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Abstract. Magnetospheric cusps are high-latitude regions
characterized by a highly turbulent plasma, playing a spe-
cial role in the solar wind-magnetosphere interaction. Here,
using POLAR satellite magnetic field vector measurements
we investigate the anisotropic scaling features of the mag-
netic field fluctuations in the northern cusp region. Our re-
sults seem to support the hypothesis of a 2D-MHD turbulent
scenario which is consequence of a strong background mag-
netic field. The observed turbulent fluctuations reveal a high
degree of complexity, which might be due to the interplay
of many competing scales. A discussion of our findings in
connection with the complex scenario proposed by Chang et
al. (2004) is provided.

1 Introduction

The interaction between the supersonic solar wind and the
Earth’s magnetosphere is one of the central topics of the
space plasma physics studies. After more than 30 years
studies the overall nature of the solar wind-magnetosphere
coupling is quite well understood with respect to large scale
processes. However, the knowledge of small scale phenom-
ena and processes requires still further studies, especially
related with plasma transport across turbulent boundary re-
gions. In this framework, the characterization of the turbu-
lence in these boundary regions plays a central role.

Among the various magnetospheric boundary structures
the two singularities, called “polar cusps”, and located in cor-
respondence with the North and the South magnetic poles,
are of significant importance for the solar wind-terrestrial
coupling. As a matter of fact, the topology of the background
magnetic field in such regions is important for the transfer

Correspondence to:G. Consolini
(consolini@ifsi.rm.cnr.it)

of mass, energy and momentum through the magnetosphere.
Cusp location, shape and properties are mainly controlled by
the direction of the Interplanetary Magnetic Field (IMF), the
tilt of the Earth’s magnetic dipole axis, and the solar wind
plasma parameters (dynamic pressure, etc.) (Popielawska
and Gustafsson, 2003; Russell, 2000; Zhou et al., 2000).

The boundary between the magnetopause and the cusp
is characterized by strong electric and magnetic field tur-
bulence (Gurnett et al., 1979). After Hawkeye 1 obsert-
vations (Gurnett and Frank, 1978), many other space mis-
sions have done wide range frequency measurements of the
plasma waves in this region (Fairfield and Hones, 1978; Pick-
ett et al., 1999, 2002; Blecki et al., 1999, 2003). Recently,
CLUSTER (the first multisatellite mission) provided high-
resolution magnetic field measurements of waves at the high-
altitude cusp in the ion cyclotron range (Nykyri et al., 2004),
that clearly show a correlation between waves and plasma
flow. In detail, waves with characteristic amplitudes 2÷5 nT
and frequencies near the local ion-cyclotron frequency were
observed in cusp regions with strong plasma flow. In cusp
regions with stagnant plasma flow, the observed waves have
a small amplitude (<1 nT). However, no clear generation
mechanism of these waves was recognized.

A recent study (Sundkvist et al., 2005), based on CLUS-
TER measurements, investigates waves near the proton cy-
clotron frequency in the high-latitude cusp for northward
IMF conditions. Using all four spacecraft simultaneously,
anisotropy in the characteristic length scales was found along
and across the magnetic field. The estimated wavelength per-
pendicular to the ambient magnetic field is of the order of a
few proton gyroradii or less. The wavelength parallel to the
magnetic field is at least a few times larger or more. Their
observations suggest that waves below the proton cyclotron
frequency are kinetic Alfv́en waves, while waves above this
frequency are mainly ion cyclotron waves. The existence of
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Fig. 1. The POLAR trajectory on 11 April 1997 in the XZ plane of
GSM reference system. The solid black segment refers to the time
interval from 12:00 UT to 13:00 UT here considered.

plasma density inhomogeneities in the range of scales simi-
lar to the wave lengths together with a finite amplitude wave
field seem to point toward a crucial role of nonlinearities gov-
erning low frequency waves in the cusp.

As already mentioned, the magnetic field in the magne-
tosheath and in the cusp has a very complex topology, re-
sulting in a “Turbulent Boundary Layer” (TBL) (Savin et al.,
1998). TBL is found to be a permanent feature (Klimov et
al., 1997; Savin et al., 2002a), and is characterized by tran-
sient, highly variable, flows of heated magnetosheath plasma
(Savin et al., 2002b,c), an irregular magnetic field, and strong
plasma waves (Khotyaintsev et al., 2004). The irregular mag-
netic field can tentatively be associated with strong (weak)
magnetic field structures where magnetic force (plasma pres-
sure) is predominant. Furthermore, evidences of a transition
from a turbulent regime to a more laminar one in the deeper
cusp (Pedersen et al., 2000) have been found.

In a recent paper,Yordanova et al.(2004) investigated
the intermittency features of the magnetic field turbulence
in the magnetospheric cusp region, as far as the total mag-
netic intensity “scalar” turbulence is concerned. Their re-
sults suggest that the turbulence properties strongly depend
on the IMF conditions. The observed cusp turbulence has
been compared with models, originally introduced to de-
scribe fluid turbulence. It has been shown that during north-
ward IMF conditions the turbulence intermittency is consis-
tent with thep-model scenario for fully developed turbulence
(Meneveau and Sreenivasan, 1987). For such a case of north-
ward IMF,Taylor and Cargill(2002) discussed the formation
of a highly turbulent, albeit thin, boundary layer as a result
of interaction of the fast magnetosonic magnetosheath flow
with the magnetopause indentation at the cusp. However,
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Fig. 2. The actual magnetic field magnitude as observed by POLAR
satellite for the selected period. Vertical dashed lines delimit the
selected time interval from 12:00 UT to 12:40 UT.

under northward IMF another scenario, involving reconnec-
tion outflow of a different character, might be also possible.
For southward IMF conditions, a more proper turbulence sce-
nario seem to be that represented by a non-fully developed
Kolmogorov-like fluid turbulence model, suggesting that the
observed turbulence is dominated by flow eddies (Tu et al.,
1996).

In this paper we present a case study of the anisotropy fea-
tures of the magnetic field fluctuations in the magnetospheric
high-altitude polar cusp, as revealed by the spectral and scal-
ing properties of the magnetic field fluctuations measured by
the POLAR satellite. We investigate the turbulent features in
the polar cusp by means of novel approaches based on struc-
ture functions analysis and on the study of the probability
distribution functions (PDFs) of the magnetic field fluctua-
tions at different timescales. The results of our analysis are
discussed in the framework of a 2D-MHD scenario, recently
proposed byChang et al.(2004), and involving complexity
and intermittent turbulence arising from the evolution of co-
herent magnetic and plasma structures.

2 Data description

Data used in this work refer to 3D magnetic field measure-
ments from the POLAR satellite (Russell et al., 1995) on 11
April 1997, 12:00–12:40 UT, during which the POLAR satel-
lite crosses the northern cusp. We concentrate our attention
to the cusp region in the magnetic latitude range from∼61◦

to ∼67◦ (13:40÷14:13 MLT). The satellite passage through
the cusp proper was followed by the crossing of the turbu-
lent boundary layer with magnetic bubbles, which has been
analysed byStasiewicz et al.(2001). Assuming a one hour
transit time, the IMF conditions as observed by the WIND
satellite at a distance of∼230RE for the period here inves-
tigated, were the following (data comes from NSSDC/CDA
website): IMF direction is northward,BIMF components in
GSM reference system is [−6,−7, 20] nT, solar wind veloc-
ity is |v|∼480 km/s, proton densityNp∼10 cm−3, and pro-
ton temperatureTp∼2÷3 eV. In Fig. 1 the trajectory of the
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Fig. 3. The magnetic field components in the FAC system. Vertical
dashed lines delimit the selected time interval from 12:00 UT to
12:40 UT.

POLAR satellite for the selected time period within the cusp
is shown. Figure 2 shows the total magnetic field sampled at
the rate of 8.33 s−1.

From the data presented in Fig. 2 it is possible to argue
that the magnetic field in such a region is characterized by an
intense average magnetic field. The average magnetic field is
B∼90 nT and the fluctuating part isδB∼10 nT (δB/B∼0.1).
Due to the large scale magnetic field topology in such a re-
gion, this simple observation suggests that the nature of the
turbulent fluctuations could be better described in the frame-
work of reduced 2D-MHD turbulence (Shebalin et al., 1983;
Cho et al., 2002). Furthermore, the features of the observed
turbulent fluctuations are expected to be anisotropic in the
parallel and perpendicular orientations with respect to the av-
erage, background, magnetic field direction.

To investigate the anisotropy features of the magnetic
field fluctuations we have first projected the magnetic field
components into a Field Aligned Coordinate (FAC) system,
where the third-axis of the new reference system is chosen
parallel to the mean magnetic field direction, i.e.:

(Bxy, Bz, B56) −→ (δB1, δB2, B0) (1)

Here,(Bxy, Bz, B56) are the magnetic field components mea-
sure in the satellite spin plane reference system (Bxy lies in
the spin plane and is parallel to antisunward direction,Bz
lies in the spin plane and points northward,B56 is along the
spin axis and is duskward), and(δB1, δB2, B0) are the new
reference frame components. In detail,B0 is chosen paral-
lel to the average, background, magnetic field direction and
pointing toward the geomagnetic pole, andδBi (i=1, 2) in a
plane orthogonal to the average, background, magnetic field
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Fig. 4. The Power Spectral Density of the magnetic field compo-
nents in the new reference frame. In detail, upper panel refers to
PSD of the mainB0 component, while the lower panel reports the
average PSD for the two perpendicular componentsδBi . Solid and
dashed lines are power law best fits. The two vertical lines refers
to low-frequency spectral break (f0) and the estimated cusp ion-
cyclotron frequency (f c

Cusp
).

direction without a preferential direction. The new reference
system has been chosen to be right-handed. Furthermore,
perpendicular magnetic field components (δBi with i=1 and
2) have been detrended for long timescale trend. Figure 3
shows the three components in the new reference system.
In the new reference system we get〈B0〉=[91±9] nT, and
〈δB1,2〉=[0±6] nT.

3 Data analysis and results

In order to investigate the features of the magnetic field fluc-
tuations in the parallel and perpendicular directions to the
mean magnetic field orientation, we start our analysis by dis-
cussing the power spectral features in the two directions.

Figure 4 shows the Power Spectral Density (PSD) of the
magnetic field in the parallel direction (upper panel) and in
the perpendicular direction (lower panel) as evaluated using
the periodogram technique (window length∼120 s). The
first notable fact is that both PSDs shows different power-law
regimes (PSD(f )∼f−α) separated by well defined breaks,
and characterized by different scaling exponents. In detail,
the PSD of the main magnetic field componentB0 (upper
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Fig. 5. The Power Spectrum of the SW magnetic field compo-
nents (here reported as the trace of the PSD matrix) and observed
by WIND nearly 1 hr in advance to the selected POLAR period).
The solid line is a nonlinear power-law best fit characterized by an
exponent[1.59±0.03].

panel, Fig. 4) displays two different power-law regimes (Re-
gion I, f<f0; Region II, f>f0) characterized by scaling
exponentsα=[1.62±0.02] andα=[2.41±0.02] in Region I
and II, respectively. Let us note that the Kolmogorov-like
(f−5/3) at frequenciesf<f0 resembles the solar wind spec-
tral features as observed by WIND for the same period (see
Fig. 5), suggesting that the long timescale axial magnetic
field fluctuations are mainly driven by solar wind. Con-
versely, the PSD scaling features at frequencies higher than
the spectral break seem to be of a different origin (Zeleny̆ı
and Milovanov, 2004), as they showα∼2.4. From the av-
erage spectral properties of the perpendicular (δBi) compo-
nents (lower panel, Fig. 4) we see how this PSD shows three
different regions: (i) Region I,f<f0, α=[1.21±0.02]; (ii)
Region II, f0<f<f

c
Cusp, α=[1.93±0.02]; (iii) Region III,

f>f cCusp, α∼5.
The analysis of the spectral features of the magnetic field

components in the parallel and perpendicular directions to
the average, strong, background magnetic field clearly evi-
denced how the fluctuations of the magnetic field are mainly
anisotropic. In order to better characterize the observed
anisotropy we have investigated the scaling features of struc-
ture functionsSq(τ ) of the magnetic field fluctuations using
the “Extended Self-Similarity” (ESS) analysis (Benzi et al.,
1993; Bershadskii and Sreenivasan, 2004). This is essentially
based on the investigation of the scaling features of theq-th
order structure functionsSq(τ ) by studying the relative scal-
ing of Sq(τ ) with respect of a fixedp-th order structure func-
tion, i.e.:

Sq(τ ) ∼ [Sp(τ )]
ηp(q) (2)

where the structure function of orderq (or p) is defined ac-
cording to:

Sq(τ ) = 〈| Bi(t + τ)− Bi(t) |
q
〉. (3)

1

10

100

1000

S q(
τ)

0.1
2 4 6 8

1
2 4 6 8

10
2 4

τ [s]

 q = 3 (δBi)
 q = 2 (B0)

Fig. 6. The 2nd and 3rd order structure functions of the parallel
(B0) and perpendicular (δBi ) magnetic field components in the cusp
region as measured by POLAR satellite. Error bars are inside sym-
bols. The two solid lines refers to a linear dependence (Sq (τ )∼τ ).
The two vertical dashed lines are respectively related to the two
characteristic frequencies reported in Fig. 4 (∼ 1/f c

Cusp
and∼1/f0,

respectively).

The “brac-kets”,〈...〉, denote averaging over time, andBi is
the i-th component of the magnetic field vector. Now, in the
case of scaling invariance, theq-th order generalized struc-
ture function is expected to scale as:

Sq(τ ) ∼ τ
ζ(q) (4)

where the scaling exponentζ(q) is generally a convex func-
tion of the moment orderq. We remark that in absence of
intermittency, the scaling exponent depends linearly on the
moment orderq: in particularζ(q)=q/m with m=3 or 4 for
fluid or MHD turbulence, respectively.

From the above considerations it follows that using the
ESS, we can investigate the scaling range by plotting theq-th
order structure functionSq(τ ) versus thep-th order structure
function, being the orderp chosen so thatSp(τ )∼τ . In this
case we obtainηp(q)≡ζ(q).

Since, empirically, the second-order scaling exponent of
the parallel structure function and the third-order scaling ex-
ponent of the perpendicular structure function are very close
to unity (see Fig. 6), we can apply the ESS analysis as fol-
lows:{
Sq(τ ) ∼ [S2(τ )]

ζ(q)
←→ B0

Sq(τ ) ∼ [S3(τ )]
ζ(q)

←→ δBi
, (5)

and limit our investigation to temporal scales shorter than
1/f0.

Figure 7 shows the scaling exponentsζ(q) evaluated us-
ing the ESS analysis respectively for parallel and perpendic-
ular directions. The most striking feature of theζ scaling
exponents is that while for theB0 components these scal-
ing indices follows a nearly linear trend (apart from a slight
deviation forq>3 where the statistics is strongly reduced),
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Fig. 7. The scaling exponentsζ(q) as evaluated using the ESS anal-
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(δBi ) – white circles – directions, respectively. Error bars are in-
side symbols. Solid lines refer to linear dependencesζ(q)=q/2 and
ζ(q)=q/3, respectively. The vertical dashed line refers to the lim-
iting valueql above which the results of ESS analysis could be not
statistically valid (ql= log(N)−1, whereN is the number of points
of the time series here considered).

in the case of the perpendicular direction we recover a con-
vex dependence on the moment order. This fact is con-
firmed by comparing the observedζ(q) shape with a 2nd-
order polynomium in the rangeq∈[0, 3], for which we get
∂2ζ(q)/∂q2

=[0±0.004] and∂2ζ(q)/∂q2
=[−0.042±0.008]

for B0 and δBi components, respectively. This result sug-
gests a quasi-monofractal behavior in the parallel direction
and a multifractal (intermittent) behavior of the perpendic-
ular fluctuations. Furthermore, the fact that for the parallel
component the 2nd structure function scales asτ , indicates
that fluctuations in the parallel component resemble the scal-
ing features of the fluctuations of a random process. These
differences between parallel and perpendicular scaling fea-
tures again point towards an anisotropy of the observed tur-
bulence.

Let us now investigate the PDF scaling features of fluctua-
tions of the squared magnetic field magnitude in the parallel
and perpendicular directions (Hnat et al., 2002; Chang et al.,
2004). In other words, we investigate the PDF of the fluctu-
ations of the magnetic field energy, defined as follows:{
1δB2

= δB2(t + τ)− δB2(t)

1B2
0 = B

2
0(t + τ)− B

2
0(t)

(6)

whereδB2
=(δB2

1+δB
2
2). We may note that in the case of

mono-fractal scaling features for the PDFs it is possible to
recover an approximate data collapsing according to the fol-
lowing functional relationship:

P(1φ2, τ ) ∼ τ−sP(1φ2τ−s, τ ) (7)

whereφ=B0 or δB, ands is an appropriate scaling exponent.
Figure 8 shows the evolution for the PDFs relative to the

parallel (Fig. 8a) and perpendicular (Fig. 8b) directions. The

0.001

0.01

0.1

1

σ 0
P(

∆B
2 0,

τ)

-10 0 10
∆B2

0(τ)/σ0

(a)

0.001

0.01

0.1

1

σ 0
P(

∆δ
B

2 ,τ
)

-10 -5 0 5 10
∆δB2(τ)/σ0

(b)

Fig. 8. The PDFs of the parallel(a) and perpendicular(b) mag-
netic energy fluctuations at different timescales (τ=6, 12, 24, 48,
96, 1921t with1t data sampling time lag). PDFs have been scaled
for convenience using the varianceσ0 of the magnetic energy fluc-
tuations at the timescaleτ=61t .

estimation of PDFs has been limited to those intervals of
the variable1φ2 that are statistically meaningful (i.e. we re-
quired that the occurrence frequencyfq in each bin satisfies
the conditionfp≥10/Np, whereNp is the total number of
points). We may note that the PDFs are non-Gaussian and
that the deviation from Gaussianity becomes more and more
pronounced at shorter and shorter timescales showing a lep-
tokurtic shape with enhanced tails. Furthermore the devi-
ation from Gaussianity is more evident in the case of per-
pendicular fluctuations. This result is in agreement with the
previous findings of the ESS analysis.

To evaluate the scaling exponents of the PDFs we can
investigate the scaling properties of the probability of return
P(0, τ ) as a function of timescaleτ , that should follow a sim-
ple power law (P(0, τ )∼τ−s) (Mantegna and Stanley, 1997;
Hnat et al., 2002) in the case of scaling invariant PDFs. We
remark that the study ofP(0, τ ) is equivalent to the study of
the dependency of the variance on the timescale. In Fig. 9
graphs of theP(0, τ ) versusτ , for both parallel and perpen-
dicular directions, are shown. We found thatP(0, τ ) fol-
lows an approximate single power-law scaling in a range
from ∼1/f cCusp to ∼1/f0, with scaling exponentss∼0.56
ands∼0.4 for parallel and perpendicular PDFs, respectively.
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In Fig. 10 we show the data collapsing relative to the PDFs
of the parallel and perpendicular fluctuations using Eq. (7).
Data collapsing is not good for large fluctuations (1φ2

�0)
at long timescales in the case of perpendicular PDFs (see
Fig. 10b). In other words, it actually results that the scaling
relation (Eq. 7) is valid only in first approximation because
the tails of the scaled PDFs do not perfectly overlap. Thus,
we cannot define a universal master curve for the fluctuations
following the simple scaling relationship (Eq. 7) for perpen-
dicular PDFs. This result reflects the intrinsic multi-scaling
property (intermittency) of the short timescale fluctuations,
as already demonstrated by the ESS analysis. Conversely,
in the case of the parallel PDFs the data collapsing is quite
good (i.e. PDFs are coherent inside error bars), suggesting
and supporting the quasi-monofractal character of the paral-
lel B2

0 fluctuations. The different behavior observed in col-
lapsing parallel and perpendicular PDFs is confirmed by the
following PDF distance measure,

〈δ2
ij 〉 =

1

N

N∑
k=1

(
fi(xk)− fj (xk)

δfi(xk)+ δfj (xk)

)2

(8)

wherefi(xk) is the value of thei-th PDF at the pointxk
and δfi(xk) is the associated error estimation. In detail,
we found that in the case of parallel PDFs the distance of
the small scale PDFs (τ=61t) from the others in the range
from∼1/f cCusp to∼1/f0, is nearly constant with an average

value〈δ2
1n〉∼0.8, while for the perpendicular PDFs the same

quantity increases from a value∼1 to a value>10 in the
same timescales interval. Furthermore, let us also underline
that the scaled perpendicular PDF (Fig. 10b) shows a more
evident non-Gaussian character with respect to the parallel
scaled PDF (Fig. 10a), confirming the strong anisotropy in
the fluctuations.
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Fig. 10. The collapsing of the PDFs relative to parallel(a) and per-
pendicular(b) fluctuations of the PDFs reported in Fig. 8 using the
expression (Eq. 7). PDFs have been scaled for convenience using
the varianceσ0 of the magnetic energy fluctuations at the timescale
τ=61t .

4 Discussion and conclusions

Let us start our discussion of the analysis by summarizing
the results. The different techniques (spectral, ESS, and PDF
shape and scaling) applied to the analysis of the fluctuations
of the magnetic field in the polar cusp have clearly identified
the following points:

– the PSD shows different scaling features (spectral expo-
nents) in the parallel and perpendicular direction;

– the ESS analysis evidenced that parallel (axial) fluctua-
tions are characterized by a nearly stochastic monofrac-
tal nature (quasi-linear dependence of the relative scal-
ing exponents), while the perpendicular fluctuations are
characterized by a strong intermittent (multi-fractal)
character;

– the scaling features of the PDFs of the magnetic field
energy fluctuations in the parallel and perpendicular di-
rection confirm the more intermittent character of the
perpendicular fluctuations.
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All the aforementioned points indicate a strong anisotropy of
the magnetic field fluctuations. Furthermore, the presence of
a strong average background magnetic field suggests that the
observed turbulent fluctuations could be better described in
a 2D-MHD scenario (Biskamp, 2002). In this case a strong
average background magnetic field would damp field-aligned
fluctuations with respect to perpendicular fluctuations. The
observed results seem to point toward this direction.

RecentlyChang et al.(2004) proposed an alternative phys-
ical scenario for the space plasma intermittent turbulence
based on a complex topology of magnetic and plasma dy-
namic coherent stochastic structures arising from plasma res-
onances and consisting of bundles of nonpropagating fluctu-
ations. This coherent structures would appear as stochastic
field-aligned flux tubes arising from the background turbu-
lent fields, and the resulting scenario is a complex medium
consisting of a hierarchy of multiscale coherent structures
(see Fig. 11). This has been validated by recent 2D-MHD
simulations (Wu and Chang, 2000, 2001) where the magnetic
field is assumed to be represented by a scalar flux functionψ ,

B = ez ×∇ψ + B0ez (9)

with B0=constant and|∇ψ |2�B0.
Dynamic Renormalization Group (DRG) analysis, per-

formed for simple 2D-MHD models (with or without cross-
field diffusion Chang et al., 2004) has clearly shown that
the Fourier transform of the correlation function of per-
pendicular fluctuations scales asf−α at high frequencies,
with α∼1.66÷1.88 andα∼2 for the model with or with-
out cross-field diffusion, respectively. Furthermore, for both
models, DRG analysis yields∼f−1 spectra at low frequen-
cies. The−1 low-frequency spectral exponent is mean-
field-like and has probably a universal character in space-
plasmas (Chang et al., 2004). Our results of the PSD of
the perpendicular componentsδBi seems to be very well
in agreement with these predictions. As predicted by DRG
analysis we, indeed, get a low-frequency region (Region I)
with a nearly mean-field-like exponent (α∼1.2) and a mid-
frequency (MHD) region (Region II) with an exponent very
near to the DRG prediction for the diffusive model (α∼1.9).
Furthermore, according toMatthaeus and Goldstein(1996)
the low-frequency spectral exponent might be due to the
superposition of uncorrelated samples of discrete coherent
structures, that in the cusp assume the shape of field-aligned
flux tubes.

The PSD features in the axial direction seem to have mem-
ory of the solar-wind spectral features with a nearly Kol-
mogorov spectrum in the low-frequency domain (Region I –
f<f0) and a steeper power-law region at higher frequencies
(Region II –f>f0). A possible explanation for thisdark-
brown noiseregion could be the one proposed byZeleny̆ı and
Milovanov (2004). In this case the∼7/3 PSD region would
be due to a rapid advection of stochastic fractal structures in
respect to a rest-frame observer. This alternative interpreta-
tion is substantiated by the nearly mono-fractal character of
the axial fluctuations, as evidenced by the ESS analysis, by

δΒ

δΒ

Β0

1

2

Fig. 11. A schematic drawing of a complex topology of coherent
field-aligned magnetic structures.

the linear scaling of the 2nd order generalized structure func-
tion (S2(τ )∼τ ), and by the more Gaussian shape of the PDFs
of the magnetic energy fluctuations.

The scaling features of the perpendicular magnetic field
and energy fluctuations exhibit intermittency, indicating a
large deviation from uniformity in the distribution of scalar
and/or tensor quantities. The multifractal character of per-
pendicular fluctuations is the signature of this dynamical in-
termittency. Furthermore, the scaling exponent of the prob-
ability of returnP(0, τ ) and the data collapsing of the per-
pendicular PDFs resemble the results of a similar analysis
performed byChang et al.(2004) on simulated 2D patterns.
However, whileChang et al.(2004) get aP (0, τ ) scaling
exponents∼0.34, we found a different values∼0.4. The
difference observed between the scaling exponents of sim-
ulated and actual data might be due to the fact that while
in our case we refer to temporal fluctuations, in the case of
simulated patterns the scaling exponent refers to spatial fluc-
tuations. As a matter of fact, we remark that the conversion
from spatial and temporal features in turbulent media is very
crucial, being the usually adopted “Taylor’s hypothesis” not
universally applicable. For example, in the case of plasma
sheet turbulence it has clearly been shown that a better way
to link spatial and temporal features is the “random sweeping
model” (Chen and Kraichnan, 1989; Borovsky et al., 1997).
In this framework, while the scale invariance is, generally,
conserved, the scaling indices are expected to change.
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In summary, in this work we have investigated the
anisotropy of the turbulence observed in the cusp region
by POLAR satellite measurements, showing how some ob-
served scaling features of the perpendicular fluctuations in
this region are in a good agreement with the scenario pro-
posed byChang et al.(2004) and with the results of DRG
analysis on simple 2D-MHD simulations. Thus, although our
results deals with a case study, they seem to point toward “an
anisotropic intermittent turbulence” induced by a dynamical
topological complexity that results from the nonlinear evo-
lution of multiscale coherent structures. Let us remark that
this scenario does not exclude the coexistence of propagating
waves, but redefines the conventional scenario of cascading
in plasma turbulence. Clearly, further work is necessary in
order to confirm this scenario and to investigate the physical
origin of these coherent structures.
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