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Abstract. A review of the literature reveals conflicting re-
sults regarding the existence and inherent nature of chaos in
hydrological processes such as precipitation and streamflow,
i.e. whether they are low dimensional chaotic or stochastic.
This issue is examined further in this paper, particularly the
effect that certain types of transformations, such as aggre-
gation and sampling, may have on the identification of the
dynamics of the underlying system. First, we investigate the
dynamics of daily streamflows for two rivers in Florida, one
with strong surface and groundwater storage contributions
and the other with a lesser basin storage contribution. Based
on estimates of the delay time, the delay time window, and
the correlation integral, our results suggest that the river with
the stronger basin storage contribution departs significantly
from the behavior of a chaotic system, while the departure
is less significant for the river with the smaller basin stor-
age contribution. We pose the hypothesis that the chaotic
behavior depicted on continuous precipitation fields or small
time-step precipitation series becomes less identifiable as the
aggregation (or sampling) time step increases. Similarly, be-
cause streamflows result from a complex transformation of
precipitation that involves accumulating and routing excess
rainfall throughout the basin and adding surface and ground-
water flows, the end result may be that streamflows at the
outlet of the basin depart from low dimensional chaotic be-
havior. We also investigate the effect of aggregation and
sampling using series derived from the Lorenz equations and
show that, as the aggregation and sampling scales increase,
the chaotic behavior deteriorates and eventually ceases to
show evidence of low dimensional determinism.

Correspondence to:J. D. Salas
(jsalas@engr.colostate.edu)

1 Introduction

Modeling the serendipituous behavior of streamflow series
has been an important subject in hydroscience and water re-
sources engineering for several decades, particularly for syn-
thetic simulation and forecasting problems. For this purpose,
several concepts and modeling techniques have been sug-
gested in the literature. For example, stationary and periodic
autoregressive moving average stochastic models have been
used widely (Salas, 1993). Often, the modeling approach for
such streamflow series involves: (1) transforming the origi-
nal series into an approximately normal distributed series, (2)
removing any periodicity in the mean and the variance using
seasonal standardization (e.g. in the case of monthly data),
and (3) fitting a stationary or periodic autoregressive (AR)
or autoregressive and moving average (ARMA) model to the
residual series. However, while such modeling schemes have
been quite successful for annual and seasonal data (e.g. an-
nual and monthly precipitation and streamflows), their use
for modeling precipitation and streamflows on smaller time
scales, such as daily or hourly, has been less successful.
On short time scales, precipitation series are intermittent, so
streamflows exhibit the influences of individual rainstorms,
which generate rapid rises and slow recessions. Modeling
these features stochastically has been more complex, and this
has received less attention in the literature (e.g. Cowpertwait
and O’Connell, 1992).

In recent years, nonlinear stochastic models (e.g. Tong,
1990) and deterministic nonlinear dynamics and chaos (e.g.
Fraedrich, 1987; Rodriguez-Iturbe et al., 1989) have been
suggested as modeling alternatives for atmospheric and hy-
drological processes. Since then, numerous examples for de-
tecting low dimensional chaos using a variety of metrics (e.g.
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the correlation dimension and Lyapunov exponents), and ap-
plications of deterministic chaos to forecasting various types
of hydrologic and atmospheric time series (for time scales
of 15 seconds, 15 minutes, hourly, daily, weekly, biweekly,
and monthly), such as rainfall, streamflow, lake volumes, tree
ring indices, temperature, and southern oscillation index se-
ries, can be found in literature (e.g. Rodriguez-Iturbe, 1991;
Sharifi et al., 1990; Wilcox et al., 1991; Islam et al., 1993;
Jayawardena and Lai, 1994; Berndtsson et al., 1994; San-
goyomi et al., 1996; Lall et al., 1996; Puente and Obregon,
1996; Jeong and Rao, 1996; Porporato and Ridolfi, 1997;
Kawamura et al., 1998; Liu et al., 1998; Kim et al., 2001;
Sivakumar et al., 2001a; Jayawardena et al., 2002; Zhou et
al., 2002).

However, a review of the literature indicates conflicting re-
sults regarding the existence and inherent nature of chaos in
precipitation and streamflow series, i.e. whether they are low
dimensional chaotic or stochastic (e.g. Koutsoyiannis and
Pachakis, 1996; Pasternack, 1999; Sivakumar et al., 1999a;
Sivakumar, 2000; Sivakumar et al., 2001a; Schertzer et al.,
2002). Some hydrologists have discussed the difficulties
and uncertainties in discriminating between low dimensional
chaotic and stochastic systems using such metrics as Lya-
punov exponents and the correlation dimension (e.g. Ghilardi
and Rosso, 1990; Sivakumar, 2001). Although other metrics
have been suggested and utilized, such as Kolmogorov en-
tropy (e.g. Jayawardena and Lai, 1994; Koutsoyiannis and
Pachakis, 1996; Elshorbagy et al., 2002), close returns plots
(e.g. Kim et al., 2001), and the C-C method (Kim et al.,
1999), the issue of discriminating between low dimensional
chaotic and stochastic systems remains complex. The var-
ious factors that have been cited in the literature that make
such discrimination unclear and inconclusive include primar-
ily the effect of errors (noise), sample size, and intermittence
(the presence of zeros). Thus, a number of noise reduction
methods have been developed and utilized (e.g. Schreiber
and Grassberger, 1991; Schreiber, 1993; Porporato and Ri-
dolfi, 1997; Kantz and Schreiber, 1997; Sivakumar et al.,
1999b; Jayawardena and Gurung, 2000; Elshorbagy et al.,
2002). Their effects on estimating the correlation dimension
have been discussed in some detail (Sivakumar, 2001); and
their potential benefits in estimating the chaotic invariants
and their practical significance for hydrologic applications
have been questioned and critically examined (Elshorbagy et
al., 2002).

The intermittence in hydrologic data has been another fac-
tor that affects the estimation of chaotic invariants and appli-
cations thereof. It has been largely ignored in many studies,
but has been recognized by some investigators. For instance,
Koutsoyiannis and Pachakis (1996) illustrated the distortion
caused by zero rainfall in the estimate of the lower tail of
the correlation integral and suggested using the generalized
entropy of Cantorian dust to eliminate the problem caused
by zeros. Also, Sivakumar (2001), in examining the dynam-
ics of 1-day, 2-day, 4-day, and 8-day rainfall, discussed the
effect that data with a large numbers of zeros (e.g. daily rain-
fall) may have on estimating the correlation dimension. It

appears that a significant underestimation occurs for daily
rainfall, and the underestimation diminishes as the time scale
increases (or as the number of zeros decreases). Also the ef-
fect that zeros (in data) have on identifying low dimensional
chaos of hydrologic data, especially in connection with rain-
fall disaggregation, has been investigated by Sivakumar et
al. (2001b). Furthermore, Schertzer et al. (2002) argued
that contrary to deterministic chaos, stochastic multifractal
processes can easily simulate spatial geophysical systems in-
volving intermittency.

Additionally, the sample size of hydrologic data has al-
ways been an issue for estimating many statistical proper-
ties. For example, it is well known that estimators of second,
third, and higher order moments have large sampling vari-
ance and may have significant biases (Mood et al., 1974).
To estimate the correlation dimension and to identify chaos
large amounts of data may be necessary. While Sivakumar
(2001) and Sivakumar et al. (2002b) suggest that the estima-
tion of the correlation dimension and, consequently, the de-
tection of deterministic chaos is reliable even for samples as
short as 48 years of monthly data (576 values), on the other
hand, Schertzer et al. (2002) indicated that even for deter-
ministic systems the estimates of the correlation dimension
is underestimated, i.e. the dimensionality of the dynamics is
underestimated. For example, for simulated data (N=4096)
based on a stochastic cascade process (having a very large
dimensional phase space), the correlation dimension gives a
low finite value despite that the process has a large dimen-
sion. Such underestimation has been attributed to the limited
sample size although Sivakumar et al. (2001a; 2002a) do not
seem to agree with it.

Furthermore, Sivakumar (2001) analyzed the dynamics of
1-day, 2-day, 4-day, and 8-day rainfall using 25 years of data
at the Leaf River basin in Mississippi. Based on the time de-
lay embedding method for calculating the correlation dimen-
sion, he concluded that the referred rainfall data exhibited
chaotic behavior at all time scales. For the same data, in a
related paper focused on rainfall disaggregation, Sivakumar
et al. (2001b) investigated the dynamics of rainfall transfor-
mations at resolutions of 6, 12, 24, 48, 96, and 192 hours
and found finite low correlation dimensions for the distribu-
tion of weights that relate the rainfall data for the various
time scales. Their results appeared to suggest the existence
of chaos and pointed toward a method for disaggregating
rainfall under a chaotic framework. The authors (Sivakumar,
2001 and Sivakumar et al., 2001b) recognized, however, the
limitations of the method of correlation dimension associated
with the effects of noise (e.g. systematic errors) and the large
percentage of zeros as the data resolution becomes smaller,
and suggested employing “additional techniques to substanti-
ate the existence of chaos in rainfall transformation.” In fact,
this seems to have been done by Koutsoyiannis and Pachakis
(1996), who employed both the delay embedding method and
the generalized entropy of Cantorian dust for calculating the
correlation dimension and found no evidence of low dimen-
sional determinism for rainfall data at station Ortona Lock
2, Florida at temporal scales of 0.25 h, 1 h, 6 h, and 24 h. In



J. D. Salas et al.: Aggregation and sampling in deterministic chaos 559

addition, the authors showed that a stochastic model was ca-
pable of preserving important statistical properties of the his-
torical rainfall analyzed.

Furthermore, Sivakumar et al. (2001a) attempting to bet-
ter understand the dynamics of the rainfall-runoff process
analyzed both the precipitation and streamflow time series
for the same basin (the G̈ota River basin in Sweden) from
a chaotic perspective. Specifically, they analyzed each time
series separately and the runoff coefficient series using the
correlation dimension method obtaining values of the corre-
lation dimension as 5.5, 6.4, and 7.8, respectively for runoff,
precipitation, and runoff coefficient, thereby concluding that
the existence of low dimensional chaos in the precipitation-
runoff process for the G̈ota River basin can not be excluded
and suggest further investigation on the subject.

Evidently, further research is needed to elucidate the intri-
cacies of the dynamics of hydrological processes such as pre-
cipitation and streamflow. In this paper, we examine the issue
of temporal aggregation and sampling in deterministic chaos
by using the C-C method (Kim et al., 1999) for estimating the
delay time, delay time window, and correlation dimension,
and examining the attractors. First, we study the dynamics
of daily streamflows for two streams in Florida. Then, the
effects of aggregation and sampling are analyzed using time
series derived from the Lorenz equations. Specifically, we
investigate the effects that temporal aggregation (and/or sam-
pling) has on the capability of identifying chaotic behavior.
For convenience, the following section summarizes the basic
equations and methods utilized.

2 Identifying chaotic behavior

The first step in the analysis of a chaotic time series is the
embedding of the scalar time series into anm-dimensional
space. This can be done using the method of delays in-
troduced by Packard et al. (1980) and Takens (1981). A
scalar time series,{xi}, i=1, 2, ...,N , is embedded intom-
dimensional space by constructing the vectors

xi =
(
xi, xi+t , ..., xi+(m−1)t

)
, xi ∈ Rm , (1)

wheret is the index lag, andm is the embedding dimension,
both of which must be chosen within appropriate ranges. If
the sampling time isτs , then the delay time isτd=tτs , and the
delay time window isτω=(m−1)τd , which is the entire time
spanned by the components of each vector. Since the compo-
nents of the vectorxi are the same quantities, then they have
the same noise levels, which is one of the advantages of this
method for embedding.

2.1 Correlation integral

After the attractor has been reconstructed using Eq. (1),
quantitative properties of the chaotic system can be deter-
mined. For example, the correlation dimension is widely
used in many fields for the quantitative characterization of
strange attractors, and it is the only widely used method that

can be used with small data sets such as those analyzed in
this paper (Grassberger and Procaccia, 1983). The correla-
tion integral for the embedded time series is the following
function:

C(m, N, r, t) =
2

M(M − 1)

∑
1≤i<j≤M

2
(
r− ‖ xi − xj ‖

)
,

r > 0 , (2)

where2(a)=0, if a<0 and2(a)=1 if a≥0; N is the size
of the data set;M=N -(m-1)t is the number of embed-
ded points inm-dimensional space; and‖ ... ‖ denotes
the sup-norm. C(m,N, r, t) measures the fraction of the
pairs of pointsxi , i=1, 2, ..., M, whose sup-norm sepa-
ration is no greater thanr. If the limit of C(m, N, r, t)

asN→∞ exists for eachr, the fraction of all state vector
points that are withinr of each other may be expressed as
C(m, r, t)= lim

N→∞
C(m, N, r, t), and the correlation dimen-

sion is defined asD2(m, t)= lim
r→0

[logC(m, r, t)/ logr].

In practice,N remains finite, sor cannot go to zero. If
r is too small, no pairs of points will have a separation
less thanr, so C(m,N, r, t) will be zero. Asr increases,
C(m, N, r, t) will jump in discontinuous steps as pairs of
points get included. For larger values ofr, C(m, N, r, t) will
grow smoothly, and a plot of logC(m,N, r, t) vs. log r will
become linear with slopeD2(m, t). If r becomes too large,
so that most pairs of points have a separation less thanr, then
C(m, N, r, t) will begin to level off at its maximum value of
1. Thus, in practice, we must look for the linear region in
the plot of logC(m, N, r, t) vs. log r and compute its slope
D2(m, t). If the data set is too small, there may be no linear
region, and it may not be possible to determine the correla-
tion dimensionD2(m, t).

If the sampling timeτs is considerably less than the appro-
priately chosen delay timeτd , then successive pointsxi and
xi+1 of the embedded time series will generally be close, and
this will lead to artificial correlations in Eq. (2) (Grassberger,
1990). While it is not possible to make an unambiguous iden-
tification of such artificially correlated points (Rosenstein et
al., 1994; Grassberger, 1990), a practical way to minimize
this effect is to remove from Eq. (2) the contributions of all
pairs of pointsxi andxj where|j−i|<t and t is the index
lag (Grassberger, 1990).

2.2 The delay parameters

Many researchers use a fixed delay timeτd as the embedding
dimensionm is increased. Some suggest obtainingτd from
the autocorrelation function (ACF) or the mutual informa-
tion (MI). An alternative is fixing the delay time windowτw,
rather than the delay timeτd , but the estimation ofτw is not
well developed. Martinerie et al. (1992) examined the esti-
mation of the delay time window and compared it with the
estimated delay times using the ACF and the MI. They con-
cluded thatτw could not be estimated using either of these
two methods. Basically,τw is the optimal time for indepen-
dence of the data, but these methods estimate the first locally
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Fig. 1. Daily streamflow for the(a) St. Marys River near Mac-
clenny, Florida, USA, for the period 1927–1993, and(b) Ocklawaha
River near Conner, Florida, USA for the period 1978–1988.

optimal time, which isτd . From this distinction between
τd andτw, a technique called theC−C method was devel-
oped to estimate bothτd and τw (Kim et al., 1999). They
showed that, for small data sets, as the embedding dimension
m is increased, the correlation dimensionD2 converges more
rapidly if τw is held fixed rather thanτd (Kim et al., 1998).
For ease of reference, this method is summarized below.

2.3 TheC−C method

Brock et al. (1991, 1996) studied the BDS statistic (named
for Brock, Dechert, and Scheinkman), which is based on the
correlation integral, to test the null hypothesis that the data
are independently and identically distributed (iid). This test
has been particularly useful for chaotic systems and nonlin-
ear stochastic systems. An application of the BDS statistic
can be found in Kim et al. (2003). Under theiid hypothesis,
the BDS statistic form>1 is defined as

BDS(m, M, r, t) =
√

M

σ(m, M, r, t)

[
C(m, M, r, t) − Cm(1, M, r, t)

]
, (3)

where

C(m, M, r, t)=
2

M(M−1)

∑
1≤i<j≤M

2(r−||xi−xj ||) (4)

K(m, M, r, t) =
6

M(M−1)(M−2)∑
1≤i<j<k≤M

2(r−||xi−xj ||)2(r−||xj−xk||) (5)

σ 2(m, M, r, t)=4

{
m(m−1)C2(m−1)(K−C2) + Km

−C2m

+2
m−1∑
i=1

[
C2i

(
Km−i

−C2(m−i)
)

−mC2(m−i)
(
K−C2

)] }
(6)

It may be shown that the BDS statistic converges asM→∞

to a normal distributionN (0,1).
In addition, using a concept sug-

gested by Brock et al. (1991), the statistic
S(m, N, r, t)=C(m, N, r, t)−Cm(1, N, r, t) may be in-
terpreted as the serial correlation of a nonlinear time series.
Therefore, it can be regarded as a dimensionless measure of
nonlinear dependence. Thus, for fixedm, N , andr, the plot
of S(m,N, r, t) versust is a nonlinear analog of the plot of
the autocorrelation function versust . Brock et al. (1991)
suggested thatm should be between 2 and 5, andr should
be between̂σ/2 and 2̂σ , whereσ̂ is the standard deviation
of the data set. In addition, the asymptotic distributions were
well approximated by finite time samples forN≥500. Thus,
four values ofr are selected in the rangêσ/2≤r≤2 σ̂ as
representative values:r1=(0.5) σ̂ , r2=(1.0) σ̂ , r3=(1.5) σ̂ ,
andr4=(2.0) σ̂ .

Kim et al. (1999) considered the following quantities:

S(m, r, t)=
1

t

t∑
s=1

[Cs(m, r, t)−Cm
s (1, r, t)], m=2, 3, ... (7)

1S(m, t) = max{S(m, rj , t)} − min{S(m, rj , t)} (8)

and their averages

S̄(t) =
1

16

5∑
m=2

4∑
j=1

S(m, rj , t), (9)

1S̄(t) =
1

4

5∑
m=2

1S(m, t). (10)

Then the first zero crossing ofS̄(t) or the first local minimum
of 1S̄(t) is located to find the first locally optimal timet
for independence of the data, and this gives the delay time
τd=t τs . The optimal time is the index lagt ′ for which S̄(t)

and1S̄(t) are both closest to zero. If one gives equal weight
to these two quantities, then one may simply look for the
minimum of the quantity

Scor(t) = 1S̄(t) + |S̄(t)|, (11)

and this optimal time gives the delay time windowτw=t ′ τs .

3 Investigating the dynamics of daily streamflow data

We search for evidence of low dimensional deterministic
chaos for the daily streamflows of the St. Marys River near
Macclenny and the Ocklawaha River near Conner, both in
Florida, USA. The records consist of 67 years (1927–1993)
of daily data (24 472 values) for the St. Marys River and 11
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 Fig. 2. Estimations ofτd andτw for the St. Marys River, Florida,

USA: (a) S(m, r, t) and(b) 1S(m, t), 1S̄(t), S̄(t), andScor (t).

years (1978–1988) of daily data (4018 values) for the Ock-
lawaha River. The time series plots for these streamflow data
are shown in Fig. 1. Clearly, the two time series display quite
different time patterns. The time series for the Ocklawaha
River in Fig. 1b shows a significant groundwater contribu-
tion with clear streamflow recessions, a characteristic that is
not evident in the daily streamflows of the St. Marys River in
Fig. 1a.
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Figure 2 shows the statisticsS(m, r, t), 1S(m, t), 1S̄(t),
S̄(t), andScor(t) for the daily streamflows of the St. Marys
River (similar statistics calculated for the Ocklawaha River
are not shown). The time delayτd=39τs=39 days corre-
sponds to the first local minimum of1S̄(t), as indicated by
the arrow in the middle of Fig. 2b. For the Ocklawaha River,
τd=33τs=33 days. Also, as shown in Fig. 2b the minimum
of Scor occurs att=152, which givesτw=152 days for the
St. Marys River. Similarly,τw=187 days for the Ocklawaha
River.

The correlation integral analysis is now conducted on the
two daily streamflow series using the valuesτd andτw. Fig-
ure 3 shows the plots of log[C(r)] versus log(r) (base 10
logs) for the reconstructed attractors for the St. Marys River
for embedding dimensionsm=2, 4, ..., 20 usingτd=39 days.
The slopes are determined by a least-squares fit to the lin-
ear regions discussed in Sect. 2.1, which are indicated by the
solid lines (Barnett, 1993):

D2 =

∑N
i=2(xi − xi−1)(yi−yi−1)∑N

i=2(xi − xi−1)2
, (12)

wherex= log(r) and y= log[C(r)]. The slopes shown in
Fig. 3b slowly increases up tom=20 and the lack of satura-
tion makes the evidence for chaotic behavior doubtful. The
analysis is repeated using the delay time windowτw=152
days, and the results are shown in Fig. 4. Since the index
lag is determined by (m−1) t=152, it is necessary to round
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Fig. 5. Estimation of the correlation dimension using the delay time
τd for the daily flows of the Ocklawaha River, Florida, USA:(a)
correlation integral and its linear regions (shown as full lines) and
(b) slopes (correlation dimension) vs embedding dimension.

off t to the nearest integer. The actual values used for (m, t)
are as follows: (2, 152), (4, 51), (6, 30), (8, 22), (10, 15), (12,
14), (14, 12), (16, 10), (18, 9), and (20, 8). Again, it is not
clear the value of the correlation dimension that can confirm
a chaotic behavior.

A similar analysis is performed for the Ocklawaha River
using bothτd andτw, and the results are shown in Figs. 5 and
6, respectively. In this case, there is not a clear linear region
between the steps at smallr and the saturation at large. What
we have instead is a linear region disrupted by oscillations
that are not fully damped. However, the procedure for deal-
ing with these oscillations is well-established: average the
two slopes obtained using the maxima and minima of these
oscillations (or, equivalently, obtain a slope using the cen-
ters of these oscillations). The correlation dimension fails
to saturate in this case, indicating a lack of low-dimensional
nonlinear determinism.

The results obtained regarding the dynamics of daily
streamflows for the two streams in Florida raises some in-
teresting issues. Although the correlation integral analysis
does not show evidence of deterministic chaos in either case,
the daily flows for the Ocklawaha River, which has a substan-
tial groundwater contribution, depart significantly from any
evidence of low dimensional chaos, i.e. there is a clear lack
of saturation in the correlation dimension versus embedding
dimension plots. On the other hand, for the daily flows of the
St. Marys River, which has weak or less significant ground-
water contribution, the correlation dimension vs. embedding
dimension plots approach a saturation condition, albeit with-
out reaching it. The question is why the two cases are so
different.

4 Dynamics of hydrological processes

Our interpretation of the results described above and the con-
flicting results found in the literature regarding the inher-
ent dynamics of hydrologic processes, i.e. whether hydro-
logic data arise from low dimensional deterministic systems
or from stochastic systems (e.g. Koutsoyiannis and Pachakis,
1996; Sivakumar, 2001), lead to the following concepts. First
of all, let us consider basic hydrologic input data, such as
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Fig. 6. Estimation of the correlation dimension using the delay time
window τw for the daily flows of the Ocklawaha River, Florida,
USA: (a) correlation integral and its linear regions (shown as full
lines) and(b) slopes (correlation dimension) vs embedding dimen-
sion.

precipitation. Precipitation is measured in different forms
particularly using recording and non-recording rain gages
(the former provides continuous records of precipitation data,
and the latter generally provides accumulated daily records).
Clearly one can obtain high frequency and hourly, daily,
weekly, etc. records by integration or aggregation from the
continuous records. In the same vein, streamflow records
can be measured using recording streamgages (limnigraphs)
that provide continuous records and nonrecording gages (e.g.
staff gages or limnimeters) that record river levels and after
transformation through rating curves, provide flow data at a
given time of the day, i.e. sampled data (such data are gener-
ally assumed to be valid for the entire day). Likewise, other
types of hydrologic data such as water quality parameters at
streams, lakes, and groundwater, are generally obtained by
sampling at regular or irregular time intervals. The point is
that a significant amount of hydrological data becomes avail-
able in either aggregated form or sampled form. Then, as-
suming that continuous time hydrologic data, e.g. precipita-
tion data, are chaotic in nature, one could ask the question,
what is the effect of aggregation and sampling? More specif-
ically, given that continuous time precipitation is chaotic, are
daily and weekly precipitation series chaotic?

In addition, the case of streamflow data deserves some fur-
ther analysis. Assuming that the input (precipitation) to a
watershed system (or river basin) is low dimensional chaotic,
it becomes transformed in various ways as it travels down to
the basin outlet. First of all, the continuous precipitation field
is subjected to a number of losses, such as interception, de-
pression storage, and infiltration. Secondly, the rainfall ex-
cess travels throughout the basin as overland flow, thereby
being affected by time delay, attenuation, and further losses.
At the same time, the direct and delayed infiltration increase
the soil moisture, part of which is lost by evapotranspiration,
another part may come back to the land surface as interflow,
and some other part may further percolate through the un-
saturated and saturated components of the basin. Eventually,
the groundwater storage feeds the stream and is added to the
surface runoff to form the total streamflow. Thus, the end
result, i.e. streamflow, is a process that has been transformed
by a complex sequence of linear and nonlinear mechanisms.
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Table 1. The delay times and the delay time windows for the ag-
gregated and sampled Lorenz series.

Time τd τw
interval aggregated sampled aggregated sampled

2 5 5 134 134
10 2 2 91 91
50 2 2 21 26
100 1 2 5 24

In fact, these types of transformations are significantly more
complex than the simple transformations alluded to in the
previous paragraph, where precipitation (or some other pro-
cess) is simply aggregated or sampled. Then the question
is, given that precipitation is chaotic, is the resulting stream-
flows also chaotic?

We pose the following two hypotheses: (1) Assuming that
a continuous hydrologic process is low dimensional chaotic
(e.g. precipitation), as it is transformed in time and space by
aggregation or sampling, the chaotic behavior of the resulting
process (e.g. weekly precipitation) becomes more difficult to
identify and as the aggregation or sampling scale increases,
eventually, the referred hydrologic process may no longer ex-
hibit chaotic features. (2) Assuming that the continuous time
precipitation input to a basin is low dimensional chaotic, the
streamflows at the outlet of the basin (such as daily stream-
flows) may depart from chaotic behavior due to linear and
nonlinear filtering and interactions occurring throughout the
basin. Proving these two hypotheses may not be simple, be-
cause it requires that the underlying continuous hydrological
process is in fact chaotic. Nevertheless, one can make some
experiments that may shed some light onto the ongoing de-
bate and controversy. In the following section, we address
the hypothesis (1) using a limited experiment and illustrate
how effective the chaos detection algorithm utilized in this
paper is for identifying low dimensional chaos in a series
that has been aggregated or sampled. The hypothesis (2) is
related to the effect of the complex behavior of a hydrologic
system that may result in system output that does not exhibit
chaotic behavior. Experiments related to hypothesis (2) are
beyond the scope of the present manuscript and will be re-
ported elsewhere.

5 Aggregation and sampling of chaotic systems

We will examine the effect of temporal aggregation and the
effect of sampling on a system that is chaotic. They are sim-
ple transformations yet realistic from the hydrologic view-
point as discussed in the previous section. Again, if the un-
derlying input series is chaotic, temporal aggregation or sam-
pling may hinder the identification of nonlinear determinism,
as we will show in this section.
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Fig. 7. Attractors of the aggregated time series from the Lorenz
system for time intervals ranging from 2 to 100.

As an example, we examine the effects of aggregation and
sampling on a time series of the variablex obtained from the
Lorenz equations (Abarbanel et al., 1993):

ẋ = −a(x − y) ,

ẏ = −xz + cx − y , (13)

ż = xy − bz ,

using the parametersa=16.0,b=4.0, andc=45.92. Each time
series used in the analyses below will consist of 15 000 val-
ues. The Lorenz equations are solved numerically using a
time stepτs=0.01. We then apply the referredC−C method
to this time series and obtain the delay timeτd=10τs=0.1
and the delay time windowτw=100τs=1.0. An analysis of
the correlation integral yields clear evidence of low dimen-
sional chaos (as it should) with the dimensionD2=2.05.

The aggregated series is obtained using

x̄i=
1

n
(x1+(i−1)n+x2+(i−1)n+...+xn+(i−1)n), i=1, 2, ..., (14)

wheren=2, 10, 50, and 100. We also perform sampling from
the series by keeping only the values at everynth time step,
with n=2, 10, 50, and 100 (again in all cases our total sample
series after aggregation or sampling result in 15 000 values).
For each of the four aggregated and four sampled time series,
we use theC−C method to compute the delay timeτd , and
the results are shown in Table 1. We then construct embed-
dings of the attractors using these delay times, and the results
for the aggregated and sampled series are shown in Figs. 7
and 8, respectively. The shapes of the attractors are modi-
fied and lose their structure asn increases. For instance, for
n=100, the attractors are not recognizable for both the aggre-
gated and sampled series. We also compute the correlation
dimensions, and these results are shown in Figs. 9 and 10,
respectively. The convergence of the correlation dimension
degrades slowly asn increases, and, this convergence is lost
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Fig. 8. Attractors of the sampled time series from the Lorenz system
for time steps ranging from 2 to 100.

forn=100. Thus, we observe that both aggregation and sam-
pling can hinder the evidence of nonlinear determinism from
a chaotic time series.

For the larger values ofn, there are fewer data points avail-
able. Also, as the embedding dimensionm increases, these
data points become more sparse (reducingm is equivalent to
projecting onto fewer dimensions, which increases the den-
sity of the embedded points). Thus, for large values of both
n andm, it is not possible to find a linear region in the plot of
log[C(r)] vs. log(r). This is why the plots forn=100 bend at
m=8 or 9.

Furthermore, note that, as the time intervaln is increased,
it becomes less evident that the time series is chaotic; con-
versely the transformed time series appears more like a
stochastic series. As a result, it is more difficult to find the
best optimal point ofScor(t) for τw. Thus, we have not used
the delay time window in the estimation of the correlation
dimension for the aggregated and sampled series.

In the above analysis, we investigated the effects of ag-
gregation and sampling on the time series by keeping only
the aggregated (or averaged) values or sampling the series
at everynth time step. This is equivalent to making aggre-
gated and sampled measurements with a regular time inter-
val τm=nτs . As this time intervalτm increases, the succes-
sive aggregated and sampled measurements will eventually
become irrelevant, and any nonlinear determinism (exhibited
in the original system) will be lost. When this happens, the
data will appear to be stochastic, rather than chaotic. Since
the delay timeτd is a basic correlation time, then irrelevance
should begin to become apparent whenτm∼τd . However,
τw is the maximum time for correlations, so stochastic like
behavior should not occur untilτm∼τw. For the Lorenz sys-
tem, the conditionsτm∼τd and τm∼τw becomen∼10 and
n∼100, respectively. In Figs. 7 and 8, we do indeed see
that the reconstructed attractors begin to lose their structure
whenn∼10, and that this structure is not recognizable when
n∼100.
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(a) Correlation integral for time interval 2      (b) Correlation dimension for time interval 2 
 

       
 
 
 
 
 
 
 
 
 
 
 
 

(c) Correlation integral for time interval 10      (d) Correlation dimension for time interval 10 
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     (e) Correlation integral for time interval 50         (f) Correlation dimension for time interval 50 
 
       
 
 
 
 
 
 
 
 
 
 
 
 

(g) Correlation integral for time interval 100      (h) Correlation dimension for time interval 100 
 
 

Figure 8. Correlation integral and slopes vs. embedding dimension for the aggregated  
time series from the Lorenz system for aggregation time scales ranging from 2-100. 
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Fig. 9. Correlation integral and slopes (correlation dimension)
vs. embedding dimension for the aggregated time series from the
Lorenz system for aggregation time scales ranging from 2 to 100.

In order to explain this more concretely, consider a deter-
ministic nonlinear dynamical system governed by an itera-
tive mapxs=f (xs−1). Then let us consider the aggregated
quantitiesx̄s=xs+xs+1+..., +xs+n−1. Since the map is non-
linear, we do not have the relation̄xs=f (x̄s−1) or any sim-
ple deterministic relation between̄xs and x̄s−1. Of course,
if n is small, thenx̄s will not differ much fromxs , so we
will have an approximate relation̄xs

∼=f (x̄s−1). However, as
n increases, this approximate relation will degrade, and the
characteristic time for this degradation is the correlation time
τd for the values ofxs to change substantially.

The aggregation and sampling experiment described in
this section is by no means complete and does not answer
all relevant questions. For example, the experiment has
been limited to a sample of 15 000 values for all cases af-
ter aggregation and sampling and to the referred identifica-
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tion method. Our analysis illustrated that aggregation and
sampling could hinder the identification of chaos using the
algorithm presented in this paper. The results are relevant
from the practical standpoint but a more complete experi-
ment and analysis should include the effect of sample size
and other identification methods, which were not considered
in our study.

6 Final remarks and conclusions

Several stochastic and non-stochastic approaches have been
suggested in the literature for representing the dynamics
of precipitation and streamflow processes on various time
scales. Among the non-stochastic approaches, nonlinear dy-
namics and chaotic systems have been investigated and ap-
plied to various types of hydrologic series by many water
scientists and hydrologists. Our review of the literature pro-
duced conflicting results regarding the inherent dynamics
of hydrological processes such as precipitation and stream-
flows, i.e. whether they exhibit low dimensional determinis-
tic (chaotic) behavior or whether they behave as stochastic
systems.

We suggested two hypotheses that may help clarify the de-
bate. Assuming that the underlying continuous time hydro-
logic process (e.g. precipitation) is low dimensional chaotic:
(1) As the (low dimensional chaotic) system is subjected to
transformations such as aggregation and sampling, its behav-
ior becomes more difficult to identify and as the scale of ag-
gregation and sampling increase, the system may no longer
exhibit features of low dimensional determinism; instead, it
will display stochastic features. (2) As the chaotic precipita-
tion input to a basin is subjected to complex linear and non-
linear transformations involving many effects from losses,
travel time, attenuation, ponding, and surface and subsurface
storages, the resulting streamflow at the outlet of the basin
may depart from chaotic behavior. The significance of such
departure from a chaotic system will depend on the extent
and impact of the referred transformations.

Our investigation using simple aggregation and sampling
of a chaotic system (the Lorenz system) supports that the first
hypothesis can be true, i.e. aggregation and sampling hinders
the identification of a chaotic behavior. This highlights an
interesting phenomenon where the application of a simple
linear filter may cause a nonlinear deterministic system to be
not recognizable and instead exhibit features of a stochastic
system. It may be worth performing similar experiments us-
ing other types of low dimensional chaotic systems and other
tests and methods for detecting chaotic behavior to further
understand this phenomenon.

We also investigated whether the time series of daily
streamflows at two river sites in Florida show evidence of
being characterized by a low dimensional chaotic system.
The time series pattern of one of the series shows the effect
of strong basin storage, especially groundwater contribution,
while the other one appears to have minimal effects of sur-
face and subsurface storages, and the streamflow appears to
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(c) Correlation integral for time interval 10      (d) Correlation dimension for time interval 10 
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(e) Correlation integral for time interval 50      (f) Correlation dimension for time interval 50 
 
     
 
 
 
 
 
 
 
 
 
 
 

(g) Correlation integral for time interval 100      (h) Correlation dimension for time interval 100 
 
 

Figure 9. Correlation integral and slope vs. embedding dimension for the sampled  
time series from the Lorenz system for sampling time scales ranging from 2-100. 
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Fig. 10. Correlation integral and slopes (correlation dimension) vs.
embedding dimension for the sampled time series from the Lorenz
system for sampling time scales ranging from 2 to 100.

consist mostly of routed excess precipitation. It turns out that
the daily streamflow series with significant effects from sur-
face and groundwater storages departs significantly from any
evidence of a chaotic system, while the one with lesser con-
tribution from basin storage appears to be closer to being low
dimensional chaotic. One may argue that since groundwater
storage is a form of accumulation (aggregation) from past
occurrences of precipitation, it may explain why the stream-
flow series with significant groundwater contribution (Ock-
lawaha River) departs significantly from any evidence of low
dimensional chaos. While we did not perform any scientific
experiment to test whether the referred second hypothesis is
true, the analysis made using the daily streamflows of the two
rivers in Florida suggests that the complex transformations
that precipitation is subjected in a basin may further affect
the detection of chaotic behavior.
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