2) anddw/dx = dw/dφ = 0 for
the 0< H < 1 contours. In assessing the phase plane trajec-

Fig. 6. Contours ofH in the (φ,w) phase plane forM > 1/
√

2.
For periodic closed orbits requires 2M2

≤ H < 2M2
+ 1/(8M2).

tories it is useful to have at hand sketches of the function:

Q(3) = (H −3)[2M2(1 −32)− (H −3)]

= 2M2(3−3−)(3−3+)(3−H), (2.39)

versus3 showing the relative ordering of the zeros3 = 3±

and3 = H , where3± are given by Eq. (2.18). From
Eqs. (2.35)–(2.36) dw/dx = dw/dφ = 0 at these points
(the corresponding values ofw are given by the formula
w = µ(1 − 32)). The trajectories with 2M2 < H < 1 are
compacton type solutions for whichw = u2

→ µ(1 − H 2)

is finite asφ → ±π andw → µ(1 − 32
−) at the center of

the wave atφ = 0.

Figure 5 shows contours ofH for the caseM = 1/
√

2.
If one imagines continuously varyingM from M < 1/

√
2

up toM = 1/
√

2, then the separate contoursH = 1 and
H = 2M2 for 1/2 < M < 1/

√
2 merge in the limit as

M → 1/
√

2. The solitary wave orbit (H = 1) now extends
from the footpoints [(φ,w) = (±π/2, 0)] to the maximum
allowed value ofw = µ at (φ,w) = (0, µ). At the maxi-
mum point,dφ/dx → −∞ but dw/dx = 0 where3 = 0
(see Eqs.2.34–2.35). The periodic waves in this case corre-
spond to contours with 1< H < Hc2 = 1.25. The contours
with 0 < H < 1 have the property thatdφ/dx → −∞ as
w → µ (3 → 0).

Figure 6 shows further evolution of the phase space trajec-
tories (contours ofH ) for a case withM > 1/

√
2 (M = 0.8).

ForM > 1/
√

2, theH = 1 contour impinges on the upper
boundaryw = µ whenτ = tan(φ/2) = ±(2M2

− 1)1/2

(see Eq.2.12) and3 = 0. At this pointdw/dφ = 0 but
dφ/dx → −∞. Hence it is not possible to obtain a soli-
tary wave solution in this case, unless one inserts a shock
jump somewhere before the trajectory hits the upper bound-
ary (see Sect. 3 for further discussion of this point). There
exists periodic travelling waves forH contours in the range
1 < 2M2 < H < Hc2 whereHc2 = 2M2

+ 1/(8M2). The
H = 2M2 contour is a periodic orbit in whichdφ/dx →

−∞ at (φ,w) = (0, µ). Howeverdw/dx = 0 at this point.
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2.3 Electron and proton phase variablesφe andφp

From Eqs. (1.7) and (2.8) we obtain:

dφ̃

dx
=

(
µ− 1

µ+ 1

)
1

3
. (2.40)

for the variation ofφ̃ = φe +φp throughout the wave. Alter-
natively using Eq. (2.13) we find:

dφ̃

d3
=

(
µ− 1

µ+ 1

)
1

3d3/dx
≡ −

σ(µ− 1)

(µ+ 1)
√
Q(3

, (2.41)

whereQ(3) is given by Eq. (2.39) andσ = sgn[tan(φ/2)].
Thus, the solution for̃φ = φe + φp obtained by integrating
Eq. (2.41) is:

φ̃ = −
σ(µ− 1)

(µ+ 1)

∫ 3 d3′

√
Q(3′

. (2.42)

Sinceφ̃ = φe +φp andφ = φp −φe the proton and electron
phase variablesφp andφe are given by:

φp =
1

2

(
φ + φ̃

)
and φe =

1

2

(
φ̃ − φ

)
. (2.43)

Equations (2.43) give the proton and the electron phase vari-
ablesφp andφe in terms ofφ and φ̃. The solution forφ̃ is
given by Eq. (2.42) and the solution forφ is given by

φ = 2 tan−1(τ ), (2.44)

whereτ = τ(3) is given by Eq. (2.12). The net upshot of
the above analysis is that the solutions for electron and pro-
ton phase variablesφe andφp are given parametrically in
terms of3 by Eqs. (2.42)–(2.43). This then allows the deter-
mination of the complex transverse velocitiesue± andup±

and the complex transverse magnetic fieldsB± throughout
the wave.

3 Solution examples

From Eqs. (2.12) and (2.14) the travelling wave solution for
τ = tan(φ/2) and3 = (1 − u2/µ)1/2 can be expressed in
the parametric form:

τ = σ

(
2M2(1 −32)− (H −3)

H −3

)1/2

, (3.1)

x=x0−σ

∫
3 d3

{(H−3)[2M2(1−32)−(H −3)]}1/2
, (3.2)

whereσ = ±1 corresponds to the two solution branches,
andσ = sgn(τ ) = sgn(sinφ). It is implicitly assumed in
Eqs. (3.1) and (3.2) that3 is restricted so thatx = x(3) and
τ = τ(3) are real.

The Hamiltonian critical point analysis in Eqs. (2.19)–
(2.33) shows that there are two families of critical points. The
first family of critical points(φn1, wc1) in Eq. (2.22) are sad-
dles ifM > 1/2 and occur whenH = Hc1 = 1. The second

family of critical points(φn2, wc2) in Eq. (2.23) are centres if
M > 1/2, and correspond toH = Hc2 = 2M2

+ 1/(8M2).
In this section, we first derive a solution connecting two sad-
dle critical points at(w, φ) = (0, φc) and(w, φ) = (0,−φc),
which is a heteroclinic orbit in the(w, φ) phase plane. This
solution is a solitary wave solution foru with an infinite spa-
tial period inx, which has a bell shaped profile similar to that
of the KdV soliton, and corresponds to the case where the
HamiltonianH = 1. The oscilliton solutions investigated in
this section correspond to theH = 1 contours in the(φ,w)
phase plane illustrated in Figs. 3–6.

Examples of both periodic and compacton wave packet so-
lutions are given in Dubinin et al. (2003). However, the com-
pacton type solutions were not identified as compactons as
such (see Figs. 5 and 6 of Dubinin et al., 2003). We give
further discussion of the compacton and periodic wave solu-
tions in Sect. 4, where we determine the dependence of the
wave period, L, onH andM.

3.1 CaseH=1

From Eqs. (2.16)–(2.18), the integral (Eq.3.2), for H = 1,
corresponds to the potential well equation:(
d3

dx

)2

=
2M2(3− 1)2(3−3−)

32
≡ V (3), (3.3)

where

3− =
1 − 2M2

2M2
≡ cosφc, 3+ = 1, (3.4)

are the roots of the quadratic equation:

g(3) = −[2M2(32
− 1)+H −3] = 0, (3.5)

whereg(3) is the quadratic factor appearing in Eqs. (3.1)
and (3.2).

There are two distinct cases to consider, depending on the
value of the Mach numberM. For the case (a) 1/2 < M <

1/
√

2, 0 < 3− < 1, whereas for the second case (b) with
M > 1/

√
2, −1 < 3− < 0. Sketches of the potentialV (3)

in these two cases are given in Fig. 7. For a physical solution
it is necessary thatV (3) > 0 and 0< 3 < 1.

¿From Eqs. (3.1)–(3.5):

τ =
√

2Mσ(3−3−)
1/2, (3.6)

x = x0 −
σ

√
2M

∫ 3 3d3

(1 −3)(3−3−)1/2
, (3.7)

are the solutions forτ = τ(3) andx = x(3), wherex0 is
an integration constant. We note for later reference, that the
inverse of Eq. (3.6) giving3 as a function ofτ is:

3 =
1 + τ2

− 2M2

2M2
. (3.8)

Using τ to replace3 as integration variable in Eq. (3.7)
we obtain:

x = x0 +
1

M2

∫ τ 1 + τ2
− 2M2

1 + τ2 − 4M2
dτ, (3.9)
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for the solution forx in terms ofτ . The integral (Eq.3.9)
may be obtained in closed form:

x = x0 +
τ

M2
+

1
√

4M2 − 1
ln

∣∣∣∣∣τ −
√

4M2 − 1

τ +
√

4M2 − 1

∣∣∣∣∣ . (3.10)

Thus Eqs. (3.8)–(3.10) give an alternative parametric form
for the solution in terms ofτ . Since3 = (1 − u2/µ)1/2 we
obtain:

u2
= µ(1 −32) ≡

µ

4M4
[(4M2

− 1)− τ2
](1 + τ2), (3.11)

as the solution foru2 in terms ofτ .
The phase variablẽφ = φe + φp in Eq. (2.42) may be

expressed in the form:

φ̃ = −
σ(µ− 1)

(µ+ 1)

∫ 3 d3
√

2M(1 −3)(3−3−)1/2
. (3.12)

Using Eq. (3.6), the integral (Eq.3.12) reduces to:

φ̃ = −
2(µ− 1)

(µ+ 1)

∫ τ dτ ′

(4M2 − 1)− τ ′2
=

(µ− 1)

(µ+ 1)
√

4M2 − 1
ln

∣∣∣∣∣τ −
√

4M2 − 1

τ +
√

4M2 − 1

∣∣∣∣∣+ φ̃0. (3.13)

The Eq. (3.13) is similar to that forx in Eq. (3.10). Set-
ting the integration constantsx0 andφ̃0 equal to zero in these
equations, we obtain:

φ̃ =
µ− 1

µ+ 1

(
x −

τ

M2

)
. (3.14)

Hence from Eq. (2.43) the electron and proton phase vari-
ablesφe andφp are given by:

φe =
1

2

[
µ− 1

µ+ 1

(
x −

τ

M2

)
− φ

]
,

φp =
1

2

[
µ− 1

µ+ 1

(
x −

τ

M2

)
+ φ

]
. (3.15)

The variablesφe andφp govern the fine scale oscillations
in the transverse electron and proton velocitiesue± andup±

(see e.g. Fig. 2d).
¿From Eqs. (1.8) and (1.9) the transverse magnetic field

componentsBy andBz in the wave are given by:

By=M
2
Aeu

(
cosφp+ cosφe

)
≡

2M2
Aeu cos

(
1

2
φ

)
cos

(
1

2
φ̃

)
, (3.16)

Bz=M
2
Aeu

(
sinφp+ sinφe

)
≡

2M2
Aeu sin

(
1

2
φ̃

)
cos

(
1

2
φ

)
. (3.17)

Thus, the transverse magnetic field components exhibit wave
beating between the electron and proton phases. From
Eqs. (3.16)–(3.17)

B⊥ = 2M2
Aeu cos

(
1

2
φ

)
, (3.18)

Fig. 7. Potential well diagrams ofV (3) versus3 from Eq. (3.3)
for (a) 1/2< M < 1/

√
2 and(b) M > 1/

√
2.

is the magnitude of the transverse field variations(
B⊥=

√
B2
y + B2

z

)
.

Below, we consider in more detail the large scale charac-
teristics of the oscilliton travelling wave, with envelope gov-
erned by the parametric solutionsx = x(τ) andu = u(τ) of
Eqs. (3.10)–(3.11). Differentiating Eq. (3.9) implicitly with
respect tox we findτ satisfies the differential equation:

dτ

dx
=
M2(1 + τ2

− 4M2)

1 + τ2 − 2M2
. (3.19)

Equation (3.19) shows thatdτ/dx = 0 at τ = ±τc where
τc =

√
4M2 − 1 = tan(φc/2). From Eq. (3.11) u = 0

at τ = ±τc. The points(u, τ ) = (0,±τc) correspond
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Fig. 8. Sketches ofdτ/dx versusτ for the cases:(a) 1/2 < M <

1/
√

2 and(b) M > 1/
√

2.

to the saddle critical points at(w, φ) = (0,±φc) in the
(w, φ) phase plane corresponding to the Hamiltonian con-
tourH = 1. Equation (3.19) also shows that|dτ/dx| → ∞

asτ → ±(2M2
− 1)1/2 if M > 1/

√
2.

For a physically relevant solution we require 0< 3 < 1.
¿From Eq. (3.8) this requires thatτ can only have a limited
range of values, namely:

(a) |τ |<(4M2
−1)1/2 if 1/2<M<1/

√
2,

(b) (2M2
−1)1/2<|τ |<(4M2

−1)1/2 if M>1/
√

2. (3.20)

For |τ | < (2M2
− 1)1/2 in Case (b) (M > 1/

√
2), one ob-

tains3 < 0, which is not allowed. The implications of the
inequalities for the solutions can be seen, in part by sketching
3 andu2 as functions ofτ for the two cases.

Fig. 9. Smooth travelling wave oscilliton profiles foru and τ =

tan(φ/2) for 1/2 < M < 1/
√

2 (Case(a)). The maximum of
u occurs atx = 0 whereu =

√
µ sinφc and sinφc = (M2

−

1/4)1/2/M2.

For the caseM > 1/
√

2, τ is not a monotonic, single
valued function ofx. This can be seen by sketchingdτ/dx
in Eq. (3.19) versusτ in the two cases (see Fig. 8). For Case
(b),dτ/dx is negative if(2M2

−1)1/2 < |τ | < (4M2
−1)1/2,

but is otherwise positive. Note thatdτ/dx diverges as|τ | →

(2M2
−1)1/2 which indicates possibile shock formation, and

multi-valued behaviour ofτ as a function ofx.

In Case (a),dτ/dx < 0 in the physically allowed region
|τ | < (4M2

− 1)1/2. From Eq. (3.10), x → −∞ asτ →

(4M2
− 1)1/2 andx → ∞ asτ → −(4M2

− 1)1/2. Also
x = 0 whenτ = 0 if we choose the integration constant
x0 = 0. The solutions forτ(x) andu(x) are illustrated in
Fig. 9 for the caseM = 0.51. The solutions show thatτ is
a monotonic decreasing function ofx, and the solution for
u(x) is reminiscent of the sech2(x) profile characteristic of
the KdV soliton.

In the limit asM → (1/
√

2)−, the profile fordτ/dx steep-
ens, and has an infinite gradient atx = 0. For example, for
M = 1/

√
2, Eq. (3.19) reduces to:

dτ

dx
=

1

2

(
1 −

1

τ2

)
, (3.21)
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Fig. 10. Oscilliton solutions forτ(x) andu(x) for M = 1/
√

2 and
H = 1.

and hencedτ/dx → −∞ asτ → 0. The solution foru2

reduces to:

u2
= µ

(
1 − τ2

) (
1 + τ2

)
. (3.22)

Thus, the solutions for bothu andτ remain single valued as
M → 1/

√
2. The maximum value ofu for this solution is

u =
√
µ which is obtained atx = 0 (we assumex0 = 0).

The solution forM = 1/
√

2 is illustrated in Fig. 10.
ForM > 1/

√
2 there does not exist a single valued solu-

tion for τ (x) stretching fromx = −∞ to x = +∞. A so-
lution profile (Eq.3.11) for τ(x) for a case withM > 1/

√
2

(M = 0.9) is illustrated in Fig. 11. In the non-physical re-
gion |τ | < (2M2

− 1)1/2, dτ/dx > 0 anddτ/dx diverges as
τ → ±(2M2

− 1)1/2. The solution could possibly be made
single valued by inserting a shock in the flow. In the allowed
physical region(2M2

− 1)1/2 < |τ | < (4M2
− 1)1/2 (see

Eq.3.20), τ(x) is a monotonic decreasing function ofx. The
nature of the shock could be complicated by the possibility
of plasma heating, which would vitiate the cold plasma as-
sumption used in the model.

The points A,B and C on the solution profileτ(x) in
Fig. 11 correspond toτ = (4M2

− 1)1/2− , (4M2
− 2)1/2

and (2M2
− 1)1/2 respectively. Similarly, D, E and F cor-

respond toτ = −(2M2
− 1)1/2, τ = −(4M2

− 2)1/2 and
τ = −(4M2

− 1)1/2+ respectively. At points B, O and E,
u =

√
µ sinφc, and at C and D,u =

√
µ. One possible

Fig. 11. Solution (Eq.3.10) for τ(x) for H = 1 andM > 1/
√

2.
The solution becomes triple valued in the region near the origin
aboutx = 0.

Fig. 12. Solution profile ABEF (solid line) foru(x) for the rota-
tional discontinuity shock solution of Fig. 11. Note B, E and O are
the same point on theu profile.

solution with a “shock jump” inφ consists of the profile
ABEF in Fig. 11 where there is a jump inφ at x = 0.
For this jump, there is no change inu across the jump,
sinceu =

√
µ sinφc at B,O and E. Effectively the trans-

verse velocityu⊥ = uyey + uzez undergoes a rotation of
−2 tan−1

[(4M2
− 2)1/2] through the transition. This pro-

posed solution is more akin to a rotational discontinuity than
a shock. The solution foru(x) for this jump transition is il-
lustrated in Fig. 12. The solution foru(x) is given by the
curveABEF .

The proposed rotational discontinuity solution in Figs. 11
and 12, implies that there must be a compensating rotation
in the proton transverse velocity in order to ensure trans-
verse momentum balance. Note that there is a discontinu-
ity in du/dx at the jump, and that the maximum velocity
umax =

√
µ sinφc is obtained at the discontinuity atx = 0.
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Fig. 13. Schematic of the(M,H) plane indicating the regions
where smooth compactons, oscillitons and periodic waves are ob-
tained.

4 Elliptic integrals and spatial periods

In this section we discuss the nature of the solutionsx =

x(3) of the elliptic integral (Eq.3.2) for x. The inverse of
the elliptic integral gives the solution foru2

= µ(1 − 32)

as a function ofx. We show, that the elliptic integral can be
split up into a linear combination of elliptic integrals of the
first and second kind (Abramowitz and Stegun (1965), Ch.
17). We illustrate the use of these results by deriving some
of the properties of the compacton solutions obtained in the
parameter regime: 2M2 < H < 1 and 0< M < 1/

√
2

(see the(φ,w) phase plane trajectories in Figs. 3 and 4),
and the periodic solutions obtained in the parameter regime
max{1, 2M2

} < H < 2M2
+ 1/(8M2) andM > 1/2. A

schematic of the(M,H) plane in Fig. 13 illustrates the re-
gions where one obtains compactons and periodic solutions.
The oscillitons are seen to correspond to the limit of the com-
pacton solutions asH ↑ 1, and the limit of the periodic so-
lutions in the limit asH ↓ 1 in the Alfvén Mach number
regime 1/2 < M < 1/

√
2. The oscillitons have an infi-

nite spatial period, but the periodic and compacton solutions
have finite periods depending onH andM. We determine
the dependence of the spatial period of the compactons and
the periodic solutions,L, on the parametersH andM.

4.1 Compacton solutions

¿From Eq. (3.2) the integral forx = x(3) can be written in
the form:

x = x0 − σ

∫ 3 3′

√
Q(3′)

d3′, (4.1)

where

Q(3) = (3−H)[2M232
−3+H − 2M2

] ≡

2M2(3−3−)(3−3+)(3−H), (4.2)

and3± are given by Eq. (2.18) (see also Eq.2.39). For phys-
ical solutions we require thatQ(3) > 0 and that 0≤ 3 ≤ 1.

In the compacton regime (2M2 < H < 1 and 0< M <

1/
√

2), we find:

0< 3− < H < 1< 3+. (4.3)

Thus,Q(3) > 0 if 3 lies in the range:3− < 3 < H .
Hence in the compacton regime:

x = −σ

∫ 3

3−

3′

√
Q(3′)

d3′, (4.4)

is the form of the solution forx = x(3), where we have set
the constant of integration,x0, equal to zero.

Introducing the new integration variable:

y =

(
3′

−3−

H −3−

)1/2

, (4.5)

the integral (Eq.4.4) can be split up into a combination of
elliptic integrals of the first and second kind, to obtain the
solution forx = x(3) in the form:

x=−

√
2σ

M(3+−3−)1/2

[
3+U−(3+−3−)E(U |ν)

]
, (4.6)

where

U =

∫ ζ

0

dy√
(1 − y2)(1 − νy2)

≡ sn−1(ζ |ν), (4.7)

E(U |ν) =

∫ ζ

0
dy

(
1 − νy2

1 − y2

)1/2

, (4.8)

ζ =

(
3−3−

H −3−

)1/2

≡ sn(U |ν), ν =
H −3−

3+ −3−

, (4.9)

define standard elliptic integrals of the first and second kind
respectively (Abramowitz and Stegun, 1965). Because of
the ordering (Eq.4.3), the parameterν lies in the range:
0 < ν < 1. In Eq. (4.9), sn(U |ν) is one of the standard
Jacobian elliptic functions. The incomplete elliptic integral
of the second kind (Eq.4.8) can be expressed in a variety
of different forms (e.g. by using the Jacobian Zeta function,
which in turn can be expressed in terms of the Jacobian Theta
function: Abramowitz and Stegun, 1965).

By noting thatζ = 0 when3 = 3− andζ = 1 when
3 = H , it follows from Eq. (4.6) that the spatial period of
the compacton,L, is given by:

L =
2
√

2

M(3+ −3−)1/2

[
3+K − (3+ −3−)E

]
, (4.10)

K ≡ K(ν) =

∫ 1

0

dy√
(1 − y2)(1 − νy2)

, (4.11)

E ≡ E(K|ν) =

∫ 1

0
dy

(
1 − νy2

1 − y2

)1/2

, (4.12)

are complete elliptic integrals of the first and second kind.
The result (Eq.4.10) for the periodL, corresponds to the
change inx moving along the compacton phase space trajec-
tories fromφ = π to φ = −π in Figs. 3 and 4 (note3 = H
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at φ = ±π and3 = 3− at φ = 0. In effect, Eqs. (4.10)–
(4.12) give the period of the compacton as a function of the
two parametersH andM characterizing the solution.

As an example of the use of Eq. (4.10) for 0 < M < 1/2,
and forH ∼ 1 (corresponding to the small amplitude com-
pacton limit investigated by Dubinin et al., 2003),3− ≈ 1,
3+ ≈ (1 − 2M2)/(2M2), ν ≈ 0, K ≈ π/2, E ≈ π/2
(Abramowitz and Stegun (1965), formulae (17.3.11) and
(17.3.12), p. 591), we obtain:

L ∼
2π

√
1 − 4M2

. (4.13)

Thus, in the limit asM → 0,L ∼ 2π , whereas asM → 1/2,
L → ∞ (note that the limit asM → 1/2 in this case is also
the oscilliton solitary wave limit).

Similarly, for smallM we obtain:

L '
2π

(1 − 4M2H)1/2
[H −M2(1 −H)+O(M4)]. (4.14)

Thus, in the limit asM → 0,L ' 2πH if H isO(1).
From Eq. (2.42) the composite phase variableφ̃ = φe+φp

in the wave may be written as:

φ̃ = −
σ(µ− 1)

(µ+ 1)

∫ 3

3−

d3′

√
Q(3′)

+ φ̃0. (4.15)

Using the change of integration variable Eq. (4.5) we obtain:

φ̃ − φ̃0 = −

√
2σ(µ− 1)

(3+ −3−)1/2M(µ+ 1)
sn−1(ζ |ν), (4.16)

where sn−1(ζ |ν) = U is the function of3 defined in
Eqs. (4.7)–(4.9). Equation (4.16) can be inverted to give:

3=3−+(H−3−)

×sn2

(
µ+1

µ−1

(3+−3−)
1/2M

√
2

(φ̃−φ̃0)

∣∣∣∣∣ν
)
. (4.17)

This latter formulation shows that the travelling wave solu-
tion can be written parametrically in terms ofφ̃. The vari-
ablesφe andφp orφ andφ̃ describe the fine scale oscillations
inside the wave envelope.

4.2 Periodic solutions

The periodic solutions (see Figs. 4–6 and 13) are obtained in
the regimes:

(a) 1< H < Hc2 and 1/2< M < 1/
√

2,

(b) 2M2 < H < Hc2 and M> 1/
√

2. (4.18)

For physical solutions, we requireQ(3) > 0 and 0≤ 3 ≤ 1
(see Eq.4.2et seq.). Thus, for physical solutions:

0 ≤ 3− < 3 < 3+ < 1< H. (4.19)

For periodic solutions,dφ/dx → 0 as3 → 31, where

31 = H − (H 2
− 1)1/2, (4.20)

and3− < 31 < 3+. The proof that31 lies in this range
can be proved using Eq. (4.18).

The solution forx = x(3) is again given by Eq. (4.4),
but for the periodic solutions,3 is restricted to the range
(Eq.4.19). Introducing the integration variable:

y =

(
3′

−3−

3+ −3−

)1/2

, (4.21)

the integral (Eq.4.4) for x = x(3) reduces to the sum of two
elliptic integrals of the first and second kind, in the form:

x = −

√
2σ

M(H −3−)1/2

[
HŨ − (H −3−)E(Ũ |ν̃)

]
, (4.22)

where

Ũ =

∫ ζ̃

0

dy√
(1 − y2)(1 − ν̃y2)

≡ sn−1(ζ̃ |ν̃), (4.23)

E(Ũ |ν̃) =

∫ ζ̃

0
dy

(
1 − ν̃y2

1 − y2

)1/2

, (4.24)

ζ̃ =

(
3−3−

3+ −3−

)1/2

≡ sn(Ũ |ν̃), ν̃ =
3+ −3−

H −3−

, (4.25)

whereŨ is an elliptic integral of the first kind andE(Ũ |ν̃)

is the corresponding elliptic integral of the second kind. The
parameter̃ν lies in the range 0< ν̃ < 1 for the ordering
(Eq. 4.18). Note thatν̃ is the inverse of the parameterν in
Eq. (4.9) which was used in describing the compactons.

By noting thatζ̃ = 0 when3 = 3− and ζ̃ = 1 when
3 = 3+, it follows from Eq. (4.22) that the spatial period of
the wave,L, is given by:

L =
2
√

2

M
√
H −3−

[
HK(ν̃)− (H −3−)E(K|ν̃)

]
, (4.26)

whereK(ν̃) andE(K|ν̃) are the complete elliptic integrals
of the first and second kind (c.f. Eqs.4.11 and 4.12) with
parameter̃ν. The periodL corresponds to the change inx in
moving around the closed phase space orbits in Figs. 3–6, in
an anti-clockwise fashion, starting at(φ,w) = (0−, w−) at
the top of the trajectory wherew− = µ(1−32

−), and ending
at (φ,w) = (0+, w−).

Using Eq. (4.15) and the transformations (Eq.4.21) the
phaseφ̃ = φe + φp may be expressed in the form:

φ̃ = −

(
µ− 1

µ+ 1

) √
2σ

M(H −3−)1/2
sn−1(ζ̃ |ν̃)+ φ̃0, (4.27)

whereζ̃ and ν̃ are given by Eq. (4.25). Again, φ and φ̃ or
φp andφe govern the fine scale oscillations inside the wave
envelope.

4.3 The solution familyH = 2M2

In order to obtain some idea of how the period of the waves
(both compactons and periodic waves) depends onM it is
convenient to consider the solution family withH = 2M2.
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For this family, one obtains compactons if 0< M < 1/
√

2,
and periodic waves forM > 1/

√
2. These solutions have

an infinite derivative for|φx | when3 = 0 (i.e. whenu = µ

at x = 0), but are otherwise a regular well behaved solution
family. From Eq. (2.18):

3− = 0, 3+ =
1

2M2
, H = 2M2, (4.28)

for the solutions of interest. The curveH = 2M2 is the lower
limiting curve in the(M,H) plane in Fig. 13 describing the
compacton and periodic solution regimes.

4.3.1 Compacton solutions

The compacton solutions from Eqs. (4.6) and (2.12) are de-
scribed by the equations:

x = −
σ

M2 [U − E(U |ν)] ,

τ ≡ tan(φ/2) =
√

2σM

(
3(3− 1/(2M2))

3− 2M2

)1/2

, (4.29)

whereσ = sgn(sinφ) and

ν = 4M4 and ζ =
31/2

√
2M

, (4.30)

are the paramters used in the elliptic integralsU andE(U |ν)

in Eqs. (4.7)–(4.8). From Eq. (4.10) the spatial period of the
compactons, L, is given by:

L =
2

M2 [K(ν)− E(K|ν)] , (4.31)

whereK(ν) andE(K|ν) are the complete elliptic integrals
(Eqs.4.11–4.12). It is useful to note thatK(ν) andE(K|ν)

may be expressed in terms of Gauss’s Hypergeometric func-
tion in the form:

K(ν) =
π

2
F (1/2, 1/2; 1, ν) ,

E(K, ν) =
π

2
F (−1/2, 1/2; 1, ν) , (4.32)

(Abramowitz and Stegun, 1965), we obtain:

L ' 2πM2
[
1 + (3/2)M4

+O(M8)
]

as M → 0, (4.33)

for the spatial period of the compactons for smallM. The
resultL ' 2πM2 can also be derived by settingH = 2M2

in Eq. (4.14). In the limit asM ↑ 1/
√

2 andν → 1, we
obtain the equation:

K(ν) '
1

2
ln

(
16

1 − ν

)
≡

1

2
ln

(
16

1 − 4M4

)
,

E(K|ν) ' 1. (4.34)

The result (Eq.4.34) for K(ν) can be determined from a for-
mula forF(a, b; a+b, ν) in Abramowitz and Stegun (1965)
(formula 15.3.10, p. 559) witha = b = 1/2 andν ≈ 1.

Thus, the spatial period of the compactons, using Eq. (4.31)
in this limit may be approximated by:

L ' 4

[
ln

(
2√

1/4 −M4

)
− 1

]
as M ↑ 1/

√
2. (4.35)

The Eqs. (4.33) and (4.35) show thatL → 0 in the limit as
M → 0 andL → ∞ asM ↑ 1/

√
2. The periodL, shows

a logarithmic divergence as one approaches the oscilliton so-
lution forM = 1/

√
2.

The compacton solutions are characterized by:

u2
max = µ, u2

min = µ(1 −H 2) ≡ (1 − 4M4), (4.36)

and hence

1u2
= u2

max − u2
min = 4µM4, (4.37)

whereumax andumin are the maximum and minimum values
of u. Thus, the maximum change inu2 is obtained in the
oscilliton limit asM → 1/

√
2 and1u2

→ µ.

4.3.2 Periodic solutions

The implicit solution for the periodic waves forH = 2M2

andM > 1/
√

2 is given by

x = −2σ
[
Ũ − E(ũ|ν̃)

]
,

τ ≡ tan(φ/2) =
√

2σM

(
3(3− 1/(2M2))

3− 2M2

)1/2

, (4.38)

whereσ = sgn(sinφ) and

ν̃ =
1

4M4
and ζ̃ =

√
2M31/2, (4.39)

are the values of thẽν andζ̃ to be used in the elliptic integrals
(Eqs.4.23and4.24). From Eq. (4.37) the spatial period is
given by:

L = 4
[
K(ν̃)− E(K, ν̃)

]
, (4.40)

whereK(ν̃) andE(K, ν̃) are the complete elliptic integrals
(Eqs.4.1and4.12) with parameter̃ν.

In the limit asM ↓ 1/
√

2, Eq. (4.40) gives:

L ' 4

[
ln

(
2√

M4 − 1/4

)
− 1

]
as M ↓ 1/

√
2. (4.41)

which is similar to the compacton period (Eq.4.35) in the
limit asM ↑ 1/

√
2. Thus,L → ∞ in the oscilliton limit as

M ↓ 1/
√

2. In the limit asM → ∞, ν̃ → 0 and we obtain
from Eq. (4.40) the result:

L '
π

4M4

[
1 + 3/(32M4)+O(1/M8)

]
, (4.42)

in this limit. Thus,L → 0 asM → ∞.
For the periodic waves we find:

u2
max=µ, u2

min=µ

(
1 −

1

4M4

)
, 1u2

=
µ

4M4
. (4.43)
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Equations (4.37) and (4.43) show that1u2 is an increasing
function ofM for the compactons, but a decreasing function
of M for the periodic waves. The maximum value of1u2 is
obtained in the oscilliton limit asM → 1/

√
2 and1u2

→

µ.
The dependence of the periodL as a function ofM for

both the compactons and the periodic waves forH = 2M2 is
illustrated in Fig. 14a. Figure 14b shows the corresponding
change in1u2 of the waves, as a function ofM. However, it
is important to note that these results strictly only apply for
the caseH = 2M2.

5 Concluding remarks

Sauer et al. (2002), Dubinin et al. (2003) and McKenzie
et al. (2004) used the equations of two-fluid, electron pro-
ton plasmas to study a variety of nonlinear, travelling wave
solutions of the equations, representing nonlinear station-
ary whistler and whistler oscilliton waves in the travelling
wave frame. Dubinin et al. (2003) showed that for the case
of parallel propagation, in which the constant background
magnetic fieldB0 = B0ex and the travelling wave veloc-
ity U are both along the x-axis, that the equations could be
reduced to two coupled differential equations for the trans-
verse electron speedu ≡ |ue| and the phase difference
φ = φp − φe characterizing the complex transverse veloc-
ities uj± = ujy ± iujz = uj exp(±iφj ), j = e, p of the
electrons and the protons.

In this paper it was shown that the integral of the equa-
tions8 = 8(φ, u) = const. obtained by these authors, is
in fact the HamiltonianH0 of the system (modulo a con-
stant), in whichφ andw = u2 are the canonical variables.
A second integral of the equations was also obtained in the
form x = I (3), where I (3) is an elliptic integral, and
3 = (1 − u2/µ)1/2 (µ = mp/me is the ratio of the proton
and electron masses, andu is the transverse electron speed
measured in units of the electron Alfvén speedVAe).

Hamilton’s equations for the system:φx = H0w and
wx = −H0φ have two families of critical points provided
M ≡ MA ≥ 1/2 (MA is the Alfvén Mach number (Eq.1.4)
based on the geometric mean mass of the protons and the
electrons). One of the families consists of saddle points, and
the other family consists of centres (O-points) (Sect. 2.1).
The solution trajectories in the(φ,w) phase plane (Hamilto-
nian contours) reveal the existence of: (a) oscillitons (or soli-
tary wave) type solutions corresponding to heteroclinic or-
bits connecting neighbouring saddles; (b) periodic solutions
which encircle theO-points and (c) compacton type solu-
tions corresponding to solitary wave solutions with compact
support (i.e. with a finite wavelength and withdu/dx = 0
at the endpoints of the wave). In addition, there exists other
solutions, which intersect the boundary of the physically al-
lowed region atu =

√
µ, at which pointdφ/dx → −∞ (see

Figs. 3–6).
A schematic of the(M,H) parameter plane in Fig. 13

reveals that compacton solutions are obtained in the region

Fig. 14. Illustrates(a) the variation of the spatial periodL of the
compactons (C) and the periodic waves (P ) with the Alfvén Mach
numberM for the solution familyH = 2M2, and(b) the variation
of 1u2

= u2
max − u2

min
with M. The oscillitons (O) are obtained

in the limit asM → 1/
√

2.

2M2 < H < 1 and 0< M < 1/
√

2; periodic solutions are
obtained in the region max(1,2M2) < H < 2M2

+1/(8M2)

andM > 1/2; and oscillitons are obtained on the common
boundaryH = 1 and 1/2 < M < 1/

√
2 between the pe-

riodic and compacton regions. The detailed dependence of
the spatial periodL of the compacton and periodic solution
families onH andM are given in terms of complete elliptic
integrals of the first and second kind (Eqs.4.10 and4.23).
The periodL → ∞ as one approaches the oscilliton bound-
ary regionH = 1 and 1/2< M < 1/

√
2.

A detailed study of the oscilliton solutions withH = 1 as
M varies from 1/2 to 1/

√
2 was carried out (Figs. 7–11) us-

ing the analytical, implicit solution forx andτ = tan(φ/2)
in terms of3 (Sect. 3). ForM > 1/

√
2, the solution for

τ = tan(φ/2) becomes multiple valued near the origin. It
was suggested that a solitary wave type solution, with an
embedded rotational discontinuity, in which the transverse
Reynolds stresses of the electrons are balanced by equal and
opposite transverse stresses of the protons is possible in this
case.

A Hamiltonian formulation using action-angle variables
is developed in Appendix B. In this formulation, the action
I and angle variableθ are the canonical variables, and the
Hamiltonian trajectories correspond to orbits on a torus. The
action angle variables are also useful for determining the pe-
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riods of the periodic and compacton solutions. A further
Hamiltonian formulation (Appendix C) uses(φ,3) as the
canonical variables and̃φ = φp +φe as the new independent
variable. In this developmentx = x(φ̃) and the travelling
wave solutions are expressed parametrically in terms ofφ̃.

We have used the terms ”solitons” and ”compactons” in
this paper in a rather loose sense. In the mathematical lit-
erature (e.g. Rosenau and Hyman (1993)) solitons and com-
pactons are solitary waves which undergo elastic collisions
when two waves collide. A more accurate characteriza-
tion of the travelling waves in this paper would be “solitary
waves” and “compact solitary waves”. Presumably in the
small amplitude limit at least, one might expect the travelling
waves to be solitons and compactons respectively. Spencer
(1982), Spencer and Kaufman (1982), Holm and Kupersh-
midt (1983) and Sahraoui et al. (2003) have derived the gen-
eral, Hamiltonian Poisson bracket structure of the multi-fluid
plasma equations. This suggests that the Hamiltonian per-
spective will also provide further insight into the travelling
wave oblique solitons in cold magnetized plasmas (McKen-
zie and Boyle, 2001), oblique oscillitons (Dubinin et al.,
2003; McKenzie et al., 2004; McKenzie, 2004a; Verheest
et al., 2004) and associated nonlinear, travelling waves in
two-fluid plasmas (McKenzie et al., 2004a, b; McKenzie and
Boyle, 2003; Sauer et al., 2001, 2002, 2003).

Appendix A

In this appendix we provide the basic equations for the trav-
elling wave system (Eqs.1.1–1.7) obtained by Dubinin et
al. (2003). Dubinin et al. (2003) used the normalized vari-
ables:

x̄ =
X

`e
, `e =

U

�e
, (A1)

whereX is the x-coordinate in the travelling wave frame.
Dubinin et al. (2003) use the Alfvén Mach numberMAe =

U/VAe whereVAe = B0/(µ0neme)
1/2 is the Alfvén speed

based on the electron fluid. Note that

x̄ = αx, M2
Ae = αM2

A, α =
µ+ 1

µ
(A2)

relates the coordinates̄x andx andM2
A toM2

Ae. The deriva-
tion of Eqs. (1.1)–(1.7) is based on Eqs. (A3)–(A8) given
below, which follow from the work of Dubinin et al. (2003).

Using the above normalizations, Eqs. (1.1)–(1.2) are:

due

dx̄
= M2

Aeue sinφ, (A3)

dφ

dx̄
= 2M2

Ae(1 + cosφ)− α(1 − u2
e/µ)

−1/2, (A4)

where

α =
µ+ 1

µ
≡
mp +me

mp
, µ =

mp

me
. (A5)

Equation (A4) slightly differs from the corresponding
Eq. (30) of Dubinin et al. (2003) whereα → 1. The cor-
rect version of Eq. (30) of Dubinin et al. (2003) is Eq. (A4).

The analogue of Eqs. (1.5)–(1.7) using the normalization
(Eq.A1) are:

dφe

dx̄
=

1

(1 − u2
e/µ)

1/2
−M2

Ae(1 + cosφ), (A6)

dφp

dx̄
= M2

Ae(1 + cosφ)−
1

µ(1 − u2
e/µ)

1/2
, (A7)

dφ̃

dx̄
=

µ− 1

µ(1 − u2
e/µ)

1/2
, φ̃ = φp + φe, (A8)

The Eqs. (A6)–(A8) for φe, φp and φ̃ = φp + φe were not
given explicitly in Dubinin et al. (2003), but are implicit in
their analysis.

Appendix B

In this appendix we provide a discussion of the Hamiltonian
system (Eqs.2.1–2.2) in terms of action-angle variables. For
“closed orbit” solutions, the Hamiltonian system (Eqs.2.1–
2.2) can be written in terms of action-angle variablesI andθ
where

I =
1

2π

∮
pdq ≡

1

2π

∮
w(φ,H0)dφ(x), (B1)

S =

∫ φ

w(φ′, H0)dφ
′, θ =

∂S(φ, I )

∂I
, (B2)

whereI is the action (e.g. Zaslavsky et al., 1991). Note that
I = I (H0) is a function of the Hamiltonian integralH0. For
the compacton solutions−π ≤ φ < π corresponds to one
period of the waves. For the periodic solutions,−φ1 < φ <

φ1 where(−φ1, w1) and(φ1, w1) are the points on the phase
trajectories where|dw/dφ| → ∞. The sense of integration
in Eq. (B1) is that of increasingx, which is indicated by the
arrows on the phase space trajectories in Figs. 3–6.

Using Eqs. (2.1)–(2.2) and Eqs. (B1)–(B2) Hamilton’s
equations in terms of the action-angle variables, takes the
form:

dθ

dx
=
∂H0

∂I
= ω(I),

dI

dx
= −

∂H0

∂θ
= 0, (B3)

which demonstrates that(θ, I ) are canonically conjugate
variables. In the derivation of Eq. (B3), w = w(φ,H0) is
regarded as a function ofφ andH0 andI = I (H0). Also
note that

ω(I) =
dH0

dI
,

∂w(φ,H0)

∂H0
=

1

∂H0/∂w
=

1

φx
, (B4)

where use has been made of the Hamilton equationφx =

∂H0/∂w. The integrals of Eq. (B3) are:

θ = ω(I)x + θ0, I = I (H0) = const.. (B5)

Thus, in action-angle variables, the Hamiltonian trajectories
lie on a torus. For periodic solutions, the trajectories form a
closed curve on the torus. The spatial period of the wave is:

L =
2π

ω(I)
≡ 2π

dI

dH0
. (B6)
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Using the expression (Eq.B1) for the action in Eq. (B6) we
find:

L =

∮
∂w(φ′, H0)

∂H0
dφ′(x) ≡

∮
1

∂H0/∂w
φ′
xdx ≡ 1x, (B7)

where1x is the change inx in moving around the orbit in
the(φ,w) phase plane.

Using the results (Eqs.B1–B7, 4.1, and4.2) we obtain:

L = x(−π,wH )− x(π,wH ) = 2
∫ H

3−

3′

√
Q(3′)

d3′, (B8)

I = −
µ

π

∫ H

3−

3′2
− 23′H + 1
√
Q(3′)

d3′. (B9)

for the periodL and actionI of the compactons, where
wH = µ(1 − H 2) andQ(3) is given by Eq. (4.2). The
periodL in Eq. (B8) is equivalent to the result (Eq.4.10).
Similarly for the periodic waves, we obtain:

L = x(0+, w−)− x(0−, w−) = 2
∫ 3+

3−

3′

√
Q(3′)

d3′,(B10)

I = −
µ

π

∫ 3+

3−

3′2
− 23′H + 1
√
Q(3′)

d3′, (B11)

for the spatial periodL and the actionI , wherew± = µ(1−

32
±). Note that(φ,w) = (0−, w−) corresponds to the top of

the orbit and(φ,w) = (0, w+) corresponds to the bottom of
the orbit in the(φ,w)-phase plane. The period (Eq.B10) is
equivalent to Eq. (4.26).

Appendix C

In this appendix we discuss an alternative Hamiltonian for-
mulation of the system (Eqs.2.1–2.2) in which φ̃ = φe + φp
is used as the new independent variable to replacex. From
Eq. (2.40) x = x(φ̃) satisfies the differential equation:

dx

dφ̃
=
(µ+ 1)3

(µ− 1)
. (C1)

Noting that w = µ(1 − 32), the Hamiltonian system
(Eqs.2.1–2.2) can be cast in the alternative canonical form:

dφ

dφ̃
=
∂K

∂3
,

d3

dφ̃
= −

∂K

∂φ
, K = −

(
µ+ 1

µ− 1

)
H. (C2)

Thus, the Hamiltonian system (Eqs.2.1–2.2) is equivalent
to the Hamiltonian system (Eq.C2), with HamiltonianK
and canonical variables(φ,3), with independent variablẽφ.
The transformation relating Eqs. (2.1)–(2.2) to Eq. (C2) is a
type of canonical contact transformation (Goldstein, 1980).
¿From Eq. (C1),

x =

(
µ+ 1

µ− 1

)∫ φ̃

0
3(φ̃′)dφ̃′

+ x0, (C3)

wherex0 is an integration constant. The Hamiltonian system
(Eq.C2) has the integralH = const. (i.e.K = const.) and
the integral:

φ̃ = −σ

(
µ+ 1

µ− 1

)∫ 3

3−

d3′

√
Q(3′)

+ φ̃0, (C4)

where φ̃0 is an integration constant andQ(3) is given by
Eq. (4.2).

The above formulation, is particularly useful, since it al-
lows one to write the oscilliton, compacton and periodic,
travelling wave solutions parametrically in terms ofφ̃.

The oscilliton solution (Sect. 3.1) may be written paramet-
rically in the form:

φ = 2 tan−1(τ ) = −2 tan−1
[τc tanh(kφ̃)],

x =

(
µ+ 1

µ− 1

)
φ̃ −

τc

M2
tanh(kφ̃),

u =

√
µτc

2M2
sech(kφ̃)[1 + τ2

c tanh2(kφ̃)]1/2,

φp =
1

2

(
φ̃ + φ

)
, φe =

1

2

(
φ̃ − φ

)
,

k =
(µ+ 1)τc
2(µ− 1)

. τc =

√
4M2 − 1. (C5)

Note thatτc = tan(φc/2).
The compacton solution (Sect. 4.1) may be written para-

metrically in the form:

φ = −2 tan−1
[
11/4sc(kφ̃|ν)dn(kφ̃|ν)

]
,

x =
µ+ 1

µ− 1

[
3+φ̃ −

(3+ −3−)

k
E(kφ̃|ν)

]
,

3 = 3− + (H −3−)sn2(kφ̃|ν), u = [µ(1 −32)]1/2,

φp =
1

2

(
φ̃ + φ

)
, φe =

1

2

(
φ̃ − φ

)
. (C6)

Here

3± =
1 ±11/2

4M2
, 1 = 16M4

+ 1 − 8M2H,

k =

(
µ+ 1

µ− 1

)
11/4

2
, ν =

H −3−

3+ −3−

, (C7)

sc(x|ν), dn(x|ν), sn(x|ν) are Jacobian elliptic functions;
E(U |ν) is a standard elliptic integral of the second kind. One
period of the wave corresponds to−K(ν) < kφ̃ < K(ν)

whereK(ν) is a complete elliptic integral of the first kind.
The periodic wave solutions (Sect. 4.2) can be written

parametrically in terms of̃φ in the form:

φ = −2 tan−1
[
11/4ν̃1/2 sn(k̃φ̃|ν̃) cd(k̃φ̃|ν̃)

]
,

x =

(
µ+ 1

µ− 1

)[
Hφ̃ −

(H −3−)

k̃
E(k̃φ̃|ν̃)

]
,

3 = 3− + (3+ −3−) sn2(k̃φ̃|ν̃), u = [µ(1 −32)]1/2,

φp =
1

2

(
φ̃ + φ

)
, φe =

1

2

(
φ̃ − φ

)
. (C8)
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In Eq. (C8)

ν̃ =
3+ −3−

H −3−

, k̃ =

(
µ+ 1

µ− 1

)
M(H −3−)

1/2

√
2

. (C9)

One period of the wave corresponds to theφ̃ range: 0<
k̃φ̃ < 2K(ν̃).
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