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Abstract. To compensate for a poorly known geoid, satel-
lite altimeter data is usually analyzed in terms of anomalies
from the time mean record. When such anomalies are as-
similated into an ocean model, the bias between the clima-
tologies of the model and data is problematic. An ensemble
Kalman filter (EnKF) is modified to account for the presence
of a forecast-model bias and applied to the assimilation of
TOPEX/Poseidon (T/P) altimeter data. The online bias cor-
rection (OBC) algorithm uses the same ensemble of model
state vectors to estimate biased-error and unbiased-error co-
variance matrices. Covariance localization is used but the
bias covariances have different localization scales from the
unbiased-error covariances, thereby accounting for the fact
that the bias in a global ocean model could have much larger
spatial scales than the random error.

The method is applied to a 27-layer version of the Posei-
don global ocean general circulation model with about 30-
million state variables. Experiments in which T/P altime-
ter anomalies are assimilated show that the OBC reduces the
RMS observation minus forecast difference for sea-surface
height (SSH) over a similar EnKF run in which OBC is not
used. Independent in situ temperature observations show that
the temperature field is also improved. When the T/P data
and in situ temperature data are assimilated in the same run
and the configuration of the ensemble at the end of the run
is used to initialize the ocean component of the GMAO cou-
pled forecast model, seasonal SSH hindcasts made with the
coupled model are generally better than those initialized with
optimal interpolation of temperature observations without al-
timeter data. The analysis of the corresponding sea-surface
temperature hindcasts is not as conclusive.

Correspondence to:C. L. Keppenne
(keppenne@gsfc.nasa.gov)

1 Introduction

Although sequential data assimilation algorithms rely on the
assumption of an unbiased model, this assumption is almost
always violated. The severity of the violation varies from
model to model, but systematic patterns are common to many
models. For example, many ocean general circulation mod-
els (OGCMs) underestimate the amplitude of the annual cy-
cle of upper-ocean temperature in the tropics, resulting in a
cold bias in the summer and a warm bias in the winter (in
this paper, the terms bias and systematic errors are used in-
terchangeably, while the term random error identifies the part
of the forecast error that has zero expectation.).

Methods to deal with bias were introduced decades ago
in the engineering community. In contrast, in the atmo-
sphere and ocean modeling community, widespread interest
in addressing systematic forecast model errors is more re-
cent. This is understandable since bias only became a major
concern after advances in modeling and data assimilation had
reduced random errors to the point of commensurability with
systematic errors.

Bias correction approaches can be separated into offline
methods – in which the bias is estimated beforehand from
the model and observed climatologies – and online methods
– where a prior estimate of the bias is updated, resulting in
an analyzed bias. Several recent online bias correction ap-
proaches use a two-stage estimation technique (Dee and da
Silva, 1998; Dee and Todling, 2000; Carton et al., 2000;
Martin et al., 2002; Chepurin et al., 20051). Originally in-
troduced by Friedland (1969) among signal processing en-
gineers, the two-stage techniques augment the model state
vector with an estimate of the bias. It is also assumed that

1Chepurin, G., Carton, J. A., and Dee, D. : Forecast model bias
correction in ocean data assimilation. Mon. Wea. Rev., under re-
view, 2005.
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the bias can be “uncoupled” from the other state-vector vari-
ables, thereby allowing the bias estimation and state estima-
tion to occur successively.

To update the prior bias estimate, the two-stage estima-
tion methods make assumptions about the biased-error and
unbiased-error covariance distributions. In this regard, inspi-
ration can be drawn from our knowledge of the background-
error distribution. Accordingly, Dee and da Silva (1998) –
followed by Dee and Todling (2000) and Martin et al. (2002)
– assume that the two distributions are identical except for
a proportionality factor. Another approach encountered in
the recent literature proceeds as follows. In a conven-
tional 3DVAR system, the error-covariance distributions are
characterized by their amplitudes and horizontal and ver-
tical decorrelation scales. Therefore, Carton et al. (2000)
and Chepurin et al. (2005)1 estimate parameters of the bias
and random-error covariance distributions offline by sepa-
rating the basin-scale and synoptic-scale components of the
observed-minus-forecast (OMF) differences. These works
make clear that the performance of the assimilation sys-
tem can be significantly enhanced when different covariance
models are used for the systematic and unbiased errors.

How the prior estimate of the bias is assumed to change
with time is another important component of a bias-
estimation method. A steady state model can be assumed
in which b

f
k , the prior bias estimate at timetk, is identical

to ba
k−1, the posterior bias estimate at the time,tk−1, of the

previous analysis (e.g. Dee and Todling, 2000; Martin et al.,
2002). Alternatively, Chepurin et al. (2005)1 use regression
analysis to fit simple bias models to the large-scale OMF dif-
ferences. In their work, the prior bias estimate has a temporal
component (i.e.bf

k =F (tk)) but the posterior bias estimate is

not dynamically evolved (as inbf
k =F (ba

k−1, tk)).
This paper builds upon the aforementioned studies from

the perspective of applying the ensemble Kalman filter
(EnKF) – augmented with an online bias correction (OBC)
algorithm – to assimilate SSH anomaly measurements from
TOPEX/Poseidon (T/P) and in situ temperature data into a
high-resolution global primitive-equation OGCM. The as-
similation methodology is adapted from Keppenne and Rie-
necker (2002) where a massively parallel multivariate EnKF
algorithm is derived and applied to the assimilation of in
situ temperature data into a Pacific basin configuration of the
same OGCM (Poseidon: Schopf and Loughe, 1995). With
more than 30 million prognostic state variables, the global
model’s state-vector size restricts the ensemble size and lim-
its the choice of systematic-error covariance modeling ap-
proaches. Accordingly, the bias covariances are derived from
the same ensemble distribution as the random-error covari-
ances, albeit different covariance scales are used in each co-
variance model. Also, a steady state model is assumed for
the bias, but the bias estimate is allowed to propagate be-
tween successive assimilations (i.e.b

f
k =ba

k−1).
The remainder of this article is organized as follows. Sec-

tion 2 focuses on the methodology with a description of the
model and assimilation system. In Sect. 3, the OBC algo-

rithm is applied in the framework of T/P-anomaly assimila-
tion with the Poseidon OGCM and the impact on seasonal
hindcasts of using the EnKF to initialize the GMAO coupled
general circulation model (CGCM) is examined. Tempera-
ture data are also assimilated but OBC is not used to process
them. Section 4 contains the conclusion.

2 Model and algorithms

2.1 Model

The Poseidon model (Schopf and Loughe, 1995; Konchadi
et al., 1998; Yang et al., 1999) is a finite-difference, reduced-
gravity ocean model which uses a generalized vertical co-
ordinate designed to represent a turbulent, well-mixed sur-
face layer and nearly isopycnal deeper layers. The prognos-
tic variables are layer thickness,h(λ θ , ζ , t), temperature,
T (λ θ , ζ , t), salinity,S(λ θ , ζ , t), and the zonal and merid-
ional current components,u(λ θ , ζ , t) andv(λ θ , ζ , t), where
λ is longitude,θ latitude,t time andζ is an isopycnal vertical
coordinate. The SSH field is diagnostic.

Vertical mixing is parameterized through a Richardson
number-dependent mixing scheme (Pacanowski and Philan-
der, 1981) implemented implicitly. An explicit mixed layer
is embedded within the surface layers following Sterl and
Kattenberg (1994). For layers within the mixed layer, the
vertical mixing and diffusion are enhanced to mix the layer
properties through the depth of the diagnosed mixed layer.
A time-splitting integration scheme is used whereby the hy-
drodynamics are done with a short time step (15 min), but
the vertical diffusion, convective adjustment and filtering are
done with coarser time resolution (half-daily).

The model’s parallel implementation, described in Kon-
chady et al. (1998), uses a message-passing protocol and a
2D horizontal domain decomposition.

The 27-layer configuration of the OGCM used here is the
oceanic component of the coupled ocean-atmosphere-land
model used in the GMAO seasonal-to-interannual forecast-
ing system. Uniform 5/8◦ zonal and 1/3◦ meridional res-
olutions are used, resulting in 576×538×27 grid boxes, of
which 28% are situated over land. Thus, there are about
3.3×107 individual prognostic variables.

2.2 Localized ensemble Kalman filter

The EnKF has quickly gained popularity since its introduc-
tion by Evensen (1994). Applications range from simple-
model studies to uses with more realistic forecast models.
Evensen (2003) lists most recent meteorological and oceano-
graphic EnKF applications. For the Poseidon model, the par-
allel implementation is described in Keppenne and Rienecker
(2002) and detailed in a NASA Technical Report (Keppenne
and Rienecker, 2001). It is applied to the assimilation of in
situ temperature observations into a Pacific basin version of
Poseidon in Keppenne and Rienecker (2003). A less costly,
steady-state version of the algorithm (multivariate optimal
interpolation) is also discussed in Borovikov et al. (2005).
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Fig. 1. Schematic view of the horizontal domain decomposition
showing, for one PE, its PE-private area (textured inner rectangle),
the halo region it shares with the surrounding PEs (darker shaded
area), the ellipse with semi-axeslλ andlθ which delimits the influ-
ence region of the PE-private area’s southeastern corner cell (dotted)
and the rectangular region from which it collects observations to as-
similate (outer shaded rectangle containing the elliptical influence
regions of all this PE’s private grid cells). The dashed gridlines
delimit the PE-private areas of nearby PEs. In the actual model,
there are 576×538×27 grid boxes, the PE-private areas have either
36×33×27 or 36×34×27 grid boxes and the halo regions are one
cell wide.

To avoid costly ensemble transpositions across processors,
the assimilation uses the same horizontal domain decompo-
sition used to integrate the ensemble. Thus, the ensemble is
distributed so that the memory of each processing element
(PE) contains the same elements of each ensemble member’s
state vector. Although between 16 and 64 HP SC45 PEs are
commonly used for single-model runs, a 16×16 PE lattice is
used when running the EnKF. On this lattice, each PE is re-
sponsible for the assimilation of the observations that occur
within a region surrounding its rectangular PE’s private area.
This region’s size is a function oflλ andl8, two correlation-
function parameters specifying the distance at which a Schur
product of the ensemble-derived covariances with a com-
pactly supported correlation function forces background co-
variances to vanish in the zonal and meridional directions,
respectively (Houtekamer and Mitchell, 2001; Keppenne and
Rienecker, 2002). This is illustrated in Fig. 1.

For the sake of brevity, the parallelization of the EnKF is
not explicitly discussed further in this paper and the equa-
tions are written as though a single processor were perform-
ing all the computations. For details, the reader is referred to
Keppenne and Rienecker (2002).

Assume that the true climate state,xt , evolves from time
tk−1 to timetk according to2

xt
k = M(xt

k−1,f k−1) + ηk−1 , (1)

whereM is the model operator,f k−1 is the forcing between
tk−1 andtk,andηk−1, commonly referred to as system noise

2Upper-case boldface characters refer to matrices while lower-
case boldface characters correspond to column vectors. Thus, given
the vectorsa andb, aT b is their scalar product andabT is their outer
product.

or process noise, represents the effect of model imperfections
and forcing errors betweentk−1 andtk. The observations at
time tk, yk, are related to the true state by

yk = H k(x
t
k) + εk , (2)

whereHk is the observation operator andε is a vector of ob-
servational errors. The model and observations are assumed
unbiased so thatE(ηk−1)=0 andE(εk)=0.

The Kalman filter update equation (Kalman, 1960) relates
the analysis to the model forecast with

xa
k = x

f
k + Kk

[
yk − H k(x

f
k )

]
, (3)

whereKk is known as the Kalman gain and is given by

Kk = P
f
k H T

k

[
H kP

f
k H T

k + Rk

]−1
. (4)

The matricesP f
k and Rk are the background-error and

observational-error covariances, respectively. With the no-
table exception of particle methods (e.g. Anderson and An-
derson, 1999; Van Leeuwen, 2003) in which the calculation
of the Kalman gain is not necessary, all sequential data as-
similation methods use an analysis equation like Eq. (3), but
they differ in the assumptions that are made regardingP

f
k

andRk. In the EnKF, an ensemble ofn model state vectors
is evolved fromtk−1 to tk owing to

x
f
i,k = M(xa

i,k−1,f k−1) + N i,k−1, i = 1, 2, . . . , n , (5)

where the first subscript refers to theith ensemble member
andN i,k−1 is a term added to the model equations to simu-
late the process noise. Many applications ignore the process-
noise model and attempt to represent its effect through co-
variance inflation, but our experience with the Poseidon
model suggests that traditional multiplicative covariance in-
flation may not be a viable approach when working with a
high-dimensional state vector.

Since the remainder of the discussion refers to timetk, the
corresponding subscript will now be dropped except where

required. Given the ensemble,
{
x

f

1 , x
f

2 , . . . , x
f
n

}
, of model

forecasts, the EnKF first estimatesHP f H T with

S = {s1, s2, . . . , sn} =

{
H (x

f

1 ), H (x
f

2 ), . . . , H (x
f
n )

}
(6a)

HP f H T
=

1

n − 1
SST . (6b)

Then, the representer weights used to update theith ensem-
ble member are calculated with

ai =

[
C • HP f H T

+ R
]−1 (

y + ei − H (x
f
i )

)
, (7)

whereC is a compactly supported correlation matrix as dis-
cussed in Keppenne and Rienecker (2002),ei is a perturba-
tion term with covarianceR (Burgers et al., 1998) and• rep-
resents the Schur (element by element) product (Houtekamer
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and Mitchell, 2001). Then, in each grid boxl, with coordi-
nates(λl, θl, ζl), the state variables of ensemble memberi

are updated using

xa
i,l = x

f
i,l +

1

n − 1

n∑
j=1

x
f
j,ls

T
j (cl • ai) , (8)

where the rightmost term is computed right to left to reduce
the computational burden,xi,l =

{
hi,l, Ti,l, Si,l, ui,l, vi,l

}
and cl is a vector of correlation function coefficients. De-
noting the difference between the longitudes, latitudes and
vertical coordinates of grid boxl and themth observation as
δlm=(δλlm, δθlm, δζlm), themth component ofcl is given by

cl,m = ρ(δlm) = ρλ(δλlm)ρθ (δθlm)ρζ (δζlm) . (9)

In Eq. (9),ρλ, ρθ andρζ represent applications of a com-
pactly supported correlation function (Eq. 4.10 of Gaspari
and Cohn, 1995) with scaling such that the correlations van-
ish atdλ, dθ anddζ in the respective space dimensions. The
elements ofC in Eq. (7) are obtained similarly, but are func-
tions of coordinate differences between pairs of observations.

In the current study, the system-noise is modeled by
adding to the model equations for each ensemble member
a perturbation term computed as a linear combination of
scaled empirical orthogonal functions (EOFs) calculated of-
fline from an ensemble of ocean states forced with an ensem-
ble of atmospheric forcing sets with perturbations represent-
ing internal atmospheric noise (Borovikov et al., 2005). The
amplitude of the perturbations is continually adjusted during
the ensemble integration in an effort to ensure

tr(HP f H T
+ R) ∼= (y − Hx̄f )T (y − Hx̄f ) . (10)

The approximate equality is maintained as follows. If at time
tk the left hand side of Eq. (10) is smaller (vs. greater) than
the right hand side term by 25% or more, the amplitude of
the perturbations applied betweentk and tk+1 is increased
(vs. decreased) by 25%. Note that this trick is analogous in
its purpose to traditional covariance inflation.

Although the observation perturbation term,ei in Eq. (7),
can be avoided if a square-root formulation of the EnKF (e.g.
Tippett et al., 2003) is used, a square-root algorithm is very
inefficient in a localized analysis framework with compactly
supported covariances. The reason for this is that the square-
root alternative to Eq. (8) would involve the solution of an
n×n eigenproblem in each grid box. Nevertheless, provided

that
n∑

i=1
ei=0, the ensemble-mean update is unaffected by the

perturbed observations.

2.3 Bias estimation

The previous discussion assumes that the forecast errors and
observational errors are unbiased. While the latter assump-
tion is plausible given that the measurements can be bias-
corrected when the instruments are known to produce sys-
tematic errors, the former is more questionable. The ap-
proach used here to account for the presence of forecast-
model bias is adapted from Dee and Todling (2000).

In analogy to Eq. (1), the true model bias is assumed to
evolve according to

bt
k = Mb(b

t
k−1, x

t
k−1) + �k−1 , (11)

where�k−1 is a white noise process. Since the bias evolution
is much slower than that of the forecast and happens on much
longer timescales, a reasonable model for theMb operator is
the identity matrix. Similarly,�k−1 is neglected because we
assume that�k−1<<ηk−1. Therefore, the augmented state-
propagation equations are

x
f
i,k = M(xa

i,k−1,f k−1) + N i,k−1, i = 1, . . . , n , (12a)

b
f
k = ba

k−1 . (12b)

The unbiased state estimate isx̄f
−bf , wherex̄ refers to the

ensemble mean. Therefore and in analogy to Eq. (3), the
two-stage update proceeds as follows:

ba
k = b

f
k − Lk[yk − H k(x̄

f
k − b

f
k )] , (13b)

xa
i,k=x

f
i,k+Kk[yk+ei−H k(x

f
i,k−b

f
a )], i=1, . . . , n . (13b)

The state update (Eq. 13b) is computed and applied as in
Eqs. (6–8), except that the unbiased state estimate,x

f
i −ba,

is used everywhere in lieu ofxf
i . The gain for the bias, given

byL=P
f
b H T

[HP
f
b H T

+R]
−1, is preceded by a minus sign

in Eq. (13a) because a systematically positive assimilation in-
crement suggests the presence of a negative model bias. Note
that it has been assumed that the bias and the unbiased errors
are uncorrelated. The bias update uses equations similar to
Eqs. (6–8):

Sb=

{
H (x

f

1 −bf ),H (x
f

2 −bf ), . . . , H (x
f
n −bf )

}
, (14a)

HP
f
b H T

=
α

n − 1
SbS

T
b , (14b)

ab =

[
Cb • HP

f
b H t

+ R
]−1 (

y − H
(
xf

− bf

))
, (14c)

ba
l = b

f
l −

α

n − 1

n∑
j=1

b
f
j,ls

T
j

(
cb,l • ab

)
, (14d)

The l subscript in Eq. (14d) refers to thelth grid box. The
α in Eq. (14b) and Eq. (14d) is an amplitude scaling factor.
The correlation matrixCb and the correlation vectorscb,l are
computed asC andcl , but using different correlation scales
because the spatial scales are expected to be longer for the
bias than for the random errors if the systematic model errors
reflect large-scale atmospheric forcing biases. The adjustable
parameters of the bias estimation algorithm are thusα and the
spatial scales for the bias:lλ,b, lθ,b andlς,b.



C. L. Keppenne et al.: Online bias estimation with an ensemble Kalman filter 495

3 Application

3.1 Assimilation experiments

Altimeter measurements from space are important because
they provide insight into subsurface ocean dynamics such
as changes in the vertical displacement of the thermocline
and halocline layers. The T/P altimeter samples the SSH
field with an error standard deviation of approximately 2 cm.
After removal of the temporal mean from repeating mea-
surement tracks and of the specific frequency distribution of
known tides, the residual time-varying measurements have
a spatial resolution of about 1 km along the orbit track and
317 km between tracks at the equator. The orbit repeats itself
every 9.9156 days.

The T/P data used in this study are processed as in Adamec
(1998), resulting in an along-track average every 7 km. Since
temperature profiles are the most abundant source of infor-
mation about subsurface variability, TAO and XBT profiles
and, when available, temperature profiles from ARGO and
PIRATA are also assimilated.

The assimilation of the altimeter observations into the
OGCM presents a peculiar problem. Since the data are
anomalies, the model climatology is used to reconstruct the
signal prior to each assimilation. However, our previous
experience with temperature and altimeter assimilation has
indicated that the time-mean SSH fields from free-model
and assimilation runs are markedly different. Moreover,
when altimeter data are processed, the model gradually shifts
regimes and the adjustment – which may require several
months of simulation – has repercussions on the OMF cal-
culations. When a static model climatology is added to the
anomalies before they are fed to the assimilation system, the
resulting signal tends to steer the model towards an unnatu-
ral state. The problem can be mitigated if bias correction is
used in the altimetry assimilation and the SSH climatology
is continuously adjusted as the measurements are processed.

The experimental setting as as follows. The model
complexity and the specifications of the parallel comput-
ing platform used (HP SC45) restrict the ensemble size to
16-members. To minimize the effect of using small en-
sembles, the deviations,(xf

i −x̄f ), i=1, · · · , n, are heav-
ily pre-filtered by means of a spatial averaging in which
the weights are proportional to exp(−distance2), before the
required background covariances are calculated. The pre-
filtering After a long experimentation, the spatial scales used
in the Schur-product calculations aredλ=60◦, dθ=30◦ and
dς=400 m in the temperature assimilation. When altimeter
data are processed,dλ=20◦, dθ=10◦ anddς=400 m. The as-
similation interval is five days, but the SSH and temperature
data are processed in sequence. The separate processing of
the two data types is justified by the lack of correlation be-
tween the temperature and altimeter observational errors. In-
cremental analysis updating (IAU: Bloom et al., 1996), in
which the analysis increments are applied gradually (divided
equally between time steps) over the sequence of time steps
from tk to tk+1, is used in all runs.

The observational-error covariance matrices,R, are as-
sumed to be Gaussian and are modeled with the same com-
pactly supported correlation function used in the Schur prod-
uct calculations. For the T/P data, an observational error-
variance of 4 cm2 is assumed and the data-error covariances
are forced to vanish at a distance of 10◦. For the tempera-
ture observations, the assumed error-variance is 0.25C2, and
covariances vanish at 20◦ horizontally and – reflecting the
belief that the errors are strongly correlated within each tem-
perature profile – at a spacing of 1000 m vertically.

In all experiments, the initial conditions come from a free-
model run forced with observed winds, heat fluxes and SSTs,
but with no data assimilation. The initial ensemble is con-
structed around the state from the free-model run which we
identify as ensemble member 1. The ensemble construction
is based on perturbations of the form

xi = x1 +

∑
j

γijvj , i = 2, · · · , n , (15)

where theγij are normally distributed pseudorandom num-
bers and thevj are the leading EOFs of an ensemble of ocean
runs calculated as in Borovikov et al. (2005). Given that
the higher-order EOFs reflect variability on smaller spatial
scales, thirty two EOFs are used as a compromise between
using just as many EOFs as there are ensemble members (to
guarantee a minimum rank) and using all available EOFs (to
cover all the spatial scales of the model variability). The per-
turbations are applied gradually over a period of ten days us-
ing the same IAU procedure used to insert the assimilation
increments. Thereafter, the same equation and insertion pro-
cedure are used daily to generate and apply perturbations to
simulate the system noise – always striving to respect the
condition (Eq. 10).

In both the temperature and altimetry assimilations, cross-
field covariances are used to updateT , S, u andv in each
grid box. The layer thicknesses are not updated and adjust
freely between successive assimilations in response to the
IAU. Bias correction is not used when temperature is assim-
ilated. When OBC is used in the altimetry assimilation, ad-
justments are continuously made to the SSH climatology but
theT , S, u, v andh fields are not bias-corrected.

Although insight into the value of the parameters,α, dλ,b,
dθ,b anddς,b, of the OBC algorithm can be gained from an
analysis of OMF statistics, these parameters are adjusted in
a series of short tuning runs. First, the bias-covariance scales
were set to the same value as the corresponding scales for the
background covariances – i.e.dλ,b, dθ,b=dθ , anddς,b=dς –
andα is varied in the interval(0−2). For each probed value
of α, the T/P assimilation ran for two months starting on 1
January 1993 and the RMS OMF for SSH was calculated for
the entire run. The results, shown in Table 1, prompted us to
chooseα=0.75 for the remaining experiments.

To simplify the task of tuning the bias-covariance scales,
a parameter,β, is introduced such thatdλ,b=βdλ, dθ,b=βdθ

and dς,b=β dς . The RMS OMF statistics of a new series
of two-month runs varyingβ with α fixed at 0.75 lead to the
choice,β=3.0 (Table 2). Of course, the procedure followed to



496 C. L. Keppenne et al.: Online bias estimation with an ensemble Kalman filter

Table 1. RMS OMF of the unbiased estimate for SSH as a function ofα in the runs withdλ,b, dθ,b=dθ , anddς,b=dς .

α 0.0 0.1 0.25 0.5 0.75 1.0 1.5 2.0

RMS (m) 0.087 0.084 0.081 0.074 0.072 0.089 0.104 0.127

Table 2. RMS OMF of the unbiased estimate for SSH as a function ofβ in the runs withα=0.75.

β 0.5 1.0 2.0 3.0 4.0 5.0

RMS (m) 0.087 0.072 0.066 0.061 0.063 0.065

Fig. 2. Estimates of the SSH climatology error on(a) 1 July 1993
and(b) 1 January 1994, respectively after six and twelve months of
temperature + T/P altimetry assimilation with bias correction in the
EnKF-OBC run.

adjustα andβ – by first searching for a value ofα that mini-
mizes RMS OMF statistics whenβ=1 before varyingβ while
keepingα at this value – in no way assures that the resulting
(α, β) pair will minimize RMS statistics. Further iterations
with β=3.0 and varyingα would likely yield a “better” (α,
β) pair.

The next experiment is a comparison of three 12-month
runs, starting 1 January 1993. In the first run (EnKF-OBC),
both temperature and T/P data are assimilated, and OBC is
used in the T/P assimilation to continually adjust the SSH
climatology (experience has shown that the misspecification
of the SSH climatology is a more serious problem than the
presence of a bias in the temperature, salinity or current fields
and no attempt is made to correct the temperature, salinity or
current bias in this run.). The second run (EnKF) is identical
to the first, except that OBC is not used, and the third run
(control) is a free-model run without assimilation.

Figure 2 shows the SSH bias estimate at six and twelve
months in the EnKF-OBC run. The differences between the
two estimates can likely be attributed to the continuing con-
vergence of the OBC algorithm as well as to the presence
of seasonality in the bias. A persistent feature of the bias
estimate discernable in Figs. 2a and 2b is a positive bias in
areas of the North Atlantic and in the southern midlatitudes.
Western boundary current overshoots in the subtropics and
subpolar regions are a likely cause for the positive bias in the
North Atlantic. The mostly negative bias in the Tropical Pa-
cific occurs between the latitudes of zero wind stress curl and
is probably associated with the SSM/I forcing.

3.2 Background covariances

One hallmark feature of the EnKF is its reliance on flow de-
pendent background covariances in the Kalman gain calcula-
tion. In many operational assimilation systems, the contribu-
tion of a single additional observation to the assimilation in-
crement is solely a function of the corresponding innovation,
y−H (xf ). The background covariances are often univariate
and isotropic, do not vary with time and – if at all depen-
dent on the measurement location – the spatial dependency
is usually very simple and specified a priori (in analogy with
microeconomics, we refer to the contribution of a single ob-
servation to the Kalman gain as that observation’s marginal
gain.).

With the EnKF, the marginal gain of a unit innovation re-
sults from the local (in space and time) ensemble configura-
tion in the neighborhood of the corresponding measurement.
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Fig. 3. Isopycnal cross-sections showing layer 10 of the Marginal Kalman gain corresponding to a hypothetical 0.1 m SSH innovation at
(0◦ N, 100◦ W) on 1 July 1993. The large dot corresponds to the latitude and longitude of the observation.(a) T gain,(b) S gain,(c) u gain
and(d) v gain.

Figures 3–7, which all correspond to the EnKF-OBC run, il-
lustrate this point.

In Fig. 3, we show the marginal contribution on 1 July
1993 of a hypothetical 0.1 m SSH innovation at (0◦ N,
100◦ W) to theT , s, u andv increments in layer 10 (count-
ing from the surface). The anisotropy of the background co-
variances is evident. The positive SSH innovation results in
a warmer layer 10 and the temperature increase is centered
around the SSH observation (Fig. 3a). In contrast,S cor-
rections increase west of the datum and decrease to the east
(Fig. 3b). The zonal current of the South Equatorial Cur-
rent decelerates, mostly west of the observation (Fig. 3c),
and there is increased meridional divergence of the merid-
ional current (Fig. 3d).

Figure 4 illustrates the flow dependency of the background
covariances by showing how the depth of the 20◦C isotherm
is affected by the same 0.1 m SSH innovations on 1 July
1994 and on 1 January 1994. The positive SSH innovations
result in a deeper thermocline in both cases, although on 1
July 1993 the deepening occurs mostly to the east of the ob-
servation location, while on 1 January 1994 it happens in a
zonally elongated pattern centered about the datum.

The effect of the 0.1 m SSH innovations at (0◦ N, 100◦ W)
on 1 July 1993 and 1 January 1994 on the SSH bias estimate
is shown in Fig. 5. In general, a positive SSH innovation
results in a deepening of the thermocline and in a negative
SSH bias increment since the model is likely to be negatively
biased when the observed SSH is consistently higher than
what it predicts.

Because the bias update (Eq. 14) uses wider covariance lo-
calization scales than the state update, the marginal SSH bias
increments cover a much larger geographical area. More-
over, while we never allow a datum to affect the ocean state
in another basin (Pacific, Atlantic or Indian Ocean) than that
where it is observed, we do not impose the same restriction
on the bias increment. While some bias patterns result from
errors in ocean model parameterization (e.g. Vossepoel et al.,
2005), other patterns are believed to reflect large-scale atmo-
spheric forcing biases. It is sensible to assume that the latter
patterns will not be confined to a particular ocean. Accord-
ingly, the zonally elongated negative bias increment in the
eastern Equatorial Pacific extends in the Atlantic on 1 July
1993 (Fig. 5a). On 1 January 1994 (Fig. 5b), the bias incre-
ment is still mostly negative in the eastern Equatorial Pacific,
but in the Tropical Atlantic it is generally opposite to the bias
increment obtained on 1 July 1993.

Figure 6 shows isopycnal cross sections through layer 10
through the marginalT , s, u andv increments correspond-
ing to a positive 1◦C innovation in the Western Pacific at
(20◦ N, 150◦ E) at a depth of 53 m (layer 10). The posi-
tive temperature innovation produces a salinity increase to its
north and a freshening to its south (Figs. 6a and 6b). As seen
in Fig. 3 for the SSH innovations in the eastern Equatorial
Pacific, the marginalu andv gains have generally opposite
signs (Figs. 6c and 6d).

The background covariances estimated with the EnKF ex-
hibit not only anisotropy and temporal variations, but also a
strong dependency on the observation location. To illustrate
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Fig. 4. Change in the depth of the 20◦C isotherm in response to
a hypothetical 0.1 m SSH innovation on(a) 1 July 1993 and(b) 1
January 1994.

this, Fig. 7 shows layer 10 of theT , s, u andv increments
corresponding to a 1◦C innovation at (20◦ S, 60◦E) and at
a depth of 68 m (layer 10 at 20◦ S, 60◦ E) on 1 July 1993.
Here, the temperature increase in layer 10 caused by the 1◦ C
innovation (Fig. 7a) is larger than in the case of the Western
Pacific innovation (Fig. 6a). Moreover, the temperature in-
crease extends more to the south of the observation than to
its north. The amplitude of the marginalu gain is also much
larger than in the case of the Western Pacific innovation and
is positive east of the observation and negative north of it
(Fig. 7c). On the other hand, the amplitude of the marginal
v gain is relatively small (Fig. 7d). In contrast to the case
of the Western Pacific temperature observation (Fig. 6b), the
marginalS gain exhibits a wavy zonal pattern with freshen-
ing east and west of the datum and a salinity increase closer
to it (Fig. 7b).

One important question which has not been addressed in
this study because of computational limitations is whether
marginal Kalman gains like those shown in Figs. 6 and 7 are
robust with respect to increases in ensemble size. Before this
is done, we can not rule out the presence of artificial biases in
the corrections. Also note that the EnKF correction is vari-
ance minimizing only for Gaussian ensemble distributions
(van Leeuwen, 2001).

3.3 OMF statistics

The SSH bias is a two-dimensional field. Notwithstanding
and with the caveat that, in a spatial average, a large positive

Fig. 5. Marginal Kalman gain for the SSH bias field corresponding
to a hypothetical 0.1 m SSH innovation on(a) 1 July 1993 and(b)
1 January 1994.

bias in one part of the ocean could cancel out a large nega-
tive bias in another part, insight into whether the assimilation
reduces or eliminates systematic errors can be gained by ex-
amining time series of spatial-mean OMF statistics. Accord-
ingly, Fig. 8 shows how the latter evolve during the 12-month
experiment. The statistics shown lump all observations to-
gether, independent of depth. Since SSH is a diagnostic vari-
able, improvements in its statistics mostly reflect improve-
ments in the subsurface temperature and salinity fields.

In Fig. 8a, showing the OMF corresponding to the tem-
perature observations, the strong positive bias of the control
run appears to be quickly reduced, but not eliminated, in the
EnKF-OBC and EnKF runs. In fact, although the original
Kalman filter equations are not designed to handle bias, a
significant part of the work done by the assimilation consists
in correcting the bias. The same observation can be made
about most ocean data assimilation systems. Since the tem-
perature bias is not explicitly estimated or corrected in the
EnKF and EnKF-OBC runs, the corresponding spatial-mean
OMF differences do not show much difference. Averaged
over the entire run, the spatial-mean OMF differences are
0.08◦C, 0.10◦C and 0.22◦C respectively in the EnKF-OBC,
EnKF and control runs. The situation is different for the
spatial-mean SSH OMF (Fig. 8b). After an initial adjust-
ment, the estimated unbiased OMF from the EnKF-OBC run
is much closer to zero than the biased OMF from the same
run, or than the spatial-mean OMF of the control and EnKF
runs. Averaged over the entire run, the spatial-mean OMF is
0.0 cm, 0.6 cm, 0.6 cm and 0.12 cm for the unbiased EnKF-
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Fig. 6. Isopycnal cross sections showing layer 10 of the Marginal Kalman gain corresponding to a hypothetical 1◦C temperature innovation
in layer 10 at (20◦ N, 150◦ E) on 1 July 1993.(a) T gain,(b) S gain,(c) u gain and(d) v gain.

Fig. 7. Same as Fig. 6 for a hypothetical 1◦C temperature innovation at (20◦ S, 60◦ E).
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Fig. 8. Temporal evolution of the spatial-mean OMF for(a) temperature and(b) SSH in the no-assimilation control run (diamonds), the
EnKF run with temperature and T/P-anomaly data assimilation and continuous correction of the SSH climatology using OBC (squares) and
the EnKF run with temperature and T/P assimilation without SSH bias correction (stars). The circles in (b) correspond to the difference
between the T/P observations and the unbiased state estimate of the EnKF run with OBC.

OBC estimate, the biased EnKF-OBC estimate, the EnKF
run, and the control run, in that order.

Figure 9 shows the evolution of RMS OMF statistics
corresponding to the spatial-mean statistics displayed in
Fig. 8. In both the EnKF-OBC and EnKF runs, the RMS
OMF for temperature drops quickly from an initial value of
1.54◦C during the first month and stay near 1.0◦C thereafter
(Fig. 9a). Averaged over the length of the runs, the RMS tem-
perature OMF are 0.94◦C, 1.03◦C and 1.49◦C, in the EnKF-
OBC, EnKF and control runs. Thus, although the effect of
applying OBC in the T/P assimilation on the spatial-mean
OMF statistics for temperature was hardly noticeable, the ef-
fect on the RMS temperature OMF is more significant.

As expected, the application of OBC in the T/P assimila-
tion has more impact on the RMS OMF statistics for SSH
than on the RMS temperature OMF (Fig. 9b). Indeed, the
RMS OMFs of the biased state estimate from the EnKF-OBC
run are very close to those of the control, while the RMS
OMFs of the unbiased estimate quickly become markedly
lower. The corresponding RMS statistics from the EnKF run
lie between those of the control and unbiased EnKF-OBC
estimate. Averaged over the entire runs, the RMS OMFs are
0.077 m, 0.092 m, 0.087 m and 0.094 m for the unbiased
EnKF-OBC estimate, biased EnKF-OBC estimate, EnKF,
and control, respectively.

3.4 Hindcast experiments

The third experiment consists of a series of coupled-model
hindcast initializations to examine the impact on the seasonal
forecast skill of using the EnKF to process temperature and
altimetry observations and of applying OBC in the altimeter
data assimilation. Unlike the previous experiment in which
a no-assimilation control run was used to measure the im-
pact of the assimilation, the performance of the EnKF-based
assimilation system is assessed in a comparison to the sys-
tem used for the GMAO production seasonal forecasts. In
the production system, only temperature data are assimilated
using a standard optimal interpolation (OI) algorithm and a
salinity correction is applied in an attempt to preserve the
temperature and salinity properties of water masses (Troccoli
et al., 2003).

In the hindcast initialization experiment, a three-month
EnKF run is started on February 1 of each year from 1993
to 2003. The setup of each run is identical to that of the
EnKF-OBC run of the previous experiment, i.e. temperature
and T/P data are assimilated and OBC is used to continually
adjust the model SSH climatology which is used to calculate
forecast SSH anomalies. Following the three months of as-
similation, the final state of each of the first five ensemble
members is provided as an initial ocean state to an instance
of the CGCM, which is then run in forecast mode without
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Fig. 9. Same as Fig. 8 for the spatial RMS OMF differences.

assimilation for 12 months. Only five of the 16 EnKF-OBC
ensemble members are used in order to reduce the computa-
tional expense of the experiment.

The impact of data assimilation on the coupled-model
seasonal-prediction skill can be assessed from a compari-
son of CGCM hindcasts of Niño-3.4 SST anomalies used
with observed SST anomalies from the Reynolds data set
(Reynolds and Smith, 1994). This is done in Fig. 10 for the
production system (Fig. 10a) and for the EnKF-based sys-
tem (Fig. 10b). Although the production system produces an
excellent hindcast of the major 1997/1998 El Niño and cor-
rectly predicts the minor 1995 warm event, it fails to predict
the 2003 El Nĩno and generates false La Niña alerts in 1996
and 2000. It also produces a false El Niño alert in 2001. In
contrast, the system with EnKF-OBC initialization slightly
underestimates the amplitude of the major 1997/1998 event
and fails to predict the 1995 and 2003 events. Yet, it pro-
duces none of the false El Niño and La Nĩna alerts generated
by the production system. There is also one ensemble mem-
ber that more accurately predicts the timing of the 1997/1998
peak and the later stages of the 1998 La Niña. An examina-
tion of Niño-3 and of Nĩno-4 SST hindcasts confirms that the
system with EnKF-OBC initialization tends to underestimate
the amplitude of warm events.

The effect of the temperature+T/P data assimilation with
the EnKF on Nĩno-3.4 SSH-anomaly hindcasts is illustrated
in Fig. 11 where the SSH hindcasts obtained with the EnKF-
based and production systems are shown together with a time
series of observed Niño-3.4 SSH anomalies from the T/P

altimeter. Much as is the case for temperature, the hind-
casts using ocean initial conditions obtained from EnKF-
OBC runs underestimate the amplitude of the large posi-
tive SSH anomalies of nearly 20 cm observed at the time of
the 1997/1998 El Nĩno. The production system also under-
predicts the SSH anomalies during this major warm event,
but to a lesser extent. Yet, the effect of the altimeter data as-
similation with bias correction on the SSH hindcasts is gen-
erally manifested by less bias than in the hindcasts obtained
with the production system. The effect on the bias is par-
ticularly noticeable in the May 1993–April 1994 and May
2000–April 2001 hindcasts.

4 Conclusions

The popularity of the EnKF is growing. Although a dozen
or so ensemble-based approximate Kalman filters have been
proposed, applications to realistic ocean or atmospheric
models are few and far between. When an operational model
is used and real observations are involved, issues such as how
to account for model errors and bias become important. The
situation is complicated by the fact that computational limi-
tations mandate the use of small ensembles. Besides, the rel-
ative scarcity of observations of the ocean subsurface makes
it difficult to verify and validate assimilation products.

In this paper, an attempt is made to overcome these chal-
lenges in an application to a high-resolution global ocean
forecast model where in situ temperature observations and
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Fig. 10.Time series of Nĩno-3.4 SST-anomaly hindcasts.made with
ensembles of the GMAO CGCM in which the ocean-model compo-
nent is initialized with(a) the temperature-OI system used in pro-
duction runs and(b) the EnKF system with assimilation of tem-
perature and T/P data and use of OBC in the altimeter data assim-
ilation. The individual ensemble members are shown in red, the
ensemble mean in black. The dotted line corresponds to observed
Reynolds SSTs. For computational economy, only the first five en-
semble members from the EnKF-OBC runs are used in the hindcasts
shown in (b). The version of the production system used in (a) is
based on six-member ensembles.

satellite altimeter data are assimilated. From this perspec-
tive, the problem of forecast-model bias is exacerbated by
alterations of the model SSH climatology that occur as a
consequence of the assimilation of SSH anomalies. The val-
idation and hindcast experiments described herein indicate
that a simple modification of the EnKF alleviates the prob-
lem. Still, it remains to be seen whether the benefits of the
adaptive bias correction methodology applied here justify its
choice over simpler online and offline methodologies. Es-
sentially, the cost of the analysis is doubled since the update
equations are solved twice, first to update the bias estimate
then the model state. If the same covariance localization
scales were used for the bias and random error components,
assumingbf

a =b
f
k would allow one to only solve one set of

equations, but the results confirm that it is best to use larger
covariance scales in the bias update.

Fig. 11. Similar to each panel of Fig. 10, but for the SSH field and
comparing the production seasonal forecast runs with the EnKF-
initialized runs using bias correction in the altimeter data assimila-
tion. The dotted line shows the T/P anomalies. The first five en-
semble members are shown in red for the production forecasts and
in green for the forecasts initialized from EnKF-OBC runs. The
corresponding ensemble means are colored gray for the production
system and black for the system initialized with EnKF-OBC.

Although the results suggest that the EnKF has the po-
tential to outperform standard assimilation methodologies
in seasonal forecasting applications, more validation exper-
iments are required before definitive conclusions can be
drawn. In terms of filter performance, the small ensemble
size is likely the most serious limiting factor. Since halving
the model grid spacing demands roughly the same increase
in computational resources as quadrupling the ensemble size,
a tradeoff between these two factors must always be found.
Perhaps, the results obtained in the present work could be im-
proved by running larger ensembles of a coarser-resolution
version of the model.

Another question that remains unanswered is whether in-
flating the covariances by means of random state perturba-
tions, as is done in this work, is generally superior to tradi-
tional multiplicative (or additive) covariance inflation. With
the model used here, any level of multiplicative inflation
clearly worsens OMF statistics, but the situation may be dif-
ferent in another context.
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