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Abstract

We present a modeling study of the troposphere-to-stratosphere transport (TST) of

pollution from major biomass burning regions to the tropical tropopause layer (TTL)

and lower stratosphere (LS). We show that biomass burning pollution regularly and

significantly impacts the composition of the TTL/LS. TST occurs through 1) slow as-5

cent in the TTL and 2) quasi-horizontal exchange in the regions of the subtropical jets;

we find both pathways to be important. The seasonal oscillation in CO in the TTL/LS

(i.e., the CO “tape recorder”) is caused largely by seasonal changes in biomass burn-

ing. Another contributing factor is the long-range transport of northern hemispheric

pollution (e.g., biofuels and fossil fuels) to the northern tropics in boreal winter. Other10

tropical sources of CO (e.g., methane oxidation) have insignificant seasonal variation,

contributing little to the tape recorder. Interannual variation of CO in the TTL/LS is

caused by year-to-year variations in biomass burning and the strength, frequency, and

locations of deep convection, which lofts pollution to the upper troposphere. During our

study period, 1994–1998, we find that the highest concentrations of CO in the TTL/LS15

occur during the strong 1997/98 El Niño event for two reasons: i. tropical deep con-

vection was stronger and ii. emissions were higher. This extreme event can be seen

as an upper bound on the impact of biomass burning pollution on the TTL/LS. We esti-

mate that the 1997 Indonesian wildfires increased CO in the entire TTL and tropical LS

(<60 mb) by more than 40% and 10%, respectively, for several months. Zonal mean20

ozone increased and the hydroxyl radical decreased by as much as 20%, increasing

the lifetimes and, subsequently TST, of trace gases. Our results indicate that the im-

pact of biomass burning pollution on the TTL/LS is likely greatest during an El Niño

event due to favorable dynamics and historically higher burning rates.
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1 Introduction

Schoeberl et al. (2006) identified the stratospheric “tape recorder” in carbon monoxide

(CO), a seasonal oscillation in tropical lower stratospheric CO, in the Aura Microwave

Limb Sounder (MLS) data. The term “tape recorder” was coined to describe the sea-

sonal progression of tropical water vapor observed by the Upper Atmosphere Research5

Satellite (UARS) (Mote et al., 1996, Randel et al., 2001). Unlike the water vapor tape

recorder which is controlled by seasonal variation in tropical upper tropospheric tem-

peratures, Schoeberl et al. found that the CO tape recorder is linked to seasonal

biomass burning, closely following the two maxima in the tropics that occur around

March and September of each year (Duncan et al., 2003a). The main objectives of this10

modeling study are to discuss the troposphere-to-stratosphere transport (TST) of trace

gases from biomass burning and to assess the impact of the pollutants on the chem-

istry of the upper troposphere (UT) and lower stratosphere (LS). For this work, we use

the Global Modeling Initiative’s (GMI) combined stratosphere-troposphere chemistry

and transport model (COMBO CTM).15

Biomass burning pollution is often lofted by convection to the UT (e.g., Pickering et

al., 1996), where it can enter the tropical tropopause layer (TTL), a region above the

typical maximum vertical extent of convection (∼150 mb) and below the tropopause

(∼100 mb). Vertical motions to the tropopause in the TTL are associated with slow,

large-scale ascent due to clear sky radiative heating (Folkins et al., 1999), which varies20

seasonally with, for instance, temperature and ozone (e.g., Folkins et al., 2006). The

level of zero radiative heating (LZH) in the TTL at ∼125 mb is generally lower near the

equator and areas of frequent deep convection (Gettelman et al., 2004; Folkins et al.,

2006). The LZH is most sensitive to water vapor, though it is also sensitive to ozone

and carbon dioxide (Gettelman et al., 2004). Aerosols also impact the radiative budget25

of the troposphere directly and indirectly by modifying clouds. Consequently, biomass

burning pollutants have the potential to impact the dynamics of the TTL/LS, including

TST.
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Newell and Gould-Stewart (1981) postulated the existence of a “stratospheric foun-

tain”, an area where tropospheric air preferentially enters the stratosphere, over In-

donesia and India during their respective monsoon seasons. Their hypothesis has

generated considerable debate over the existence of a fountain (e.g., Dessler, 1998;

Sherwood, 2000; Hatsushika and Yamazaki, 2003). Fueglistaler et al. (2004), using5

trajectory calculations, found that 80% of their trajectories that ascended to the LS en-

tered the TTL over the western Pacific “Warm Pool”, an area with high sea surface

temperatures (SSTs) and deep convection. The air in the TTL typically resides there

for several weeks and travels ∼5000–10 000 km before crossing the tropopause. The

preferred locations of TST are the western Pacific Ocean, India, and the Indian Ocean.10

Biomass burning pollution has been observed to be transported by the southern sub-

tropical jet (e.g., Folkins et al., 1997; Chatfield et al., 2002; Staudt et al., 2002), where

it can enter the lowermost stratosphere (LMS; i.e., the region below the 380 K poten-

tial temperature surface, but above the extra-tropical tropopause), via quasi-horizontal

exchange (Holton et al., 1995). The subtropical jets meander around the globe varying15

in altitude, latitude, and intensity; therefore, the locations, frequencies, etc. of TST via

this pathway will vary.

During winter, a strong gradient in potential vorticity creates a barrier to mixing across

the subtropical jet. In summer, PV gradients are much weaker and transient wave

disturbances can grow in amplitude, break, and cause irreversible mixing between the20

tropical UT and the LMS. Such disturbances are common in the northern summer near

the Asian and Mexican monsoon circulations and allow significant exchange between

the tropics and midlatitudes between 100–200 mb (Chen, 1995). However, the LMS is

characterized by descending air, so that most of the pollution will eventually return to

the troposphere (Schoeberl et al., 2004).25

Li et al. (2005) and Fu et al. (2006) showed that MLS CO is high over the Tibetan

Plateau during the Indian monsoon in summer. The lofting of pollution to the UT during

the Asian monsoon is also evident in the MOPITT CO data (Kar et al., 2004). Fu et

al. (2006) discussed a different mechanism than Dethof et al. (1999) for the transport
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of water vapor and polluted air to the stratosphere via convective transport over the

plateau. They found that convection over the plateau is deeper than over the monsoon

area, detraining more air near the tropopause. That is, this pathway is a short-circuit to

the normal pathway of slow ascent in the TTL.

We do not believe that direct injection of biomass burning pollution above the tropical5

tropopause via convection is an important transport pathway. Liu and Zipser (2005) an-

alyzed five years of TRMM data, concluding that 1.3% of tropical convection systems

reach 14 km and 0.1% possibly penetrates the tropopause (i.e., 380 K potential tem-

perature). They found that overshooting deep convection occurs predominantly over

central Africa, but also over Indonesia and South America. Fueglistaler et al. (2004)10

found that deep convection penetrating the tropopause is a very small contributor to

TST. To our knowledge, pyro-cumulonimbus injection into the tropical LS has not been

observed as it has in the boreal regions where the tropopause is lower (e.g., Livesey

et al., 2004, Fromm et al., 2005).

Despite local zones of deep convection penetrating the stratosphere, tropical convec-15

tive systems are not responsible for depositing pollutants at the tropopause. Instead,

convective systems largely die out at 350 K and large-scale ascent in the TTL brings

air up to the tropical LS (i.e., ≥380 K). The success of the COMBO CTM in reproducing

the CO tape recorder as discussed in Schoeberl et al. (2006) demonstrates that this

tool is appropriate to investigate the tropical TST process. MLS CO observations in the20

UT/LS region may provide us with additional insight.

In this paper, we will show that biomass burning pollution does indeed reach the LS,

changing the composition of chemically and radiatively important trace gases there.

In Sect. 2, we describe the COMBO CTM and the meteorological fields used to drive

its transport. We present a model evaluation in Sect. 3. In Sect. 4, we identify the25

major TST pathways of biomass burning pollution using the 1997 Indonesian fires as

an example; we assess the impact of the pollution on the composition of the UT/LS. In

Sect. 5, we estimate the contributions of pollution from several source regions, includ-

ing interannual variability (IAV), to the CO tape recorder. A summary of conclusions is
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given in Sect. 6.

2 Global modeling initiative Combined Stratosphere-Troposphere CTM

The COMBO CTM was developed from the stratospheric CTM described by Rotman et

al. (2001). Initial descriptions of the COMBO CTM can be found in Ziemke et al. (2006).

Strahan et al. (2007) and references therein describe the stratospheric processes in the5

model.

2.1 Chemistry

The chemical mechanism is obtained by combining tropospheric and stratospheric

mechanisms and includes 117 species, 322 chemical reactions, and 81 photolysis re-

actions. The chemical mass balance equations are integrated using the SMVGEAR II10

algorithm (Jacobson, 1995). The tropospheric mechanism includes a detailed descrip-

tion of tropospheric O3-NOx-hydrocarbon chemistry (Bey et al., 2001). It has been

updated with recent experimental data from Tyndall et al. (2001), Sander et al. (2003),

and Atkinson et al. (2003), and data for the quenching reactions of O(
1
D) by N2, O2,

and H2O (Ravishankara et al., 2002; Dunlea and Ravishankara, 2004). The strato-15

spheric mechanism is described in Kinnison et al. (2001) and Douglass et al. (2004). A

description of the polar stratospheric cloud parameterization is provided by Considine

et al. (2000). Mixing ratio boundary conditions were imposed for halogen source gases

for conditions appropriate for the simulation year as described in Strahan et al. (2007)

and Douglass et al. (2004).20

Photolysis frequencies are computed using the Fast-JX radiative transfer algorithm,

which combines the Fast-J tropospheric scheme described in Wild et al. (2000) with the

Fast-J2 stratospheric scheme of Bian and Prather (2002) (Michael Prather, personal

communication, 2005). The algorithm treats both Rayleigh scattering as well as Mie

scattering by clouds and aerosol.25
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The model simulates the radiative and heterogeneous chemical effects of sulfate,

dust, sea-salt, organic carbon and black carbon aerosol on tropospheric photochem-

istry. The monthly-averaged aerosol surface area distributions were obtained from the

Goddard Chemistry Aerosol Radiation and Transport (GOCART) model for 2001 (Chin

et al., 2002). The aerosol fields were coupled to the COMBO CTM as described by5

Martin et al. (2003). The reaction probability for N2O5 is a function of aerosol type, rel-

ative humidity, and temperature, and is significantly lower than earlier estimates (Evans

and Jacob, 2005).

2.2 Emissions

Table 1 summarizes the annual anthropogenic and natural emissions.10

2.2.1 Anthropogenic emissions

The base fossil fuel emissions are described by Bey et al. (2001) and Duncan et

al. (“The global budget of CO, 1988–1997: source estimates and validation with a

global model”, submitted manuscript; hereafter referred to as Duncan et al., 2007)

that includes NOx emissions from the Global Emission Inventory Activity (GEIA)15

(Benkovitz et al., 1996) and non-methane hydrocarbon (NMHC) emissions from Piccot

et al. (1992). The base emissions, which are for 1985, are scaled to reflect emissions

in 1995 as described in Bey et al. (2001). Seasonal variation (±10%) is applied for

CO poleward of 35
◦
N to reflect higher automobile emissions in winter (Duncan et al.,

2007). The monthly mean emissions of NOx from aircraft are from the inventory of20

Baughcum et al. (1996) and Metwally (1995), representing 1995 conditions. Biofuel

emissions are estimated from the inventory and emission factors of Yevich and Logan

(2003).

For the Indonesian wildfire experiment in Sect. 4, we use the Global Fire Emissions

Database version 2 (GFEDv2; Van der Werf et al., 2006). We did not simulate the25

radiative and heterogeneous chemical impacts of the aerosols from the Indonesian
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fires. Duncan et al. (2003b) showed that they decreased OH by about 10% over much

of the Indian Ocean with a concomitant increase in CO by <10%. Neglecting the effect

of these aerosols on CO is not important for our study as our purpose is to estimate if

the change in the composition of trace gases in the TTL and LS is substantial.

For the experiments in Sect. 5, we use the biomass burning emissions inventory pre-5

sented in Duncan et al. (2003a), which represents a mean for 1980 to 1990. Categories

in the inventory are deforestation, shifting cultivation, agricultural residues burned in the

field, savanna burning, and forest fires. Trace gas emission factors are from Andreae

and Merlet (2001).

In the inventories described here, we do not directly account for the emissions of10

several NMHC, such as aromatics, from fossil fuels, biofuels, and biomass burning.

We estimate the production of CO from these NMHC by multiplying the emission rate

of each NMHC in a given inventory by a yield of CO per carbon oxidized, as described

in Duncan et al. (2007). Applying these yields, we find that oxidation of anthropogenic

NMHC results in a source of CO that is 2%, 8.6% and 5% of the direct CO emission15

from fossil fuels, biofuels and biomass burning, respectively. The direct emissions from

these three sources are increased to account for the indirect source from oxidation of

co-emitted NMHC.

2.3 Natural emissions

The distribution of isoprene emissions from vegetation is based on a modified version20

of the inventory of Guenther et al. (1995) and is dependent on solar radiation and

temperature. The principal modifications are described by Wang et al. (1998) and Bey

et al. (2001). The global emission rate of the modified inventory is 380 Tg C/y, which is

about 25% lower than the inventory of Guenther et al. (1995), 503 Tg C/y. We do not

simulate the transport and chemistry of monoterpenes and methanol directly, but we25

do account for the CO produced from their oxidation following Duncan et al. (2007).

The lightning source is set to 5.0 Tg N/y and is horizontally distributed using monthly

mean lightning emissions based on the locations and heights of deep convective clouds
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from the ISCCP cloud climatology (Price et al., 1997). Lightning flash rates used in

constructing these emissions are based on the cloud-top height parameterization of

Price and Rind (1992). The vertical distribution of the NOx is specified by the profiles

derived from cloud-resolved convection simulations of Pickering et al. (1998).

We compute emissions of NO by soil microbes as described in Wang et al. (1998).5

The emissions are a function of vegetation type (Olson, 1992), temperature, fertilizer

usage, and precipitation history. The scheme simulates the oxidation of NO to NO2

and subsequent uptake by vegetation within the canopy (Jacob and Bakwin, 1991).

2.3.1 Other

Methane mixing ratios are forced at the surface with annual mean values for 2001 using10

National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division

(GMD) measurements (Dlugokencky et al., 1998). They are zonally uniform in four

semi-hemispheres. Monthly-averaged acetone concentrations are specified following

Jacob et al. (2002).

2.4 Transport15

In our study we use five years of meteorological fields from the Goddard Modeling and

Assimilation Office (GMAO) GEOS-4 general circulation model (GEOS-4-GCM) (Bloom

et al., 2005), using SSTs representing 1994 to 1998. They have been regridded to 42

vertical levels with a lid at 0.01 hPa; there are ∼20 levels from the surface to the LS

(60 mb) with ∼6 levels in the TTL/LS. The horizontal resolution is 2
◦

latitude × 2.5
◦

20

longitude.

The COMBO CTM transports 71 of the 117 species in the chemical mechanism,

using the advection scheme of Lin and Rood (1996). Convective transport is taken

from the MATCH model (Rasch et al., 1997), which uses the following meteorological

fields as input: cloud mass fluxes, entrainment and detrainment fluxes, and large-25

scale downwelling. Both shallow and deep convection are considered, following the
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algorithms of Hack (1994) and Zhang and McFarlane (1995). The model uses the

Harvard wet scavenging algorithm (Liu et al., 2001) and the dry deposition scheme

described by Wang et al. (1998), which follows the methodology of Wesely et al. (1985).

3 Model evaluation

3.1 Summary of previous work5

Schoeberl et al. (2006) found that the MLS CO tape recorder is similar to that of the

model’s, implying that tropical ascent and horizontal mixing in the model’s UT/LS are

credible. Ziemke et al. (2006) compared OMI/MLS tropospheric column ozone (TCO)

observations with those of the model, finding that the two agree well both spatially

and seasonally, including for the South Atlantic maximum and western Pacific mini-10

mum. The model is typically higher from 30–40
◦

latitude of both hemispheres, partic-

ularly the northern hemisphere (NH), and too low over the Warm Pool in all seasons.

(Ozonesonde data support that the model’s TCO from 30–40
◦
N is too high.) Strahan et

al. (2007) evaluated the model’s performance in the UT/LS using a variety of satellite

and aircraft-derived transport diagnostics. They showed that the model has credible15

seasonally-varying composition and transport in the LS, including the LMS, as well as

realistic coupling between the extra-tropical troposphere and stratosphere.

3.2 Troposphere

In this study, we use CO as a tracer of transport as its chemical lifetime is about a

month in the tropics, which is typically longer than the timescales of most transport20

processes, including TST. The evaluation of our 5-yr model run (1994–1998 SSTs) is

for CO and OH, as reaction with OH is the primary sink for CO. Our evaluation is nec-

essarily qualitative as we use climatological emissions and the meteorology represents

no particular time, though it should capture IAV associated with the phases of the El

Niño/Southern Oscillation (ENSO).25
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Figure 1 shows a comparison of model CO and NOAA GMD observations for 1994–

1998 (Novelli et al., 1992; 1998). Statistical information for each station is given in

Table 2. The model is systematically biased low at most stations in local winter/spring

when the burden is typically at an annual maximum. Transport deficiencies may play a

role as the seasonal maximum in the tropics is largely due to the long-range transport5

of pollution from biomass burning and fossil fuel source regions. The model CO gen-

erally compares well to observations in local summer/fall when regional photochemical

production of CO becomes more important. Another possible reason for the model’s

low bias is too high OH, though this does not appear to be the case.

The mean tropospheric OH for our simulation (1994 SSTs) is 0.98×10
6

molec/cm
3
,10

which is similar to that reported by Spivakovsky et al. (2000), 1.16×10
6

molec/cm
3
.

The CH3CCl3 lifetime with respect to tropospheric OH is 6.1 y, which is similar to that

reported by Prinn et al. (2005), 6.0 (+0. 5, –0.4) y, and Spivakovsky et al. (2000), 5.7 y.

Though the lifetime is reasonable in our model, it is weighted toward the lower tropical

troposphere, providing less information on the quality of model OH elsewhere. A known15

deficiency in the GEOS-4-GCM is that the tropical cloud optical depths (COD) are too

thin in the middle/upper troposphere, though the column COD are similar to those from

MODIS and ISCCP; this problem results because the atmosphere of the GCM is too

dry (Bloom et al., 2005). The radiative effect of clouds on global mean OH is not very

sensitive to the column COD, but it is to the cloud vertical distribution (H. Liu, personal20

communication, 2006).

There are two long-term aircraft missions, Japan Airlines (JAL; Matsueda et al.,

1998) and Measurements of OZone by Airbus In-service airCraft (MOZAIC; Nedelec

et al., 2005), that measure CO in the UT. Figure 2 shows a seasonal comparison of

the model and the JAL data (9–13 km) from 1994–1998 for flights from Tokyo, Japan25

to Sydney, Australia. The data include 19 to 27 flights per season; however, we did

not use data from September 1997 to May 1998 as CO was abnormally high from the

Indonesian fires (Matsueda et al., 1999). The model captures the observed latitudinal

gradient in mean CO and simulates much of the observed IAV. For instance, the model
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and observations show IAV in the northern subtropics from March through May, a time

when the UT is impacted by biomass burning pollution from Southeast Asia (e.g., Ja-

cob et al., 2003). In the data, there is strong IAV from September through November in

the southern tropics, which is associated with the IAV of biomass burning emissions;

the model does not show strong IAV as we use climatological emissions. Figure 35

shows a histogram comparison of the model and MOZAIC flights between Europe and

East Asia. Consistent with the GMD measurements, the data show that the model CO

is often biased low, though the spatial and temporal distributions are similar to the data.

4 Cross-tropopause transport pathways: 1997 Indonesian wildfires

In this section, we present a COMBO CTM simulation of the 1997 Indonesian wildfires,10

one of the largest burning events of the 20th century, to illustrate the principal cross-

tropopause pathways of biomass burning pollution. The fires began in August, peaked

in September and October, and ended in November. Observations indicate that the

wildfires had a profound impact on the composition of the tropical troposphere (Dun-

can et al., 2003b and references therein), including the UT (Matsueda et al., 1999;15

Matsueda and Inoue, 1999). The purposes of this experiment are 1) to identify the

major TST pathways of the pollution and 2) to understand the impact of this extreme

biomass burning event on the composition of the TTL/LS.

Duncan et al. (2003b) detailed the tropospheric transport pathways of the pollution.

The Walker Circulation was weak and not well organized, which is typical of El Niño20

conditions. Consequently, the prevailing flow throughout the tropical troposphere from

Africa to the Indian Ocean was characterized by weak, recirculating easterlies, which

allowed most of the pollution to remain over the tropical Indian Ocean through Novem-

ber. Transport to the UT via deep convection mixed the pollution throughout the tro-

posphere over the tropical Indian Ocean. We find similar transport pathways in the25

simulation presented here.

Duncan et al. (2003b) could not determine if the pollution transported to the LS
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was realistic; transport in their model was driven by assimilated meteorology, which

was known to cause excessive stratosphere-troposphere exchange (STE), a common

problem of assimilated fields (e.g., Douglass et al., 2003; Schoeberl et al., 2003). Here,

we use GEOS-4-GCM meteorological fields (1997 SSTs), which have reasonable STE,

to drive transport in the COMBO CTM. As the ENSO phenomenon is largely driven by5

SSTs, our simulation captures the major meteorological features associated with this

historic El Niño. For instance, the locations of tropical precipitation agree reasonably

well with the distributions from the Global Precipitation Climatology Project (GPCP)

for August through November 1997 (Adler et al., 2003). The model and observed

precipitation are higher than climatology (1979–1999) over the central/eastern Pacific10

and western Indian Oceans, and lower over the Maritime continent and eastern Indian

Ocean, which are characteristics of the El Niño phase (Dai and Wigley, 2000).

In Sects. 4.1–4.2, we present the results of two model simulations, with and without

the Indonesian wildfire emissions. We refer to the difference in trace gas concentrations

between the two runs as perturbations caused by the wildfires.15

4.1 Transport pathways within the TTL and LS

The cross-tropopause transport of the wildfire’s pollution occurs by slow ascent in the

TTL, especially over the Indian Ocean, and quasi-horizontal exchange in the subtropi-

cal jet regions, especially the southern jet. The two TST pathways are both important

in our model.20

4.1.1 Quasi-horizontal exchange

In general, the maximum extent of the convective upward mass flux in our model is

∼200 mb. While advective flow in the tropical UT is characterized by weak, recirculating

easterlies, westerly flow in the subtropical jets (>20
◦
N and >20

◦
S) is relatively strong,

especially the southern jet as it is seasonally stronger (Fig. 4). Flow throughout the25

TTL is similar to that shown in Fig. 4.
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Figure 5 shows the monthly-averaged CO perturbation (%) at 200 mb for August

through November. The bulk of the CO remains over the tropical Indian Ocean in all

four months, where the perturbation is >100% over much of the region. In August and

September, the pollution is transported by the tropical easterly jet, which weakens in

October and November as the Asian monsoon circulation breaks down. The figure5

shows that pollution is peeled away by the subtropical jets, especially the southern jet,

from the main plume over the Indian Ocean in September and October, rapidly circling

the globe (Figs. 5c–d).

The importance of the subtropical jets as TST pathways to the LMS is seen in Fig. 6,

which shows the CO perturbation (%) in October for a vertical slice at the International10

Date Line. The perturbation is near 100% in the southern jet and >50% in the northern

jet. The CO moves into the LMS via quasi-horizontal exchange, increasing CO by

25–100%.

4.1.2 Slow ascent in the TTL

Figure 7a shows the CO perturbation in November near the tropical tropopause. The15

greatest perturbations (>100%) are over Africa, the Indian Ocean, and the region of

the southern jet. Figure 7b shows the CO perturbations in the LS. The perturbations

closely resemble those at the tropopause, first appearing over subtropical Asia, trop-

ical Africa and the entire southern tropics in September and October. The maximum

perturbations (∼30 ppbv) occur in November over Africa and the tropical Indian Ocean,20

a region of preferential TST (Fueglistaler et al., 2004). At 60 mb (not shown), the CO

perturbation (∼5% or 1–2 ppbv) first appears over the tropical Atlantic and S. America

in October; at this altitude, the total model CO is only 10–15 ppbv. By December, the

perturbation is rather well-mixed, 10–25% (1–3 ppbv) and lingers through March.

The main entry point of the Indonesian pollution to the TTL does not occur over the25

Warm Pool. A number of factors conspire to minimize the impact of the pollution over

the Pacific. First, much of the pollution disperses in the subtropical jets, which lay to

the north and south of the Warm Pool. Second, most CO is transported to the Indian
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Ocean because of a weak Walker Circulation and remains there because of weak and

recirculating winds, as discussed above. Third, strong convection off the equatorial

Pacific coast of Central America, which is associated with the strong El Niño, pumps

air not significantly impacted by the wildfires from the lower troposphere to the UT

(Fig. 5).5

4.2 Impact on trace gases in the TTL and LS

The evolution of the monthly-averaged CO perturbation (%) in the TTL, LMS, and LS

is shown in Fig. 8. The TTL perturbation peaks (50–60%) in October, the height of the

fire activity, and remains >20% until January. There is a time lag of a month of the peak

burden (>30%) in the LMS from that of the TTL and the perturbation remains >20%10

from October to January. The lag of the peak perturbation is two months for the LS as

compared to the TTL.

An important feature in Fig. 8 is that the perturbation in the LMS is higher than in

the LS, which implies that quasi-horizontal transport plays a more significant role in the

TST of the pollution than slow ascent. However, we cannot quantify the significance as15

CO is not an inert tracer. For instance, the transit time of CO through slow ascent in

the TTL, where OH is high, is several weeks. On the other hand, the lifetime is longer

in the southern hemisphere (SH) subtropical jet region early in the study period as OH

is low, but grows through austral spring as solar radiation increases. By November, the

lifetimes near the tropical tropopause and the SH LMS are similar, 50–70 days. The20

reverse is true for the NH subtropical jet region, which explains why the NH portion,

but not the SH portion, of the LMS perturbation remains high long after the fires end

(Fig. 8).

The CO lifetime grows (as compared to the unperturbed case) because CO accumu-

lates during the long burning event. OH is the primary sink for CO, so its zonal mean25

perturbation (Fig. 9a) closely follows that of the CO perturbation. In October, the OH

perturbation in the TTL is negative (5–20%), especially in the region of the subtropical

jets. When only the Indian Ocean region is considered, the OH in the entire TTL is
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lower by >15% (Fig. 9b). While a 15% decrease in OH over several months in the

TTL is significant by itself, it becomes even more important when one considers that

air in the TTL typically resides there for several weeks before crossing the tropopause

(Fueglislater et al., 2004). Therefore, a trace gas that has a primary sink by reaction

with OH will have a longer lifetime, allowing more of it to cross the tropopause.5

The zonal mean ozone perturbation is shown in Fig. 9c. It is >15% in much of

the TTL from September to November and >25% (>15 ppbv) in October. When only

the Indian Ocean is considered (Fig. 9d), the highest perturbation (>15 ppbv) in the

TTL is along the equator and the southern subtropical jet, though the perturbation is

>10 ppbv over the entire TTL. In a situation of enhanced ozone, the LZH will descend10

in altitude increasing the probability that air at this altitude will undergo TST, though

this effect is not expected to be large for ozone (Gettelman et al., 2004). Nevertheless,

this experiment shows that 1) biomass burning pollution can significantly elevate ozone

in the entire TTL for many months, presumably impacting the dynamics there, and 2)

ozone in both the LS and LMS can be impacted by a large biomass burning event.15

5 Sources of variation in the TTL composition

In Sect. 4, we used an extreme biomass burning event, the 1997 Indonesian wild-

fires, to identify two main pathways for the pollution to enter the stratosphere: i. slow

ascent in the TTL and ii. quasi-horizontal exchange in the regions of the subtropical

jets. We find these two pathways are also important for more modest burning events.20

In Sect. 5, our goal is to understand how temporal and spatial variations in pollutant

sources and dynamics impact the composition of the TTL and LMS. We examine the

seasonal transport of biomass burning pollution to the UT/LS for a typical year, mid-

1994 to mid-1995, to understand how usual variations in the timing and locations of

burning contribute to CO perturbations in the TTL and LMS. We also investigate how25

the interannual variability of convection affects transport of pollutants to the TTL.
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5.1 TST of regional biomass burning pollution

We performed five simulations. The base simulation is a standard simulation from

mid-1994 to mid-1995 with climatological biomass burning sources. In the remaining

simulations, we turned off sequentially the biomass burning emissions from four source

regions: Africa south of the equator (86 Tg CO/y), Africa north of the equator (87 Tg5

CO/y), South America south of the equator (60 Tg CO/y), and Southeast Asia (82 Tg

CO/y), not including Malaysia and Indonesia. Figure 10 shows the seasonal variation

of biomass burning by region from 30
◦
S–30

◦
N.

5.1.1 Southern hemisphere burning season

South America, southern Africa, and the tropical southern Atlantic Ocean experience10

widespread pollution during the SH burning season (Fishman et al., 1991; Thompson

et al., 1996; Chatfield et al., 1998). Burning occurs in southern Africa typically from May

to November and from August to November in South America (Fig. 10). The transport

pathways from the two regions allow their plumes to inter-mingle. They can be treated

as one plume for the purpose of this experiment.15

The large biomass burning plume lies generally south of tropical easterlies and north

of SH subtropical westerlies. Figure 11a shows that tropical easterlies play the dom-

inant role, transporting much of the pollution to the Pacific Ocean. A broad area of

convection extends from western Africa, across South America, and to the central Pa-

cific, which lofts the pollution to the UT (Figs. 11b–c). By October, this pollution is20

being transported by the southern subtropical jet (Fig. 11c). Figure 11a also shows

that subtropical westerlies transport surface pollution to the Indian Ocean; this pollu-

tion typically is not lofted to the UT as convection in the subtropics is not frequent.

Unlike the Indonesian pollution, ascent over the Warm Pool plays a role for pollution

from South America and southern Africa. The pollution is first evident at the tropical25

tropopause in June over the Warm Pool and is >5% over much of the tropics by Au-

gust (Fig. 11d). By November, the perturbation (∼10–15%) becomes rather uniform.
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The pollution reaches the LS in August and September along the equator from the

central Pacific westward to Africa, though the perturbation is only 1–5% (not shown).

It is widespread (>10%) in November and December, and >15% over central Africa

in November. It reaches 60 mb by December, though it is generally ∼1–3% with the

highest perturbation over the equatorial Pacific.5

5.1.2 Northern hemisphere burning season

Northern Africa. The burning season in northern Africa occurs mainly from November

through March (Fig. 10). Much of the pollution near the surface moves with the tropical

easterlies, polluting the entire tropical Atlantic and Pacific Oceans by February and

March (not shown). A minor pathway to the western tropical Indian Ocean occurs10

during most of the burning season.

The Brewer-Dobson circulation is typically strongest in the NH winter when biomass

burning peaks in northern Africa, and the northern subtropical jet is characterized by a

strong potential vorticity gradient, creating a barrier to mixing (Chen, 1995). Therefore,

one may expect that TST via slow ascent in the TTL would occur preferentially to15

exchange in the region of the northern subtropical jet. However, this is not the case as

seasonal convection in central Africa provides the main transport pathway to the UT,

especially in February and March when the ITCZ advances northward/closer to the

burning regions. Consequently, the perturbation in the UT peaks in March and April

(Fig. 12a), well into spring and several months after the peak in burning.20

The perturbation near the tropical tropopause peaks from March to May (Fig. 12b),

where it is >5% over the entire tropical tropopause region. However, it is first evident

in January, when the highest values are 3–5% over Indonesia, the tropical Pacific, and

South America. In the LS, the pollution first appears in January over the Warm Pool,

and in February, it is >5% over two regions of deep convection, the Warm Pool and off25

the Pacific coast of Central America. It remains high (5–10%) from March through May

over the entire tropics.

Southeast Asia. While the burning seasons occur over several months for the two
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African regions and South America, approximately 50% of the biomass burned in

Southeast Asia occurs in March (Fig. 10). Pollution is transported by the prevailing

surface winds to the Indian and Pacific Oceans, where it is lofted to the UT by convec-

tion over the Bay of Bengal and the South China Sea. Figure 13a shows that the CO

perturbation at 200 mb is >25% over the Bay of Bengal and Southeast Asia in March.5

This pollution is transported rapidly by the northern subtropical jet across the Pacific

Ocean, circumnavigating the globe by April; the perturbation is 5–10% over much of

the NH tropical and subtropical Indian and Pacific Oceans. A minor amount of the pol-

lution is caught in the southern subtropical jet (Fig. 13a). The pollution first appears

near the tropopause over the Warm Pool in February (∼1%) and over large regions of10

the tropics by March and April (Fig. 13b). The pollution is high in April (>25%) over

the Arabian Sea to the South China Sea and is >10% over most of the NH tropics and

subtropics.

5.2 Contribution of sources

In Sect. 5.1, we showed the transport pathways of pollution from South America, south-15

ern Africa, northern Africa, and Southeast Asia to/within the UT/LS; these four regions

account for 80% of the total biomass burning emissions (395 Tg CO/y) from 30
◦
S–

30
◦
N. In our model, the mean CO in the tropical TTL (12

◦
N–12

◦
S) ranges between 44

and 58 ppbv for the 1994/95 burning season. Figure 14 shows the model’s total CO

(with the annual mean removed) and the CO perturbations in the TTL from the four20

source regions. Less than 20% of the total CO in the TTL is due to biomass burning.

The perturbation from NH burning in boreal spring contributes more to the total CO in

the TTL than SH burning in austral spring. The perturbation from northern Africa is

higher than Southeast Asia, even though the emissions from both regions are similar.

On the other hand, the CO perturbation from South America is higher, though emis-25

sions are ∼30% lower, than from southern Africa; this occurs because convection is

deeper over South America than southern Africa, especially in September. Together,

the perturbations from the four regions explain about two-thirds of the seasonal vari-
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ability in total CO in the TTL. That is, seasonal biomass burning drives the CO tape

recorder, but other sources also contribute.

If biomass burning were the only source of seasonal variation, one would expect

two maxima (during the NH and SH burning seasons) and two minima (the periods

between them) in the mean CO each year in the TTL. This is not the case (Fig. 14).5

CO remains high during boreal winter, but not during austral winter. Figure 15 is the

same as Fig. 14, except for the tropical LS (above 380 K and >60 mb; 12
◦
N–12

◦
S). Not

surprisingly, the mean concentrations (16–25 ppbv) are lower than in the TTL and they

peak 1–2 months later because of the transit time via slow ascent. The peak in total

CO from SH burning in austral spring, as evident in the TTL (Fig. 14), is muted in the10

LS. These features are also seen in the observed tape recorder (Fig. 1 of Schoeberl et

al., 2006).

Why does CO in the TTL remain high during boreal winter? First, the long-range

transport of CO from fossil fuels and biofuels emitted in the NH extra-tropics and sub-

tropics increases the background concentration of the northern tropics by ∼20% in15

boreal winter/early spring (Duncan et al., 2007). (The time-scale of meridional trans-

port is relatively long compared to the CO lifetime, except in winter when OH is low.)

As this long-range transport occurs during the NH burning season, CO in the northern

tropics reaches a seasonal maximum. Other CO sources (e.g., local fossil fuel and

biofuel emissions, methane and NMHC oxidation) make much smaller or insignificant20

contributions to the seasonal variation of tropical CO (Duncan et al., 2007). Second,

more CO crosses the tropopause in boreal winter as the ascent rate is higher than in

boreal summer (Rosenlof, 1995); that is, a tape recorder would exist without seasonal

changes in tropospheric CO sources.

The minimum in the CO tape recorder occurs in boreal summer in the TTL and late25

summer/early fall in the LS (Figs. 14–15). CO in the northern tropics is at an annual

minimum as the NH burden of CO is seasonally low (Duncan et al., 2007). However, the

Asian summer monsoon is active, lofting surface pollution from India (Fu et al., 2006).

Indian emissions represent the largest source of CO from fossil fuel and biofuels year-
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round in the tropics. MOPITT observations showed elevated CO in summer in the UT

above India and China (Kar et al., 2004). At ∼150 mb, elevated CO was observed

in the MLS data over the Tibetan Plateau (Li et al., 2005). Consequently, one might

expect Indian emissions during the monsoon to contribute significantly to the CO tape

recorder. However, CO from India largely remains at latitudes >15
◦
N, north of the TTL5

(12
◦
N–12

◦
S), as indicated by these observations. We find a similar result in a model

simulation, in which we removed Indian emissions.

Pollution transported to the LMS does not contribute to the tape recorder. Figure 16

is the same as Fig. 14, except for the LMS of each hemisphere. The mean CO in the

NH LMS ranges from 31–38 ppbv and from 21–25 ppbv in the SH LMS. As in the TTL10

and LS, most, but not all, of the variation is due to seasonal burning. CO from burning

in each region pollutes the LMS of both hemispheres, but more so in the hemisphere

in which burning occurs.

5.3 Interannual variability

In Sect. 4, we discussed the extreme burning event in Indonesia in 1997. The effects15

of El Niño are strongest typically during the SH burning season. Though, the ENSO-

induced variability of precipitation is relatively weak year-round in southern Africa and

South America. Consequently, the ENSO is not likely to be an important player in the

IAV of biomass burning for these two regions. A similar argument can be made for

burning in northern Africa and Southeast Asia, not including Indonesia. (The ENSO20

can impact the transport of pollution from these regions to the UT/LS (e.g., via locations

and depths of convection) as discussed below.) In Sects. 5.1 and 5.2, we did not

include simulations of biomass burning from Indonesia and Central America/Mexico

as burning in these regions vary dramatically from year-to-year due to variations in

ENSO. For instance, burning in Indonesia and Central America/Mexico during a La25

Niña is often 3–5 times less than during an El Niño (Duncan et al., 2003a); that is,

historically only burning during an El Niño phase is of consequence.

Here, we discuss the dynamically-driven variability in the composition of the UT/LS

2217

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/2197/2007/acpd-7-2197-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/2197/2007/acpd-7-2197-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 2197–2248, 2007

Cross-tropopause

transport of biomass

burning pollution

B. N. Duncan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

for five years, 1994–1998. Our simulations capture the IAV in meteorology associated

with the phases of ENSO because the GCM was forced with observed SSTs. We use

climatological biomass burning emissions for all five years.

Figure 17 shows the mean CO in the TTL for 1994–1998 with the 5-yr mean removed.

The figure also shows the Oceanic Niño Index (ONI; degrees), where values >0.5
◦
C5

indicate El Niño conditions and <–0.5
◦
C indicate La Niña conditions. The El Niño

phase occurred from April 1994 through March 1995 (i.e., the 1994/95 burning season),

though from April through September the phase was relatively weak, and from May

1997 through April 1998 (i.e., the 1997/1998 burning season); this was one of the

strongest El Niño events on record. The La Niña phase occurred from October 199510

through March 1996 (i.e., the 1995/96 burning season), though the entire phase was

relatively weak. The other months, including the 1996/1997 burning season, were in

the neutral phase (0.5
◦
C>ONI>–0.5

◦
C).

Clearly, the dynamics of the abnormally strong El Niño of 1997/1998 enhance trans-

port to the TTL (Fig. 17). The CO perturbation in late 1997/early 1998 is the highest15

of the five years; this is the case in the LS as well (not shown). Figure 17 shows that

the convective updraft flux in the model from 12
◦
S–12

◦
N is higher during the 1997/98

burning season as compared to the other years, which lofts more CO to the UT. Fa-

vorable dynamics, coupled with high emissions as discussed in Sect. 4, conspire to

enhance the stratospheric impact of pollution from the catastrophic 1997/1998 burning20

season.

Minus the unusual El Niño of 1997/1998, there is significant IAV between the years in

total CO. For instance, the minimum CO occurs in July and August in 1995, 1996, and

1998, during neutral or La Niña conditions; the two years with the highest minimums

occur in 1994 and 1997 during El Niño events. In the SH burning season, the highest25

CO occurs in 1997 and 1998, two extreme phases of ENSO. We also analyzed IAV of

the CO perturbation in the TTL by region. We find that IAV in the frequency, depth, and

location of deep convection causes variations in CO in the UT. For instance, the CO

perturbation from Southeast Asia in the TTL is 25% higher in 1994 than either 1995 or
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1996.

6 Conclusions

The CO tape recorder in the MLS data showed that biomass burning pollution is trans-

ported regularly to the LS. In this study, we investigated the cross-tropopause trans-

port of the pollution and assessed the impact on the composition and chemistry of the5

UT/LS. Strahan et al. (2007) used a variety of satellite and aircraft-derived transport

diagnostics to show that the GMI COMBO CTM reproduces observations reasonably

well in the UT/LS, which lends confidence in its use as a tool to study the TST of

pollution.

We found that the two pathways of TST, slow ascent in the TTL and quasi-horizontal10

exchange in the region of the subtropical jets, are of similar importance. However,

the latter pathway delivers the pollution to the LMS, where it most likely returns to the

troposphere (Schoeberl et al., 2004); most tropical biomass burning occurs in local

spring, a season of strong stratosphere-to-troposphere transport in the extra-tropics,

associated with the Brewer-Dobson circulation. In general, the relative importance of15

the two TST pathways depends on the lifetime of a trace gas, which is typically longer

in the region of the subtropical jets than the TTL where solar radiation and OH are

consistently higher.

We performed a simulation of one of the largest burning events of the 20th century,

the 1997 Indonesian wildfires, to provide an upper bound on the impact of biomass20

burning on the UT/LS. The fires occurred during the SH burning season, so that the

total emissions were about twice that of the Indonesian fires alone. For perspective, the

burning emissions of CO equaled almost 70% of annual, global fossil fuel emissions.

The main entry point of the Indonesian pollution to the UT/LS occurred over the

Indian Ocean and Africa, and not the Warm Pool, because of a weak Walker Circulation25

(i.e., the pollution moved to the Indian Ocean, not the Pacific). Weak and recirculating

winds largely confined the pollution to the Indian Ocean, except for the subtropical
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jets which transported the pollution north and south of the Warm Pool. The Walker

Circulation is historically weak during El Niños, so it is possible that pollution from

widespread wildfires in Indonesia (e.g., 1982–1983, 1991, 1994, 1997–1998) followed

similar transport pathways as in 1997.

During this burning event, both ozone and CO associated with the fires contributed5

to their burdens in the UT/LS, which lasted well after the fires ended. For instance,

ozone was 5–20% higher on average in the TTL and >100% over parts of the Indian

Ocean for several months. The increased CO lengthened the lifetimes of trace gases,

including itself, as reaction with CO is the primary sink for OH, which was 5–20% lower

in most of the TTL. The lower OH allowed higher amounts of trace gases to cross the10

tropopause for several months.

In addition to the Indonesian fires, we assessed the transport pathways and impact

of pollution of more typical burning from four regions: southern Africa, northern Africa,

Southeast Asia, and South America. With these experiments, we showed that pollution

is transported regularly to the TTL/LS, impacting the composition of trace gases there.15

In general, the peaks in burning in South America and southern Africa occur at the

same time in austral spring. We found that much of the pollution from South America

and southern Africa mixes and follows similar transport pathways in the UT/LS, enter-

ing the LS via slow ascent over the Warm Pool and Africa, both regions of preferential

TST. As with the Indonesian pollution, quasi-horizontal exchange in the region of the20

subtropical jets is important. For the NH season, peak burning in northern Africa and

Southeast Asia (i.e., Indochina) are offset by several months. Nevertheless, the trans-

port pathways to the UT/LS are similar for these two regions as for southern Africa and

South America. These four regions contribute equally to the seasonal variation in the

TTL.25

We found that seasonal variation of CO in the TTL/LS results predominately from

seasonal biomass burning, but that the long-range transport of CO from the subtropics

and mid-latitudes of the NH in boreal winter also plays a role. This partially explains

why CO in the TTL in boreal winter (between the SH and NH burning seasons) is higher
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than in austral winter (between the NH and SH burning seasons). In the LS, there is

only one minimum in CO in the latter half of the year and one maximum in the beginning

of the year. That is, the minimum between the SH and NH burning seasons disappears

as slow ascent in the TTL is seasonally faster in boreal winter than summer (Rosenlof,

1995).5

We conclude that there are two main sources of interannual variation in CO in the

TTL/LS for our study period, 1994–1998. First, year-to-year changes in the locations,

frequencies, and depths of deep convection loft varying amounts of biomass burning

CO to the UT. The highest concentrations in the TTL occurred during the 1997/98 El

Niño event because of stronger convective transport to the UT during this time. Sec-10

ond, year-to-year changes in biomass burning are substantial, especially high during

El Niño years when large wildfires typically occur in Indonesia and Central America.

We could not assess the impact of the changes in atmospheric composition (e.g.,

ozone, water vapor) on the dynamics of the TTL/LS as we used a CTM. For example,

what were the impacts of the fire’s aerosols on clouds and, subsequently, on radiation15

in the LS? Another potentially important impact is that the sizable amount of aerosols

emitted by the Indonesian wildfires (Duncan et al., 2003b) could have decreased the

average size of ice crystals, allowing more water vapor to enter the stratosphere (Sher-

wood, 2002). Therefore, as future work, we plan to conduct sensitivity studies with

a general circulation model to understand the impact of biomass burning pollution on20

ascent in the TTL.
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Table 1. Annual Emissions in the COMBO CTM.

Source NOx

Tg
N

CO
Tg
direct

CO
Tg
indirect

MEK
Tg C

PRPE
Tg C

C2H6

Tg C
C3H8

Tg C
ALK4
Tg C

ALD2
Tg C

CH2O
Tg C

ISOP
Tg C

NMHC
Tg C

Soils 6.6 – – – – – – – – – –

Vegetation – – 150.5
a

– 10.9 – – – – – 380.0 390.9

Aircraft
b

0.6 – – – – – – – – – –

Lightning
c

5.0 – – – – – – – – – –

Fossil Fuel
b

23.6 393.8
d

7.9
e

0.8 7.9 5.3 5.7 25.2 – – – 44.9

Biomass
c

6.5 439.3 22.0
e

3.6 3.9 1.9 0.7 0.6 2.6 1.9 – 15.3

Biofuel
b

2.2 160.3 13.8
e

1.3 6.3 2.0 0.9 0.8 0.7 0.5 – 12.4
Total 44.5 993.4 194.2 5.8 29.0 9.3 7.3 26.6 3.3 2.4 380.0 463.5

a
Emissions from the oxidation of 1) biogenic methanol (100 Tg CO) and 2) monoterpenes

(50.5 Tg CO).
b

Annual mean emissions.
c

Monthly mean emissions.
d

Scaled 10% higher
in summer and 10% lower in winter.

e
CO derived from photochemical oxidation of NMHC

not accounted for in anthropogenic NMHC emission inventory. PRPE = lumped ≥C3 alkenes;
ALK4 = lumped ≥C4 alkanes; ALD2 = acetaldehyde; ISOP = isoprene.
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Table 2. Statistical Comparison of the Model with GMD Observations (1994–1998).

Station
ID

Station Location Lat
deg

Lon
deg

Alt
m

N
a

∆
b

ppbv
∆

c

%
Std.
Err.

d

ppbv

R
2e

High N. Hemisphere

ALT Alert, Canada 82
◦
N 62

◦
W 210 60 –18 –10 2.5 0.78

MBC Mould Bay, Canada 76
◦
N 119

◦
W 58 41 –17 –10 2.5 0.88

BRW Barrow, Alaska 71
◦
N 36

◦
W 11 60 –19 –10 2.7 0.76

ICE Heimaey, Iceland 63
◦
N 20

◦
W 100 60 –15 –9.4 2.0 0.73

Europe

MHD Mace Head, Ireland 53
◦
N 9

◦
W 25 60 –12 –7.6 2.2 0.56

HUN Hegyhatsal, Hungary 46
◦
N 16

◦
E 248 60 –40 –15 5.3 0.47

N. America & N. Atlantic

CMO Cape Meares, Oregon 45
◦
N 123

◦
W 30 51 –18 –9.4 3.1 0.66

NWR Niwot Ridge, Colorado 40
◦
N 105

◦
W 3475 60 –15 –10 2.2 0.28

ITN Grifton, North Carolina 35
◦
N 77

◦
W 505 60 –8.8 –3.1 3.9 0.18

BMW Southhampton, Bermuda 32
◦
N 65

◦
W 30 60 –24 –18 1.9 0.75

IZO Tenerife, Canary Islands 28
◦
N 16

◦
W 2300 60 –15 –10 2.6 0.34

RPB Ragged Pt., Barbados 13
◦
N 59

◦
W 3 60 –12 –12 1.4 0.54

E. Asia & N. Pacific

CBA Cold Bay, Alaska 55
◦
N 162

◦
W 25 60 –17 –10 2.3 0.76

TAP Tae-ahn, S. Korea 36
◦
N 126

◦
E 20 60 –17 –5.3 6.0 0.09

WLG Mt. Waliguan, PRC 36
◦
N 100

◦
E 3810 60 –12 –6.9 3.6 0.02

MID Sand Island, Midway 28N 177
◦
W 4 60 –31 –24 1.8 0.85

MLO Mauna Loa, Hawaii 19
◦
N 155

◦
W 3397 60 –20 –20 1.6 0.67

GMI Guam, Mariana Islands 13
◦
N 144

◦
E 2 60 –22 –22 1.4 0.77

S. Hemisphere Tropics

SEY Mahe Island, Seychelles 4
◦
S 55

◦
E 3 56 –26 –28 2.5 0.38

ASC Ascension Island 7
◦
S 14

◦
W 54 60 –12 –14 1.7 0.29

SMO American Samoa 14
◦
S 170

◦
W 42 60 –7.9 –12 1.2 0.01

Mid & High S. Hemisphere

EIC Easter Island 27
◦
S 109

◦
W 50 59 –14 –23 0.8 0.60

CGO Cape Grim, Tasmania 40
◦
S 144

◦
E 94 60 –2.5 –3.0 0.9 0.36

SYO Syowa, Antarctica 69
◦
S 39

◦
E 11 60 –7.9 –16 0.6 0.74

a
N is the number of monthly mean observations coincident with the model output;

b
The bias

is the mean of (model-observed)/observed for the entire time series;
c

Mean bias (%) relative

to the mean observed CO;
d

Standard error of mean bias (∆);
e

R is the linear correlation
coefficient between model and observations.
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Fig. 1. Comparison of mean (1994–1998) CO from the model (black line) and GMD observa-
tions (red line). The red vertical bars and gray shaded area show the range of the observations
and model, respectively. Station locations are shown in Table 2.
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Fig. 2. A comparison of the JAL (red) and model (black) CO in the UT (9–13 km) for flights
between Tokyo, Japan and Sydney, Australia from 1994-1998, except September 1997 to May
1998. The red vertical bars and gray shaded areas show the range of the observations and
model, respectively.
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Fig. 3. A comparison of the MOZAIC (red) and model (black) CO for flights between East Asia
and Europe. The gray shaded area shows the range of the model during 1994–1998. The
aircraft data are from 2004.
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Fig. 4. Model winds (m/s) at 200 mb for October 1997.
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Fig. 5. The monthly-averaged CO perturbation (%) for (a) August, (b) September, (c) Octo-
ber, and (d) November 1997 caused by the Indonesian fires at 200 mb. The tropopause (red

line) is defined by Ertel’s potential vorticity (<3.5×10
−6

K m
2

kg
−1

s
−1

) or potential temperature
(<380 K), whichever gives the higher pressure. The contours are 1, 5, 10, 15, 20, 50, 75, 100,
and 200%.
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Fig. 6. The monthly-averaged CO perturbation (%) at 180
◦

longitude in October 1997 caused
by the Indonesian fires. Potential temperatures (K) are shown as yellow lines. The tropopause
is shown as a red line. The contours are 5, 10, 25, 50, 75, 100, 125, and 150%.
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Fig. 7. The CO perturbation (%) in November 1997 caused by the Indonesian fires (a) near the
tropopause and (b) in the LS. The 380 K potential temperature (pink line) shows the approxi-
mate location of the tropopause. The contours are 1, 5, 10, 15, 20, 50, 75, and 100%.
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Fig. 8. The monthly-averaged mass perturbation of CO (%) in the TTL (dashes), LMS (solid),
and LS (green). The portions of the LMS perturbation in the NH (blue crosses) and SH (red
crosses) are shown. The TTL is the region below the tropopause (380 K in the tropics), but at
pressures <150 mb. The LMS is the region above the tropopause, but below Θ=380 K. The LS
is the region above Θ=380 K.

2239

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/2197/2007/acpd-7-2197-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/2197/2007/acpd-7-2197-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 2197–2248, 2007

Cross-tropopause

transport of biomass

burning pollution

B. N. Duncan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 9. (a) The monthly-averaged OH perturbation (%) as a zonal mean for October 1997.
(b) Same as (b), except for the Indian Ocean region only. (c) Same as (a), except for the
ozone perturbation (ppbv). (d) Same as (c), except for the Indian Ocean region only. Potential
temperatures (K) are shown as yellow lines. The tropopause is represented by a red line. The
contours for (a) and (b) are –1, –3, –5, –10, –15, and –20% and for (c) and (d) are 1, 3, 5, 7,
10, 12, and 15 ppbv.
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Fig. 10. Direct biomass burning emissions (Tg CO/month) from 30
◦
S–30

◦
N (top panel) and by

region (bottom panel).
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Fig. 11. The monthly-averaged CO perturbation (%) for (a) September 1994 near the surface,
(b) September at 200 mb, (c) October at 200 mb, and (d) October at 100 mb caused by the
biomass burning in southern Africa and South America. The tropopause is represented by a
red line or the 380 K potential temperature (pink line). The contours are 1, 5, 10, 15, 20, 50,
75, 100, and 200%.
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Fig. 12. The CO perturbation (%) from biomass burning in northern Africa at (a) 200 mb in
March and (b) 100 mb, near the tropopause, in April, from a model simulation forced by 1995
SSTs. The tropopause is represented by a red line or the 380 K potential temperature (pink
line). The contours are 1, 3, 5, 10, 15, 25, and 50%.
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Fig. 13. Same as Fig. 12, except for Southeast Asia in 1994.
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Fig. 14. The average CO concentration (ppbv) with the annual mean removed in the TTL (top
panel). The CO perturbation (ppbv) from biomass burning in South America (SAmer), southern
Africa (SAfr), northern Africa (NAfr), and Southeast Asia (SEAsia). The sum of all four regions
is also shown.
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Fig. 15. The same as Fig. 14, except for the LS. Note that the x-axis is shifted forward by two
months as compared to Fig. 14.
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Fig. 16. The same as Fig. 14, except for each hemisphere of the LMS. Note that the x-axis is
shifted forward by a month as compared to Fig. 14.
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Fig. 17. Top: The average CO concentration (ppbv) in the TTL for five years (1994-1998)
with the 5-yr mean removed. For clarity, 1994 and 1995 are shown as dashed lines. Middle:
The Oceanic Niño Index (degrees) from the Climate Prediction Center of the National Weather
Service, taken as 3-month running mean SST anomalies. The threshold is +/–0.5

◦
C for a

warm/cold episode. Bottom: The model’s mean convective mass flux (Pa/s) at 300 mb from
12

◦
S to 12

◦
N. The shaded area represents the minimum and maximum fluxes during 1994-

1998, excluding the 1997/98 El Niño event.
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