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Abstract. A sequential time dependent data assimilation
scheme based on the Kalman filter is applied to a spec-
tral wave model. Usually, the first guess covariance matri-
ces used in optimal interpolation schemes are exponential
spreading functions, which remain constant. In the present
work the first guess correlation errors evolve in time accord-
ing to the dynamic constraints of the wave model. A system
error noise is deduced and used to balance numerical errors.

The assimilation procedure is tested in a standard situa-
tion of swell propagation, where the Kalman filter is used
to assimilate the significant wave height. The evolution of
the wave field is described by a linear two-dimensional ad-
vection equation and the propagation of the error covariance
matrix is derived according to Kalman’s linear theory.

Model simulations were performed in a 2-dimensional do-
main with deep-water conditions, a relatively small surface
area and without wind forcing or dissipation. A true state
simulation and a first guess simulation were used to illustrate
the assimilation outcome, showing a reasonable performance
of the Kalman filter.

1 Introduction

The availability of third-generation wave models and the in-
creasingly capacity of oceanographic satellites to provide ac-
curate measurements of altimeter data and, more recently,
valuable directional information on the two-dimensional
wave spectrum, have contributed substantially to the devel-
opment of wave data assimilation. It is now clear that the as-
similation methodologies can improve the sea state descrip-
tion both analysed and wave model forecasts, especially in
swell dominated systems.

The early schemes developed for wave data assimilation
were based on optimal interpolation (OI) methods, that com-
bined significant wave height, mean period and directional
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data for updating the wave spectrum (Thomas, 1988; Esteva,
1988; Janssen et al., 1989, Lionello et al., 1992, 1995). These
are computational efficient methods and consequently they
have been tested in operational forecasting, using mainly al-
timeter data. However, the fact that forecast errors may be
non-uniformly distributed over the wave spectrum restricts
the enhancement achieved by wave height assimilation alone.
Some authors have made an effort to overcome this limita-
tion by merging altimeter and synthetic aperture radar (SAR)
data (Hasselmann et al., 1997). In particular, a generalisa-
tion of the simple OI scheme was developed by applying a
technique of spectral partitioning that allows to decompose
the spectrum into a relatively small number of wave systems,
each characterized by three integral spectral parameters (Ger-
ling, 1992; Voorrips et al., 1997). The optimal interpolation
schemes fit in the group of time independent assimilation
methods. They simply update the model first guess by adding
to it a weighted linear combination of the errors between the
model and the observations. The covariance matrix of the
observational and model errors determines the interpolation
weights. Being time independent, the model correlation er-
rors do not take into account the dynamic constraints of the
model, which is a major disadvantage of this method.

In what concerns time dependent methods two main
classes can be considered: sequential data assimilation meth-
ods and variational methods. The latter have been imple-
mented in wave models using adjoint techniques (De Valk
and Calkoen, 1989; de las Heras et al., 1992, 1994) or a
Green function method (Bauer et al., 1996). These varia-
tional methods have the benefit of avoiding the problem of
specifying the time history for the correlation errors of the
model and observation data. But if the intent is to achieve
an operational mode, several runs of the model are required
to perform the variational procedure, leading to the need
of large computational resources, as opposed to sequential
methods.

In this paper, a sequential time dependent data assimilation
scheme based on the Kalman filter is applied to a spectral
wave model. This assimilation method should be a natural
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step forward from the optimal interpolation scheme. The
main innovation is the introduction of time dependent cor-
relation errors, which evolve according to the dynamic con-
straints of the model. The assimilation procedure is tested in
a standard situation of swell propagation and the Kalman fil-
ter is used to assimilate the significant wave height, or more
precisely the surface elevation variance. In the present case,
the evolution of the wave field is described by a linear two-
dimensional advection equation and the propagation of the
error covariance matrix is derived according to Kalman’s lin-
ear theory.

2 The wave model

Stochastic or spectral models describe the propagation,
growth and dissipation of wind gravity waves in large scales.
The sea state is characterised by the spectral density action
N (t, x, y;σ, θ), a function of time, surface coordinates, rela-
tive frequency and direction. The associated spectral balance
equation is given by

∂N

∂t
+

∂

∂x
(cxN) +

∂
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(
cyN

)
+

∂

∂θ
(cθN) +

∂
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S (N)

σ
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where the first term represents local time variations, the sec-
ond and third term space propagation, the fourth the refrac-
tion essentially induced by bottom variations in space and
the fifth term the Doppler shift induced by the presence of
currents. The quantitiescx , cy , cθ andcσ represent the ve-
locities in geographic space, direction space and frequency
space, respectively. The functionalS (N) describes all the
relevant energy transfer processes, and is generally decom-
posed into four terms

S = Swg + Sdiss + Snl + Sbot (2)

namely, the wind wave growth, the white capping and wave
breaking dissipation, non-linear wave interactions and bot-
tom dissipation.

The wave parameters, such as the significant wave height,
the mean period and the mean direction are obtained from
spectral averaging. In particular, the significant wave height
(Hs) is defined as

Hs = 4

(∫
Fdσdθ

)1/2

(3)

whereF (t, x, y;σ, θ) is the wave spectral energy, related to
the spectral density action according to

N =
F

σ
(4)

If currents (tidal or others origins) are not considered,
Eq. (1) can be written in a simpler form in terms of the wave
spectral energy. It can be shown that
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A detailed presentation of the theory can be found in Whit-
man (1974) and Komen et al. (1994), along with explicit ex-
pressions for the velocities.

Specifying an equation for the significant wave height cor-
relations errors is essential to understand how this wave prop-
erty evolves in time. This can be accomplished by integrating
Eq. (5) in frequency and direction space, obtaining

∂9
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= 16

∫
S (F ) dσdθ (6)

where9=H 2
s is the surface elevation variance, which is pro-

portional to the wave energy (hereafter referred to as energy
or wave energy). The velocity components fieldscx , cy are
given by

ci =

∫
ciFdσdθ∫
Fdσdθ

i = x, y (7)

The non-linear wave interactions are an internal energy
transfer mechanism, conserving energy over the whole spec-
trum. The integration of this term in Eq. (6) is therefore zero.
The remaining source terms are assumed to be reasonably
well described by their first order approximation, resulting in
a quasi-linear dependence onF

S (F ) = α (F ) F (8)

The proportionality factorα is a functional ofF depending
on integrals over the spectra and on frequency and direction.
This applies to the strong non-linear processes of whitecap-
ping, dissipation by bottom friction and Miles wind wave
generation mechanism. Defining

α =

∫
α (F ) Fdσdθ∫

Fdσdθ
(9)

and taking into account Eq. (8), one can rewrite Eq. (6) as

∂9

∂t
+
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(cx9) +

∂
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(
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)
= α9 (10)

This quasi-linear two-dimensional advection equation, with
source terms, describes the evolution of the wave energy. It
has a decisive importance to the Kalman filter application, as
it prescribes a way to derive the time history of the energy
correlation errors. The sea state evolution is still given by
a full spectral calculation and in particular the velocity field
and the coefficientα, which are essential to solve Eq. (10),
always require the computation of the spectral Eq. (5).

Although in the setting up of Eq. (10) no explicit assump-
tions have been made about the form of the spectra, this
scheme for handling energy correlation errors should only
be totally valid for one-peaked spectra, corresponding to one
wave system. If the sea state is characterized by a multi-
peaked spectra (e.g. crossing of two separate swell systems
or a swell propagation over a local wind sea system) Eq. (10)
would certainly fail to reproduce the correct time behaviour
of the correlation errors since these different wave systems
are uncorrelated. The complete specification of the covari-
ance matrix would bear an impossible cost in practical ap-
plications. Yet, in real seas the coexistence of more than one
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wave system is not unusual. A way to circumvent this restric-
tion is to split the spectra accordingly and assuming that each
wave system evolves independently with no correlation. Ne-
glecting non-linear interactions between different wave sys-
tems would then permit Eq. (10) to be applied to each parti-
tion. Naturally, the integrals in Eqs. (7) and (9) would also
have to be taken over each partition, defining a velocity and a
source coefficient for each wave system. However, this gen-
eralisation is only effective if the assimilated measurements
identify and capture each wave system. Clearly this is not the
case when one uses altimeter data.

3 The assimilation scheme

The sequential assimilation methods are usually called sin-
gle time level schemes. Depending on the availability of
measurements, the corrections to the model are made in a
series of time frames centred at a certain timeti . Contrary
to variational methods, the field evolution is not entirely con-
sistent with the model dynamics because a discontinuity is
introduced at each assimilation time. Also the success of se-
quential data assimilation depends strongly on the reliability
of the model first guess. On the other hand, sequential assim-
ilation has a clear advantage for operational implementation
since the model only has to run once.

The Kalman filter has been used extensively in oceanog-
raphy (Ghil and Malanotte-Rizzoli, 1991; Evensen, 1992,
1993) and a complete derivation can be found in Jazwinski
(1970). Here the focus is the application of the Kalman filter
to a spectral wave model. Assuming that the energy field is
represented at each given timetk by the N-dimensional vec-
tor 9k, with N=NxNy , whereNx andNy are the number of
grid points in thex andy direction, respectively, its evolution
in time can be formulated as

9
f
k = A9a

k−1 (11)

whereA is a linear operator advancing the state vector9

in time. The superscriptsf and a stand for forecast and
analysed estimate, respectively. The real system evolution
is given by

9 t
k = A9 t

k−1 + 1k (12)

where9 t
k is the true state vector attk, and1k is the system

error originating from numerical approximations, unsatisfac-
tory boundary conditions and deficient theoretical assump-
tions. The model correlation errors attk are defined as

P
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where〈〉 stands for the expected value and()T for the trans-
pose. The equation for the propagation of the model correla-
tion errors is then obtained from Eqs.(11)–(12) as

P
f
k = AP a

k−1A
T

+ Qk (14)

whereQk=
〈
1k1

T
k

〉
is the system error covariance.

The operatorA is derived from Eq. (10) and depends on
the numerical method used. Since the present work only
takes into account the propagation terms, a first order up-
winding scheme was chosen. Although first order schemes
have a larger numerical diffusion, compared to second or-
der schemes, they are simpler to implement and require less
computer resources. Considering this is an explicit integra-
tion and to fulfil numerical stability, the time step has to sat-
isfy the inequalityc≤1, wherec is the CFL number given

by 1t
(
cx

/
1x + cy

/
1y

)
. As explained before, Eq. (5) has

to lead the computation suite in order to provide the velocity
field and the factorα, used in the iteration rule of Eq. (14).

For the energy correlation error, the assimilation time step
is larger than the computation time step. Therefore, between
assimilation points several iterations of Eq. (14) could be
made. In that case superscripta should be replaced byf .
At the assimilation time, the measurements available at some
points and can be related to the true state through the equa-
tion

9o
k = Lk9

t
k + δk (15)

where theNobs dimensional vector9o
k represents the obser-

vation state (Nobs is the number of assimilation points) and
δk is the measurement error term. TheNobs×N matrix Lk

projects the model space into the observational space. The
analysed estimate field is obtained according to

9a
k = 9

f
k + Kk

(
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k − Lk9
f
k

)
(16)

where theN×Nobs Kalman gain matrix is given by

Kk = P
f
k LT

k

(
LkP

f
k LT

k + Ok

)−1
(17)

and Ok=
〈
δkδ

T
k

〉
is the observation error covariance

Nobs×Nobs matrix. The Kalman matrix is able to scatter the
assimilation improvement to all grid points, a process domi-
nated by the spatial scales inherent to the model correlation
errors and by a compromise between model errors and obser-
vation errors. These scales evolve dynamically according to
the model constraints.

The observation error matrixO must be specified at each
assimilation time. Assuming uncorrelated measuring instru-
ments

Oij = δijRi i, j = 1, ..., Nobs (18)

whereδij is the Kronecker symbol andRi is the observation
error variance associated with assimilation pointi.

When the filter is applied to obtain an analysed estimate,
the model error is reduced and updated according to

P a
k = P

f
k − KkLkP

f
k (19)

However, as noted by Evensen (1992), this expression may
become negative due to numerical errors in regions of low
variance. To overcome this problem the equivalent equation
is used

P a
k = (I − KkLk) P

f
k (I − KkLk)

T
+ KkOkK

T
k , (20)
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which is given by the sum of two positive defined matrices.
Before running Eq. (5) for the next time step, the wave

spectra has to be updated and a correction is introduced in
the model through Eq. (16). The simplest way for the new
spectra to match the analysed energy is to consider the fol-
lowing equation

F a (σ, θ) = T F f (σ, θ) T =
9a

9f
(21)

at each grid point, whereF a andF f are the analysed and the
forecast spectra, respectively. The consistency of this choice
is discussed in Janssen et al. (1989) and Lionello et al. (1992)
and it is clear that this solution is only suitable when no major
feature of the true spectrum is absent in the model estimate.

For the test case studied in this article, the initial and the
incoming boundary conditions of the correlation errors are
defined according to

P
f
ij = σ

f
i σ

f
j exp

(
−

dij

D

)
i, j = 1, ..., N (22)

where

σ
f
i =

〈(
9

f
i − 9 t

i

)2
〉1/2

(23)

is the root-mean-square model error at grid pointi anddij

is the distance between the grid pointsi andj . The param-
eterD is a constant correlation length scale. The outgoing
boundary is treated as an open boundary.

The root-mean-square (Eq.23) is expressed with a pa-
rameterisation obtained from a statistical analysis of com-
parisons between model predictions and observations off the
Portuguese coast, namely

σ f
=

1

(1 + ε)1/2 (0.096+ 0.124Hs) . (24)

ε is an adjustable parameter defined as

ε1/2
=

σ o

σ f
(25)

The deduction of Eq. (24) follows Voorrips et al. (1997)
where it was assumed that the model estimate errors and the
observation errors are uncorrelated. In particular, Eq. (25)
implies that the observation error variance is given by

Ri = ε
(
σ

f
i

)2
(26)

This equation is used throughout the assimilation procedure
with the purpose of evaluating the observation error matrix
O.

The time iteration for correlation matrixP implies at each
step the knowledge of the system noise covarianceQ, which
depends on several inherent errors. In the Kalman frame-
work, the calculation of the system noiseQ is initiated from
some random distribution with zero average. Nevertheless,
to explicitly evaluate theQ matrix some assumptions, which
depend on the type of model errors one tries to minimise

(Zang and Malanotte-Rizzoli, 2003), have to be made. In
order to balance numerical diffusion analysis, an expression
for the system noise error is deduced (see Appendix A),

Qk =

(
exp

(
1s

D

)
− 1

)
Dg

(
AP k−1A

T
)

(27)

whereP is the off-diagonal part of the model covariance er-
rors covariance,Dg () stands for the diagonal part and1s for
grid point spacing. According to Eq. (27) only the variance
field is affected directly by this correction. At each grid point
it is given by the correlation error times 2c(1−c), summed
over the closest upwind grid points. The exponential factor
includes both the spatial resolution and the correlation scale
so thatQk→0 when1s→0 or D→+∞. The expression
(27), deduced to match numerical diffusion, has only two pa-
rameters. One is the CFL numberc, which depends on the
time step, the grid spacing and the velocity and should always
be close to one for numerical stability. The other is the scal-
ing parameterD from expression (22). As there is no sound
rule for prescribing the system noise matrix, the reliability of
expression (27) can only be validated by its results.

4 Results

A 2-dimensional domain, with deep-water conditions but a
relatively small surface area (400 km×600 km), was adopted.
The corresponding number of grid points is 81×121. At
this stage, the main goal is to understand and analyse the
model correlation errors evolution and the filter performance
in a simple case of swell propagation. For this reason, the
wind forcing and the dissipation mechanisms were not in-
cluded in Eqs. (5) and (14). In that case, the wave model
has to be solved as a boundary value problem and wave con-
ditions (significant wave height, peak period and wave di-
rection) must be specified along the incoming boundaries.
The incoming significant wave height is also used to define
the boundary conditions for the energy correlation errors, ac-
cording to Eqs. (22) and (24). In Table 1 the wave parameters
defining the boundary conditions for the true state and the
model state at the left top corner of the computation domain
are presented. They replicate the arrival of two comparable
wave systems each having a swell event around day 4. Fi-
nally, the free parametersD andε were fixed for the whole
set of simulations with the valuesD=60 km andε=0.2.

A stationary run of Eq. (5) is needed to estimate an initial
condition field. At each time step, the velocities are calcu-
lated using Eq. (7) and subsequently the operator A is deter-
mined. The model correlation errors are then solved for the
next time step according to Eq. (14). As soon as the process
of assimilation is done, energy observations9o

=H 2
S (taken

from the true state simulation) are used to obtain the analysed
energy field following Eq. (16). The correlation errors and
the wave spectra field are also corrected through Eqs. (20)
and (21), respectively.

To test the behaviour of the correlation errors time itera-
tion, Eq. (14) two simulations without assimilation have been
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Table 1. Boundary conditions for the true state and the model state.

Time True state Model state
Hs Tp Dir Hs Tp Dir

00.00 2.61 8.83 301.7 3.28 7.61 297.2
00.06 2.45 8.71 300.2 3.01 7.59 303.3
00.12 2.21 8.77 304.7 2.55 7.34 305.6
00.18 2.07 8.63 309.1 2.17 7.14 306.7
01.00 1.98 7.71 311.6 1.92 7.09 300.5
01.06 1.78 7.63 306.3 1.91 7.33 300.2
01.12 1.58 7.81 308.8 2.03 7.81 299.6
01.18 1.42 7.79 303.0 1.98 8.06 298.2
02.00 1.44 8.00 304.7 1.89 6.15 299.3
02.06 1.54 8.37 306.0 2.01 5.68 302.5
02.12 1.56 7.22 305.1 1.94 5.84 297.6
02.18 1.55 6.17 305.7 1.76 5.81 292.3
03.00 1.58 6.20 303.4 1.82 6.19 287.9
03.06 1.54 6.59 306.0 3.66 10.51 289.9
03.12 1.55 7.81 299.7 5.34 11.81 288.7
03.18 3.01 13.21 297.2 5.56 11.64 288.1
04.00 4.29 13.77 295.8 5.36 11.20 289.8
04.06 4.48 13.46 295.9 5.05 10.07 287.8
04.12 4.31 13.20 296.5 5.09 8.96 290.3
04.18 3.89 12.02 297.0 5.11 8.73 289.5
05.00 3.63 10.94 297.7 4.77 8.52 293.0
05.06 3.53 10.07 298.3 4.13 8.17 293.2
05.12 3.38 9.76 300.1 3.47 7.96 293.1
05.18 3.12 9.42 302.2 2.86 7.73 293.2
06.00 2.78 9.04 303.1 2.39 7.47 294.8
06.06 2.39 8.24 305.5 2.18 7.09 296.4
06.12 2.08 7.69 300.6 2.35 7.04 280.0
06.18 2.36 6.35 301.9 2.98 7.81 271.9
07.00 3.70 7.34 321.5 2.91 7.72 271.1
07.06 4.12 7.85 340.1 2.53 7.35 273.8
07.12 3.63 7.48 300.7 2.15 7.35 281.9
07.18 3.01 6.91 296.8 1.88 7.34 279.5
08.00 2.53 6.43 292.3 1.67 7.34 274.9
08.06 2.19 6.11 296.4 1.52 6.98 268.8
08.12 1.88 5.69 280.7 1.52 6.45 274.2
08.18 1.60 5.56 285.5 1.94 7.35 278.9
09.00 1.37 5.96 281.9 2.67 8.82 282.3

selected. The results obtained for the evolution of the model
errors variance P over one day are presented in Figs. 1 and
2, with and without the system noise error, respectively, as
defined in Eq. (27). Both simulations start at the beginning
of the swell event and each run shares the same boundary
condition. In general, the computation time step for evalu-
ating Eqs. (5) and (14) is less than one hour, satisfying the
conditionc≈1.

In the absence of a dynamical forcing, the variance errors
should propagate without any significant change. Except for
the small decrease expected to occur as the area occupied by
the waves is increasing (in this particular, variance errors be-
have like the energy). The time frames in Fig. 1 indicate,
however, a completely different behaviour of the variance er-
rors propagation. The incoming swell causes a sudden and

 
t = 0                                                              t = 3 

 
t = 6                                                             t = 9 

 
t = 12                                                            t = 15 

 
t = 18                                                             t = 21 

Fig. 1. Model error variance (m2) and group velocity field (m/s) at
different time levels, excluding the system noise error. The param-
eters’ valuesD=60 km andε=0.2 were used in this simulation.

fast increase in the variance field at the boundary, leading
to an enhanced numerical diffusion that generates a growing
peak inside the domain. As shown in Fig. 2, the introduction
of the system noise given by Eq. (27) balances this extrane-
ous effect. As a consequence, a smoother and more satis-
factory propagation of the variance errors is achieved. The
comparison shows that numerical errors could be reasonably
large, creating discrepancies in the order of 20%. Evensen
(1992) had already pointed out that the numerical diffusion
associated with the advection scheme can cause a significant
decrease of the variance field in regions of high velocity. The
use of a less diffusive scheme and higher resolution could
provide better results for the correlation error propagation but
this would increase excessively the computation time. Wider
covariance functions (large values ofD) would also decrease
the diffusion but at the expense of introducing unrealistic and
non-physical correlation scales.
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Fig. 2. Same as Fig. 1, but including the system noise error.

The three simulations presented hereafter aim to assess the
filter performance. The first one will be regarded as the true
state. The second one reproduces the model estimate with no
assimilation and the third one incorporates the assimilation
procedure in the second simulation. All these simulations in-
clude the system noise error. Since this example is solved as
a boundary value problem, the simulations were performed
with two close boundary conditions (see Table 1), one for
the true state and another for the model state.

The assimilation is carried out by inserting at two points
the respective true state values, taken here as the observations
values. The justification for this procedure lies in the fact that
“the true state” is merely a device for assessing the filter’s
performance.

The assimilation effect on the observation points is de-
picted in Fig. 3. The top figure shows results obtained at
coordinates (50, 400) (km) and the bottom figure the results
obtained at coordinates (150, 500) (km). The assimilation
time step is 6 h. The analysis converges to the true state, but

Fig. 3. Time history for the significant wave height at the assimi-
lation points. The solid line and the dashed line represent the true
state and the model state, respectively. The dot dash line represents
the analysed state obtained in the course of the assimilation process
based on the Kalman filter and in the following 6 h forecast.

Fig. 4. Energy root mean square difference between the true state
and the model state (solid line), the true state and the Kalman filter
simulation with no noise (dashed line), the true state and the Kalman
filter simulation with noise (dash dot line) and the true state and the
optimal interpolation assimilation scheme (dots).

this tendency is quickly inverted by the model boundary con-
ditions influence during the time interval between successive
assimilations. The swift hops between the analysis and the
forecast are more significant when the difference among the
true state and the model state increases, which is a typical be-
haviour of sequential methods whenever the conditions that
control the model evolution are kept unchanged after the as-
similation.

To have a global evaluation of the filter’s performance,
the root mean square (hereafter RMS) differences between
the true state and the model predictions (with and without
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assimilation) are computed at each time step and shown in
Fig. 4. It can be seen that there is a generalized reduction of
the RMS differences when the Kalman filter is used and that
this reduction is stronger when the mismatch is higher. But
large RMS values during important events are still observed.
These facts suggest that some features of the true state spec-
tra cannot be reproduced by the model only by an energy re-
normalisation. Further improvements should require also the
assimilation of the mean period and the subsequent spectra
reconstruction.

The overall filter’s performance is not sensitive to the in-
clusion of the system noise error. This could be explained
by the location of the assimilation points, which were chosen
close to the incoming boundary, where the smoothness intro-
duced by the noise error is not substantial. Figures 1 and 2
show that the diffusion effect is more pronounced downward,
hardly affecting the assimilation.

A simulation using the OI assimilation scheme is included
additionally in order to compare its results with the Kalman
filter. The optimal interpolation technique is also based on a
sequential correction by combining the model estimate with
its observed counterpart through the update Eq. (16). The
weighting coefficients are given by the Kalman gain Eq. (17)
too. However, the model correlation errors, computed ac-
cording to Eq. (22), remain fixed at all times. The compari-
son between the Kalman filter and the OI scheme shows that
the former exhibits a better overall behaviour, especially in
events where the deviations from the true state are important.

5 Conclusions

A Kalman filter assimilation scheme has been implemented
in an ocean wave model. A simple case of linear advection in
a two-dimensional space, particularly suitable for the simula-
tion of a well-developed swell, was tested. The wind-driven
forcing and the dissipations mechanisms were ignored, im-
plying that the correlation matrix depends just on the velocity
field.

It was found that the numerical errors of the energy corre-
lation errors time iteration could be large. To minimize the
model covariance errors propagation to an acceptable level,
an expression for the system noise was introduced. This cor-
rection is responsible for offsetting most of the numerical
diffusion originated by the advection scheme, keeping the
solution stable over the nine days during which the simula-
tion took place. This way, the use of higher order numerical
methods seems to be avoidable, simplifying considerably the
computational approach.

A true state simulation and a first guess simulation were
used to illustrate the assimilation results and the improve-
ment brought by the Kalman filter. Another finding that
comes out of the experiment is the insufficiency of assimilat-
ing only the Hs. The mean period and the average direction
should be included in the assimilation structure as well. This
inclusion would increase extensively the numerical handling
of the Kalman filter.

The comparison between a first order scheme, considering
noise error, and a less diffusive scheme without noise error
is an interesting point to be addressed in future investiga-
tions. This would emphasize how the system noise, given
by Eq. (27) and designed to balance the model discrepan-
cies, would perform. Naturally, the analysis of a wind-driven
case is the real judgement of this assimilation method. The
inclusion of the wind forcing would show the Kalman filter
handling the correlation scaling induced by the dynamics.

Appendix A System noise error

For simplicity, let us consider 1D propagation along three
grid points, where grid point 1 is the incoming boundary. In
that case, the advection operator A for the upwinding scheme
is a 3×3 matrix given by

A =

1 0 0
c 1 − c 0
0 c 1 − c

 (A1)

wherec=cx1t/1x is the CFL number, depending on the
velocity cx , the time step1t and the grid space. According
to Eq. (14) and Eq. (A1) and neglecting the system noise
error, the variance error at grid point 2 at time levelk is

P k
2 = c2P k−1

1 + 2c(1 − c)P k−1
12 + (1 − c)2P k−1

2 (A2)

whereP k−1
1 and P k−1

2 are the variance error at time level
k − 1 in grid point 1 and 2, respectively, andP k−1

12 is the cor-
relation error between grid point 1 and grid point 2 at time
level k−1. If c=1 Eq. (A2) states thatP k

2 =P k−1
1 , which

means that the variance propagates from grid point 1 to grid
point 2, as expected. And yet, the Eq. (A2) does not produce
in general a correct advection forc 6=1. In fact, the propaga-
tion should follow the iteration rule

P k
2 = cP k−1

1 + (1 − c)P k−1
2 (A3)

To get the right equation for the error variance propaga-
tion a quantity is added to the second member of Eq. (A2) to
match the expected result, so

c2P k−1
1 + 2c(1 − c)P k−1

12 + (1 − c)2P k−1
2 + Qk

2

= cP k−1
1 + (1 − c)P k−1

2 (A4)

from which results

Qk
2 = c(1 − c)

(
P k−1

1 − 2P k−1
1 + P k−1

2

)
(A5)

From this viewpoint, the diagonal matrix Q defined in
Eq. (A5) is to be considered as a system noise error for
dealing with the numerical diffusion present in the iteration
scheme of the Eq. (A2). Defining the correlation error as
P k−1

12 =σ k−1
1 σ k−1

2 ak−1
12 and noting that the variances errors

are given byP k−1
1 =

(
σ k−1

1

)2
andP k−1

2 =

(
σ k−1

2

)2
, where
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σ k−1
i is the root-mean-square model error at grid pointi de-

fined in Eq. (23), will allow equation (A5) to be rewritten in
the equivalent form

Qk
2=c(1−c)

((
σ k−1

1 −σ k−1
2

)2
+2σ k−1

1 σ k−1
2

(
1−ak−1

12

))
(A6)

Neglecting the first term on the right hand side of Eq. (A6),
which is relatively smaller, gives

Qk
2 = 2c(1 − c)P k−1

12

(
exp

(
1x

D

)
− 1

)
(A7)

where an exponential decay was assumed for the correlation
errors. The former expression can be written in terms of the
advection operator A,

Qk
=

(
exp

(
1x

D

)
− 1

)
Dg

(
AP

k−1
AT

)
(A8)

where Dg() stands for diagonal part andP for the off-
diagonal part of the model covariance errors. This reason-
ing can be worked out for a 2D propagation showing that
Eq. (A8) is still valid in that situation.
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