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Abstract

There is a large uncertainty in the relative roles of human land use, climate change and

carbon dioxide fertilization in changing desert dust source strength over the past 100

years, and the overall sign of human impacts on dust is not known. We used visibility

data from meteorological stations in dusty regions to assess the anthropogenic impact5

on long term trends in desert dust emissions. Visibility data are available at thou-

sands of stations globally from 1900 to the present, but we focused on 359 stations

with more than 30 years of data in regions where mineral aerosols play a dominant

role in visibility observations. We evaluated the 1974 to 2003 time period because

most of these stations have reliable records only during this time. We first evaluated10

the visibility data against AERONET aerosol optical depth data, and found that only

in dusty regions are the two moderately correlated. Correlation coefficients between

visibility derived variables and AERONET optical depths indicate a moderate correla-

tion (∼0.47), consistent with capturing about 20% of the variability in optical depths.

Two visibility derived variables appear to compare the best with AERONET observa-15

tions: the fraction of observations with visibility less than 5 km (VIS5) and the surface

extinction (EXT). Regional trends show that in many dusty places, VIS5 and EXT are

statistically significantly correlated with the palmer drought severity index (based on

precipitation and temperature) or surface wind speeds, consistent with dust temporal

variability being largely driven by meteorology. This is especially true for North African20

and Chinese dust sources, but less true in the Middle East, Australia or South America,

where there are not consistent patterns in the correlations. Climate indices such as El

Nino or the North Atlantic Oscillation are not correlated with visibility derived variables

in this analysis. There are few stations where visibility measures are correlated with

cultivation or grazing estimates on a temporal basis, although this may be a function of25

the very coarse temporal resolution of the land use datasets. On the other hand, spatial

analysis of the visibility data suggests that natural topographic lows are not correlated

with visibility, but land use is correlated at a moderate level. This analysis is consistent
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with land use being important in some regions, but meteorology driving interannual

variability during 1974–2003.

1 Introduction

Mineral aerosols or desert dust particles are hypothesized to be important for local

health and air quality problems, as well as impacts on the global environment through5

changes in the radiative budget, precipitation processes, atmospheric chemistry and

biogeochemistry (e.g. Rosenfeld and Nirel, 1996, Dentener, et al., 1996, Miller and

Tegen, 1998, DeMott, et al., 2003, Jickells, et al., 2005). While mineral aerosol sources

are thought to be dominated by natural processes (e.g. Prospero et al., 2002), the pos-

sibility of human impacts on mineral aerosols cannot be eliminated by the existing data10

(Mahowald and Dufresne, 2004; Tegen et al., 2004; Mahowald et al., 2004; Mahowald,

et al., 2005). On small scales, cultivation or pasture usage has been shown to increase

the availability of particles for wind erosion (e.g. Gillette, 1988, Neff, et al., 2005). In

addition, ice core records show that dust is sensitive to climate change (e.g. Petit and

al., 1999). Thus, human influenced climate change and land use may be impacting15

dust concentrations. Finally, plants are thought to be better able to deal with water

stress under a higher carbon dioxide environment, suggesting that desert extent (and

presumably therefore dust) may be decreasing over the last century as carbon diox-

ide levels increase (e.g. Smith, et al., 2000; Mahowald and Luo, 2003). Attempts to

determine the impacts of global scale anthropogenic land use on dust emissions are20

hampered by the similarity in the spatial distribution of land use derived dust and natu-

ral dust for some sources (e.g. Mahowald et al., 2002; Luo et al., 2003; Mahowald, et

al., 2004). Results of modeling simulations suggest that humans have either increased

or decreased dust since preindustrial times, depending on the relative importance of

human land use, carbon dioxide fertilization and climate change in driving dust (Ma-25

howald and Luo, 2003). Ice core changes between the preindustrial and current time

periods are not consistent within regions and cannot differentiate between these differ-
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ent processes (Mahowald and Luo, 2003).

One long time series dataset that is globally available is visibility data collected at

meteorological stations. It has been used in many previous studies (e.g. Middleton,

1984; McTainsh et al., 1989; Goudie and Middleton, 1992; Sun et al., 2001; Engel-

staedter et al., 2003). However, visibility data have not been compiled and presented5

globally with time trends in previous studies. These data are available at hourly to sev-

eral times daily intervals over much of the last century at many meteorological stations

located throughout the world. One problem with these data is that visibility is not di-

rectly related to aerosol concentration, but may be influenced by humidity, cloudiness or

rain. In addition, aerosol amount near a station may be impacted by very local effects,10

such as the existence of a dirt road nearby, as well as the potential for other problems

(e.g. Middleton et al., 1985). Thus as a first step in our analysis, we compared the

visibility data against other aerosol data (AERONET aerosol optical depths: Holbren et

al., 2001) to understand the quantitative value of this dataset.

Many processes may be important for the generation of atmospheric dust, includ-15

ing strong winds, precipitation, drought conditions, land surface properties, and human

land use. For each of these processes we try to derive a representative proxy from a

global dataset. However, this approach has fundamental limitations due to lack of qual-

ity data. There is a large spatial variability in surface winds and precipitation, making

these variables difficult to constrain globally (e.g. Dai et al., 1996). Very little is know20

globally about land surface properties, and we address these in a future study. Espe-

cially problematic are datasets on the time evolution of human cultivation and grazing.

The datasets used here present a broad view of the time evolution of cultivation and

grazing, and represent the best datasets available (Klein-Goldewijk, 2001; Ramankutty

and Foley, 1999). However they are interpolations between land use censuses taken25

every 5 years in the best case, and often every 10 years or longer, and therefore crudely

represent the time record of human land use. In addition, it is not clear how human

land use would impact dust. Some studies have shown that cultivation and grazing

make soils much easier to deflate (Gillette, 1988; Neff et al., 2005). Soil conservation
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efforts such as trees planted to block the winds, contour plowing, and leaving dead

vegetation on the top of the soils have been shown to be effective in reducing wind

erosion (citation). Thus, it is not always straightforward to deduce what the relationship

should be between human land use and dust.

Our goal in this paper is to use visibility data for estimating long term trends in5

aerosols, especially desert dust aerosols. We describe our methods in Sect. 2. We

first evaluate several proxies derived from the hourly visibility data against AERONET

column aerosol optical depth data in Sect. 3. Then we use visibility proxies to look at

temporal trends in dusty regions. Finally, we correlate visibility proxies with meteoro-

logical variables such as precipitation and wind speeds as well as the human driven10

variables, estimated cultivation and grazing use (Sect. 4). Summary and conclusions

are presented in Sect. 5.

2 Methodology

For this paper, we analyze hourly to several times daily station data from the DSS

463.3 surface weather observation dataset created by the National Climatic Data Cen-15

ter (NCDC) and archived at NCAR (http://dss.ucar.edu/datasets/ds463.3/). This data

set contains up to 10 000 active stations worldwide. We analyze this dataset over the

period 1900–2003 for long term trends in visibility. For the bulk of the analyses, we

include stations with data in at least 30 years of the period from 1900–2003. In dusty

regions, where most of our analysis takes place, there are no data before 1940, so20

we do not focus on that time period. Indeed, there are substantially more data from

1974–2003, so we concentrate much of our correlation analysis on that time period,

discussing only briefly results for the longer time period.

Visibility data from these sites are in meters, and indicate how far away a large black

object can be seen against the sky at the horizon (Seinfeld and Pandis, 1998). Detailed25

descriptions of measurement methods at different stations and their evolution with time

are not available. The dataset includes quality checks, and data which do not pass all
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quality checks are neglected here. We also visually inspect the different station time

series to look for discontinuities in the data, specifically in the wind data, and rejected 7

stations due to this problem (WMO stations 400720, 400830, 400870, 607600 612970

847820 and 854170). In addition, we exclude any data when the dew point temperature

is within one degree Celsius of the temperature to attempt to exclude fog events. There5

are over one thousand stations with data for at least 30 years, but only 364 stations

with more than 30 years of data in dusty regions (we discuss the reasons for focussing

on dusty regions in Sect. 2.0).

In order to evaluate the visibility measurements, we compare them against data from

AERONET sun photometry stations, which are in situ column optical depth measure-10

ments (Holben et al., 2001) (http://aeronet.gsfc.nasa.gov/data menu.html). Because

we are interested in variability in visibility, we only use the data from AERONET stations

with more than 3 years of data, and we calculate the correlation coefficient between

monthly mean aerosol optical depth at 670 nm and monthly visibility proxies at the two

closest meteorological stations. We chose this wavelength because it appears to have15

the most data, and varies in a manner similar to other visible wavelengths in the same

dataset (not shown).

We evaluate several different visibility proxies at the AERONET sites. The fraction

of observations when the visibility is less than 1, 5, or 10 km has been used previously

(e.g. Mbourou et al., 1997; Engelstaedter et al., 2003). We evaluate the fraction of20

visibility below a succession of thresholds between 1 and 10 km to determine which

best reproduces the column aerosol optical depth from AERONET. In addition, visibility

is really a measure of the integrated surface concentration of aerosols and other parti-

cles between the eye and distant objects, and can be converted to a surface extinction

value through Koschmeider’s formula (Godish, 1997):25

Extinction = 3.92/Visibility (1)

Thus for each month, we can calculate the fraction of measurements where the visibility

is below x km (where x goes from 1 to 10 km) and the monthly mean surface extinction.

3018

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/3013/2007/acpd-7-3013-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/3013/2007/acpd-7-3013-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html
http://aeronet.gsfc.nasa.gov/data_menu.html


ACPD

7, 3013–3071, 2007

Global trends in

visibility:

implications for dust

sources

N. M. Mahowald et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Previous studies have used data from the Total Ozone Mapping Spectrometer Ab-

sorbing Aerosol Index (AAI) and the Aerosol Optical Depth (AOD) (Torres et al., 1998,

2002) for deducing information about dust spatial+ and temporal variability (e.g. Pros-

pero et al., 2002; Mahowald et al., 2003), so here we compare them against the

AERONET optical depths. The TOMS AAI uses the absorption of Rayleigh backscat-5

tered uv light to deduce absorbing aerosols, which has the trait of giving a response

that is roughly linear with aerosol height (Mahowald and Dufresne, 2004; Torres et

al., 1998), and giving a response that is different in sign depending on the type of

aerosol (Torres et al., 1998). In order to deduce a more easily interpreted aerosol op-

tical depth, TOMS AAI are combined with atmospheric transport and radiation model10

output to produce a TOMS AOD (Torres, et al., 2002). However, in both datasets there

are difficulties with interpreting the long time series, because of problems in changes in

the satellite and drift in the orbits: the time period from 1984 to 1990 is the most stable

(O. Torres, personal communication; Torres et al., 2002).

Also included in the station data are surface wind speeds. Unfortunately, the height15

at which these measurements are made is not the same at all stations, or may change

with time in a way which is not well documented. Further, surface wind speeds can be

very sensitive to nearby structures, which may evolve with time. As with the visibility

data, surface wind speed data should not be taken at face value over such a large

spatial area and long time series. However, it represents our only information about20

local surface wind speeds at many stations over a long period of time, so we include it

here. Any station where the surface wind speeds changed in a discontinuous manner

(detected by visual inspection) was excluded from the analysis, as described above.

Precipitation data from a merging of two gridded monthly time series from Chen et

al. (2002) and Dai et al. (1997), as described in Dai et al. (2004) are used. Precipi-25

tation data are also difficult to interpret because of the hetereogeneities in the spatial

distribution of precipitation. However, this gridded dataset represents our best state of

knowledge about precipitation at the global scale. From gridded historical temperature

and precipitation datasets Palmer Drought Severity Index (PDSI) values were calcu-
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lated and included in this analysis (Dai et al., 2004). This index tries to capture the

cumulative departure from the mean of atmospheric moisture and soil moisture supply

at the surface. It incorporates antecedent precipitation, moisture supply and moisture

demand based on simple hydrological model. The results of correlations with PDSI

and visibilty tended to be larger in magnitude than between precipitation and visibility,5

so we focus on only the PDSI results in this paper. We also use two climate indices

that have been developed in previous studies: the El Nino 3.4 (ENSO; Trenberth and

Stepaniak, 2001) and the North Atlantic Oscillation (NAO; Hurrell, 1995).

We also include estimates of human influences on visibility and desert dust specifi-

cally. Estimates of human land use practices are difficult to make, especially in desert10

regions. We used half degree resolution datasets based on cropland area estimates

from (Ramankutty and Foley, 1999) and grazing extent from the HYDE database (Klein-

Goldewijk, 2001). The cultivation and grazing data were combined with satellite derived

estimates of Plant Functional Type distributions. The grazing data were calibrated to

match the extent of present day grass and shrub distributions and then extrapolated15

back in time based on the HYDE historical grazing estimates at the half degree grid

scale (Feddema et al., 2007
1
).

For most of the analysis here, we use simple correlation coefficients. In order to cal-

culate statistical significance we need to assume that our distributions are gaussian,

which may not be true. We make these assumptions so that our results are easy to20

interpret. We have run these correlations using rank correlations, for which we know

the distribution, and obtain qualitatively similar results (not shown). We also test to

see whether one of our variables uniquely captures variability, or if there are mulitple

variables which might explain a certain time variability. We do this by conducting a

multiple linear regression, and evaluating how much variability our model captures with25

all variables, and then with all variables minus the one we are interested in. If the differ-

ence in variability explained is substantially different (we arbitrarily chose >25%), then

1
Feddema, J., Lawrence, P., Bauer, J., and Jackson, T.: A global land cover dataset for use

in transient climate simulations, JAMC, submitted, 2007.

3020

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/3013/2007/acpd-7-3013-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/3013/2007/acpd-7-3013-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 3013–3071, 2007

Global trends in

visibility:

implications for dust

sources

N. M. Mahowald et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

we consider that this variable is “replaceable” by another variable. The “irreplaceable”

variables by this criteria are plotted with an extra square on the correlation plots that

follow. Note that for most of the correlations in this paper, there is not just one variable

which might be responsible, so this adds to the difficulty in interpreting the results of

these analyses. We do this analysis based on annual averages, but qualitatively similar5

results are found if we use instead monthy means.

In order to determine regions where mineral aerosols are the dominant aerosol in

terms of surface extinction, we use the results of the (Rasch et al., 2001) model sim-

ulations. These simulations are based on 3-dimensional transport modeling using the

Model of Atmospheric Transport and Chemistry (Rasch et al., 1997) driven by the Na-10

tional Center for Environmental Prediction/National Center for Atmospheric Research

(NCEP/NCAR) reanalysis wind dataset (Mahowald et al., 1997; Kistler et al., 2001).

Sources for different aerosols follow (Rasch et al., 2001). The mineral aerosol source

model in these simulations is based on the Dust Entrainment and Deposition model

(Zender et al., 2003a), as implemented and evaluated by (Mahowald et al., 2002,15

2003b; Luo et al., 2003). The model uses a friction wind velocity cubed relationship to

determine the sources, and a preferential source defined by (Ginoux et al., 2001). The

model includes simple sulfur chemistry and sulfate aerosols, black and organic carbon

aerosols, and sea salt aerosols, as described in more detail in Rasch et al. (2001). We

use this model for analysis that elucidates the theoretical relationship between dust20

sources and extinction, and where dust dominates the aerosol loading, as discussed

in more detail in Sects. 3 and 4.

3 Evaluation of visibility data

Before using the visibility data to understand global trends, we first analyze the visi-

bility data to estimate the quality of the data for determining aerosol distributions. As25

indicated in the introduction, low visibility events could indicate high mineral aerosols,

high total aerosols, fog or rain events. These visibility events, even if due to aerosols,
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could be very local, e.g. due to a dirt road next to the meteorological station, or due

to long range transported aerosols. There are markers in the datasets that specifically

indicate dust events or rain events, but these markers are not always there, so it was

not possible to use these to screen all the data consistently. In addition, we look at

how well visibility (or suface extinction) is able to capture variability in dust fluxes and5

compare to other available datasets, such as satellite derived optical depth.

3.1 Visibility data as a measure of aerosol optical depth

To assess dust variability we use aerosol optical depth measurements. Aerosol optical

depth is measured at many sites globally using sun photometers and recorded in the

AERONET dataset (Holben et al., 2000; http://aeronet.gsfc.nasa.gov/data frame.html),10

which has high quality aerosol optical depth data for the last few years. For this study,

we are interested in variability, so we use the stations where there are more than 3

years of data (33 stations, listed in Table 1; locations shown in Fig. 1). Notice that there

are significantly fewer AERONET stations than visibility stations and their data extend

a shorter time period, which is why we are focusing on the visibility data for this paper.15

We correlate the monthly mean aerosol optical depth (AOD) at 670 nm to the monthly

mean surface extinction and the fraction of observations where the visibility is below

1–10 km threshold at the 2 nearest meteorological stations for all 33 AERONET sites

individually. In addition, we correlate the values collectively from all the 33 stations

across all time, which we will refer to as across all stations. This allows us to compare20

the visibility derived variables over as large of a range of values as possible. For most

of the surface meteorological stations there is not a statistically significant correlation

between AOD and any of the visibility derived variables (e.g. Table 1, using the example

of extinction). These low correlations could be because surface extinction and column

extinction (equivalent to AOD) are decoupled in these areas. The low correlations may25

be because of strong boundary layer inversions as an example. To test this hypothesis,

we use model simulations (described in the methodology section) to correlate surface

extinction and AOD in a model with the dominant aerosol types. The model suggests
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that at the locations in this comparison, and over most of the globe, the surface ex-

tinction and AOD should be correlated at much higher levels than our results from the

data (Fig. 2f and Table 1). Our model is a global model, so we could be missing small

scale variability that causes lower correlations in the data. In order to test for this pos-

sibility, we correlate the AERONET optical depths from two nearby AERONET stations5

(Maryland Science Center vs. GSFC, see Table 1 for locations) with each other and

we obtain a correlation coefficient of 0.99 suggesting that small scale variability in AOD

is not likely to be causing all the discrepancy between the visibility data and column

optical depth data in our variability comparisons. This suggests that neither surface

extinction derived from the visibility data nor the fraction of observations with less than10

1–10 km visibility are good indicators of regional aerosol optical depth at all stations.

Note that if we perform the correlation over all the stations and two closest visibility

stations, we obtain correlation coefficients of 0.25 and 0.33 for extinction and fraction

of observations with visiblity less than 5 km, respectively. We can obtain higher corre-

lations across all stations using the fraction of observations less than 10 km (0.47), but15

this visibility-derived variable still has the high occurrence of non-statistically significant

correlations at most stations, similar to that seen in Table 2 for extinction.

There are some stations with a moderate correlation (0.5–0.7) between visibility de-

rived variables and AOD (Table 1). Many of these stations happen to be in dust regions,

and the correlation may be strong because of the dry conditions. Therefore, we next20

look specifically at five stations where over 50% of the surface extinction is predicted

by the model to be from mineral aerosols in model simulations (Rasch et al., 2001)

(marked with ** in Table 1). In addition, we reject one station (Arica, marked with * in

Table 1) on the western coast of South America. Arica has low correlations probably

because of the high frequency of fog and stratus clouds at this location. Using this25

subset of five AERONET stations and the ten adjacent meteorological stations, sta-

tistically significant correlations between the AERONET column optical depth and the

visibility derived variables are obtained (Table 2). The overall correlations for extinction

and fraction of observations with a visibility <5 km are 0.47 and 0.46, respectively, indi-
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cating that about 22% of the variability in the optical depths are captured in the visibility

derived variables. These correlation coefficients are not particularly high, but using

only the visibility at dusty stations, we are focusing on the stations with the highest

correlations with aerosol optical depth.

We calculate the correlation with AERONET optical depth using a variety of visibility5

derived variables in order to test which ones compare the best. We obtain the best

correlations when we use visibility thresholds between 3–7 km, or use the extinction

variable (Table 2), so we chose to continue our analysis with the 5 km threshold (VIS5)

and the extinction variable (EXT). Notice that the fraction of events with visibility less

than 1 km does much worse than either of these two visibility proxies, although it has10

been previously used for dust studies (e.g. Engelstaedter et al., 2003). It is not clear

why the 5 km threshold does better than 1 km thresholds in comparison with aerosol

optical depth, but it could be because 1 km thresholds are more associated with highly

localized events such as the location of a dirt road near the meteorological station.

In order to consider how well the visibility data compare to other datasets used for15

capturing variability, we repeat this analysis using the TOMS AAI and TOMS AOD –

datasets with longer time periods than the AERONET data – that have been used to

infer dust source variability (e.g. Mahowald et al., 2003a; Zender and Kwon, 2005).

Using all AERONET sites, TOMS AAI and TOMS AOD have correlations of 0.65, 0.23,

respectively, between the monthly mean values and AERONET optical depth. If we20

look only at dusty regions (again the stations marked with a ** in Table 1) TOMS AAI

and TOMS AOD have correlations of 0.66 and 0.70, respectively. Thus, over dusty

regions, TOMS AAI and TOMS AOD have similar ability to capture variability in optical

depths, but over other regions, TOMS AAI does better. This is not expected, since the

AOD is constructed to better consider the effects of different aerosols. However, the25

TOMS AOD is a combination of model and data, and thus may be biased because of

the model used to convert from an AAI to an AOD. There still may remain problems

with the use of TOMS AAI or AOD because of drifts in the satellites when outside the

1984–1990 period where the AAI is most stable.
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3.2 Theoretical value for inferring dust sources

Now that we have evaluated the visibility data to indicate how good of a proxy it is

for aerosol amount, we next consider what measurement is the best proxy for surface

fluxes of dust. Visibility data are actually measures of surface extinction, which is

linearly proportional to concentration. AOD is a measure of column extinction. Neither5

of these variables is directly measuring the surface fluxes. Thus, we are using either

surface extinction (visibility derived variables) or AOD (e.g. Prospero et al., 2001) to try

to gain information about surface fluxes. Here we test how much of the variability in

surface fluxes is measured by variability in either surface concentrations or AOD. This

is an example of a problem where model calculations can provide great insight into10

how to best infer spatial and temporal variability in surface fluxes when we have no

direct measurements. When we try to estimate variability in surface dust fluxes based

on other measurements, previous model analyses have suggested that dust surface

concentration will capture the variability better than dust column amount (Mahowald et

al., 2003b). We extend that analysis here to correlate modelled total aerosol (sum of15

sulphate, carbonaceous, dust and seasalt) AOD with modelled surface dust fluxes. For

this section, the results are all from modelled variables which are proxies for what we

want to know, or are measured in the real world.

First we look at the ability of visibility data and satellite data to provide information

about the spatial location of dust sources (Fig. 2). Notice that spatially, the maximum20

in modeled dust sources are located in different places than the modelled maximum in

dust aerosol optical depth or surface concentrations (these plots show monthly mean

values for January of 1981, but any particular month or annual average will look similar).

The surface concentrations visually appear more related to surface fluxes than optical

depth visually. This is very clear in the scatter plots or the correlation coefficients, which25

are shown for all land grid points in the model. The correlation coefficients between the

spatial locations of dust surface fluxes and surface extinction or optical depth in model

are 0.75 and 0.46, respectively. If we add in the complexity that in the real world we
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retrieve total aerosol surface extinction and optical depth (as opposed to just for dust)

and try to infer dust surface fluxes, these correlation coefficients drop to 0.69 and 0.38,

corresponding to capturing 48% or 14%, respectively, of the spatial variability in dust

surface fluxes, when we use surface extinction or optical depths, respectively. In the

real world we only have visibility data at a limited number of stations, not globally as5

we do in the model. If we sample the model output at these stations only, our cor-

relation coefficient does not change substantially (0.73) In the real world, TOMS AAI

does not sample optical depth, but an aerosol index which is linearly proportional to al-

titude, making it likely to perform worse at detecting dust source fluxes than the model

estimates here. The strength of sources is not well related to the frequency of emis-10

sions (Laurent et al., 2005), suggesting that sampling the number of times TOMS AAI

is above a certain threshold (e.g. Prospero et al., 2002) is not necessarily a better way

to obtain information about the sources. (Notice that for our visibility derived variable,

VIS5, which is a frequency variable, does about as well as the EXT variable.) Thus,

visibility derived variables (even at a limited number of stations) should theoretically do15

a much better job of capturing the spatial variability in dust fluxes than satellite derived

optical depth. Whether they practically do is based on their ability to capture regional

scale aerosol fluctuations, which is examined in detail in Sect. 3.1.

Next we look at the ability of visibility derived variables or aerosol optical depth to

capture temporal variability of dust source fluxes at individual gridboxes in the model.20

These results (Figs. 3b and c) show a higher correlation between the monthly mean

time series in modeled surface extinction and modelled dust surface fluxes than be-

tween modelled AOD and modelled dust surface fluxes. Again, these results suggest

that visibility derived variables will do a better job at capturing temporal variability in

dust source fluxes than aerosol optical depths. This is only true in practice if the qual-25

ity of the visibility data in calculating surface extinction is similar to satellite retrieved

column amount and has a similar spatial extent. Our analysis suggests that satel-

lite retrieved aerosol optical depths are better than visibility derived surface extinction

at capturing variability at AERONET sites (correlation coefficient of 0.66–0.7 against
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0.47). Although previous studies have implicitly assumed that satellite derived spa-

tial and temporal variability are better than those derived from visibility measurements

(e.g. Goudie and Middleton, 2001; Prospero et al., 2002) this analysis does not clearly

support that assumption.

4 Visibility trends and correlations in dust regions5

We focus on dust regions in this section. Since the analysis in Sect. 3 indicates that

visibility best correlates with aerosol optical depth in dust dominated regions, we focus

on the visibility-derived measures of dust here. Dust dominated regions are defined as

those regions where dust contributes to at least 50% of the surface aerosol extinction

in model simulations (Rasch et al., 2001). Figure 4 shows the locations of meteoro-10

logical stations with at least 30 years of data, and those within our dust dominated

region. There are 357 stations from dust dominated regions included in the analysis

of the visibility data. We analyze these stations grouped together by region, as well as

individually.

The mean fraction of observations when visibility is less than 5 km (VIS5) and mean15

surface extinction (EXT) derived from visibility are shown for several different regions

in Fig. 5 averaged over the period of 1974–2003. If we interpret this map as a proxy

for dustiness, it gives us a very different view of where the dust sources are than what

we get from TOMS AAI (e.g. Prospero et al., 2002). The Bodele basin does not appear

to be the largest source of dust, as some have claimed (e.g. Prospero et al., 2002),20

and looks quite moderate in this dataset. One area that stands out in this analysis

as having a large number of events in the visibility data is the region around Pakistan

and India, with low visibility (high VIS5 and EXT) also seen in parts of North Africa,

the Middle East and China/Mongolia. We normally do not think of the region near

Pakistan and northwestern India as being the largest dust source (e.g. Goudie and25

Middleton, 2001; Prospero et al., 2002), and the reason this region has such high VIS5

and EXT values could be due to anthropogenic aerosols that may be stronger than
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our model predicts. On the other hand, Pakistan and northwestern India is generally

a highly populated region with an arid climate, and with some of the highest rates of

reported desertification (Middleton and Thomas, 1997), so the visibility data could be

correct. It is also possible that the visibility data are biased in that a given station

could stop reporting data during dust events, biasing where the visibility data suggests5

the most aerosols are located. There are no stations in North America where dust

represents 50% of the surface extinction, and the stations in South Africa are too few

to include for a conclusive analysis. The global distribution of EXT (extinction) and

VIS5 (fraction of observations with visibility less than 5 km) is different, and this is one

of the reasons we analyze both variables. They are equally good (or bad) measures10

of aerosol optical depth, according to Sect. 3, and yet they are measuring aerosols

differently – the number of extreme events (VIS5) compared to background visibility

plus extreme events (EXT).

Next we look at each region individually; the bounds on the regional boxes used in

the analysis below are shown globally in Fig. 1. For North Africa, we show a time se-15

ries of the average visibility, winds, precipitation, palmer drought severity index (PDSI)

and human land use and grazing in Fig. 6. These values are averaged over the station

locations (not over the entire region), to weight them in a manner similar to the visibility.

Visibility derived variables (both EXT and VIS5) appear to vary substantially over the

time series, even averaged over the whole of North Africa. We can see many visibility20

events and high extinction during the 1970–1980s, associated with the Sahel drought

and higher downwind dust concentrations (e.g. Prospero and Nees, 1986; Prospero

and Lamb, 2003). After the 1980s, fractions of VIS5 values decrease by about 50%

while the extinction values decreases more slowly. There is a peak of low visibility

during the 1950s associated with high winds, but the data is quite spotty during the25

1940–1960s. Thus it is not clear how robust these changes are, although they ap-

pear at several different stations (not shown). Precipitation varies over this time period,

dominated by the Sahel drought signal, and the Palmer drought severity index (PDSI)

is highly correlated with precipitation. Cultivation tends to be increasing over this time
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period, while grazing is decreasing, especially after the 1950s. The poor temporal res-

olution of observations related to land use is obvious from this figure. Data availability

is highly variable over the time period with most consistent observations only available

after 1974. This is true in all of dust regions, and because of this we focus our analysis

on the period 1974–2003.5

We focus next on correlations between these variables at specific stations from

1974–2003 in the North African region. For North Africa, the correlation coefficients

between visibility derived variables and Palmer Drought Severity Index (PDSI), the av-

erage of winds cubed, El Nino, NAO, year (indicates where there is a trend in the data),

cropland and grazing are shown in Fig. 7. In these plots, reds indicate positive correla-10

tions, blues negative correlations, pluses indicate no statistically significant correlations

(at 99 percentile significance), and boxes indicate that the correlations only exist be-

tween that variable (see methods for how this is calculated) and the visibility derived

variable. Notice that there are very few correlations which are captured by just one

variable, indicating that interpreting the results of the correlation is not staightforward.15

The strongest correlations are between the PDSI and mean cube of the winds and the

VIS5 or EXT variable. We use mean cube of the winds because the strength of dust

sources is usually proportional to winds cubed (e.g. Mahowald et al., 2005). This sug-

gests that meteorology drives most of the temporal variability in North Africa, consistent

with previous studies (e.g. Prospero and Nees, 1986; Mbourou et al., 1997; Prospero20

and Lamb, 2003). The correlations at most stations between PDSI and visibility tend

to be larger in magnitude than between precipitation, previous year’s precipitation or

the previous year’s PDSI and visibility (not shown), consistent with drought severity

being a better measure of soil moisture than precipitation alone. Thus, we focus on

using the PDSI for the rest of the analyses. Surprisingly, there is little correlation be-25

tween ENSO or NAO and visibility in North Africa, unlike further downwind using other

datasets (e.g. Moulin et al., 1997; Mahowald et al., 2003b). There are some statisti-

cally significant trends in time (i.e. correlations with year) in the VIS5 and EXT, although

they are opposite in sign in some cases along the Mediterranean coast of North Africa,
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indicating that the number of events is going up, but the background aerosol concen-

tration may be going down. If we do the correlation over 1940–2003, instead of just

over the time period between 1974 and 2003, we obtain much stronger correlations

between year and extinction and between land use and extinction along the Mediter-

ranean coast of North Africa, perhaps associated with the difference in the amount of5

data. Figure 8 shows the average time series in a region centered on Algeria (28 N

to 3 N, 2 E to 15 E). This shows that there is little data before 1974, but that the data

suggest episodes of high VIS5 and EXT during the 1950s and 1960s. There is a ten-

dency for EXT to be higher later in the century, consistent with a correlation between

EXT and year at individual stations (not just because of discontinuities in data records10

at individual stations). There is also a positive correlation between EXT and cropland

and a negative correlation between EXT and grazing (since cropland and grazing are

almost linearly increasing and decreasing, respectively, over the 1940–1990s). Similar

behaviour is seen for the average of all the stations in the W. Sahel (13 N to 22 N, 20 W

to 15 E) time series (Fig. 9), with a peak in VIS5 and EXT in 1985 (during the Sahel15

drought), with some high values of VIS5 and EXT in the 1940s and 1950s.

The time series for the Middle East region is shown in Fig. 10. Similar to North

Africa, there tend to be many low visibility events in the beginning of the time record

(1940–1960s), where there are few data. But during the 1974–2003 period, when

the amount of data is more stable, there is not as much fluctuation in VIS5 or EXT,20

although mean winds decrease. Correlation coefficients at each individual station over

1974 to 2003 (Fig. 11) suggest that meteorology is not as important as in North Africa,

but that there are statistically significant temporal trends. There are also correlations

between human activities (cropland or grazing) and dust in different parts of the Middle

East. There are statistically significant decreases in Pakistan/India over 1974–2003.25

If we look at correlations in Pakistsan/India over the longer time period (back to the

1940s) there are more stations with positive trends in VIS5 and EXT (not shown) and

more statistically significant correlations with cropland and grazing (both positive and

negative). For the sources in and around China (see Fig. 1 or Fig. 5c for region),
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we tend to see high VIS5 and EXT in the 1940s and 1950s, similar to other regions,

and a downward trend between 1974 and 2003 (Fig. 12). Correlations between VIS5

and EXT and other variables (Fig. 13) suggest that precipitation is not important for

variability in visibility, but that winds are correlated with variability in visibility, similar to

the results seen in other studies (e.g. Zhang et al., 2003; Sun et al., 2001; Zhao et5

al., 2004; Liu et al., 2004). Our data do not show the increase in dustiness in 2000-

2002 seen in Kurosaki and Mikami (2003), although our results are consistent with their

conclusion that wind drives variability in dust events.

For Australia, there are fewer stations compared to the other regions previously dis-

cussed, but again we see the low visibility in the 1950s, with less variability between10

1974 and 2003 in the VIS5 and EXT data. There is an exception in the year 1986,

which is anomalously high, especially for VIS5 (Fig. 14). Correlations at specific sta-

tions (Fig. 15) suggest that PDSI has the strongest correlations with dust, but in a

manner that is counterintuitive – the higher the water availability is, the more dust.

This makes some sense if the increasing water makes the soil more erodible because15

the water brings more erodible sediment into the dry fluvial channels and lake beds

(e.g. Okin and Reheis, 2002; Mahowald et al., 2003a; Zender and Kwon, 2005 . There

are downward trends in VIS5 and EXT over the 1974–2003 time periods at some sta-

tions (similar results are seen for Fig. 15 when the whole time period is considered).

There are 2 (out of 16) stations with statistically significant correlations between VIS520

and ENSO, but these significant correlations are not matched between EXT and ENSO.

(*This is in contrast to the correlation between El Nino and precipitation in many regions

of Australia, although no necessarily across the dust region (Dai et al., 1998).

In South America, there are 7 stations with data for part of the time period. Again

there are low visibilities at the first part of the time series, and then flatter visibility25

trends for the rest of the time series (Fig. 16). There are few correlations between the

station data and other variables (Fig. 17). Some stations indicate that wind speeds

are anti-correlated with VIS5 and EXT (which may indicate that these stations are not

dust dominated and should be ignored), and there are some correlations between year,
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cropland, grazing and precipitation, but no large scale patterns. Only one station has a

correlation between ENSO and EXT.

There are a couple of regions where our model does not predict the surface extinction

to be dominated by dust, but where dust emissions may be important. We consider

them briefly here, including all stations with more than 30 years of data. First we look5

at the Southwestern U.S. region (e.g. Prospero et al., 2001) (Fig. 19 shows the region).

A time series plot shows that both VIS5 and EXT have been roughly increasing since

the 1940s, with a lot of variability (Fig. 18). For this region, the data are more regularly

available prior to 1974 than in previous regions, so we show correlations from 1940

to 2003 (Fig. 19). There are statistically significant correlations between most of the10

variables and VIS5 or EXT. Winds and antecedent PDSI are sometimes anti-correlated

with VIS5, which is not intuitive. Increases in precipitation may bring in more easily

erodible soil (Mahowald et al., 2003a; Okin and Reheis, 2002), but lower winds seem

unlikely to contribute to greater dust sources. Both the results of the correlations,

as well as the fact that these regions are not generally dominated by dust make the15

interpretation of these results difficult, and are consistent with the results of the model

suggesting that visibility in this region is not dominated by dust.

The Aral Sea area is another region which is thought to have a great deal of dust

(e.g. Prospero et al., 2001), although our model does not predict dust as the dominant

source of surface extinction. VIS5 and EXT tended to be high during the 1950s, and20

are lower now (Fig. 20). Similarly, winds were higher in the 1950s than today. These

might be indications that the data quality or location of the measurement devices have

changed, or it could be an indication that there are real changes in the conditions in

the Aral Sea. Similar to North America, the amount of data is relatively stable over

the whole period of data (1940–2003), so we show correlations over the whole period25

(Fig. 21). There are strong correlations between wind speed cubed and VIS5 and

EXT as well as between grazing and VIS5 or EXT. There are anti-correlations between

VIS5 and EXT and cropland and year. Studies have shown that Aral Sea levels have

dropped dramatically, and that the area of the Sea has been reduced by about 80% in
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recent decades. There have only been anecdotal studies of the changes in dustiness

of the region (e.g. Smith et al., 1999). The visibility-based data does not support a

decrease in visibility since the 1940s. This could be because of shifts in winds as the

lake has dried up.

If we consider the average of all 357 stations in dusty regions (Fig. 22), we see that5

the 1940s and 1950s were periods with relatively high VIS5 and EXT. These were more

windy periods, although there is also more variability in winds. It is interesting that there

was higher VIS5 and EXT during this period, but it raises a question about the data. It

could be that during this period, there were more dirt roads close to the meteorological

stations, and this caused lower visibility. This was a period of rapid changes due to10

the World War and technological development. There may also have been an increase

in soil conservation efforts in cultivated areas after this time period. But these results

could also be an indication that the measurement techniques are not consistent across

our entire time period. Overall, the appearance of a peak in both EXT and VIS5 at the

beginning of our time series, when the data were relatively sparse, appears suspicious.15

Thus, we may want to readdress previous studies which have suggested the 1950s

were dustier in China than current (Zijiang and Guocai, 2003), as an example, and

see if there are independent datasets which allow us to check that this result is not

because of biases in the data collection method. On the other hand, it is possible that

the 1940s and 1950s were a much dustier time period in all dust regions globally. Over20

the whole time period, there is no statistically significant trend in EXT or VIS5 for all

regions taken together. For some regions (China, Middle East or South America) there

are statistically significant trends with time in the visibility derived variables over the

whole time period or 1974–2003 (see Table 3).

Another way to analyze the same data is to look at correlations between VIS5 and25

EXT and other variables not over time, but in space across the stations. If we look

at the spatial correlations across all regions using the means over all years (or over

1974–2003, the results do not change qualitatively), we can look at some different

hypotheses about drivers of dust variability spatially. For the correlations between vis-
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ibility parameters and topographic lows we use three representations: the preferential

source distribution of Ginoux et al. (2001), the dust source used in the NCAR Com-

munity Atmospheric Model (Mahowald et al., 2006) (which is based on the Zender et

al. (2003b) geomorphic soil erodibility factor which calculates upstream area and satel-

lite derived vegetation, Bonan et al., 2002), or the surface reflectance-based sources5

of Grini and Zender (2004). In addition to the mean cropland extent from Ramankutty

and Foley (1998) used in the main part of the study, we use a new cropland dataset

being developed for 2000 (Ramankutty, personal communication). Table 4 shows the

results of this analysis over the 357 stations in dust dominated regions. These results

suggest that cultivation is the best determinant of spatial variability in dustiness, not10

wind speed or whether there are topographic lows nearby. This is in contrast to a pre-

vious work based on fraction of events where visibility is less than 1 km and a slightly

different topographic low dataset (Engelstaedter, et al., 2003). The correlation coeffi-

cients between cropland extent (Ramankutty and Foley, 1998) and VIS5 and EXT are

0.55 and 0.45 respectively, consistent with cultivation being associated with 20–30%15

of the dustiness seen in the visibility record. We obtain similar results if we use the

more recent dataset developed for the year 2000 (Ramankutty, in prep.), although this

correlation is sensitive to the resolution of the cropland data. At too high of a res-

olution (5 min) the correlation decreases, probably because croplands which may be

associated with dust sources are not located in the same 5 min grid box as our sta-20

tions, but are located within the 100 km grid size. In addition, we can analyze several

variables at the same time and see if more variability is captured. If we include winds

cubed, PDSI, croplands, grazing and topographic lows, slightly higher correlations co-

efficients are found than for any individual process (0.58 and 0.50 vs. 0.55 and 0.45

for VIS5 and EXT, respectively), and these results also suggest that cultivation is the25

most reliable variable for predicting visibility distributions. This result is consistent with

the view of visibility that we obtain from Fig. 5, where the lowest visibility (i.e. highest

VIS5 and EXT) is observed in Pakistan and northwestern India, where cultivation in an

arid region may be contributing to high rates of desertification (Middleton and Thomas,

3034

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/3013/2007/acpd-7-3013-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/3013/2007/acpd-7-3013-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 3013–3071, 2007

Global trends in

visibility:

implications for dust

sources

N. M. Mahowald et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

1997).

5 Summary and conclusions

This study focuses on using visibility data from surface meteorological stations as an

indicator of dust variability, and specifically dust source variability. Because the quanti-

tative nature of visibility data is not well established, we first evaluate the utility visibility5

data for our purposes. Our goal is to look at long term variability, so we use the monthly

mean AERONET aerosol optical depth (AOD) at the 33 stations with more than 3 years

of data. While AERONET data is high quality, it is not available as spatially or tempo-

rally extensively as the visibility data.

For each AERONET station, the monthly mean AOD values are compared to visibility10

derived variables at the closest two meteorological stations. At many stations there are

no statistically significant correlations between the column aerosol optical depth and

the visibility derived variables, although theoretical calculations suggest there should

be. Overall, for the surface extinction and monthly fraction of events with <5 km visi-

bility, the correlations are 0.25 and 0.33, respectively, implying that between 4 and 9%15

of the variability in aerosol optical depth is captured by the visibility data. If we focus

on stations that are predicted to be dominated by dust based on model calculations,

we obtain overall correlations for extinction and fraction of observations with a visibility

<5 km of 0.47 and 0.46, respectively. These results suggest that about 22% of the

variability in the optical depths is captured in the visibility derived variables. We tested20

several different visibility derived variables, and results suggest that the fraction of ob-

servations with a visibility less than 1 km is less well correlated with aerosol optical

depth than either fraction of visibility less than 5 km (VIS5) or averaged surface extinc-

tion (EXT; related to 1/visibility), so we used those variables for most of the analyses

in this paper. This suggests that previous papers emphasizing the fraction of observa-25

tions with visibility less than 1 km may not be looking at the best parameter to represent

dustiness (e.g. Engelstaedter et al., 2003).
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Similar correlation analyses using the TOMS AAI and TOMS AOD data suggest that

they are able to capture about 45–49% of the variability in the AERONET optical depth

data over dusty regions (correlation coefficients of 0.67 and 0.7). Note that the TOMS

AOD only has a correlation coefficient of 0.23 over all AERONET stations, suggesting

that it is not a robust measure of temporally and spatial variability in aerosol optical5

depth in non-dusty regions, even ignoring problems in satellite drift outside the 1984–

1990 period.

For this study, and many previous studies, we use measures of dust AOD or surface

extinction to infer the location and temporal variability of dust source surface fluxes,

since we cannot directly measure dust source surface fluxes globally. Using models we10

can better understand which variables best represent the spatial and temporal variabil-

ity in dust source surface fluxes. Our calculations show that surface extinction should

be much better related to source surface fluxes of dust than column amount (correlation

coefficient of 0.73 vs. 0.38, equals 36% vs. 10% of variability, respectively). Thus, it is

unclear whether satellite aerosol optical depth or visibility derived variability best gives15

information about variability in dust sources (either spatial or temporal). Some studies

assume that TOMS AAI represents the long-range transported dust (e.g. Prospero et

al., 2002). Because TOMS AAI is linearly proportional to the height of the dust, this is

probably true (Torres et al., 1998; Mahowald and Dufresne, 2004). However, this also

makes TOMS AAI less appropriate for studying spatial or temporal variability in dust20

source fluxes. The visibility derived-proxies represent regional aerosols to the extent

that they correlate with the AERONET AODs, and thus represent dust that has been

transported somewhere from the kilometer to the hundreds of kilometers scale. The

analysis here suggests that visibility data and TOMS AAI or TOMS AOD may be equiv-

alently good (or bad) at representing the spatial and temporal variability in surface dust25

fluxes. More work on determining better ways to determine the location of dust source

areas is vital, since the two main datasets we have to address dust sources (satel-

lite optical depths or visibility data) show different results. We examined the temporal

trends in VIS5 and EXT in regions dominated by dust, where the visibility derived vari-
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ables are able to capture over 20% of the variability in aerosol optical depth measured

by AERONET. Although meteorological station data are available from 1900 to 2003,

in dusty regions there are only data after 1940 in our dataset. The data record prior to

1974 is not consistent, forcing us to limit our analysis of ‘long’ term trends to the last 30

years. This is disappointing, since we had hoped to extend the satellite record signifi-5

cantly into the pre-1980s period. This implies we are missing any processes occurring

prior to the 1970s.

Analysis of the temporal variability in VIS5 and EXT shows that there are maxima

in the 1940s and 1950s throughout most of the dust regions. It is unclear whether

these maxima occur because this was a dustier time period, or because of changes in10

measurement methods, scarceness of the data during this period, or an increase in dirt

roads (which were later paved) or changes in farming practices (contour plowing, no-till

agriculture and crop land intensification). In order to better understand what happened

in the 1940s to 1950s, we should try to find independent datasets before concluding

that it was a dustier period.15

There are a relatively stable number of observations after 1974 in the dataset over

dusty regions, so we conducted most of our correlation analyses between individual

station time series of VIS5 or EXT and other variables during the period 1974–2003.

For analysis we present simple correlation coefficients, but rank correlations show qual-

itatively similar results. However, in many cases, there are multiple variables which20

correlate with the visibility derived proxies, making it more difficult to interpret the re-

sults. We focus on results that are regionally coherent. The high correlation coefficients

between annually averaged PDSI and both VIS5 and EXT are consistent with precipi-

tation being very important in the Sahel region of North Africa and the Mediterranean

coast of North Africa. High correlations between winds and VIS5 or EXT in China are25

consistent with winds driving much of the variability of dustiness in China. In other re-

gions, the correlation coefficients are not statistically significant on a regional basis. In

no region are there large numbers of strong correlations between either NAO or ENSO

and visibility, unlike what is seen farther downwind (e.g. Moulin et al., 1997; Mahowald
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et al., 2003b; Prospero and Lamb, 2003). Temporally, correlations between human

cultivation or grazing and visibility derived variables are not seen over large regions in

our datasets, perhaps due to the poor temporal quality of the cultivation and grazing

datasets.

There are regions with statistically significant trends with time in VIS5 or EXT for the5

period 1974–2003 (seen as a correlation between year and these variables). Upward

trends with time are seen regionally in parts of North Africa, especially in EXT, corre-

lated with lower precipitation. Downward trends are seen in regionally broader areas,

including parts of Central Asia and China. Looking at the average across all 357 sta-

tions in dusty regions, there is no statistically significant trend in VIS5 or EXT. Note that10

analyses of North America and the region close to Aral Sea (while more uncertain be-

cause these regions’ visibility is not dominated by mineral aerosols) suggest that EXT

and VIS5 are decreasing in these regions.

We get a different picture of the important processes if we look spatially across sta-

tions instead of at individual stations over time. The hypothesis that dry lake beds are15

dust sources is not supported, since there is no significant correlation between mean

VIS5 or EXT in our data and three measures of the topographic lows (to the extent that

topographic lows represent dry lakebeds). Instead the most consistent correlations

are between VIS5 and EXT and cultivation across all regions, with correlation coeffi-

cients suggesting that approximately 30% of the spatial distribution in the dustiness in20

the stations is associated with cultivation (note this does not mean that the cultivation

source of dust is 30% of the dust flux, because of the statistics used here). Much of

this cultivation related dustiness appears to be in the Pakistan/India region (see Fig. 5).

This may indicate that the results here may be sensitive to the quality of this data as

a reflection of dust sources. The hypothesis that most dust comes from topographic25

lows is supported from the TOMS AAI data and other geomorphic data (e.g. Goudie

and Middleton, 2001; Prospero et al., 2002). However, the visibility data do not support

that hypothesis. Which dataset should we believe? According to the analysis here,

it is likely that the visibility derived data used here or TOMS AAI or TOMS AOD are
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equally good (or bad) at inferring the spatial and temporal variability of dust surface

fluxes. In addition, the TOMS AAI retrieval method is biased to show higher values in

dry topographic lows in desert regions than in other nearby regions (Mahowald and

Dufresne, 2004). Thus, this paper suggests we need to re-examine the hypothesis that

topographic lows are the dominant source of dust. Using datasets that represent the5

vegetation, land use, and underlying soils and landforms would provide a more physi-

cal basis from which to understand dust sources (e.g. Ballantine et al., 2005) Because

of the known biases of the TOMS AAI specifically, and the poor correlation of AOD with

dust surface fluxes, other datasets should be used to improve our understanding of

dust sources.10

Any conclusions about what drives variability in desert dust sources based on visi-

bility data must include a caveat, because of the question about the quality of the data.

Comparisons suggest that the visibility data only capture about 22% of the variability in

aerosol optical depth, and thus may be describing only about 20% of our dust source

variability (assuming that our data are Gaussian, which they are not). However, visibility15

datasets are more extensive in time and space than our other datasets, and may be as

good as datasets from satellites at looking at surface emissions of dust (e.g. TOMS AAI

or T OMS AOD). The visibility data sets here suggest very little global trend in dusti-

ness for the period of 1974–2003. One of the major problems with predicting changes

in desert dust sources and loading is de-convolving the relative roles of climate change,20

carbon dioxide fertilization and land use in impacting dust mobilization. The temporal

analysis performed in this study suggests that climate variability and change (through

wind changes, and the impact of changes in soil moisture from precipitation and sur-

face temperature changes) and potentially carbon dioxide fertilization, and not human

land use practices, drive temporal changes in dust sources between 1974 and 200325

in some regions. However, spatial analysis of dustiness seen in the visibility record

is consistent with a large fraction of the dustiness being associated with human land

use, especially in Pakistan and India. Therefore this analysis suggests that land use

perturbations may control where a significant portion of the dust sources are, but that
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meteorological variability controls the temporal variability over the last 30 years.
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Table 1. Monthly mean AERONET aerosol optical depth vs. monthly mean surface extinction

at closest meteorological station.

Lat.(N) Lon. (E) # Mo Obs. Correlation Model Correlation Model Fraction Surf.

Ext vs. Opt Depth Ext. vs. Optical depth Ext. From Dust

Abracos Hill –10.8 –62.3 49 0.70 0.95 0.04

Alta Floresta –9.9 –56.0 65 0.70 0.93 0.03

Arica –18.5 –70.3 59 NS 0.88 0.61 *

Ascension Island –7.9 –14.4 49 NS 0.33 0.07

Avignon 43.9 .9 49 NS 0.87 0.12

Banizoumbou 13.5 2.7 65 0.44 0.69 0.86 **

Bondville 40.1 –88.3 80 NS 0.82 0.01

Capo Verde 16.7 –22.9 94 NS 0.13 0.66 **

Cart Site 36.5 –97.5 63 NS 0.92 0.09

Cove, Virginia 36.9 –75.8 51 NS 0.56 0.01

Dalanzadgad 43.5 104.4 76 0.30 0.92 0.73 **

Dry Tortugas 24.5 –82.9 48 NS 0.44 0.11

El Arenosillo 37.1 –6.8 36 NS 0.88 0.29

Goddard Space Flight Center 39.0 –76.8 126 NS 0.87 0.01

HJAndrews AFB 44.2 –122.2 60 NS 0.73 0.03

Ispra 45.7 8.6 70 NS 0.82 0.09

Kanpur 26.4 80.3 36 NS 0.95 0.34

Lanai 20.7 –156.9 63 NS 0.64 0.03

Maricopa 33.1 –112.0 42 NS 0.97 0.13

Mauna Loa 19.5 –155.5 99 NS 0.41 0.03

Maryland Science Center 39.2 –76.6 52 NS 0.80 0.01

Mexico City 19.3 –99.2 43 NS 0.79 0.04

Mongu –15.3 23.1 48 0.69 0.37 0.07

Nes Ziona 31.9 34.8 43 0.50 0.82 0.54 **

Ouagadougou 12.2 –1.3 58 0.32 0.71 0.80 **

Rimrock 46.5 –116.9 43 NS 0.87 0.05

Rogers Dry Lake 34.9 –117.9 48 NS 0.92 0.04

Sede Boker 30.8 34.8 74 NS 0.81 0.54 **

Sevilleta 34.3 –106.9 103 NS 0.97 0.12

Skukuza –24.9 31.5 65 NS 0.72 0.05

Solar Village 24.9 46.4 53 0.59 0.86 0.82 **

Venise 45.3 12.5 55 NS 0.90 0.08

Wallops 37.9 –75.5 55 0.36 0.87 0.01

NS indicates the correlation is not significant at the 99%.

** indicates that dust dominates other aerosols in the surface extinction and are included in the

next Table.

* indicates that dust dominates other aerosols, but that fog is likely, so the station is omitted.
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Table 2. Visibility proxies at dusty stations.

Visibility variable Overall correlation

at dusty stations

(marked with **

in previous table)

Extinction 0.47

Fraction of observations with visibility <1 km 0.23

Fraction of observations with visibility <2 km 0.42

Fraction of observations with visibility <3 km 0.45

Fraction of observations with visibility <4 km 0.47

Fraction of observations with visibility <5 km 0.46

Fraction of observations with visibility <6 km 0.45

Fraction of observations with visibility <7 km 0.47

Fraction of observations with visibility <8 km 0.44

Fraction of observations with visibility <9 km 0.40

Fraction of observations with visibility <10 km 0.28
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Table 3. Correlation coefficients with time and visibility derived variables. If a significant cor-

relation exists, this implies a trend with time. Only values significant at the 95% are shown

here.

Region EXT correlation with time VIS5 correlation with time

1974–2003 (whole time)

All dusty regions NS (NS) NS (NS)

N. Africa NS (0.79) NS (0.43)

Middle East 0.40 (0.42) 0.57 (0.35)

China –0.86 (–0.59) –0.89 (–0.72)

Australia NS (NS) NS (–0.30)

South America NS (–0.22) 0.39 (–0.40)
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Table 4. Spatial correlations between visibility derived variables and other variables (values not

significant at the 99% are indicated by NS).

Variable VIS5 correlation EXT correlation

Mean winds cubed –0.16 NS

Median winds –0.28 –0.22

Precipitation NS NS

PDSI NS NS

Cultivation (Ramankutty and Foley, 1998) 0.56 0.45

Cultivation (Ramankutty, personal communication) 0.21 0.20

Grazing NS NS

Topographic low (Ginoux et al., 2001) NS NS

Topographic Low (upstream area) (Zender et al., 2003b) NS NS

Topographic low (surface reflectance) (Grini et al. 2004) NS NS
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 Location of AERONET sites

Fig. 1. Location of AERONET stations used in this analysis (diamonds and triangles). Triangles

indicate stations where the surface extinction is dominated by dust, while diamonds are stations

where other aerosols dominate (>50%) model predicted surface extinction (shown as colored

contours), using the model of Rasch et al. (2001). Also shown are boxes outlining the different

regions emphasized in the main text and following figures.
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Fig. 2. Spatial plots of monthly mean dust surface extinction (a), total aerosol surface extinction

(b), dust column aerosol optical depth (c), total aerosol column optical depth (d) dust source

flux (e), scatter plot of total aerosol optical depth vs. total aerosol surface extinction (f), scatter

plot of dust surface flux vs. dust surface extinction in land gridboxes (red boxes are only at

the gridboxes which have meteorological stations analyzed in this paper) (g), scatter plot of

dust surface flux vs. total aerosol surface extinction in land gridboxes (red boxes are only at

the gridboxes which have meteorological stations analyzed in this paper) (h), scatter plot of

dust surface fluxes vs. dust aerosol optical depth in land gridboxes (i) and scatter plot of dust

surface fluxes vs. total aerosol optical depth in land grid boxes (j). All values are from the model

described in the text.
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c.  Surface extinction vs. source flux.

b.  Column AOD vs. source fluxa. Column AOD vs. surface extinction

Fig. 3. Correlations of monthly mean modelled column aerosol optical depth (AOD) versus

surface extinction (a), AOD vs. surface fluxes (b) and surface extinction vs. surface fluxes (c).
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 Location of visibility stations

Fig. 4. Location of visibility stations with more than 30 years of data. Colored contours show

fraction of surface extinction from desert dust. Pluses show stations in regions dominated by

desert dust (>50%), while dots show other locations.
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Fraction visibility < 5km (VIS5)

VIS5

North Africa
Extinction (EXT)

Middle East

China

Australia

South America

EXT

b.

c. d..

e. f.

g. h.

i. j.

Fig. 5. Mean fraction of visibility <5 km (VIS5) and mean surface extinction (EXT) derived from

the visibility data averaged over 1974–2003 for each of the areas discussed in the text. See

Fig. 1 for the larger scale location of the boxes. The top color bar is for VIS5 and the lower color

bar for EXT.
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a.

b.

c.

d.

e.

Fig. 6. Time series of the annual average over all the North Africa stations for extinction (EXT),

fraction of visibility <5 km (VIS5), mean of the cube of the winds, median winds cubed, pre-

cipitation, Palmer Drought Severity Index (PDSI), percent of area under cultivation, percent of

area under grazing, number of observations and number of stations included in the averages

for each year. Figures 1 and 7 show the region over which the stations are averaged. Variable

described on the left axis is in black and on the right axis is in blue.
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b.

c. d.

North Africa

e. f.

g. h.

i. j.

k. l.

m. n.

Fig. 7. Correlation coefficient between annual averaged time series of fraction of visibility

less than 5 km (VIS5-left column) and extinction (EXT-right column) for the following variables:

Palmer Drought Severity Index (PDSI), mean of the cube of the winds (winds3), El Nino-

Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Year (if correlated, this means

there is a trend with time), cropland and grazing. The color bar indicates the correlation coeffi-

cient. Boxes around a value indicate the value is irreplaceable (see text for explanation), while

pluses indicate not statistically significant. The two variables which are correlated are in the

heading of the panel with a hyphen between.
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  Algeria
a.

b.

c.

d.

e.

Fig. 8. Same as Fig. 6, but for a region around Algeria (28 N to 3 N, 2 E to 15 E and shown in

Fig. 1).
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 West Sahel
a.

b.

c.

e.

f.

Fig. 9. Same as Fig. 6, but for a region in the Western Sahel (13 N to 22 N, 20 W to 15 E also

shown in Fig. 1).
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Fig. 10. Same as Fig. 6, but for the Middle East (region shown in Fig. 11).
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Fig. 11. Same as Fig. 6, but for the Middle East (ENSO and NAO are not included).
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Fig. 12. Same as Fig. 6, but for a region near China (region shown in Fig. 13).
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Fig. 13. Same as Fig. 11, but for a region near China.
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Fig. 14. Same as Fig. 6, but for a region in Australia (region shown in Fig. 15).
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Fig. 15. Same as Fig. 11, but for a region near Australia.
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Fig. 16. Same as for Fig. 6, but for a region in South America (shown in Fig. 17).
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Fig. 17. Same as for Fig. 11, but for a region near South America.
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  North America (non-dust dominated)

Fig. 18. Same as for Fig. 6, but for a region in North America (shown in Fig. 19 and Fig. 1).

This region is one where the model predicts that dust does not dominate the aerosol extinction

in the surface layer.
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Fig. 19. Same as Fig. 11, but for a region in North America.
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Fig. 20. Same as Fig. 6, but for a region near the Aral Sea (shown in Fig. 20 and Fig. 1). This

region is one where the model predicts that dust does not dominate the aerosol extinction in

the surface layer.
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Fig. 21. Same as Fig. 11, but for a region near the Aral Sea.
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Fig. 22. Same as Fig. 6, but for an average across all the dusty stations considered in this

study.
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