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Abstract. The parametric coupling between large amplitude
magnetic field-aligned circularly polarized electromagnetic
ion-cyclotron (EMIC) waves and ponderomotively driven
ion-acoustic perturbations in magnetized space plasmas is
considered. A cubic nonlinear Schrödinger equation for the
modulated EMIC wave envelope is derived, and then solved
analytically. The modulated EMIC waves are found to be
stable (unstable) against ion-acoustic density perturbations,
in the subsonic (supersonic, respectively) case, and they
may propagate as “supersonic bright” (“subsonic dark”, i.e.
“black” or “grey”) type envelope solitons, i.e. electric field
pulses (holes, voids), associated with (co-propagating) den-
sity humps. Explicit bright and dark (black/grey) envelope
excitation profiles are presented, and the relevance of our in-
vestigation to space plasmas is discussed.

1 Introduction

Long wavelength left and right-hand polarized electromag-
netic ion-cyclotron (EMIC) waves are common in the Earth’s
magnetosphere (Stix, 1992; Baumjohann, 1996), auroral
ionosphere, as well as in the solar corona (Cranmer et al.,
1999). Large amplitude EMIC waves play a very impor-
tant role in energizing and heating ions, in addition to cre-
ating large scale density and magnetic field perturbations in
space and heliospheric plasmas. EMIC wave-related mod-
ulated structures associated with density perturbations were
often observed during satellite missions, e.g. FAST (McFad-
den et al., 1998; Cattell et al., 1998; Chaston et al., 2002),
Freja (Stasiewicz et al., 2000) and Cluster (Meziane, 2004a,
b) in the Earth’s magnetosphere. Since EMIC waves are
involved in a wide variety of physical processes, they have
been the object of many publications, regarding theory (Lee,
1972; D’Angelo, 1977; Praburam et al., 1990; Gomberoff,
1996; Lund and LaBelle, 1997; Huddleston et al., 1997;
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Guglielmi et al., 1999) and space observations (McFadden et
al., 1998; Cattell et al., 1998; Chaston et al., 2002; Stasiewicz
et al., 2000; Meziane et al., 2004a, b; also see Mazelle et al.,
2004, and references therein), as well as EMIC-related lab-
oratory experiments (Alport et al., 1983, 1994; Alport and
van Niekerk, 1990). Furthermore, EMIC waves are also im-
portant in fusion plasmas (Greene and Gould, 1991) and in
isotope separation studies, where their resonance with ion
species is employed as an effective heating mechanism (ion-
cyclotron resonance heating), in order to sustain the burn-
ing thermonuclear plasma state (ITER Physics Expert Group,
1999). Finally, Landau resonance interactions between dis-
persive Alfv́en/electromagnetic ion-cyclotron waves were in-
voked as a mechanism for the solar coronal electron heating
(see e.g. in Li et al., 1999; Hu and Habbal, 1999; Shukla et
al., 2004).

In a generic manner, as the wave amplitude increases, non-
linear effects become important. One such effect, which is
long known to govern wave propagation in dispersive media,
is the nonlinear modulation of the carrier wave amplitude due
to the parametric coupling with non-resonant low-frequency
perturbations. Following the early work of Hasegawa (1970,
1972), who used a reductive perturbation method for study-
ing the amplitude modulation of electromagnetic electron-
cyclotron (EMEC) waves by low-frequency magnetohy-
drodynamic (MHD) perturbations, Karpman and Washimi
(Karpman and Washimi, 1976) included the ponderomotive
force in the description of the modulation of EMEC waves
by low-frequency magnetoacoustic perturbations. Those re-
sults were then applied by the same authors to study the am-
plitude modulation of high-frequency magnetic field-aligned
electron cyclotron waves due to their coupling with slow
magnetosonic waves (Karpman and Washimi, 1977; Karp-
man and Stenflo, 1988), within a MHD approximation, and
the technique was later employed by Shukla and co-workers
(Shukla and Stenflo, 1984, 1985; Rao and Shukla, 1997,
1998) in a description of the parametric interactions between
whistlers and ion-acoustic waves. Recently, the formalism
was adopted as a model for the localized whistler-related
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envelope structures coupled to density perturbations (Elias-
son and Shukla, 2004; Kourakis and Shukla, 2005) (whistler
bi-solitons, or whistlerons), which are frequently observed
in the Earth’s magnetosphere. The method was recently also
employed in a study of pair (e.g. electron-positron) plasmas
(Stenflo et al., 1985; Cattaert et al., 2005), which are believed
to exist in pulsars and active galactic nuclei (AGN).

From a fundamental point of view, the ponderomotive cou-
pling between a high-frequency field and driven low fre-
quency density perturbations results in a modulation of the
amplitude of the former, which then essentially drives the
latter in a forcing manner. The generic modulation formal-
ism employed in the study of this mechanism is related to
the phenomenon of localisation via modulational instabil-
ity, which possibly leads to the formation of envelope ex-
citations, i.e. breather-like envelope pulses or holes (voids).
These excitations are intrinsically different from the non-
topological solitons (pulses) obtained via the Korteweg-de
Vries (KdV) small-amplitude nonlinear theory. An interested
reader may refer to Grimshaw (2005) (also to Fedele, 2002;
Fedele and Schamel, 2002) for a critical discussion of the re-
lation between the nonlinear envelope soliton formalism, and
the modified KdV (mKdV) (also KdV, respectively) equa-
tion(s), on the other.

In this paper, we are interested in studying paramet-
ric interactions between large amplitude magnetic field-
aligned circularly polarized EMIC waves and ponderomo-
tively driven ion-acoustic perturbations. Within the frame-
work of the two-fluid model, we obtain a time-dependent
nonlinear Schr̈odinger equation (NLSE) coupled with the
driven ion-acoustic density evolution equation. The pair of
equations admits the existence of dark and grey envelope
soliton solutions. Explicit profiles for these solutions are pre-
sented, and the relevance of our investigation to space plas-
mas will be discussed. It should be stressed that our results
are different from those of Champeaux et al. (1999), who
investigated the amplitude modulation of dispersive Alfvén
waves based on a derivative NLSE deduced from the Hall-
magnetohydrodynamic equations.

2 The model

We consider a uniform collisionless plasma consisting of
ions (denoted byi; massmi , chargeqi=+e; e denotes the ab-
solute value of the electron charge) and electrons (massme,
chargeqe=−e), which is embedded in an external magnetic
field B=B0ẑ, whereB0 is the strength of the magnetic field
and ẑ is the unit vector along the z-axis.ni/e,0 will denote
the ion/electron number density at equilibrium, where overall
charge neutrality is assumed. In such a plasma, we are inter-
ested in investigating the nonlinear coupling between the left-
hand circularly polarized EMIC waves having the electric
field F=F(x̂−iŷ) exp(ikz−iωt)+c.c. (complex conjugate),
whereF/2=(Ex, Ey, 0), and low-phase-velocity (compared
to the ion/electron thermal speedsvth,i/e=(Te/mi/e)

1/2)
ion-acoustic (IA) perturbations, propagating in our mag-

netized plasma. We will adopt a cold plasma model
for the EMIC waves, assuming that|ω−ωc,i/e|�kvth,i/e,
where ωc,i/e=qi/eB0/mi/ec denotes the ion/electron cy-
clotron (gyro-) frequency. We also define the electron/ion
plasma frequencyωp,e/i=(4πni/e,0q

2
i/e/me/i)

1/2, which is
much smaller than the frequency of interestω�ωp,e/i . The
vector(s)x̂ (ŷ) denote(s) the unit vector(s) along thex̂(ŷ)

axes, respectively.
Forω.ωc,i�|ωc,e|, the frequencyω and the wave number

k=kẑ (k=2πλ, whereλ is the EMIC wave length) are related
by the dispersion relation (Stix, 1992)

k2v2
A =

ω2ωc,i

ωc,i − ω
, (1)

where vA denotes the Alfv́en velocity
vA=B0/

√
4πmini,0=cωc,i/ωp,i .

The nonlinear interaction between EMIC waves and ion
acoustic (IA) perturbations produces an electric field en-
velope, which obeys (Karpman and Washimi, 1976, 1977;
Shukla and Stenflo, 1984, 1985)

i

(
∂F

∂t
+ vg

∂F

∂z

)
+ P

∂2F

∂z2
− 1 F = 0 . (2)

The group velocityvg=ω′(k) of the EMIC waves is

vg =
2kv2

A

ω

(ω − ωc,i)
2

ωc,i(2ωc,i − ω)
. (3)

The group velocity dispersion coefficientP=ω′′(k)/2 reads

P =

[
1 −

v2
g

v2
A

ω3
c,i

(ωc,i − ω)3

]
vg

2k
. (4)

Combining Eq. (1) and Eq. (3) into Eq. (4), one may readily
check thatP<0 for all values of the wavenumberk.

The nonlinear frequency shift1 arises due to the nonlin-
ear interaction between the EMIC waves and the IA pertur-
bations. It is given by

1 =
vg

2kc2

∑
j=e,i

ωω2
p,j

ω − ωc,j

[
N +

kωc,j

ω(ω − ωc,j )
vj,z

]
(5)

= −
kvg

2
N − k

∂

∂t

(
∂

∂z

)−1

N , (6)

whereN=δne/ne,0=δni/ni,0 denotes the electron/ion den-
sity perturbationδne/i scaled over the equilibrium density
ni,0/ni,0. In deriving Eq. (6), we have used the fact that
ve,z≈vi,z≈−∂t∂

−1
z N .

The dynamics of the low-frequency IA perturbations is
governed by the ion continuity equation

∂N

∂t
+

∂vi,z

∂z
= 0 , (7)

and the ion momentum equation

∂vi,z

∂t
+ c2

s

∂N

∂z
= f , (8)
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where we have defined the sound velocitycs=

[(Te+γiTi)/mi]
1/2

≡[T0/mi]
1/2. Here, γi is the ion

adiabatic index. The force appearing in the right-hand side
of Eq. (8) is the ponderomotive force associated with the
EMIC waves. It readsf=f ẑ, where

f =
q2
i

m2
i ωci(ωci − ω)

(
∂

∂z
+

2

vg

∂

∂t

)
|F |

2 . (9)

Combining Eqs. (7) and (8) we obtain for the density per-
turbation

∂2N

∂t2
−c2

s

∂2N

∂z2
=

−
q2
i

m2
i ωci(ωci − ω)

(
∂2

∂z2
+

2

vg

∂2

∂t∂z

)
|F |

2 . (10)

Equations (2) and (10), combined via Eq. (6), form a
closed system, which describe the simultaneous evolution of
the density perturbationN and the electric field amplitudeF .
One notices in the right-hand side of Eq. (10) the pondero-
motive effect (∼|F |

2) which acts on the plasma slow motion.

3 Stationary EMIC envelopes

Since we are looking into the (slow) dynamics of the electric
field envelope, we may move to a reference system which
moves at the group velocityvg. Thus, we define the moving
coordinatesz′

=z−vgt andt ′=t . The Galilean variable trans-
formation implies∂/∂x→∂/∂z′ and∂/∂t→∂/∂t ′−vg∂/∂z′.
Furthermore, in order to gain some analytical insight in the
dynamics, we may assume a very slow time variation (i.e.
∂2/∂t ′

2
, ∂2/∂z′∂t ′�∂2/∂z′2). Equation (10) then becomes

∂2N

∂z′2
≈

q2
i

m2
i ωci(ωci − ω)

1

v2
g − c2

s

∂2

∂z′2
|F |

2 , (11)

which, assuming a vanishing density perturbation at infinity
(i.e. a localized excitation profile), can be integrated twice to
yield

N ≈
q2
i

m2
i ωci(ωci − ω)

1

v2
g − c2

s

(
|F |

2
− |F∞|

2) , (12)

where the integration constantF∞ denotes the (constant)
field amplitude at infinity. Now, combining with Eq. (6), one
obtains

1 =
kvg

2

q2
i

m2
i ωci(ωci − ω)

1

v2
g − c2

s

(
|F |

2
− |F∞|

2)
≡ −Q

(
|F |

2
− |F∞|

2) . (13)

The quantityQ, whose definition in obvious, determines the
ponderomotive nonlinear effect on the evolution of the elec-
tric field F .

Equation (2), in combination with Eq. (13), may now be
cast in the reduced form of a nonlinear Schrödinger equation
(NLSE)

i
∂E
∂τ

+ p
∂2E
∂s2

+ q |E |
2E = 0 , (14)

whereE=F/
√

4πni,0T0 denotes the (reduced) electric field
amplitude, and time and space have been scaled over the ion
plasma period (inverse frequency)ω−1

p,i and Debye length
λD=cs/ωp,i , respectively. The dimensionless space and
time variables ares=z′/λD=z/λD−(vg/λD)τ (the sound
velocityλD was defined above) andτ=ωp,i t .

The constant contribution to the right-hand side of Eq. (12)
(related to the value ofF at infinity) was omitted in Eq. (14),
since it simply leads to a linear phase shift inE : it is elimi-
nated upon settingE→E exp(iq|E∞|

2τ).
Equations (12) and (14) now determine the evolution pro-

file of the relative density variationN and the (reduced) field
variationE (both quantities are dimensionless).

The analytical form of the (dimensionless) coefficients in
Eq. (14) plays a crucial role in the description of the electro-
magnetic IC wave stability profile. The nonlinearity coeffi-
cientq=Q 4πni,0T0/ωp,i in Eq. (14) reads

q = −
kvg

2

q2
i

m2
i ωci(ωci − ω)

1

v2
g − c2

s

4πni,0T0

ωp,i

, (15)

while the dispersion coefficientp=P/λ2
Dωp,i is now given

by

p =
1

λ2
Dωp,i

[
1 −

v2
g

v2
A

ω3
c,i

(ωc,i − ω)3

]
vg

2k
. (16)

3.1 Reduced coefficients

Combining the above definitions, the expressions for the co-
efficientsp andq may be cast in a more physically transpar-
ent (and elegant) form, in terms of the reduced wavenumber
k̃=ck/ωp,i=kvA/ωc,i . One thus obtains the final (reduced)
expression, for the dispersion coefficient in Eq. (14)

p = −p0

[
1 −

k̃ (6 + k̃2)

(4 + k̃2)3/2

]
, (17)

where p0=−p(k̃=0)=
v2
A

2c2
s

ωp,i

ωc,i
=

c2

2c2
s

ωc,i

ωp,i
=

c
cs

1
√

2β
(no-

tice the appearance of the plasma-beta parameter
β=2c2

s /v
2
A=8πni,0T0/B

2
0 in all forthcoming formulae).

Retain that the quantity within brackets turns out to be
positive, for every value of the wavenumberk̃, so p is
negative.

The nonlinearity coefficient in Eq. (14) becomes

q =
ωp,i

ωc,i

1

1 −
v2
g

c2
s

k̃

(4 + k̃2)1/2
. (18)

Note thatq is positive (negative) depending on whether the
group velocity is subsonic (supersonic, respectively), i.e. for
wavenumbers higher (lower) than a critical wavenumberkcr

(cf. the detailed discussion in Sect. 6). Upon substitution
from Eq. (3) into Eq. (18), one obtains the alternative expres-
sion

q(k̃; β) =
c

cs

√
β

2

(
1 −

βcr(k̃)

β

)−1
k̃

(4 + k̃2)1/2
, (19)
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whereβcr(k̃)≡βv2
g/c

2
s is explicitly evaluated in Sect. 6; see

Eq. (30).
We also define the coefficient ratio

η ≡
p

q
=

1

β

6k̃ + k̃3
− (4 + k̃2)3/2

k̃ (4 + k̃2)1/2

(
1 −

v2
g

c2
s

)
, (20)

for later reference. We observe thatη is negative (positive)
in the subsonic (supersonic, respectively) envelope case; see
Fig. 5; cf. Sect. 6.

The density perturbationN is given by Eq. (12), which
now takes the form

N =
ω2

p,i

ωc,i(ωc,i − ω)

c2
s

v2
g − c2

s

(
|E |

2
− |E∞|

2)
≡

ω2
p,i

ω2
c,i

c2
s

v2
g − c2

s

2

2 + k̃ (k̃ −

√
4 + k̃2)

(
|E |

2
− |E∞|

2)
≡ α

(
|E |

2
− |E∞|

2) . (21)

Note thatN scales asβ−1
∼B−2, (for low magnetic field val-

ues, viz. ωc,i�ωp,i), implying that for a lower (higher)β
value – i.e. for a higher (lower) magnetic field value – the
density variation will be less (more, respectively) important,
for a given electric fieldE. As for the pre-factorα (an ana-
lytic function of k̃), it takes positive (negative) values forvg

above (below)cs ; recall thatω.ωc,i here).
The evolution Eqs. (14) and (21) for the (reduced) electric

field E and densityN , combined with the expressions (17)–
(20) (in addition to Eqs.1 and3 above), model the simulta-
neous propagation of the localized field and density pertur-
bations we aim at modeling. These equations form the basis
of the analysis which follows.

4 Modulational stability analysis

According to the generic NLS formalism, exposed in de-
tail elsewhere (see e.g. Hasegawa, 1975; Shukla and Sten-
flo, 1986; Remoissenet, 1994; Sulem and Sulem, 1999), one
expects the field envelopeE , which is associated with the
EMIC waves, to be modulationally stable (unstable), if the
productp q is negative (positive), i.e. for a group velocityvg

below (above) the sound velocitycs , here. To see this, one
may first check that the NLSE is satisfied by the plane wave
solutionE(s, τ )=E0 eiq|E0|

2T
+ c.c. The standard (linear) sta-

bility analysis then shows that a linear modulation with the
frequency� and the wavenumberκ obeys the dispersion re-
lation

�2(κ) = p κ2 (
p κ2

− 2q |E0|
2) , (22)

whose right-hand side is positive ifp q<0, viz. � is real.
Otherwise, forp q>0, a purely growing instability occurs for
κ≤κcr=(q/p)1/2

|E0|. The growth rateσ=Im(�) attains a
maximum valueσmax=q |E0|

2 (Shukla and Stenflo, 1986).

5 Envelope excitations

It is known from the existing theory (Hasegawa, 1975; Re-
moissenet, 1994) that the NLSE (Eq.14) is an integrable dy-
namical system which admits, among others, localized solu-
tions in the form of envelope solitons of the bright (p q>0)
or dark (p q<0) type. Analytical expressions for these solu-
tions are found by inserting the trial functionE=E0 exp(i2)

in Eq. (14) and then separating real and imaginary parts in
order to determine the (real) functionsE0(s, τ ) and2(s, τ ).
Details on the derivation of their analytic form can be found
e.g. in (Fedele and Schamel, 2002), so only the final expres-
sions for dark envelope solitons (which are of interest to us
here) will be given in the following. Let us retain that this
ansatz amounts to a total electric field whose components
Ej (z, t) (j=x, y) are essentially equal to

Ej (z, t) = 2E0 cos(kz − ωt + 2) , (23)

where the localized field envelope amplitudeE0 and the
(small) phase shift2 will be determined, case by case. The
(co-propagating) density perturbationN is then readily given
by Eq. (21). These bi-solitons, which represent the joint
propagation ofE andN , may be of different types, which
are outlined in the following (with respect to our case of in-
terest).

5.1 Bright-type EMIC envelope excitations

In the modulationally unstable case (η=p/q>0), i.e. for
vg>cs (supersonic case), modulated EMIC wave collapse
may result in the formation of a localized pulse-shaped
slowly-varying envelope (a soliton solution of the NLSE,
14), which modulates the carrier wave (see Figs. 1 and 2).
This bright type (pulse) envelope solution (withE∞=0) is
given by the expression (Fedele and Schamel, 2002)

E0 = Ê0 sech

(
s − ve τ

L

)
,

2 =
1

2p

[
ves +

(
� −

v2
e

2

)
τ
]
, (24)

where ve is the envelope velocity; L and � repre-
sent the pulses spatial width and oscillation frequency (at
rest), respectively. In our problem, the bright-type lo-
calized envelope solutions may occur and propagate in
the plasma if a sufficiently long wavelength is chosen,
so that the productp q is positive. We note that the
pulse width L and the maximum amplitudêE0 satisfy
L Ê0=(2p/q)1/2

=(2η)1/2
=constant.

In this (supersonic) case, the density field variation
N=δn/n0=α

(
|E |

2
−|E∞|

2
)

(recall Eq.21) is given by

N = α Ê2
0 sech2

(
s − ve τ

L

)
> 0 , (25)

whereL=(2|η|)1/2/Ê0. We observe that the density variation
will be positive in this case, sinceα>0 for vg>cs (andE∞=0
here); recall thatα was defined in Eq. (21) above. Bright
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Fig. 1. Bright type (pulse) soliton solution of the NLS Eq. (14):
(a) the field waveformE (scaled by its maximum valuêE0) vs. the
(reduced) position variablex/λ, as given by Eqs. (23) and (24); (b)
the corresponding (normalized) density variationδn/n0=N (scaled

by c2

c2
s

Ê2
0), as given by Eq. (25). The indicative parameter values in

this plot are:β=0.02,L=5, k̃=ck/ωp,i=0.3 andve=0.

electric field envelope excitations will therefore be associ-
ated with a positive density variation, i.e. a co-propagating
localized hump (pulse) in a constant (elsewhere) density pro-
file.

It may be stressed that the finite amplitude localized enve-
lope excitations presented here are intrinsically different in
form (and obey different physics) from the pulse-like small-
amplitude localized structures (solitons) typically found via
the Korteweg-de Vries (KdV) theory, although a link has
been attempted between the two theories; see in (Fedele,
2002) for a critical discussion; also in (Grimshaw, 2005) for
an interesting recent investigation, with respect to the mKdV
equation. Also recall that those localized pulse excitations
are characterized by a spatial widthL and a maximum am-
plitudeÊ0 which satisfyÊ0L

2
=constant, unlike the envelope

structures above, which satisfŷE0L=constant (∼
√

|η|, see
above) instead. This property of envelope excitations may
serve as a distinguishing signature, in order to identify them
e.g. in space observation data.
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Fig. 2. Bright type (pulse) soliton solution of the NLS Eq. (14):
(a) the field waveformE (scaled by its maximum valuêE0) vs. the
(reduced) position variablex/λ, as given by Eqs. (23) and (24); (b)
the corresponding (normalized) density variationδn/n0=N (scaled

by c2

c2
s
Ê2

0), as given by Eq. (25). Same parameter values as in Fig. 1,

excepta(n) (extremely low) choice ofL=0.5.

5.2 Dark-type EMIC envelope excitations

If η=p/q<0, i.e. for vg<cs (subsonic case), modulated
EMIC waves can propagate in the form of black envelope
solitons (holes) (Fedele and Schamel, 2002) (see Fig. 3)

E0 =

√
2|η|

L

∣∣∣∣tanh

(
s − ve τ

L

)∣∣∣∣ ,
2 =

1

2p

[
ves +

(
2pqÊ2

0 −
v2
e

2

)
τ
]
, (26)

which represents a localized region of reduced wave density
(avoid). Note that the excitation widthL′ is inversely propor-
tional to the amplitudêE0=(2|η|)1/2/L.

Modulated EMIC wave packets may also propagate as
grey envelope solitons (Fedele and Schamel, 2002), of the
form (see Fig. 4)

E0 =

√
2|η|

|d|L′

{
1 − d2 sech2

(
s − ve τ

L′

)}1/2

, (27)
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Fig. 3. Black type (hole) soliton solution of the NLS Eq. (14): (a)
the field waveformE (scaled by its maximum valuêE0) vs. the (re-
duced) position variablex/λ, as given by Eq. (23) and (26); (b) the
corresponding (normalized) density variationδn/n0=N (scaled by
c2

c2
s

Ê2
0), as given by Eq. (29). The indicative parameter values in this

plot are:β=0.02,L=5, k̃=ck/ωp,i=3 andve=0.

where the nonlinear phase correction2=2(X, T ) now bears
the complex expression

2 =
1

2p

[
V0 s −

(
1

2
V 2

0 − 2pqÊ2
0

)
τ + 20

]
−a sin−1 d tanh

(
s−ve τ

L′

)[
1 − d2 sech2

(
s−ve τ

L′

)]1/2
, (28)

(Fedele and Schamel, 2002). Here,20 is a constant phase;a

(=±1) denotes the product signa=sign(p)×sign(ve−V0).
Again, the pulse width L′

=(2|η|)1/2/(|d|Ê0) is in-
versely proportional to the amplitudêE0, and now
also depends on an independent real parameterd,
which regulates the modulation depth;d is given by:
d2

=1+(ve−V0)
2/(2pqÊ2

0)≤1. V0 is an independent real
constant which satisfies (see details in Fedele and Schamel,

2002): V0−

√
2|pq|Ê2

0≤ve≤V0+

√
2|pq|Ê2

0 . This localized
excitation represents a localized region of negative wave den-
sity (a propagating void), with a finite (non zero) amplitude
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Fig. 4. Grey type soliton solution of the NLS Eq. (14): (a) the

field waveformE (scaled byc2

c2
s

Ê2
0) vs. the (reduced) position vari-

ablex/λ, as given by Eqs. (23), (27) and (28); (b) the correspond-
ing (normalized) density variationδn/n0=N (scaled by c

cs
Ê2

0), as
given by Eq. (29). The indicative parameter values in this plot are:
β=0.02, L=5, k̃=ck/ωp,i=3, d=0.9 andve=0. Notice that the
field amplitude never reaches zero (cf. Fig. 3).

at s=0. For |d|=1 (thusV0=ve), one recovers the dark en-
velope soliton presented above, which is characterized by a
vanishing field amplitude (and density perturbation) ats=0.

In both black- and grey-type cases, the density field varia-
tion N=δn/n0=α

(
|E |

2
−|E∞|

2
)

(recall Eq.21) is given by

N = −α Ê2
0 sech2

(
s − ve τ

L

)
< 0 , (29)

whereL=(2|η|)1/2/Ê0 (see that the result does not depend on
the parameterd). We observe that the density variation will
be positive in this case (as well as in the bright case, above),
sinceα<0 for vg<cs (and|E |<|E∞| here); recall thatα was
defined in Eq. (21) above. Dark-type (either black- or grey)
electric field envelope excitations will therefore be associated
with a positive density variation, i.e. a co-propagating local-
ized pulse (hump) in a constant (elsewhere) density profile.
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Fig. 5. The functionη=p/q (cf. Eq. 20), is depicted vs. the re-
duced wavenumber̃k=k c/ωp,i . Recall that this quantity deter-
mines the bi-soliton width, viz.L∼

√
|η| (for given magnetic field

B0 and electric field maximum intensityE0). Four different values
of the plasmaβ parameter were taken here: 0.01 (solid line); 0.02
(long-dashed line)); 0.05 (dotted line); 0.1 (short-dashed line). See
thatη changes sign at a critical wave number value, which depends
onβ (and so does, in fact,α; cf. Fig. 6 below).

6 Envelope soliton characteristics: Sub- vs. Supersonic
excitations

Recall that the quantitiesη and α (defined in Eqs.20 and
21) determine the magnitude of the field envelope and the
associated density perturbation, respectively. In specific,
for a given electric field intensityE , the spatial extension
(width) of the localized field variation (field envelope exci-
tation) varies asL∝|η|

1/2/Ê0. Stronger/weaker electric field
amplitude values therefore correspond to narrower/wider (re-
spectively) excitations (electric field holes, accompanied by
density dips).

For a given value ofÊ0, the excitation width depends on
the magnetic field as:L∼

√
|η|∼ωc,i/ωp,i∼B1, while the

density variation depthN0=α Ê2
0 scales as∼ B−2. Stronger

magnetic field (i.e. lower plasmaβ) values therefore corre-
spond to wider field and density excitations, while the latter
ones will be shorter (for higherB).

As far as the dependence on the wave numberk is con-
cerned, in the positiveη (low k, supersonic bright EMIC
envelope) region we find thatη and α bear a decreasing
and increasing, respectively, behaviour, in terms ofk (see
Figs. 5 and 6). Therefore, shorter wavelengthλ (i.e. higher
wavenumberk) values correspond to narrower localized field
bright localized envelope EMIC wave packets, which are ac-
companied by narrower and higher density humps (compres-
sive pulses). On the other hand, in the negativeη (higherk,
subsonic dark EMIC envelope) region we find that (the ab-
solute value of)η decreases withk, while (the absolute value
of) α decreases between twok values and then increases
monotonically (see Figs. 5 and 6). Dark envelope solitons
(holes) will therefore be narrower, for higherk, while the
density compression region accompanying them will gener-
ally be higher, for largerk.
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Fig. 6. The (dimensionless) functionα (scaled byc2/c2
s ) is depicted

vs. the reduced wavenumberk̃=k c/ωp,i . Recall that this quantity
determines the density variation height (for given magnetic fieldB0
and electric field maximum intensityE0). Two different values of
the plasmaβ parameter were taken here:(a) 0.01; (b) 0.05. See
that a changes sign at a critical wave number value (cf. Fig. 5),
near which it takes rather high values (near or above 1), implying
important density variations in that wave number region.

We saw that the sign of the quantityη=p/q, which de-
termines the type of EMIC envelope excitation which may
occur in the plasma, depends on the ratiovg/cs . Combining
the above definitions, we obtain the form

vg

cs

=

(
2

β

)1/2 (
2 + k̃2√
4 + k̃2

− k̃

)
≡

(
βcr

β

)1/2

. (30)

We have defined the convenient quantityβcr , in fact an ex-
act function ofk̃=ck/ωp,i , in order to formulate an explicit
criterion for the relative magnitude of the ratiovg/cs with
respect to unity: for a giveñk, values of the plasmaβ pa-
rameter above (below) the critical valueβcr correspond to a
subsonic (supersonic) EMIC envelope. Now, note thatβcr is
a monotonic (in fact descending) function ofk̃ (see Fig. 7).
Therefore, for a given value ofβ, the solution of the equation
β=βcr with respect tõk, sayk=kcr (viz. βcr(kcr)=β), pro-
vides the value of the wavenumberkcr at whichη=p/q (or
simply q, in fact) changes sign: wavenumber values above
(below) kcr will correspond to subsonic (supersonic) EMIC
wave packets, i.e. to dark (bright) type envelope excitations.
Upon simple inspection of Fig. 7, we see that bright envelope
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Fig. 7. The critical valueβcr (defined in Eq.30) is depicted vs.
the reduced wavenumberk̃=k c/ωp,i , in two different wave num-
ber regions. Recall that the value ofβcr (compared to the ambient
plasmaβ) determines the sub-(super-) sonic character of localized
EMIC wave packets:β>βcr implies vg<cs (subsonic), and vice
versa; therefore, for a givenβ value, lower wave numberk (i.e.
higherλ) values correspond to the supersonic envelope case, and
vice versa.

solitons will be rather privileged; indeed, a typical (low)
value of β≈0.01 provides a critical wave numberk̃≈2.5,
i.e. a critical wave lengthλcr≈2π/2.5 times the plasma skin
depthc/ωp,i , suggesting that most (realistic) wavelength val-
ues correspond to supersonic (bright envelope) EMIC wave
packets. However, the value of the plasmaβ parameter de-
pends on the plasma environment considered, and may not
always be negligibly small; read the discussion in (Crary et
al., 1998; Gary, 2001); for instance, exceptionally highβ val-
ues were reported by the Galileo mission to Jupiter, during its
passing just outside the orbit of Io (Russell et al., 2001).

Summarising, a EMIC wave packet which is character-
ized by a wave length longer than a certain critical valueλcr

(which depends on the plasmaβ value; cf. above) will tend
to localize its energy by forming bright envelope solitons;
this case may refer to the majority of space plasma EMIC
waves, for a given realistic (very low) value ofβ. On the
other hand, EMIC wave packets with wavelengths shorter
λcr will present a tendency to propagate as dark (black/grey)
localized envelope forms (holes, voids).

7 Conclusions

We have studied the parametric interaction between large
amplitude magnetic field-aligned, circularly polarized EMIC
waves and ponderomotively driven non-resonant ion-
acoustic density perturbations in plasmas. By adapting
and then solving the associated cubic nonlinear Schrödinger
equation, we have shown that the EMIC waves are mod-
ulationally stable against quasi-stationary density perturba-
tions, and that the modulated electric field wavepacket can
appear in the form of either supersonic bright or subsonic
dark (dark or grey) type solitary wave envelope solitons (ex-
act solutions of the NLSE) for the EMIC wave electric field
envelope. The former (bright-type field envelope solitons)
represent propagating envelope pulses (modulating the elec-
tric field), while the latter (dark-type field envelope solitons)
are reduced electric field intensity regions (modulating the
electric field). Both types of localized excitations are associ-
ated with co-propagating localized positive density variations
(humps).

Localized modulated wave packets are encountered in
abundance during spacecraft observations (Cattell et al.,
1998; McFadden et al., 1998; Stasiewicz et al., 2000; Chas-
ton et al., 2002; Meziane et al., 2004a, b), and they are often
associated with localized field and/or density variations si-
multaneously recorded (Pottelette et al., 1999; Alpert, 2001;
Santolik, 2003). Our results may be of relevance to these
observations.

Also, from a fundamental point of view, field modulation
due to ponderomotive coupling to low-frequency turbulence
is a generic mechanism (previously considered with respect
to a variety of plasma modes), to be distinguished (despite
their similar manifestation) from the amplitude (auto-) mod-
ulation due to carrier wave self-interactions, previously con-
sidered; see e.g. (Kourakis and Shukla, 2005) and references
therein. Both theories account for moderately increased am-
plitude oscillations, to be distinguished from (and thought
of as complementary to) weak-amplitude (e.g. KdV, mKdV)
and arbitrary amplitude (e.g. Sagdeev) theories.

A satisfactory exact theory for the formation and dynam-
ics of envelope localized plasma structures e.g. in the mag-
netosphere has always been lacking in the literature, so the
present study aims in partially filling this gap.
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