
HAL Id: hal-00302629
https://hal.science/hal-00302629

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multifractal magnetic susceptibility distribution models
of hydrothermally altered rocks in the Needle Creek

Igneous Center of the Absaroka Mountains, Wyoming
M. E. Gettings

To cite this version:
M. E. Gettings. Multifractal magnetic susceptibility distribution models of hydrothermally altered
rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming. Nonlinear Processes
in Geophysics, 2005, 12 (5), pp.587-601. �hal-00302629�

https://hal.science/hal-00302629
https://hal.archives-ouvertes.fr


Nonlinear Processes in Geophysics, 12, 587–601, 2005
SRef-ID: 1607-7946/npg/2005-12-587
European Geosciences Union
© 2005 Author(s). This work is licensed
under a Creative Commons License.

Nonlinear Processes
in Geophysics

Multifractal magnetic susceptibility distribution models of
hydrothermally altered rocks in the Needle Creek Igneous
Center of the Absaroka Mountains, Wyoming

M. E. Gettings

US Geological Survey, 520 N. Park Ave., Rm. 355, Tucson, Arizona 85719, USA

Received: 18 October 2004 – Revised: 21 April 2005 – Accepted: 10 May 2005 – Published: 10 June 2005

Abstract. Magnetic susceptibility was measured for 700
samples of drill core from thirteen drill holes in the porphyry
copper-molybdenum deposit of the Stinkingwater mining
district in the Absaroka Mountains, Wyoming. The mag-
netic susceptibility measurements, chemical analyses, and
alteration class provided a database for study of magnetic
susceptibility in these altered rocks. The distribution of the
magnetic susceptibilities for all samples is multi-modal, with
overlapping peaked distributions for samples in the propylitic
and phyllic alteration class, a tail of higher susceptibilities
for potassic alteration, and an approximately uniform distri-
bution over a narrow range at the highest susceptibilities for
unaltered rocks. Samples from all alteration and mineral-
ization classes show susceptibilities across a wide range of
values. Samples with secondary (supergene) alteration due
to oxidation or enrichment show lower susceptibilities than
primary (hypogene) alteration rock.

Observed magnetic susceptibility variations and the mono-
lithological character of the host rock suggest that the vari-
ations are due to varying degrees of alteration of blocks of
rock between fractures that conducted hydrothermal fluids.
Alteration of rock from the fractures inward progressively
reduces the bulk magnetic susceptibility of the rock. The
model introduced in this paper consists of a simulation of
the fracture pattern and a simulation of the alteration of the
rock between fractures. A multifractal model generated from
multiplicative cascades with unequal ratios produces distri-
butions statistically similar to the observed distributions. The
reduction in susceptibility in the altered rocks was modelled
as a diffusion process operating on the fracture distribution
support. The average magnetic susceptibility was then com-
puted for each block. For the purpose of comparing the
model results with observation, the simulated magnetic sus-
ceptibilities were then averaged over the same interval as the
measured data. Comparisons of the model and data from
drillholes show good but not perfect agreement.

Correspondence to:M. E. Gettings
(mgetting@usgs.gov)

1 Introduction

The magnetic field maps the source distribution in space as a
superposition of dipolar fields on the observation surface. In
geological systems, the spatial distributions of magnetic field
anomalies and bulk magnetic susceptibilities are highly vari-
able and often follow a power law distribution (Pilkington
and Todoeschuck, 1993, 1995). Both can be modelled with
self-affine fractals but with varying dimensions over varying
scale ranges (Pilkington and Todoeschuck, 1993; Gettings
et al., 1991). More recent work has shown that magnetic
susceptibility distributions in the Earth can be modelled us-
ing multifractal techniques (Gettings, 1995; Lovejoy et al.,
2001; Pecknold et al., 2001). Potential fields, by definition,
are not fractal because they are continuously differentiable.
This study is based on the hypothesis that non-differentiable
magnetic susceptibility profiles reflect the spatial distribution
of dipole sources in the Earth at various scales. The distribu-
tion of magnetic susceptibilities is modelled along a drillhole
through altered rock, and the model is correlated with geo-
logical structures and alteration processes in the source rock.

First, the results of the measurments are discussed in the
context of their relationships to metal content, alteration
class, and dominant mineralogy. Next, a model of magnetic
susceptibility in altered rocks is developed. The multifractal
nature of the distribution of susceptibilities is demonstrated,
and a simple multiplicative cascade model is seen to gener-
ate distributions very similar to the observed susceptibilities.
Finally, these concepts are applied to a simple multifractal
model for magnetic susceptibility in hydrothermally altered
rocks, and compared with the observations. Several methods
of comparing the model and data are explored to evaluate the
success of the model.

2 Magnetic susceptibility measurements

For this study, 700 samples from thirteen boreholes (loca-
tions shown on Fig.1) in the Stinkingwater district of the
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Fig. 1. Simplified geologic map of the Stinkingwater Mining region of the Needle Creekigneous center (Fisher,

1972). Rock unit abbreviations: ebf, basalt flows of the Eocene Trout Peak formation; gd, Miocene Needle

Mountain granodiorite; cmd, Miocene Crater Mountain dacite; ld, Holocenelandslide deposits; ls, Holocene

limonitic soil; gp, Holocene gypsite; rg, Holocene rock glacier; and Qal, Holocene alluvium. Lines with two

balls on them are dikes, stringers, or veins; double dashed lines are fracture systems and faults. North is to the

top of the figure. The points labeled, for example, “S2” or “N1” are the locations of exploration drillholes whose

core was measured for magnetic susceptibility for this study. The red overlay shows the approximate boundaries

of the zones of hydrothermal rock alteration. Thin black lines show approximate topographic contour locations

of altitude in ft at a 200 ft (61 m) interval.
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Fig. 1. Simplified geologic map of the Stinkingwater Mining re-
gion of the Needle Creek igneous center (Fisher, 1972). Rock unit
abbreviations: ebf, basalt flows of the Eocene Trout Peak formation;
gd, Miocene Needle Mountain granodiorite; cmd, Miocene Crater
Mountain dacite; ld, Holocene landslide deposits; ls, Holocene
limonitic soil; gp, Holocene gypsite; rg, Holocene rock glacier; and
Qal, Holocene alluvium. Lines with two balls on them are dikes,
stringers, or veins; double dashed lines are fracture systems and
faults. North is to the top of the figure. The points labeled, for
example, “S2” or “N1” are the locations of exploration drillholes
whose core was measured for magnetic susceptibility for this study.
The red overlay shows the approximate boundaries of the zones of
hydrothermal rock alteration. Thin black lines show approximate
topographic contour locations of altitude in ft at a 200 ft (61 m)
interval.

Needle Creek igneous center in the Absaroka Range of north-
western Wyoming (Fisher, 1983) were measured for mag-
netic susceptibility. These samples were splits from 10 ft
sections of pulverized drill core that were also subjected
to chemical analyses (Fisher, 1971); thus, the susceptibility
measurements represent a mean value for each 10 ft (3.05 m)
interval. Studies of alteration and mineralization were also
carried out (Fisher, 1983; Phelps-Dodge Corporation, 1968)
so that a dataset of chemical composition, alteration class
and magnetic susceptibility was obtained. This dataset may
be obtained online from the US Geological Survey (Gettings,
2004).

The susceptibility measurements were made in the labora-
tory using a computer controlled inductive bridge instrument
with a shielded coaxial sensing coil. Samples were measured
in their cardboard cylindrical storage containers (about 3 cm
in diameter and 5 cm in length) inserted into the measure-
ment coil. The instrument produces a mean magnetic sus-
ceptibility and a standard deviation of magnetic susceptibil-

ity for each sample and has a measurement precision 2×10−7

cgs/cm3 magnetic susceptibility (to obtain SI units of sus-
ceptibility, multiply the given cgs number by 4π). For each
sample, a reading with an empty container, a reading with
the sample, and a reading with an empty container were ob-
tained, thus determining a linear drift correction with time. A
single arbitrary sample was chosen as a reference and repeat-
edly measured throughout the duration of susceptibility mea-
surements. This sample was measured 165 times yielding
a mean magnetic susceptibility of 2.607×10−6 cgs/g and a
standard deviation of 2.668×10−7 cgs/g. Susceptibility val-
ues are given per unit mass rather than per unit volume in this
paper because the samples were finely ground powders.

The Stinkingwater district is a hydrothermally altered and
mineralized area in the Needle Creek igneous center (Fig.1).
The rocks, alteration, and mineralization events are Eocene
(approximately 40 Ma) and Upper Miocene in age (Fisher,
1983). The two intrusive units, the Needle Creek granodior-
ite and the Crater Mountain dacite (Fig.1) are both altered
and mineralized. The Crater Mountain dacite is most ex-
tensively mineralized in a zone where it is highly shattered
(Fisher, 1972, 1983), presumably by a subsurface intrusive
that was the source of the porphyry rocks. Geomorphically,
the Crater Mountain dacite behaves as a fractured and in-
competent unit, and displays many landslides and gravity
slumps (Fisher, 1972). The dacite composition and perme-
ability from fracturing make it a good host for hydrothermal
alteration and mineralization.

The alteration pattern is a typical concentric zoned pattern
(Lowell and Guilbert, 1970) ranging from propylitic in the
outermost zone to phyllic alteration with patchy potassic al-
teration in the center (Fig.1). The drillholes were mostly lo-
cated in the more highly altered phyllic and potassic zones
(Fig. 1), but several holes penetrated more than one zone
vertically. Drillhole S8 penetrated 100ft (30.5 m) in Crater
Mountain dacite that is essentially unaltered. Although some
alteration minerals are present (Fisher, 1972), they are vol-
umetrically small and the rock penetrated by the drillhole is
unmineralized (Phelps-Dodge Corporation, 1968). The hole
thus represents a sample of unaltered rock and is inferred to
represent the pre-mineralization magnetic susceptibility. Fif-
teen samples from this hole were measured and the results
show consistent magnetic susceptibility. The measured max-
imum, minimum, mean, and standard deviation magnetic
susceptibility were 4.78×10−4, 3.18×10−4, 4.03×10−4, and
4.73×10−5 cgs/g. Thus, a value of 4.0×10−4 cgs/g magnetic
susceptibility was taken as representative for unaltered and
unmineralized Crater Mountain dacite.

The drill cores show that both alteration class and degree
of mineralization vary strongly in all three dimensions in the
deposit. There is also an oxidized zone and a secondary en-
richment zone overlying the protore of the deposit (Fisher,
1983). Figure2 is a log of drillhole N6 showing the magnetic
susceptibility as a function of depth, together with lithologic
and alteration information; the logarithm (basee) of suscepti-
bility is used in order to observe “fine structure” at relatively
low signal levels. This hole will be used here for discussion
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Fig. 2. Natural logarithm of magnetic susceptibility (cgs/g) for
drillhole N6 (Fig.1) plotted as a function of depth. Rock lithology,
alteration, and some mineralogical information are also shown. Ab-
breviations are: sec. bio., secondary biotite; and K-spar, orthoclase
feldspar. Note the highly variable nature of the magnetic suscepti-
bility values.

because it is representative of the dataset and is the deep-
est hole drilled and thus the largest sample. Study of Fig.2
shows that there is no one-to-one correlation between mag-
netic susceptibility and either lithology or alteration class.
The two dikes have higher susceptibility but are post miner-
alization and not under discussion here. In general, however,
areas of propylitic and phyllic alteration have relatively small
values of magnetic susceptibility and areas of potassic alter-
ation have higher values, though all are decidedly variable.

Figure3 shows a histogram of the logarithm of magnetic
susceptibility of all the measured samples. Susceptibility val-
ues are positive definite for all the minerals in this study and
thus a distribution of observations with no values less than
zero is expected. The distribution of susceptibilities is multi-
modal (Fig.3) with a large peak at a natural logarithm of
susceptibility (ln K) value of about –12.5, a smaller peak at
ln K of –11, and a smaller peak at ln K values of about –7.5 to
–9.0. There is a persistent tail of values between ln K equal
–11 and –9. These features correspond nicely to the various
rock types and alteration classes as will be shown below.

Figure4 shows a box plot of logarithm of magnetic sus-
ceptibility plotted for the unaltered rock, each alteration
class, and the post-mineralization dikes. This figure shows
that the phyllically-altered rocks generally have small sus-
ceptibilities, gradually increasing through propylitic to a
maximum in the potassic alteration class. Note that the sus-
ceptibility is highly variable in each class. As discussed be-
low, it is hypothesized here that these variations are due to
degree of completeness of the alteration process in each sam-
ple.

Figure 5 shows a box plot for the three classes of min-
eralized rocks: protore; oxidized; and enriched. As ex-
pected the protore rocks are more magnetically susceptible

Fig. 2. Natural logarithm of magnetic susceptibility (cgs/g) for drillhole N6 (Fig. 1) plotted as a function of

depth. Rock lithology, alteration, and some mineralogical information are also shown. Abbreviations are:

sec. bio., secondary biotite; and K-spar, orthoclase feldspar. Note the highly variable nature of the magnetic

susceptibility values.
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Fig. 3. Histogram showing the distribution of the natural logarithm
of magnetic susceptibility for the 700 samples from the drillholes
(locations shown in Fig.1). The distribution is multi-modal with an
overlapping peaks at about –13.5 to –10.5 logarithm of susceptibil-
ity, a persistent tail from –10.5 to –7.5, and an essentially uniform
distribution from –8.0 to –8.5.

Fig. 4. Plots showing the distribution of magnetic susceptibility as a function of hydrothermal alterations.

Boxplot showing the distribution of the logarithm of magnetic susceptibility for the various classes of alteration

of the 700 samples. The horizontal bar in the box shows the mean, the lower and upper ends of the box show the

25% and 75% quantiles, respectively, the bars at the ends of the dashedlines show the 5% and 95% quantiles,

and the solid dots show the outliers beyond the 5% and 95% quantiles.
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Fig. 4. Plots showing the distribution of magnetic susceptibility
as a function of hydrothermal alterations. Boxplot showing the dis-
tribution of the logarithm of magnetic susceptibility for the various
classes of alteration of the 700 samples. The horizontal bar in the
box shows the mean, the lower and upper ends of the box show the
25% and 75% quantiles, respectively, the bars at the ends of the
dashed lines show the 5% and 95% quantiles, and the solid dots
show the outliers beyond the 5% and 95% quantiles.

than either the oxidized or the enriched rocks. The oxi-
dized and enriched rocks have virtually the same magnetic
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Fig. 5. Boxplot showing the distribution of the logarithm of mag-
netic susceptibility for the classes of secondary alteration of the 700
samples. Protore represents rocks with only primary (hypogene)
alteration; oxidized represents low temperature oxidation, and en-
riched represents rocks from the zone of secondary (supergene) en-
richment. Symbols for the boxes are as described above.
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Fig. 6. Natural logarithm of magnetic susceptibility plotted as
function of iron content. Iron content percent represents total iron
from the sample, regardless of its oxidation state. Symbol K is mag-
netic susceptibility.

susceptibility characteristics because the iron bearing miner-
als are in low susceptibility phases in both classes. These
phases are mainly hematite and pyrite, respectively.

Figure6 shows a plot of logarithm of magnetic susceptibil-
ity as a function of total iron in the sample. This plot shows
clearly that high iron content does not necessarily imply a
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Fig. 7. Natural logarithm of magnetic susceptibility plotted as
function of sample total copper content in parts per million.
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Fig. 8. Natural logarithm of magnetic susceptibility plotted as
function of sample total molybdenum content in parts per million.

high magnetic susceptibility; the oxidation state controls the
susceptibility also. Interestingly, the degree of mineralization
is not as strongly anti-correlated with magnetic susceptibil-
ity as might be expected. Figure7 shows a plot of logarithm
of magnetic susceptibility as a function of copper content,
and a triangular, or perhaps peaked, distribution is observed
at about 0.1% Cu. Although high copper content generally
implies a low susceptibility, large variability is observed at
intermediate copper contents. The minimum susceptibility
values, excluding three outliers, are at chalcopyrite values
(Carmichael, 1982) in the range of –13.5 to –13.8 (Fig.7);
this suggests that chalcopyrite is the principal magnetic min-
eral for the rocks with lowest susceptibility, as both pyrite
and hematite generally have logarithms of magnetic suscep-
tibility of –9 to –11 (Carmichael, 1982).

Figure8 shows the distribution of the logarithm of mag-
netic susceptibility as a function of molybdenum content.
The distribution is very similar to that for copper (Fig.7),
although the median susceptibility appears to occur more at
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very small molybdenum content, as opposed to copper con-
tents of approximately 1500 ppm. This again suggests that
copper as chalcopyrite, the principal copper mineral (Fisher,
1972), is the main contributor to magnetic susceptibility in
the low susceptibility rocks.

Figure9 shows a three dimensional summary plot of the
observed relationships between mineralization, alteration,
and magnetic susceptibility. The general result is that the
susceptibility is contained within a volume defined by the
zero susceptibility plane and a peaked surface defining the
observed maximum susceptibility for a given alteration class
and degree of mineralization. Efforts to define the shape and
controlling factors of the maximal surface have so far been
unsuccessful; the discovery of the limiting surfaces is a con-
tinuing research topic. Between the limiting surfaces, the
observed magnetic susceptibility distribution is discontinu-
ous, highly variable, and fractal in nature. The samples in
the phyllic class are the most dispersed in their distribution
with respect to mineralization whereas those in the potassic
class have the largest variability in susceptibility. The propy-
litic class has the most compact distribution of susceptibility
with respect to mineralization.

With the relationships from Figs.4–9, the distribution of
the entire dataset in Fig.3 is seen to be a series of overlap-
ping sub-distributions. The large peak centered at ln K of
–12.5 is mainly due to samples from the phyllic and propy-
litic classes, the peak at ln K of –11 is essentially due to the
dike rocks, and the peak at ln K –8.5 to –8 is the due to unal-
tered dacite. The continuum of values of ln K –10.5 to –7.5
is principally due to the large susceptibility range of potassic
alteration samples.

3 Model of rock demagnetization in a fractured por-
phyry system

A heuristic model of the magnetic susceptibility in the al-
tered rocks was assumed to be the superposition of two al-
teration processes. First, the unaltered rocks (mainly Crater
Mountain dacite) were assumed to have a constant mag-
netic susceptibility. These rocks were then demagnetized
due to fracturing and hydrothermal alteration from the in-
trusion and cooling of the the porphyry, forming the volu-
metrically largest propylitic and phyllic zones (Fig.1). Sec-
ond, in the core of the complex and some outwardly radiating
dikes, potassic alteration occurred which enhanced the mag-
netic susceptibility variably in the affected areas. The loss
of bulk magnetic susceptibility of the altered rocks was mod-
eled as a diffusive process from the fractures into the rock
between fractures, thus allowing for variable bulk suscepti-
bility depending on degree of fracturing and the composition
and volume of hydrothermal fluids circulating through the
fractures.

Fig. 9. Three dimensional plot of natural logarithm of magnetic susceptibility as a function of alteration class

and degree of mineralization represented by total content of copper.
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Fig. 9. Three dimensional plot of natural logarithm of magnetic
susceptibility as a function of alteration class and degree of miner-
alization represented by total content of copper.

3.1 Basis for a fractal model

As a result of the large variability of magnetic field survey
data and measured magnetic susceptibilities, several stud-
ies have applied fractal geometry techniques to magnetic
field and susceptibility data models (Gettings et al., 1991;
Gregotski et al., 1991; Pilkington and Todoeschuck, 1993,
1995; Pilkington et al., 1994; Maus and Dimri, 1994, 1995,
1996; Maus et al., 1997; Zhou and Thybo, 1998; Maus, 1999;
Quarta et al., 2000). Most authors (e.g.Gettings et al., 1991;
Pilkington and Todoeschuck, 1993, 1995; Maus and Dimri,
1994, 1995) noted that a single fractal dimension did not de-
scribe all the scales nor all datasets studied, and concluded
that a self-affine fractal could only describe a limited range
of scaling for a given dataset. This lack of universality led to
the application of multifractals (Feder, 1988; Turcotte, 1997;
Dubois, 1998; Mandelbrot, 1999) to aeromagnetic anomaly
and magnetic susceptibility data.Feder(1988) hints that
magnetic fields could be described by multifractal models,
andGettings(1995) showed that susceptibility data and mag-
netic anomaly fields from dipole sources could be well repre-
sented by simple multifractal models.Lovejoy et al.(2001)
andPecknold et al.(2001) in two seminal papers have shown
that anisotropic multifractal distributions are the appropriate
model for the three-dimensional distribution of magnetiza-
tion in the Earth.

Multifractal measures are defined byFeder(1988) as “a
distribution of physical or other quantities on a geometric
support”. Pecknold et al.(2001) point out that long-tailed
(quasi-log normal) distributions observed for many geophys-
ical spatial and time series constitute stable multifractal be-
havior and hence efforts to model such series with monofrac-
tal models is simplistic and cannot reproduce observed be-
havior. The spatial distribution of lithology has been mod-
eled with fractals (e.g.Maus and Dimri, 1995; Dolan et al.,
1998, unpublished modelling by the author and M. Bultman),
and all authors have recognized differing fractal dimensions
for differing lithologies. Multifractal models are a thus nat-
ural description for magnetic sources in the Earth’s crust.
Multifractal models have the property of being composed of
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Fig. 10. The power spectrum for the ensemble averaged dataset of magnetic susceptibilities (”all data”) and

the deepest drillhole N6 (”Drillhole N6”). The straight lines show the globalslope indicating scaling. The

horizontal lines at the bottom of the figure indicate the range of data from the13 drillholes.
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Fig. 10. The power spectrum for the ensemble averaged dataset of
magnetic susceptibilities (“all data”) and the deepest drillhole N6
(“Drillhole N6”). The straight lines show the global slope indicating
scaling. The horizontal lines at the bottom of the figure indicate the
range of data from the 13 drillholes.

fractal subsets of the support, each generally of differing di-
mension. In this study, the averaging of the sample over a
10 ft (3 m) interval means that all variability over scales less
than 3 m is lost. Using a multifractal model accomodates this
problem as simply a lack of data for scales less than the aver-
aging interval of 3 m. The multifractal model automatically
accounts for the observation that the data show different frac-
tal dimensions depending on how they are plotted or sampled
(Brown, 1995; Turcotte and Huang, 1995).

Considering the textural properties of the drillhole logs of
susceptibility, one notes first that the measured magnetic sus-
ceptibility as a function of altitude (Fig.2) is highly vari-
able, exhibiting a positive-definite, multi-modal distribution
of sharp peaks over the full range of scales of the measure-
ments. Second, the susceptibility measurements are spatially
discrete, a property precluding continuous differentiability
of the observed pattern; this property is perhaps central to
the operational definition of fractals and multifractals. Third,
the mineral grains are distributed in a highly variable manner
within rocks (Fowler, 1995), and the susceptibility is identi-
cally zero on the boundaries between grains. Because of this
inherent discontinuity and since different minerals have dif-
ferent values of susceptibility (those with large susceptibility
are termed “magnetic minerals”), the magnetic susceptibility
is a function which has large variability and is not differ-
entiable. For rock bodies, this discontinuous behavior per-
sists from the smallest scale (mineral grains) of∼ 10−5 m,
to scales of 10−3 to 103 m for fractures, inclusions, zones,
facies, etc., up to the distribution of rock bodies (formations,
intrusions, volcanic fields, etc.) at scales of 100 to 105 m.
Thus the range of scales expected is 10−5 to 105 m or ten
orders of magnitude. These considerations indicate that a
multifractal model is a good candidate for the representa-

tion of the magnetic susceptibility pattern across the phys-
ical span of the measurements. Because all minerals have
some magnetic susceptibility, a support dimension of 1.0 (for
a drillhole log) was assumed. This assumption ignores any
voids in the rock, however the logs of the drillholes show that
voids and vesicles are minimal, probably much less than 1%
(Fisher, 1972).

We first apply multifractal analysis to the observed mag-
netic susceptibility, then to a multiplicative cascade (Feder,
1988) model, and finally to a physical model of rock al-
teration by chemical reaction from hydrothermal circulation
through fractures. for the representation of the observations.
Multifractal analysis of the observed pattern provides infor-
mation on the spectrum of component fractal dimensions re-
quired to characterize the data. FollowingFeder(1988), the
general analysis procedure is to form subsets of the dataset
based on the magnitude of the susceptibility values and find
the “mass” of the function in each element of each subset.
The moments of the mass (the mass to an integral power, the
moment order) are then summed for each subset. A sequence
of mass exponents can then be defined for each moment or-
der by finding the limit of the ratio of the logarithm of the
mass moment sums to the logarithm of the subset cell widths
as the cell width approaches zero. These limits yield the
f (α) vs α curve that describes the multifractal spectrum of
the data. For a multifractal, thef (α) curve usually assumes
an inverted “U” shape with the peak value at the support di-
mension (1.0 for the drillhole data here). Thef (α) values
at the maximum and minimumα values define the range of
the dimensions in the spectrum. The data of drillhole N6 was
chosen for this analysis because it was the deepest hole (N =
114 samples, 1168 ft (358 m) total depth) and represents the
best overall sample of the altered rocks in the deposit. This
analysis produced anf (α) vs α curve with limiting dimen-
sions of 0.4 and 1.55 and a support dimension of 1.0. Later
in the study, more robust techniques for data analysis were
described by several investigators (e.g.Schertzer and Love-
joy, 1987; Davis et al., 1994). These techniques were applied
to determine the scaling exponents for the ensemble aver-
age of all the drillhole data (N = 700), drillhole N6, and the
multiplicative cascade and diffusion-alteration model. The
generalized structure function technique (Davis et al., 1994;
Schmitt et al., 1995) was used for this study. The exponent
function ζ(q) of the scale invariant structure function is de-
fined by (e.g.Monin and Yaglom, 1975):

<|K(z+ε)−K(z)|q>=<|K(Z+ε)−K(Z)|q>(ε/Z)ζ(q) (1)

whereZ is the longest scale of the scaling regime,K(z) is the
magnetic susceptibility as a function of depthz, q is the mo-
ment order, and the angle brackets indicate spatial averaging
(expectation value). Here, the structure functions were com-
puted fromq=0.25 to q=5.0 in steps of 0.25. Plotting the
logarithm of the structure function for a givenq as a function
of the logarithm ofε allows the determination of the slope
ζ(q) by linear regression (Schmitt et al., 1995). The “tails”
at large and smallε depart from a straight line because of
insufficient sampling, so only the central, linear part of the
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curves were used for the regression. For the ensemble aver-
aged data, drillhole N6 and the multiplicative cascade model,
a range ofε from 3 m to 100 m was used. Correlation coeffi-
cients for the fits for the ensemble averaged data ranged from
0.7 to 0.9; for the drillhole N6, 0.5 to 0.6, and for the cascade
model 0.6 to 0.8.

3.1.1 Multifractal analysis of the data

Figure 10 shows the energy density spectrum for the en-
semble averaged data and for the deepest drillhole N6. The
straight line segments shown on the figure have a slope of
β=1+ζ(2) corresponding to the global slope of the spec-
trum from the second order structure function. The power
spectrum exhibits much more structure than the straight line,
indicating differing scaling at different scales. The shape of
the spectra for the ensemble and N6 are nearly identical up
to characteristic lengths of about 50 m, beyond which the en-
semble spectra contains two peaks not appearing in the N6
spectra. These two peaks are near the limits of the largest
scales contained in the data and may not be real.

Figure 11 shows the result of estimating the scaling ex-
ponent functionζ(q) for both the ensemble-averaged data
and drillhole N6. The curves show that there are signif-
icant differences in scaling between N6 and the averaged
dataset although this may simply reflect better definition
of the scaling from the larger (ensemble-averaged) dataset.
Schertzer and Lovejoy(1987, 1991, 1997) have introduced
stable and attractive universal generators for multifractal pro-
cesses termed “universal multifractals”. Universal multifrac-
tals model the departure from linearity of the scaling expo-
nents with two parametersC1 andα (Schmitt et al., 1995;
Tessier et al., 1996):

ζ(q) =

{
qH − (C1/(α − 1))(qα

− q) α 6= 1
qH − C1qlog(q) α = 1

(2)

H is the first order momentζ(1), 0 ≤ α ≤ 2, α is the mul-
tifractal index, and 0≤ C1 ≤ R, whereR is the dimension
of the space andC1 is the codimension of the mean of the
process.

The parametersα andC1 were determined by nonlinear
least squares fitting of theζ(q) function for the ensemble-
averaged data. Fitting was performed using the Marquardt
algorithm (Bevington, 1969) and analytic expressions for the
partial derivatives with respect to the parameters. The pa-
rameter space for equation (2) for this dataset has many local
minima so that numerous starting values need to be tested to
find the best fit. In this case, the starting value ofC1 was
taken as 0.010 and the fits were not sensitive to other starting
values. Parameterα, however, was very sensitive to starting
values, and initial values of 1.5, 1.6, 1.7, 1.75, 1.8, 1.9, 1.95,
1.99, and 2.0 were all tried. The resulting best fit was ob-
tained forα=1.735±0.003 andC1=0.0136±0.00003. The
fit is shown in fig.11and is nearly identical to the ensemble-
averaged scaling exponent functions. All other fits found de-
parted significantly from the data forq>3.5. The uncertain-
ties for the fit reflect only the goodness of the fit to the data,

Fig. 11. Plot of scaling exponent functionζ(q) for the magnetic susceptibility data. ”ALL” is scaling for the

ensemble average of the entire dataset; ”N6” is scaling for drillhole N6 dataonly; ”CASC” is scaling for the

multiplicative cascade model of segment lengths 0.3, 0.4, and 0.3 with proportions of 0.25, 0.55, and 0.20; and

”UMF” is the best-fitting universal multifractal determined from nonlinearleast squares fitting of the ensemble

averaged data.
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Fig. 11. Plot of scaling exponent functionζ(q) for the magnetic
susceptibility data. “ALL” is scaling for the ensemble average of the
entire dataset; “N6” is scaling for drillhole N6 data only; “CASC” is
scaling for the multiplicative cascade model of segment lengths 0.3,
0.4, and 0.3 with proportions of 0.25, 0.55, and 0.20; and “UMF”
is the best-fitting universal multifractal determined from nonlinear
least squares fitting of the ensemble averaged data.

not those of theζ(q) values for the data, which are much
larger, of the order of±5%. At least for the data studied
here, the universal multifractal is able to provide an excel-
lent representation of the data. Theα andC1 values of 1.74
and 0.014 obtained here are significantly less than those ob-
tained byPecknold et al.(2001) of 1.98 and 0.047 for vertical
magnetization. However, the rocks studied here are of re-
stricted lithology and small magnetic susceptibility whereas
the data investigated byLovejoy et al.(2001) andPecknold
et al.(2001) encompass both a large variety of lithologies and
magnetizations, so the the rocks studied here form a small
subset of those modelled byPecknold et al.(2001). Model
fits for the data studied here that converged onα values near
2.0 all yielded poor fits to the data.

3.2 Multiplicative cascade model

Fracture distributions in rocks have been modelled with frac-
tals (Barton, 1995; Turcotte, 1997; Dubois, 1998). For these
models, the physics of fragmentation is assumed to be con-
stant across a range of scales so that fragments fragment sim-
ilar to the parent fragments; this yields the self-affine frac-
tal behavior (Turcotte, 1997; Dubois, 1998). Fracturing can
then be modeled with a segmentation model where the ends
of the segments represent the fractures. Other investigators
have shown that properties of the fracture system, such as
aperture and length, behave as multifractals (Belfield, 1994;
Bonnet et al., 2001). Moreover, multifractals appear to be a
more general way to model the fracture distribution itself, be-
cause of the varying fracture response to different lithologies
and heterogeneties as well as differing fracture mechanisms
from different tectonic regimes (Sornette et al., 1993; Ouillon
et al., 1996; Berkowitz and Hadad, 1997; Ackermann et al.,
2001; Bonnet et al., 2001).
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Fig. 12. Multiplicative cascade model for the depletion of magnetic susceptibility due tothe alteration of the

rock. a) Schematic diagram of the first four generations of generalized line division for relative segment lengths

of 0.3, 0.4, and 0.3 and for proportions of magnetic susceptibility into each segment of 0.25, 0.55, and 0.20. b)

Plot of the magnetic susceptibility after five generations with a constant order of segments at each generation.

c) Same plot as b) except using a random permutation of the order of segments at each generation. d) Same plot

as b) except using a random permutation of the order of the segments for the subdivision of each segment.
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Fig. 12. Multiplicative cascade model for the depletion of magnetic susceptibility due to the alteration of the rock.(a) Schematic diagram
of the first four generations of generalized line division for relative segment lengths of 0.3, 0.4, and 0.3 and for proportions of magnetic
susceptibility into each segment of 0.25, 0.55, and 0.20.(b) Plot of the magnetic susceptibility after five generations with a constant order of
segments at each generation.(c) Same plot as (b) except using a random permutation of the order of segments at each generation.(d) Same
plot as (b) except using a random permutation of the order of the segments for the subdivision of each segment.

A simple multifractal model of the distribution of fractures
and their properties can be obtained using multiplicative cas-
cades. Numerous authors have discussed multiplicative cas-
cades; this study followed the development of (Feder, 1988),
who begins with the classic Cantor set (Cantor, 1883) and
generalizes to a line division process that distributes propor-
tions of a property (magnetic susceptibility here) into seg-
ments recursively. This process of redistribution and concen-
tration (termed curdling byMandelbrot(1977) andMandel-
brot (1982)) produces a multifractal. The length and mag-
netic susceptibility value at any stage in the process is the
product of all the preceeding generations and thus is termed
a multiplicative cascade. Figure12demonstrates the process
for the case chosen here. For this model, the support dimen-
sion is 1.0, the dimension of the drillhole log, therefore the
sum of the relative segment lengths must sum to unity. We

also assume that the process of redistribution of the magnetic
susceptibility is conservative so that the fractions or propor-
tions of susceptibility moved into the segments also sum to
unity. A set of three segment lengths of 0.3, 0.4, and 0.3 was
used, and the proportion allocated to each respective length
segment was 0.25, 0.55, and 0.20. Starting with a full length
line, the process subdivides it into three segments with the
above-listed relative lengths and proportions. At each gener-
ation, all line segments are subdivided according to the seg-
ment lengths and proportions. For the model shown here,
five generations were used.

Utilizing the proportion and length formalism just de-
scribed, the exponent of the proportionsq (Feder, 1988) is
a free parameter called the moment order, and in order for
the measure to remain finite, this results in constraints on
the exponent of the lengths which is related to the fractal
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dimension (Feder, 1988). Generalizing to any number of seg-
ments yields the defining equation

N∑
i=1

p
q
i l

τ (q)
i = 1 (3)

For given values ofq, {li}, and{pi}, Eq. (3) is solved numer-
ically to yield the sequence of mass exponentsτ(q) (Feder,
1988). Once the sequence of mass exponents has been ob-
tained, thef (α) vs α curve can be obtained as described
previously. As shown inFeder(1988), the line division and
proportioning process produces a multifractal which has a
spectrum of dimensions. The support dimension, that is,
the dimension of the segments on which the property is pro-
portioned, can be either fractal or Euclidean (Euclidean is a
particular fractal dimension that is integer and includes the
whole space associated with that dimension). Moreover, the
set of proportioned property is also fractal as are its subsets;
for the data described here the 3 m averaged samples are one
such subset.

On the plots (Fig.12), the ordinate is the proportion in
the line segment plotted at the center of the segment. Al-
though in b) of the figure, the pattern is quite variable similar
to the magnetic susceptibility data (Fig.2), it still has too
much symmetry when compared to the observed data. This
can be further randomized by randomly choosing the order
of segments (and accompanying proportions) at each gener-
ation (Barton, 1995; Dubois, 1998). Part c) of Fig.12 shows
the result of one such simulation. This pattern is closer to that
observed but still too symmetric. Finally, part d) of Fig.12
shows the results of going one step further, randomly choos-
ing the order for each segment as it is subdivided and pro-
portioned. This process produces distributions that look the
most like the observed distribution of magnetic susceptibili-
ties measured in the drillholes.

The scaling exponent functionζ(q) was determined from
the multiplicative cascade model using generalized structure
functions as describe above. The results, shown on Fig.11,
fit the ensemble-averaged data surprisingly well up to q val-
ues of about 3.7. This is especially true as no fitting algo-
rithm was used other than running a few dozen simulations
and choosing the one visually most similar to a plot of the
magnetic susceptibility for drillhole N6.

For this discussion, we have considered only a one-
dimensional (Euclidean) system, such as measurements of
physical properties in a drillhole or along a profile. The seg-
mentation scheme can be easily generalized to two or three
dimensions if one assumes the distribution in each dimen-
sion is independent of the others; then, the desired distribu-
tion is just the product of three distributions, one for each
spatial coordinate. This may be appropriate for applications
such as particle concentration (metal concentration in a de-
posit, sediment detritus, etc.; see alsoTurcotte(1997) and
Dubois(1998) but unsuited for features such as fractures or
sedimentary beds which are correlated between dimensions.
In these cases, one must know the form of the correlation in
order to carry the one-dimensional case into two- or three-

dimensions. Finally, note that several different line division
processes can be superposed either concurrently or serially to
model, for example, syngenetic or successive tectonic events.

Proportions that add to unity have been used in the exam-
ples here. This case conserves the total amount of the prop-
erty distributed on the segments, and in such a case the pro-
portions on the segments have a one-to-one correspondence
with the probability of being in any segment. However, this
normalization criterion is not essential and a sum of propor-
tions less than unity can be used to model a system which is
losing a material property and proportions greater than one
can model a system acquiring a material property. When
modeling open systems in this way care must be exercised
in the calculation of the spectrum of dimensions. Although
the sequence of mass exponentsq vsτ(q), (Feder, 1988) can
be calculated in the same way, the formula for the spectrum
of dimensions assumes the sum of proportions is unity and
must be modified for the open system case.

3.3 Rock alteration model

The multiplicative cascade model described above is some-
what superficial in that it does not explicitly model the al-
teration of the rocks leading to a reduction in magnetic sus-
ceptibility. Accordingly, a model that explicitly models the
rock alteration and attendant susceptibility reduction was at-
tempted. A fractal or multifractal distribution of fractures
was assumed, and the (multifractal) distribution of magnetic
susceptibility was calculated as the spatial average suscepti-
bility of each block of rock between two fractures. Alteration
of the wallrock inward from each fracture is assumed to oc-
cur by processes controlled by the diffusion equation:

∂C/∂t = κ∇
2C , (4)

whereC is the degree of alteration andκ is the diffusion
coefficient. The loss of susceptibility is modeled by using
the diffusion equation solution for a half space. The degree
of magnetic susceptibilty lossK/K0 is assumed to be pro-
portional to the degree of alteration. For a constant initial
magnetic susceptibilityK0, and an efficiency factorE, one
obtains

K/K0 = 1 − E[1 − erf (x/2
√

κt)] (5)

The efficiency factorE can take values between−1 and
1 for various kinds of models, negative values for aggrega-
tion and positive values for depletion. For this study,E was
taken as 1. Equation (5) thus defines the magnetic suscepti-
bility for a block for alteration from a single fracture inwards
from the fracture; it is used on each side of each rock block
in the model. The bulk magnetic susceptibility of each block
(segment) is then the integral mean of the susceptibility as a
function of distance from the bounding fractures. For larger
blocks, the mean susceptibility will be larger if the fluid cir-
culation did not go on for a long enough time for the entire
block to be completely altered.

If the process runs only for a short time, only a small
amount of rock would be altered immediately adjacent to
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Fig. 13. Model for hydrothermal alteration of wallrock by diffusion from hydrothermal fluids circulating

through fractures. Vertical lines in the bar at the bottom of the figure showthe location of the fractures. Plot

shows the decrease in magnetic susceptibility approaching a fracture as the ratio of the diffusion-controlled

susceptibility to an assumed pre-alteration susceptibility(K/KO). For each block between two fractures, the

mean magnetic susceptibility is the integral mean ofK/KO for the block.
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Fig. 13. Model for hydrothermal alteration of wallrock by diffu-
sion from hydrothermal fluids circulating through fractures. Ver-
tical lines in the bar at the bottom of the figure show the location
of the fractures. Plot shows the decrease in magnetic susceptibility
approaching a fracture as the ratio of the diffusion-controlled sus-
ceptibility to an assumed pre-alteration susceptibility(K/KO ). For
each block between two fractures, the mean magnetic susceptibility
is the integral mean ofK/KO for the block.

each fracture; and if the process runs for a long time, es-
sentially all the rock would be altered to a low magnetic
susceptibility value. For intermediate times, a complex pat-
tern of susceptibility will occur governed by the sizes of the
blocks (fracture distribution) and the rate of reaction. Large
blocks of rock that have greater distance between fractures
take longer to alter completely, and thus are the last to lose
their magnetic minerals. Figure13 shows a simulation for
a few fractures. The bar at the bottom of the figure shows
the location of the fractures, and the curves above show the
remaining magnetic susceptibility through the blocks. The
maximum susceptibility in a block is controlled by the frac-
ture spacing, and close spacing leads to small susceptibility.
The rightmost block has a large spacing to the next fracture
(off the diagram) and the susceptibility in the center of the
block is seen to be unaltered from the starting value.

3.4 Model simulations and comparison to N6 data

For the model shown here, two fracture distributions were
used: the distribution of actual fractures from profiles across
a homogeneous rock was used to obtain a fracture distribu-
tion (“pavement 1000”,Barton, 1995, p.161); and the distri-
bution of fractures from the segment ends of the multiplica-
tive cascade model described above. The distribution of frac-
tures from both are very similar and when the model results

Fig. 14. Model of magnetic susceptibility as in Fig. 13 for a distribution of fractures at a scale appropriate for

the data of drillhole N6 (Fig. 2). As in Fig. 13, the bar at the bottom of the plot shows the locations of the

fractures.
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Fig. 14. Model of magnetic susceptibility as in Fig.13 for a distri-
bution of fractures at a scale appropriate for the data of drillhole N6
(Fig. 2). As in Fig.13, the bar at the bottom of the plot shows the
locations of the fractures.

are averaged to the 3 m interval of the data, the results are
identical.

The magnetic susceptibility in each segment is assumed
to have started at a constant homogeneous value for the host
rock (the Crater Mountain dacite,Fisher, 1972) and then
been systematically reduced due to the alteration process
from reactive fluids circulating through the fractures and al-
tering the wall rock of the fractures. The process is assumed
to be oxidizing so that the magnetic susceptibility is lowered
in proportion to the degree of alteration. Thus, the model ap-
plies to the propylitic and phyllic alteration stages but not the
potassic stage that enhances magnetic susceptibility.

Figure14 shows a simulation applied to the whole frac-
ture set and the resulting highly variable magnetic suscepti-
bility distribution. The plotted magnetic susceptibility ratio
for each segment (Fig.14) is the integral mean of the sus-
ceptibility in each block. The alteration rate (diffusion co-
efficient) and time of fluid flow have been arbitrarily cho-
sen to leave the thickest intervals of rock essentially un-
altered at their centers. When averaged over 3m intervals
analogous to the observations (Fig.15), the simulation is
very similar to the distribution of susceptibilities observed
in the parts of the drillhole not affected by potassic alter-
ation or subsequent dike emplacement (compare the distri-
bution of the model susceptibilities Fig.16 to the observed
data, Fig.3). The potassic alteration enhances susceptibility
in this system because it is a reducing environment resulting
in magnetite series iron minerals instead of hematite. The
two dikes are mafic in composition and so have a relatively
high susceptibility. Further applications of this model using
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Fig. 15. Model of Fig. 14 averaged over 3 m interval to match the samples of this study and scaled to match

observed susceptibility values. Solid line is the averaged model of Fig. 14,and the dashed line is the data of

drillhole N6 from the phyllic and propylitic zones shown for comparison. The data have been arbitrarily shifted

vertically for figure readability. Note the statistical similarity in susceptibility peakamplitudes, shapes and

variability between the model and data.
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Fig. 15. Model of Fig.14 averaged over 3 m interval to match the
samples of this study and scaled to match observed susceptibility
values. Solid line is the averaged model of Fig.14, and the dashed
line is the data of drillhole N6 from the phyllic and propylitic zones
shown for comparison. The data have been arbitrarily shifted verti-
cally for figure readability. Note the statistical similarity in suscep-
tibility peak amplitudes, shapes and variability between the model
and data.

experimentally determined diffusion coefficients appropriate
for the dacite might allow some constraints to be placed on
the effective time of circulation of altering fluids and estimate
reaction rates.

Figure 17 shows the scaling exponent functionζ(q) for
the phyllic and propylitic alteration class rocks of drillhole
N6 and for the diffusion-equation controlled model averaged
to the 3 m interval of the data. The fit between the model
and data is not bad considering that no adjustment of the de-
gree of alteration of the blocks has been attempted in order to
achieve a better fit. Such an exercise might be unwarranted
because there is no information in the data on fracture aper-
ture nor the amount of hydrothermal fluid circulation, and the
3 m averaging interval smooths the data in any case.

Several investigations were made to quantify the similar-
ity of the model and data (Fig.15). The model cannot be fit
exactly to the data because the actual locations of fractures
is unknown and cannot be deduced from the averaged data.
To be judged good, the model must produce nearly the same
variability, number of peaks and troughs with closely simi-
lar widths. The distribution or clustering of amplitudes as a
function of depth must also be comparable and this variation
is not accounted for in statistical models. Three mathemati-
cal test functions with identical mean and standard deviation
for the whole 700 point dataset were used to gain insight into
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Fig. 16. Histogram showing the distribution of the natural logarithm of magnetic susceptibility for the averaged

model values. Compare to distributions for the observed data in Figs. 3 and 4.

Fig. 17. Plot of the scaling exponent functionζ(q) for rocks from the phyllic and propyllitic alteration classes

from drillhole N6 and for the alteration model.
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Fig. 16. Histogram showing the distribution of the natural log-
arithm of magnetic susceptibility for the averaged model values.
Compare to distributions for the observed data in Figs.3 and 4.
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Fig. 16. Histogram showing the distribution of the natural logarithm of magnetic susceptibility for the averaged

model values. Compare to distributions for the observed data in Figs. 3 and 4.

Fig. 17. Plot of the scaling exponent functionζ(q) for rocks from the phyllic and propyllitic alteration classes

from drillhole N6 and for the alteration model.
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Fig. 17. Plot of the scaling exponent functionζ(q) for rocks from
the phyllic and propyllitic alteration classes from drillhole N6 and
for the alteration model.

discriminating between functional behaviors, that is, to de-
termine how “similar” two datasets might be. The functions
used were a straight line, a sine function, and a fractional
Brownian motion fractal, shown in the first frame of Fig.18.
For this study, two integral measures and three moving win-
dow measures were used to characterize datasets. The inte-
gral measures were the variation (Tricot, 1995) of a function
z(t):

V (τ) =

∫ b

a

rng(z(t))dt , (6)

whererng(z(t))=sup{z(t ′)−z(t ′′)} and t ′ and t ′′ belong to
[t−τ, t+τ ]; and the (second order) structure function (Tricot,
1995):

Sn(τ ) =

∫ b

a

| z(t + τ) − z(t − τ ) |
ndt, n = 2 (7)
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Fig. 18. Plots of three test functions (straight line, L; sine function, S; and fractional Brownian motion fractal, F)

and five measures used to compare them. The variation and structure functions (see text) are integral functions

of the window width (2 tau) whereas the standard deviation, Euclidean length, and number of peaks and troughs

are moving window functions for a 10 point wide window.
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Fig. 18. Plots of three test functions (straight line,L; sine function,S; and fractional Brownian motion fractal,F ) and five measures used
to compare them. The variation and structure functions (see text) are integral functions of the window width (2τ ) whereas the standard
deviation, Euclidean length, and number of peaks and troughs are moving window functions for a 10 point wide window.

These two measures discriminate strongly between func-
tional forms and are shown for the test functions in Fig.18.
The variation shows the behavior of the dataset at varying
window widths, as does the structure function. However,
the structure function has the additional property of being
zero at tau (half window width) values equal to periodici-
ties in the dataset investigated (see the structure function for
the sine function case, Fig.18). Thus, minima in the struc-
ture function suggest important “wavelengths” in the dataset.
Both functions appear to discriminate well between the test
functions. To characterize dependence on the abscissa, three
moving window functions were used to compare datasets:
the standard deviation, number of peaks and troughs, and the
Euclidean length (the total length of line segments connect-
ing the datapoints in the window).Gettings(2002) discusses
the robustness of the number of peaks and troughs and Eu-

clidean length as textural measures and shows that selecting
the smallest window width of interest preserves all informa-
tion present in larger windows. In this study, a window width
of 10 points was used. Figure18 shows the results of these
three window functions for the trial functions. Clearly, all
three contain important information about the data, and at
least for the fractal case, the measures are essentially inde-
pendent of each other.

Figure19shows the results of computing the five measures
for the model and data curves of Fig.15. Although in general
the two curves are quite similar for each of the five measures,
there are some systematic differences the shape of the vari-
ation (data flattens off at smaller tau more quickly than the
model) and the structure function shows that the model has
a slightly larger range at all tau than the data. The behavior
of the standard deviation is quite similar for both the model
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Fig. 19. Plots of the data (solid lines) and model (dashed lines) and the five comparative measures used to

evaluate the similarity of the data and the model for depletion of magnetic susceptibility due to hydrothermal

alteration in a porphyry system.
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Fig. 19. Plots of the data (solid lines) and model (dashed lines) and the five comparative measures used to evaluate the similarity of the data
and the model for depletion of magnetic susceptibility due to hydrothermal alteration in a porphyry system.

and data, however Euclidean length is generally larger for the
model compared to the data, as shown also by the structure
function. The number of peaks and troughs plot reveals that
although the model and data are the same on average, the
model systematically increases with depth whereas the data
do not. The measures of Fig.19 appear to be a sensitive and
discriminating method of comparison of “noisy” data.

4 Conclusions

The Stinkingwater porphyry copper-molybdenum deposit
has a complex, multi-fractally distributed magnetic suscep-
tibility. The distribution of the logarithm of magnetic sus-
ceptibility is multi-modally distributed. The peaked distri-
butions of logarithms suggests a multiplicative process for
depletion of susceptibility. The logarithm of magnetic sus-

ceptibility of rocks subjected to phyllic and propylitic alter-
ation is distributed in overlapping peaks; those with potas-
sic alteration form a tail toward higher susceptibility, and
the unaltered source rocks in this study are approximately
uniformly distributed across a narrow range in logarithm of
magnetic susceptibility. There is no systematic relationship
between degree of metalization and magnetic susceptibility.
In general, the more highly mineralized rocks have lower sus-
ceptibility, however the susceptibility is highly variable at all
grades. The averaging of the drill core samples over 10 ft
(3 m) intervals precludes any more precise description of the
distribution of magnetic susceptibility.

The distribution of magnetic susceptibility for the
ensemble-averaged data and in the deepest drillhole (the
largest number of samples) has been shown to exhibit
multifractal behavior, with a scaling exponent function
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that is closely modeled with the universal multifractals of
(Schertzer and Lovejoy, 1987).

The multifractal distribution is hypothesized to be due to
a multifractal distribution of fractures that were the source
of the alteration caused by hydrothermal fluids circulating
through the fractures. Incomplete alteration of wall rock far-
ther from the nearest fracture explains the high variability of
susceptibility. The resulting model has scaling and statisti-
cal properties that are similar to the observed data, including
the model distribution of logarithm of magnetic susceptibil-
ity (Figs. 3 and 16). Several measures, including the vari-
ation and structure functions and moving window functions
of standard deviation, number of peaks and troughs, and Eu-
clidean length have been shown to be sensitive discriminators
of statistical similarity for these data.

Multifractal models of fractal random logarithmic or 1/f

noise as described byMandelbrot(1999) may be appropriate
for describing this data. Although not normally distributed
under the logarithmic transformation, the data are certainly
peaked and appear to satisfy the central limit theorem (Jef-
freys, 1961). This implies that they can be modeled by mul-
tiplicative processes as described in this paper.
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