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Abstract

What are the largest uncertainties in modelling ozone in the troposphere, and how do

they affect the calculated ozone budget? Published chemistry-transport model stud-

ies of tropospheric ozone differ significantly in their conclusions regarding the impor-

tance of the key processes controlling the ozone budget: influx from the stratosphere,5

chemical processing and surface deposition. This study surveys ozone budgets from

previous studies and demonstrates that about two thirds of the increase in ozone pro-

duction seen between early assessments and more recent model intercomparisons

can be accounted for by increased precursor emissions. Model studies using recent

estimates of emissions compare better with ozonesonde measurements than studies10

using older data, and the tropospheric burden of ozone is closer to that derived here

from measurement climatologies, 335±10 Tg. However, differences between individ-

ual model studies remain large and cannot be explained by surface precursor emis-

sions alone; cross-tropopause transport, wet and dry deposition, humidity, and light-

ning make large contributions to the differences seen between models. The importance15

of these processes is examined here using a chemistry-transport model to investigate

the sensitivity of the calculated ozone budget to different assumptions about emissions,

physical processes, meteorology and model resolution. The budget is particularly sen-

sitive to the magnitude and location of lightning NOx emissions, which remain poorly

constrained; the 3–8 TgN/yr range in recent model studies may account for a 10%20

difference in tropospheric ozone burden and a 1.4 year difference in CH4 lifetime. Dif-

ferences in humidity and dry deposition account for some of the variability in ozone

abundance and loss seen in previous studies, with smaller contributions from wet de-

position and stratospheric influx. At coarse model resolutions stratospheric influx is

systematically overestimated and dry deposition is underestimated; these differences25

are 5–8% at the 300–600 km grid-scales investigated here, similar in magnitude to the

changes induced by interannual variability in meteorology. However, a large proportion

of the variability between models remains unexplained, suggesting that differences in

1996

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1995/2007/acpd-7-1995-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1995/2007/acpd-7-1995-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 1995–2035, 2007

Sensitivities in

modelling global

tropospheric ozone

O. Wild

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

model chemistry and dynamics have a large impact on the calculated ozone budget,

and these should be the target of future model intercomparisons.

1 Introduction

Ozone is an important greenhouse gas, a major component of photochemical smog,

and the primary source of hydroxyl radicals which control the oxidizing capacity of the5

troposphere (e.g., Prather and Ehhalt, 2001). The abundance of O3 in the troposphere

is controlled by transport from the O3-rich stratosphere, by chemical production follow-

ing the oxidation of hydrocarbons and CO in the presence of nitrogen oxides (NOx)

and by removal via chemical destruction or dry deposition. The magnitudes of these

sources and sinks have not been reliably quantified, and observational constraints on10

them remain poor. The chemical lifetime of O3 in the troposphere, typically days to

weeks, is similar in magnitude to the dynamical timescales for transport and mixing,

and thus the factors controlling O3 are not easily separable. The net effects of chem-

ical processing are dependent on the balance between large production and destruc-

tion terms which dominate in different regions of the troposphere, and the importance15

of stratosphere-troposphere exchange (STE) is similarly dependent on the balance be-

tween downward transport of O3 from the stratosphere, mostly at mid-latitudes, and a

smaller upward flux in tropical regions. The equilibrium between these chemical and

dynamical fluxes constitutes a buffering of tropospheric O3, and poor estimates of one

or more of these governing processes may be masked by readjustment of the others so20

that the abundance of O3 in the troposphere is not greatly affected. However, a quan-

titative understanding of the processes controlling the production, redistribution and

fate of O3 in the troposphere is required before a reliable assessment can be made of

how O3 may respond to changes in anthropogenic emissions of trace gases or global

climate.25

Global chemistry-transport models (CTMs) that simulate the chemical and dynami-

cal processes controlling O3 provide a self-consistent estimate of the key budget terms.
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Most CTMs can reproduce the seasonality and distribution of tropospheric O3 mea-

sured by ozonesondes in a climatological sense, but assessments of the relative im-

portance of the controlling processes vary widely (Prather and Ehhalt, 2001). Recent

model intercomparison studies estimate a net O3 influx of 550 Tg/yr from the strato-

sphere and a surface removal of 1000 Tg/yr by dry deposition, with net chemical pro-5

duction making up the balance of 450 Tg/yr (Stevenson et al., 2006). However, there

are large differences between individual model studies in the importance of these terms

reflecting differences in their treatments of chemical and dynamical processes. These

differences highlight significant imperfections in our current understanding of the key

factors involved (e.g., in the magnitude and distribution of emissions, chemical process-10

ing, and convection) and in their numerical representation at computationally-tractable

temporal and spatial scales. CTMs are typically focussed on global-scale issues such

as attribution of climate impacts due to changing patterns of fossil fuel combustion

(Gauss et al., 2003; Dentener et al., 2006a), or assessment of the policy impacts of

intercontinental transport of oxidants on air quality (e.g., Holloway et al., 2003). Many15

of the chemical and dynamical processes controlling O3 in the troposphere occur at

much smaller temporal and spatial scales than can be resolved in these models, and

thus important processes are parameterized, introducing additional uncertainty. Never-

theless, improved understanding of the interactions between tropospheric composition

and climate, and in particular of how changes in climate may affect the sources and20

fate of tropospheric O3, requires that the principal terms in the O3 budget can be quan-

tified in a reliable and consistent way so that the sensitivity of the budget to changes

in transport, convection, chemistry and deposition can be evaluated reliably. Recent

model intercomparison exercises have suggested that this may not currently be the

case (Prather and Ehhalt, 2001; Stevenson et al., 2006).25

The aims of this paper are to explore the differences seen in previous model esti-

mates of the source and fate of tropospheric O3, and to investigate to what extent these

arise from the use of different input conditions or from differences in model formulation.

Differences in precursor emissions or meteorological data may mask the more sub-
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tle differences that reflect improved scientific understanding or deficiencies in process

representation. Identifying the source of these differences is important for reducing the

uncertainty in the modelled response of tropospheric O3 to applied changes and for

interpreting the results of multi-model “ensemble” studies. The sensitivity of the budget

terms to key model processes is explored here in a consistent way with a single model.5

Section 2 reviews tropospheric O3 budgets from published studies and highlights the

origins of some of the differences between them. Section 3 describes the limited obser-

vational constraints on the O3 budget. Section 4 then examines the sensitivity of the

budget terms to emissions, meteorology, and key physical processes and interprets

the variability seen in previous studies in light of these results. The implications of the10

results for future model intercomparison studies are outlined in Sect. 5.

2 Tropospheric ozone budgets in global models

A comparison of O3 budgets from published global model studies is presented in Ta-

ble 1. The studies are ordered chronologically by publication date, and statistics from

earlier studies summarised in the Intergovernmental Panel on Climate Change (IPCC)15

Third Assessment Report (TAR) Prather and Ehhalt (2001) are compared with those

published since 2000 to show how the calculated O3 budget has evolved. There

are large differences in the key terms between individual model studies: STE fluxes

vary by a factor of four (340–1440 Tg/yr), deposition fluxes vary by almost a factor

of three (530–1470 Tg/yr), and gross chemical production varies by a factor of two20

(2330–5260 Tg/yr). The tropospheric burden of O3 varies between 240 and 380 Tg.

However, these studies vary widely in their precursor emissions and in model formu-

lation and resolution. Many of the pioneering early studies used simplified chemistry

schemes omitting oxidation of non-methane hydrocarbons (NMHC), and a number of

them had unreasonably high estimates of stratospheric influx; compensation between25

the key terms in the budget leads several studies to conclude that the troposphere is

a net chemical sink of O3. Recent studies have benefited from more detailed chemi-
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cal schemes, improved understanding of the emissions of key precursor species, and

better quality meteorological data at higher spatial resolution. This has reduced the

variability in independent studies published since 2000 compared with those surveyed

in the IPCC-TAR, but the 1σ variability remains large: STE 530±100 Tg/yr, chemistry

400±250 Tg/yr, and deposition 950±220 Tg/yr. It is not clear how much of this variabil-5

ity is due to the use of different input data (e.g., emissions or meteorological data) and

how much is down to different model treatments of the key processes involved. These

studies have typically used their own definitions of the tropopause and of the chemical

fluxes constituting O3 production, making direct comparison of O3 burdens, lifetimes

and tendencies particularly difficult.10

A recent model intercomparison coordinated by the European Union project Atmo-

spheric Composition Change: the European Network of Excellence (ACCENT) in-

volved many of the models shown in Table 1 and aimed to reduce these uncertainties

by constraining precursor emissions and applying consistent tropopause diagnostics

across all participating models (Dentener et al., 2006a; Stevenson et al., 2006). The15

budget terms calculated in this study were higher than those from previous studies,

and the variability in the terms was also larger, despite the more tightly constrained

conditions. In particular, there is an increase in gross production between the IPCC-

TAR (3450 Tg/yr), studies published since 2000 (4470 Tg/yr) and the ACCENT inter-

comparison (5110 Tg/yr), which is accompanied by a 10% increase in O3 burden, a20

20% increase in deposition, and a drop in the tropospheric lifetime of O3 from 24 to

22 days. Higher estimates of precursor emissions make a substantial contribution to

the increased production, as noted in regression analyses by Wu et al. (2006). The

sensitivity of gross O3 production to surface emissions of NOx and isoprene (C5H8) is

shown in Fig. 1 for published studies and for individual models contributing to the AC-25

CENT intercomparison. While the strong dependence on surface emissions is clear,

there is a large scatter in these plots, even for the relatively well-constrained ACCENT

studies, indicating that other factors have an important influence on the budget. A major

goal of the present study is to investigate the effects of these processes more closely

2000
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using the tighter constraints imposed by application of a single model framework, and

ensuring that comparison of budget terms is fully self-consistent.

3 Constraints from observations

Of the budget terms considered here only influx of O3 from the stratosphere has been

adequately estimated from observational data. Murphy and Fahey (1994) used ob-5

served mid-latitude N2O–O3 correlations and an upward flux of N2O derived from a

budget analysis to derive a net downward flux of O3 of 450 Tg/yr, with a range of 200–

870 Tg/yr. Gettelman et al. (1997) used lower stratospheric O3 measurements and

calculations of the residual circulation to derive a net downward flux of 510 Tg/yr at

100 hPa (with a range of 450–590 Tg/yr). McLinden et al. (2000) reduced the uncer-10

tainty in the analysis of Murphy and Fahey (1994) by considering the tighter N2O–

NOy and NOy–O3 relationships separately, estimating a flux of 475±120 Tg/yr, and

further refinements by Olsen et al. (2001) led to the best estimate currently available,

550±140 Tg/yr. Most model studies published since 2000 fall within this range, and the

mean influx from the ACCENT model intercomparison was 552 Tg/yr. However, This15

agreement masks significant differences in the magnitude of gross cross-tropopause

fluxes and in treatment of stratospheric O3, and does not constitute an independent

comparison as some models apply a flux constraint through use of tuned upper bound-

ary conditions or an artificial stratospheric O3 tracer such as Synoz (McLinden et al.,

2000).20

In the absence of reliable observation-based estimates of global deposition fluxes

or chemical production, the best remaining constraint is on the abundance of O3 itself.

Without details of the seasonal, geographical and altitudinal variations in O3 from pre-

vious studies only a simple comparison of the mean annual global tropospheric burden

is possible here. However, the tropospheric O3 burden and its dependence on the defi-25

nition of the tropopause has not been evaluated previously. The tropospheric burden is

estimated here from three different climatologies built from available ozonesonde, satel-

2001
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lite and surface measurements, and using a number of different dynamical and thermal

definitions of the tropopause, see Table 2. The climatologies were interpolated onto

a common 4
◦
×5

◦
grid and integrated from the surface to a tracer tropopause defined

by a given abundance of O3 (100, 120 or 150 ppb), a thermal tropopause based on a

lapse rate of 2 K km
−1

following the WMO definition, or a dynamical tropopause based5

on potential vorticity (PV) using the lower of the PV=2.0 surface and the tropical 380 K

isentrope. For comparison, a cold-point tropopause based on the tropical temperature

minimum is shown (a WMO thermal tropopause was applied in the extra-tropics), and a

stepped-isobaric tropopause typical of crude model diagnostics is also used (100 hPa

in the tropics and 250 hPa poleward of 30
◦
). Thermal and dynamical tropopauses10

were calculated using monthly-mean data for year 2000 from the European Centre for

Medium-Range Weather Forecasts (ECMWF); burdens calculated with 1997 data dif-

fer by less than 2 Tg (<1%). These comparisons provide only crude estimates of the

true tropospheric burden, neglecting temporal or spatial variations in tropopause height

which may bias it high or low, but they provide a convenient benchmark against which15

model simulations can be compared.

Use of a tracer tropopause provides the greatest consistency in O3 burden for the

different climatologies, as differences in O3 distribution are suppressed. This definition

is the simplest to employ when comparing model studies, and based on the 150 ppb

level recommended by Prather and Ehhalt (2001) suggests a tropospheric burden of20

335±10 Tg for the three climatologies used here. Thermal definitions generally give

higher burdens, as noted by Bethan et al. (1996), and are more sensitive to O3 differ-

ences in the tropopause region and thus more variable; the WMO lapse-rate definition

gives a burden of about 352±30 Tg. Interestingly, the crude pressure tropopause gives

very similar burdens to the WMO lapse-rate tropopause for all three climatologies used25

here, but note that they are quite different for typical model fields (discussed below),

highlighting systematic differences in O3 distribution between modelled and climato-

logical fields. The PV=2.0 dynamical tropopause gives similar burdens to the 150 ppb

tracer tropopause for both model and climatological fields, and burdens are consistently
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lower than with the WMO lapse-rate definition.

There is considerable uncertainty in these estimates due to the sparse coverage of

ozonesonde sites, but the O3 burdens derived here are generally lower than the 370 Tg

burden recommended by Prather and Ehhalt (2001). The dynamical tropopause is rep-

resented well by the 150 ppb O3 tracer tropopause, and the mean burden of 344 Tg5

from the ACCENT model intercomparison (reduced to 336 Tg after removing model

outliers) (Stevenson et al., 2006) is in good agreement with the 335±10 Tg range es-

timated here from measurement climatology. The variability in burden for a single O3

distribution based on different definitions of the tropopause is as much as ±15%, sug-

gesting that differences in definition make an important contribution to the differences10

between model burdens shown in Table 1.

4 CTM sensitivity studies

The dependence of the calculated O3 budget on precursor emissions and on physical

and meteorological variables is investigated here with a global CTM. Altering variables

independently allows an assessment of their contributions to the model differences15

seen in Table 1, and use of a single model framework ensures that the comparison of

their relative importance is self-consistent. A similar approach has been adopted in a

recent study of uncertainties in a regional model (Mallet and Sportisse, 2006). Pre-

vious global studies have focussed on the effects of individual variables, e.g., hydro-

carbon oxidation (Houweling et al., 1998; Roelofs and Lelieveld, 2000; von Kuhlmann20

et al., 2004), STE (Wauben et al., 1998), model resolution (von Kuhlmann et al., 2003;

Wild and Prather, 2006), lightning NOx emissions (Labrador et al., 2005), convection

(Lawrence et al., 2003; Doherty et al., 2005), and interannual variability in meteorol-

ogy (Zeng and Pyle, 2005), but have not compared their effects in a comprehensive or

systematic way.25

The model used here is the Frontier Research System for Global Change (FRSGC)

version of the University of California, Irvine (UCI) CTM described in Wild and Prather
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(2000) with the configuration used in Wild et al. (2004). Pieced-forecast meteorological

data generated by the European Centre for Medium-Range Weather Forecasts Inte-

grated Forecast System (ECMWF-IFS) are used to drive the model. The 70–80 runs

performed here use the same initial conditions and spin-up period, but a different vari-

able is altered in each case to quantify its effect on the O3 budget. The tropopause is5

diagnosed on-line using the 120 ppb abundance of Linoz, an O3-like tracer with a lin-

earised O3 chemistry in the stratosphere, no loss in the free troposphere and a 2-day

relaxation to 20 ppb at the surface (McLinden et al., 2000). For consistency with other

published studies, O3 budget terms are diagnosed from monthly-mean model output

based on a 150 ppb O3 tracer tropopause (Prather and Ehhalt, 2001; Stevenson et al.,10

2006). The difference in O3 burden between this diagnostic O3 tropopause and the

on-line Linoz tropopause is generally less than 10 Tg, about 3%.

Two sets of emissions scenarios are used in these experiments. The base scenario

(“BASE”) for NOx, CO and NMHC loosely represents 1990’s understanding, and is

taken from version 2 of the EDGAR database for 1990 (Olivier et al., 1996) with iso-15

prene emissions from Guenther et al. (1995) reduced to 220 TgC/yr following Hauglus-

taine et al. (1998). A second, updated scenario (“IIASA”) uses emission distributions

from EDGAR v3.2 for 1995 (Olivier and Berdowski, 2001) scaled to the year 2000 us-

ing emission data from the International Institute for Applied Systems Analysis (IIASA)

(Dentener et al., 2005), as recommended for the recent ACCENT model intercompari-20

son. The sensitivity studies described here use the BASE emissions unless otherwise

indicated, and are run with 1996 meteorology at T21L19 resolution (5.6
◦

resolution with

19 levels).

Model runs are evaluated by comparing with ozonesonde observations from the pe-

riod 1980–1993 (Logan, 1999), supplemented by additional data from the tropics be-25

tween 1997 and 2002 (Thompson et al., 2003). Monthly interannual mean O3 mixing

ratios at selected altitudes at each location are averaged over four latitude bands and

compared with monthly means from model simulations sampled at the same locations,

following the method of Stevenson et al. (2006), see Fig. 2. Three model scenar-
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ios are shown to illustrate the range of O3 responses: the control run (BASE), a run

with updated emissions (IIASA), and a run contributed to the ACCENT intercompari-

son (ACCENT) which used IIASA emissions in different model conditions (year 2000

meteorology with higher horizontal and vertical resolution, T42L37, and minor improve-

ments to model physics described in Wild and Prather, 2006). While the magnitude and5

seasonality of O3 are captured reasonably well in these runs, a number of discrepan-

cies clearly remain, most notably in the wintertime at Northern mid-latitudes and in

the tropical upper troposphere. The difference between BASE and IIASA runs shows

how changes in precursor emissions alone contribute to changes in O3; comparison

with observations suggests that emissions in the BASE scenario are too low, particu-10

larly in the tropics. Differences between the IIASA and ACCENT runs reflect changes

in meteorology and resolution, although differences in the tropical upper troposphere

are dominated by changes in the magnitude and vertical distribution of lightning NOx

emissions in the ACCENT run.

To provide a more quantitative measure of model performance, the mean bias and15

root mean square (RMS) error are calculated over the ten locations shown in Figure 2

weighted by pressure so that they are representative of the O3 burden. The annual

mean bias over these locations for the BASE, IIASA and ACCENT runs is –5.3, –1.0

and 1.6 ppb, respectively, and the RMS errors are 7.8, 4.6 and 4.3 ppb. Comparison

of the annual mean tropospheric O3 burden with climatologies provides an additional20

measure of model performance, see Table 2. Using the BASE emissions the O3 burden

is consistently low for all tropopause definitions; the comparison is best for the ACCENT

run where there is close agreement with the Fortuin and Kelder (1998) climatology. The

largest differences are seen for the simple diagnostic tropopause based on pressure,

reflecting differences in the geographical distribution of O3 in the tropopause region25

and the lack of longitudinal variation in the climatologies.

2005
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4.1 Sensitivity to precursor emissions

The dependence of O3 production on precursor emissions shown in Fig. 1 suggests

that increases in NOx and isoprene emissions between the IPCC-TAR survey and the

ACCENT studies make a large contribution to the differences seen in the calculated

O3 budget. To examine this, surface emissions of isoprene and NOx are increased5

independently by replacing the BASE emissions with the higher values recommended

for the ACCENT runs, see Table 3. The increase from 42 to 51 TgN/yr for NOx and

from 220 to 500 TgC/yr for isoprene each contribute an additional 450 Tg of O3 produc-

tion per year. Scaled to the mean emission increases between the IPCC-TAR survey

and the ACCENT studies, these changes account for about 1100 Tg/yr of additional10

production, 66% of the 1660 Tg/yr increase in mean production between the studies.

Production is enhanced more with increased isoprene than with increased NOx, but

a greater proportion of this occurs in the boundary layer where surface deposition is

greater, and thus the increase in the tropospheric burden is less. Higher NOx and iso-

prene emissions both lead to a decrease in the lifetime of tropospheric O3 to loss by15

chemistry and deposition, but they have opposing effects on the lifetime of CH4, as NOx

is a net source of OH while isoprene is a net sink. The greatly reduced mean bias and

RMS error compared with ozonesonde data suggest that the higher NOx and isoprene

emissions recommended for the ACCENT runs are more appropriate for present-day

studies than those in the BASE scenario.20

These emission scenarios are compared with those used in the OxComp model

intercomparison conducted for the IPCC-TAR (Prather and Ehhalt, 2001), and with the

IIASA emissions. The OxComp emissions give very similar budget changes to the

increased-NOx run, BASE+N, and the IIASA emissions give budgets similar to the

increased-NOx and isoprene run, BASE+NI. Although the differences in the O3 lifetime25

between these runs and the equivalent BASE runs are small, the CH4 lifetime changes

significantly as emissions of CO and NMHC differ in the OxComp and IIASA scenarios.

To explore the full sensitivity of the O3 budget to emissions of NOx and isoprene, a
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series of 20 runs have been performed using isoprene emissions of 0, 220, 350, 500

and 650 TgC/yr and NOx emissions of 30, 42, 51 and 60 TgN/yr. Isoprene emissions

were scaled linearly on the distribution of Guenther et al. (1995), while NOx emissions

were varied non-linearly, with the 30 TgN/yr scenario representing 1970 conditions and

the 60 TgN/yr scenario scaled to IIASA current-legislation emissions for 2030 (Den-5

tener et al., 2005). The variation in key budget terms is shown in Fig. 3. The gross pro-

duction and burden of O3 both increase steadily with increasing precursor emissions,

consistent with the changes seen in the published budgets (see Fig. 1 and Table 1)

and the O3 lifetime is reduced as chemical destruction and deposition increase. The

contrasting effects of NOx and isoprene on OH lead to a balance such that the CH410

lifetime remains little affected, but the gradient of the slope is steep, and small changes

in either NOx or isoprene can affect the lifetime substantially.

Note that the effects seen here are dependent on the complexity of the chemical

scheme used in the model. The simplified scheme used here does not include iso-

prene nitrates, and more detailed studies treating their formation and deposition have15

found this to be a significant channel for removal of both isoprene intermediates and

NOx (Pöschl et al., 2000; von Kuhlmann et al., 2004). It is not clear how many previ-

ous studies have included this pathway, but it has been shown to lead to stabilization

of O3 production with increasing isoprene emissions (Wu et al., 2006). The differing

complexity of chemical schemes may be an important source of differences between20

model studies and merits a more detailed investigation.

Table 3 also shows the sensitivity of the budget terms to the treatment of other hydro-

carbons. Use of a globally-uniform field of CH4 instead of CH4 emissions and chemical

integration avoids the long spin-up times associated with CH4, but has very little effect

on the O3 budget or lifetime. The CH4 lifetime is extended by about 5%, reflecting a25

higher atmospheric burden in the stratosphere when using a uniform field. Removal of

all NMHC emissions leads to a reduction in O3 production of about 900 Tg/yr, half of

which is due to isoprene, and a reduction in O3 burden of about 35 Tg (12%) compared

with the BASE scenario. These results are consistent with those of Houweling et al.

2007

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1995/2007/acpd-7-1995-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1995/2007/acpd-7-1995-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 1995–2035, 2007

Sensitivities in

modelling global

tropospheric ozone

O. Wild

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

(1998) shown in Table 1.

4.2 Sensitivity to physical processes

Meteorological and dynamical processes influence the production, mixing and removal

of O3 both directly and indirectly. Humidity, temperature and UV flux govern chem-

ical reaction rates, boundary layer turbulence and convection redistribute O3 and its5

precursors, influencing O3 production and removal, and deposition processes remove

O3 and soluble precursors. Ozone chemistry in the upper troposphere is influenced

by the magnitude and distribution of lightning-produced NOx emissions and by direct

influx of O3 from the stratosphere. Perturbation experiments are performed with the

FRSGC/UCI CTM to explore the effect of these processes on O3, and the impacts on10

the key budget terms are shown in Table 4. For compatibility with the emissions studies

in Sect. 4.1, the same BASE control run was used.

The stratospheric influx of O3 was increased by applying a consistent scaling of

stratospheric Linoz chemistry. This leads to increased chemical removal and deposi-

tion in the troposphere, but also to decreased O3 production, as noted by Wauben et al.15

(1998), due to faster removal of NOx. Of the additional O3 transported from the strato-

sphere, about 60% is destroyed chemically, 10% is deposited at the surface, and 30%

is accounted for by decreased production. Quantifying the impact of STE on the tropo-

spheric burden and lifetime of O3 is complicated by the choice of tropopause, however.

Applying a thermal or dynamical tropopause or using the same location as in the con-20

trol run leads to a large increase in the burden and an increase in lifetime associated

with additional O3 at high altitude. However, applying an O3 tracer tropopause leads

to a much smaller increment in the burden as the tropospheric domain shrinks, and

the O3 lifetime shows a marginal decrease, see Table 4. Use of a tracer tropopause

clearly damps the calculated budget response to changes in STE. As removal of O3 by25

dry deposition changes only slowly along with the burden, the net impact of chemistry,

P-L, is very sensitive to the STE flux used.

Dry deposition affects the O3 budget directly by surface removal of O3 and indirectly

2008
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by removal of precursors such as NOx and PAN. Increased deposition is balanced

largely by decreased chemical loss due to lower O3, with a small increase in production

caused by lower OH and hence an increased lifetime for NOx. The decreased chemical

loss is responsible for lower OH formation and hence for the increased CH4 lifetime.

The net impact of chemistry is very sensitive to dry deposition as the net STE flux5

changes only marginally in response to changes in the tropospheric burden. Note the

non-linear response of the dry deposition rate to the applied increases in deposition

velocity as the surface O3 abundance falls. In contrast, wet deposition does not affect

O3 directly but leads to the removal of soluble species such as HNO3 and H2O2 which

influence the availability of NOx and OH. Increasing removal of these species by 50%10

causes both production and loss of O3 to fall by about 2.5%, and the tropospheric

burden drops proportionately. The small drop in net chemical production is balanced by

reduced dry deposition, and the lifetime of O3 is little affected. However, the decrease

in OH leads to a significant increase in the lifetime of CH4, and the OH response is

60–90% larger than for equivalent changes in the dry deposition rate. A non-linear15

response is also evident here, as a 50% reduction in wet deposition rates has twice the

effect on the O3 burden and removal as a 50% increase.

The effects on oxidant chemistry of small, globally uniform changes in temperature

and humidity representing the uncertainty in meteorological fields are also examined.

Increases in temperature affect chemical reaction kinetics and lead to significantly in-20

creased O3 production and loss rates, but net production and other key budget terms

are largely unaffected, and the tropospheric burden drops by less than 1% for a tem-

perature rise of 5
◦
C. However, the faster chemistry leads to a higher abundance of

OH, and the CH4 lifetime is reduced by almost 10% for a 5
◦
C rise. This sensitivity of

CH4 oxidation to temperature provides a small negative feedback on climate warming,25

as noted by Fiore et al. (2006), and highlights temperature as a significant source of

uncertainty in model-derived CH4 lifetimes, as noted by Stevenson et al. (2000). In-

creased humidity leads to more efficient O3 loss and greater OH production. Additional

OH boosts O3 production, but this only makes up about 45% of the additional O3 loss,

2009
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and net production falls. Surface deposition falls by about 6% with a 20% increase in

humidity, balancing the increased chemical loss, and the O3 burden is reduced by 5%.

The global O3 burden is much more sensitive to changes in humidity than in temper-

ature, and the CH4 lifetime is also strongly affected. Note that the uncertainty in the

tropospheric water vapour burden in current climate models is about 10% (Stevenson5

et al., 2006), and this would introduce a 3% (9 Tg) variability in the O3 burden, a 3%

(0.8 day) variability in O3 lifetime and a 3% (0.3 year) variability in CH4 lifetime based

on these sensitivity studies..

Deep convection mixes O3-rich air from the upper troposphere down towards the

surface where the O3 lifetime is shorter and lifts freshly-emitted O3 precursors into10

the upper troposphere where O3 production may be greater. Previous studies with

and without convection have disagreed on the relative importance of these pathways,

with Lawrence et al. (2003) finding a 12% increase in O3 burden when including con-

vection due to the dominant effect of increased production, and Doherty et al. (2005)

finding a 14% decrease in burden as greater descent and destruction outweighed in-15

creased production. In the present study smaller changes in convection have been ap-

plied, and these were allowed to affect convective washout as well as lifting processes.

Stronger convection leads to increased O3 production in the upper troposphere but

to decreased production in the lower troposphere, where the washout of soluble pre-

cursors is greater. There is an increase in the inferred influx from the stratosphere,20

indicating that convection penetrates above the tracer tropopause used here. Greater

tropospheric overturning leads to higher surface O3 and greater deposition, and the

tropospheric burden decreases. Comparison with the wet deposition sensitivity runs

presented above suggests that this is partly due to increased washout, and that the

effect of lifting alone is small. These results lie midway between those presented by25

Lawrence et al. (2003) and Doherty et al. (2005), and highlight the large uncertainty

in modelled O3 responses to convection. It is not clear if this uncertainty reflects dif-

ferences in convection schemes, lightning emissions or chemical complexity, as dis-

cussed in Doherty et al. (2005), but the uncertainty is sufficiently large that this topic

2010
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would be a valuable target for future model intercomparison studies.

The magnitude and distribution of lightning-produced NOx emissions are highly un-

certain (e.g., Price et al., 1997) but are important for O3 due to the longer lifetime of

NOx in the upper troposphere and its greater efficiency for O3 production. Increased

emissions cause a large increase in production and in tropospheric burden, as seen in5

previous studies (Labrador et al., 2005); about 10% of the additional O3 produced is

removed by deposition, and the rest is destroyed by chemistry, contributing to a higher

abundance of OH and to a reduced CH4 lifetime. The sensitivity of the O3 burden and

the CH4 lifetime are notably larger than for the other processes considered here. The

range of lightning emissions used in the ACCENT model studies, 3–8 TgN/yr, would10

account for a 10% difference in O3 burden, a 0.7 day difference in O3 lifetime and a

1.4 year difference in CH4 lifetime between models. Note also that the study here uses

uniform vertical emission profiles for inter-cloud and cloud-to-ground lightning strokes

based on Price and Rind (1992). Inclusion of more realistic profiles based on observa-

tions (Pickering et al., 1998) (run Alt5) leads to a 25% greater increase in O3 production15

and a 50% greater increase in burden for the same 5 TgN/yr emissions, as a greater

proportion of the NOx emissions occur at high altitudes where the lifetimes of O3 and

NOx are longer.

Finally, a number of additional sensitivities related to model methodology have been

examined, see Table 4. The dry deposition scheme of Isaksen et al. (1985) used in20

some studies (e.g., Berntsen et al., 1996; Wild and Prather, 2000; Zeng and Pyle,

2005) is a simpler alternative to the resistances-in-series scheme of Wesely (1989)

used here. Application of this scheme with 1-m deposition velocities from Hough

(1991) leads to 30% greater O3 deposition, an additional 260 Tg/yr. Faster removal

of NOx suppresses production, but chemical destruction falls by a greater margin to25

compensate for the increased deposition. The tropospheric O3 burden is almost 10%

less than in the BASE run, and underestimation of the ozonesonde measurements sug-

gest that the deposition rate with this scheme is too high. However, the lack of good

observational constraints on deposition prevents this from being determined uniquely.

2011

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1995/2007/acpd-7-1995-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1995/2007/acpd-7-1995-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 1995–2035, 2007

Sensitivities in

modelling global

tropospheric ozone

O. Wild

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

The deposition rate is also reduced by application of a non-local boundary layer mixing

scheme (Holtslag and Boville, 1993) in place of the simple hourly bulk-mixing used in

the BASE run. Less efficient vertical mixing leads to stronger near-surface gradients

and reduced deposition of O3, but a smaller proportion of NOx escapes into the free

troposphere, so chemical production is suppressed. The net effect of these changes5

on the global burden is small, less than 1%.

A major source of uncertainty not considered here is in the calculation of photol-

ysis rates. A number of different methods are currently used, ranging in complexity

from tabulated rates based on climatological conditions to fully-interactive schemes

accounting for absorption and scattering of aerosol and cloud particles calculated on-10

line. A simple test removing all cloud cover in the interactive Fast-J scheme used here

(Wild et al., 2000) indicates that the global budget of O3 is relatively insensitive to cloud

cover. However, global O3 production at the surface is 15% higher without cloud cover,

balanced by lower production in the upper troposphere, and regional and seasonal dif-

ferences can be much larger. Tie et al. (2003) found larger global effects (as much as15

8%) suggesting that the impacts may depend on details of the cloud scheme used. In-

clusion of monthly-mean aerosol fields for the scattering code similarly lead to regional

differences in O3 production, but the global impacts appear to be small.

4.3 Sensitivity to meteorology and resolution

Differences in meteorological data may affect the O3 budget through self-consistent20

variations in the physical processes considered in Sect. 4.2. Meteorological data from

the ECMWF-IFS model for 1997 and 2000 are compared with the fields for 1996 used

in this study, and the impact on the O3 budget is shown in Table 5 and in Fig. 4. The

CTM is run at T21L19 with each meteorology, and is additionally run at T21L37 and

T42L37 to test the effects of doubled vertical and horizontal resolution. Precursor emis-25

sions are taken from IIASA for closer comparison with the ACCENT studies, and the

same emissions are used for each year. Total lightning NOx emissions are constrained

to 5 Tg/yr, although the location of the emissions differs from year to year following the

2012
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occurrence of deep convection events. Differences in O3 burden and lifetime between

the different years are small, but differences in STE, deposition and chemistry reach

7–8%. The lifetime of CH4 is 5% longer in 1997 than in 2000, suggesting that OH

levels are significantly lower and reflecting shifts in humidity and convection during the

1997–1998 El Niño period (Chandra et al., 1998; Sudo et al., 2001). The chemical pro-5

duction of O3 is lower in 1997, and influx from the stratosphere is greater. These results

are in good qualitative agreement with those of Zeng and Pyle (2005) who examined

the evolution of the O3 budget between 1990 and 2001 with a global climate model.

The magnitude of this interannual variability indicates that model intercomparisons fo-

cussed on differences due to chemical or dynamical schemes should recommend use10

of the same meteorological fields.

Model O3 budgets are sensitive to the horizontal and vertical resolution used, both

through their effects on transport and mixing processes and through their impacts

on O3 chemistry from the spatial averaging of emissions (e.g., Chatfield and Delany,

1990). At the highest resolution used here, T42L37, there is a significant reduction in15

STE (8%, 40 Tg/yr) compared with T21L19 due to better resolution of the tropopause

and there is an increase in surface deposition (5%, 40 Tg/yr). Increased net chemical

production (25%, 80 Tg/yr) balances the budget, but there is a 2–4% drop in the O3

burden. The magnitude of these effects is highly consistent for 1997 and 2000 mete-

orology, and confirms the results of previous studies (von Kuhlmann et al., 2003; Wild20

and Prather, 2006). The changes due to resolution seen here are similar in magnitude

to those with different meteorological fields, but are systematic in nature. Increased

vertical resolution has relatively little effect on gross chemical production or surface de-

position, but accounts for at least half of the decrease in STE and for about one third of

the increase in net production. Increased horizontal resolution dominates the changes25

in deposition and gross chemical production due to better localisation of boundary layer

O3, its production and convection, and better resolution of the tropopause region leads

to an additional reduction in STE. Although the mean tropospheric lifetime of O3 is only

marginally affected by increased resolution, the chemical lifetime of CH4 is substantially

2013
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increased, by as much as 5% for the 2000 case, reflecting lower OH and O3 production

at higher resolution.

4.4 Examining inter-model variability

To what extent do the sensitivities examined here account for the variability in published

model budgets seen in Table 1? The results of these sensitivity studies and of earlier5

published studies are shown in Fig. 5. The variability is examined in two different

parameter spaces which summarize the fate of O3 and the abundance of OH, following

Stevenson et al. (2006). Results from published model studies and from individual

models from the ACCENT model intercomparison are shown in Figs. 5a and b, and

results from the sensitivity studies over part of these parameter spaces are shown10

in Figs. 5c and d. The sensitivities examined here do not reflect the same level of

uncertainty in the different variables, but are intended to be loosely comparable so that

the relative importance of different processes is evident.

Differences in the abundance and fate of O3 are revealed by the relationship between

the tropospheric burden and the lifetime of O3 to chemical removal and deposition15

and are shown in Fig. 5a. Inclusion of hydrocarbon chemistry and increased surface

emissions lead to higher burdens and shorter lifetimes, but cannot account for the

large spread in lifetime and burden seen in the ACCENT studies where emissions

varied little. Figure 5c suggests that differences in humidity and in surface deposition

may make important contributions to this variation, as they affect the O3 burden and20

lifetime without changing gross tropospheric removal significantly. A 10% variation in

humidity and a 200 Tg/yr variation in dry deposition, as seen in the ACCENT studies

(Stevenson et al., 2006), could each account for 9 Tg in O3 burden and 1 day in O3

lifetime. Variations in temperature and convection have a similar but smaller effect.

Wet deposition and STE lead to changes in the gross removal of O3, but the scatter25

in this dimension is strongly influenced by emissions. Lightning NOx emissions varied

between 3 and 8 Tg/yr for the ACCENT models and may account for 30 Tg in O3 burden

and 500 Tg/yr in O3 removal. Isoprene emissions varied between 220 and 630 TgC/yr,

2014

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1995/2007/acpd-7-1995-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1995/2007/acpd-7-1995-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 1995–2035, 2007

Sensitivities in

modelling global

tropospheric ozone

O. Wild

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

and may thus account for 20 Tg in O3 burden and 650 Tg/yr in O3 removal. However,

the sensitivity studies performed here only account for a proportion of the variability

seen in the ACCENT runs, and it is likely that differences in chemical mechanisms and

model dynamics also make large contributions to this variability.

The relationship between the chemical loss of O3, governing the source of OH, and5

the lifetime of CH4, controlled by OH, is shown in Fig. 5b. The variability in this rela-

tionship is more restricted, and most points lie close to a single line, as processes that

increase O3 production and loss are associated with a higher level of OH and hence

with a shorter CH4 lifetime. Surface emissions of isoprene have a significantly different

effect, however, as greater OH formation from higher O3 production and loss is out-10

weighed by the direct removal of OH that initiates hydrocarbon oxidation, and thus CH4

lifetime increases with higher isoprene emissions as other studies have noted (von

Kuhlmann et al., 2004). Model studies omitting higher hydrocarbons underestimate

both O3 loss and CH4 lifetime. The mean chemical lifetime of CH4 from the ACCENT

studies is 9.8 years, close to the 9.6 years recommended by Prather and Ehhalt (2001),15

but the variability is large, 6.9–15.2 years. The variation in lightning emissions may ac-

count for almost 1.5 years in the CH4 lifetime, but differences in temperature, humidity,

wet and dry deposition, and STE also contribute significantly to this variability. The

abundance of OH is very sensitive to the chemistry and photolysis schemes used,

factors which are not quantified in this study. However, determination of the climate20

impacts of CH4 and other tracer gases depends on a reliable quantification of chemical

removal by OH, and the large variability seen in the ACCENT studies suggests that

further work is needed to reduce the uncertainty in current models.

To estimate the contribution of the processes examined here to the variability in the

budget terms from the ACCENT intercomparison, the terms are standardized by ap-25

plying correction factors based on the sensitivities derived with the FRSGC/UCI CTM,

see Table 6. A sensitivity factor for the change in each of these budget terms with re-

spect to STE, dry deposition, lightning and surface emissions is derived from Table 4,

and a correction factor is then applied for each model by scaling the fractional devia-
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tion from the ensemble mean by the respective sensitivity factor. The mean production

and loss terms decrease marginally, but the variability is significantly reduced, by more

than 100 Tg/yr for production and 200 Tg/yr for loss, and the difference between the

outlying models is reduced by almost 40%. The largest contributions to this reduced

variability in production come from standardizing the isoprene emissions and lightning5

NOx, while for loss the greatest impact is from standardizing deposition. The 1σ vari-

ability in the CH4 lifetime is reduced by about 25%, from 1.7 to 1.3 years, and lightning

NOx emissions make the largest contribution to this. Although this standardization is

approximate, it demonstrates that the biases imposed by the treatment of these pro-

cesses are systematic, and that the differences between models would be reduced in10

more tightly constrained studies.

5 Conclusions

This study has examined how the tropospheric O3 budget calculated in global CTMs

has evolved over the past decade and has explored the sensitivity of the key bud-

get terms to variability in precursor emissions, physical processes and meteorology.15

Large differences apparent in early CTM studies reflect overestimation of stratosphere-

troposphere exchange and omission of hydrocarbon chemistry. The increases in O3

production and tropospheric burden in more recent studies are principally due to use

of higher surface emissions of NOx and isoprene. Increases in these emissions alone

lead to an increase in O3 production of 1100 Tg/yr in the FRSGC/UCI CTM, accounting20

for about 66% of the increase in production seen between the IPCC-TAR and ACCENT

studies. Recent analysis by Wu et al. (2006) has shown similar results. Compari-

son with ozonesonde measurements suggests that precursor emissions used in earlier

studies were too low, and that O3 distributions are reproduced better with recent IIASA

emissions data.25

The burden of O3 in the troposphere in CTMs has increased from around 300 Tg

to around 340 Tg following the increase in precursor emissions, but is strongly influ-
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enced by the tropopause definition used. Comparison of three O3 climatologies with

seven different tropopause definitions suggests that as much as ±15% of the variability

in the burden may be due to the choice of tropopause. Recent model assessments

have recommended use of an O3 tracer tropopause of 150 ppb (Prather and Ehhalt,

2001), and this gives a tropospheric burden of 335±10 Tg based on the measurement5

climatologies used here. The mean burden from the ACCENT model intercomparison

is 344 Tg, close to this value, but the 1σ variability remains large, 39 Tg, even with con-

sistent use of the 150 ppb O3 tracer tropopause, highlighting substantial differences in

O3 distribution between the models.

Sensitivity studies have been performed to examine how differences in key model10

processes might account for the difference in O3 budget terms seen in the relatively

well-constrained ACCENT model intercomparison. The magnitude and vertical distri-

bution of lightning NOx emissions is shown to be a major source of uncertainty, and the

3–8 TgN/yr range in ACCENT study may account for a 10% difference in tropospheric

ozone burden and a 1.4 year difference in CH4 lifetime. Processes affecting the O315

distribution, such as dry deposition, STE, and convection, and those affecting chemi-

cal production and loss, such as temperature, humidity, photolysis and wet removal of

precursors, also have an important role and may account for much of the year-to-year

variability in the budgets of O3 and CH4. The uncertainty in these processes is not well

characterised, but dry deposition, STE and surface and lightning emissions account for20

about 25% of the model variability in the ACCENT intercomparison. The large spread

in CH4 lifetime suggests that the climate response of changes in O3 precursors in cur-

rent models may differ substantially. Tighter constraints on lightning NOx emissions

and meteorological fields would allow future model intercomparisons to focus more

closely on the impacts of different chemistry schemes and different parameterizations25

of convection and mixing which are difficult to discern from recent studies.

Further development of CTMs with greater chemical detail, better treatment of scav-

enging and aerosol processes and finer resolution of small-scale processes is expected

to lead to refinement of the O3 budget terms explored here. As improved parameteri-
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zations of the key processes become available, widely-differing models should start to

converge on the same budget terms, with differences driven only by interannual vari-

ability in meteorology and emissions. Tightly-constrained model intercomparisons will

continue to be valuable in identifying those areas where significant differences exist

between models, and should ultimately allow a more rigorous quantification of uncer-5

tainty in the key budget terms. Important targets for future intercomparisons should be

the distribution and speciation of NOy and the treatment of oxygenated VOCs, both of

which have been implicated in the ACCENT studies as major sources of uncertainty

(Dentener et al., 2006b; Shindell et al., 2006). Observational constraints on the key

terms in the O3 budget remain very poor, and improved estimates based on satellite or10

in-situ measurements would be valuable.
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Table 1. Global ozone budgets from published CTM studies
a
.

Emissions O3 Budget

Model Resolution
b

NOx CO HC
c

Isop P L P-L STE Dep Burd Reference

MOGUNTIA 10x10 L10 45 1550 0 0 3609 3183 427 528 953 253 Lelieveld and van Dorland (1995)

ECHAM3.2 T21 L19 40 1400 0 0 3206 3037 170 575 740 236 Roelofs and Lelieveld (1995)

IMAGES 5x5 L25 33 1428 322t 220 4550 4000 550 550 1100 — Müller and Brasseur (1995)

UIO 8x10 L9 35 1575 150 180 – – 295 846 1178 370 Berntsen et al. (1996)

GCTM 265 km L11 40 – 0 0 – – 128 696 825 298 Levy et al. (1997)

ECHAM4 T30 L19 38 1900 0 0 3415 3340 75 459 534 271 Roelofs and Lelieveld (1997)

ECHAM/TM3 3.8x5 L9 38 1089 0 0 2894 3149 –255 740 533 266 Houweling et al. (1998)

ECHAM/TM3 3.8x5 L9 38 1089 108 400 3979 4065 -86 768 681 311 Houweling et al. (1998)

HGISS 4x5 L9 42 1040 99 597 4100 3680 420 400 820 310 Wang et al. (1998)

MOZART T42 L25 43 1219 251t 220 3018 2511 507 391 898 – Hauglustaine et al. (1998)

CTMK 4x5 L15 38 – 0 0 3694 3719 –27 1429 1432 – Wauben et al. (1998)

CTMK 4x5 L15 38 – 0 0 3789 3536 252 1092 1363 – Wauben et al. (1998)

MATCH T21 L28 37 1350 0 0 2490 3300 –810 1440 620 – Crutzen et al. (1999)

MATCH-MPIC T63 L28 39 1500 0 0 2334 2812 –478 1103 621 – Lawrence et al. (1999)

HGISS-GCM 4x5 L9 40 1030 100 550 4330 3960 370 390 760 360 Mickley et al. (1999)

STOCHEM 5x5 L9 41 1033 197 446 4323 3888 435 432 862 316 Stevenson et al. (2000)

UCI 8x10 L9 44 1050 92 502 4229 3884 345 473 812 288 Wild and Prather (2000)

TM3 3.8x5 L9 46 1365 160 356 3314 3174 140 565 705 347 Lelieveld and Dentener (2000)

ECHAM4 T30 L19 38 1750 0 0 3663 3699 -36 607 570 271 Roelofs and Lelieveld (2000)

ECHAM4 T30 L19 38 1148 118 400 4375 4302 73 590 668 294 Roelofs and Lelieveld (2000)

GEOS-CHEM 4x5 L20 46 1043 103 397 4900 4300 600 470 1070 315 Bey et al. (2001)

GISS-GCM 4x5 L9 38 1175 0 0 – – 389 750 1140 262 Shindell et al. (2001)

CHASER T21 L32 44 1227 145t 400 4895 4498 397 593 990 322 Sudo et al. (2002)

MOZART2 T42 L34 44 1195 218t 410 5258 4749 509 343 857 362 Horowitz et al. (2003)

MATCH-MPIC T21 L28 43 1261 175 350 4170 4090 80 630 700 306 von Kuhlmann et al. (2003)

MATCH-MPIC T63 L28 43 1261 175 350 4560 4290 280 540 820 294 von Kuhlmann et al. (2003)

GISS-GCM 4x5 L23 40 988 100 176 – – 1049 417 1466 349 Shindell et al. (2003)

LMDz-INCA 2.5x3.8 L19 47 1364 0 0 4486 3918 567 523 1090 296 Hauglustaine et al. (2004)

UMD-CTM 4x5 L20 41 1132 54 503 – – – 479 1290 340 Park et al. (2004)

IMPACT 4x5 L52 38 1398 52t 502 – – 161 663 826 – Rotman et al. (2004)

STOCHEM 5x5 L9 50 1114 179t 507 4975 4421 554 395 949 273 Stevenson et al. (2004)

FRSGC/UCI T21 L19 42 1248 143 220 4091 3854 237 519 757 283 Wild et al. (2004)

SUNYA-GCCM T42 L18 43 1167 170 220 – – 513 606 1127 376 Wong et al. (2004)

All Models 33 studies 41 1270 94 240 3948 3745 245 636 902 307

(mean±std.dev) ±4 ±222 ±89 ±210 ±761 ±554 ±346 ±273 ±255 ±38

IPCC-TAR
d

12 studies 39 1285 75 195 3448 3435 46 765 818 304 Prather and Ehhalt (2001)

±3 ±293 ±89 ±232 ±730 ±505 ±403 ±380 ±265 ±32

post-2000 17 studies 43 1186 122 338 4465 4114 396 529 949 314

±3 ±122 ±66 ±162 ±514 ±409 ±247 ±105 ±222 ±33

ACCENT 21 models 51 1078 125t 470 5110 4668 442 552 1003 344 Stevenson et al. (2006)

±2 ±57 – ±66 ±606 ±727 ±309 ±168 ±200 ±39

a
Emissions and budgets are in Tg yr

−1
(TgN yr

−1
for NOx and TgC yr

−1
for hydrocarbons); dashes indicate budget

data unavailable.
b

Resolution in degrees (latitude by longitude) and number of model levels; spectral truncations of T21, T30, T42 and
T63 are used to label Gaussian grids with approximate resolutions of 5.6

◦
, 3.8

◦
, 2.8

◦
and 1.9

◦
respectively.

c
Non-methane hydrocarbons excluding isoprene and terpenes; t label indicates terpenes also emitted (an additional

100–170 TgC yr
−1

).
d

Selected studies published before 2000 shown in Table 4.12 of the IPCC Third Assessment Report, with Wauben
et al. (1998) corrected. 2025
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Table 2. Estimated annual mean tropospheric O3 burdens (in Tg) based on O3 climatologies

and FRSGC/UCI CTM fields with different definitions of the tropopause.

O3 Tracer Tropopause Pressure Thermal Tropopause Pot. Vorticity

O3 Fields 100 ppb 120 ppb 150 ppb 100/250 hPa WMO Cold Point 2.0 PVU

O3 Climatology

Li and Shine (1995) 295 318 344 382 383 408 362

Fortuin and Kelder (1998) 295 312 333 345 347 370 332

Logan (1999) 292 307 327 322 325 343 308

CTM O3 fields

BASE emissions 260 273 290 266 296 321 285

IIASA emissions 285 300 318 295 327 353 316

ACCENT run 303 316 331 313 338 363 323
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Table 3. Annual ozone budgets in the FRSGC/UCI CTM: sensitivity to precursor emissions
a
.

Emissions O3 Budget Lifetimes O3 Bias

Run Emissions Scenario NOx Isop CO P L P-L STE Dep Burd O3 CH4 Mean RMS

Sensitivity to Isoprene and NOx Emissions

Base EDGAR v.2 42 220 1248 4078 3842 236 519 756 290 23.0 9.07 –5.3 7.8

Base+I Increased isoprene 42 500 1248 4529 4224 305 513 817 303 21.9 9.59 –3.2 6.3

Base+N Increased NOx 51 220 1248 4512 4227 286 516 803 306 22.2 8.17 –2.8 6.1

Base+NI NOx and isoprene 51 500 1248 5022 4654 368 510 876 322 21.2 8.56 –0.4 5.1

OxComp OxComp emis 50 220 1550 4454 4166 288 515 802 304 22.3 8.90 –3.1 7.0

IIASA IIASA 2000 emis 51 500 1078 4926 4578 348 510 857 318 21.4 8.37 –1.0 4.6

Sensitivity to Hydrocarbon Emissions

Base EDGAR v.2 42 220 1248 4078 3842 236 519 756 290 23.0 9.07 –5.3 7.8

FixCH4 CH4 at 1760 ppb 42 220 1248 4117 3877 241 518 760 292 23.0 9.49 –5.0 7.5

NoIsop NMHC: no Isoprene 42 0 1248 3616 3469 146 525 675 274 24.1 8.75 –7.6 10.0

NoHVOC NMHC: C2H6 only 42 0 1248 3233 3183 50 528 584 258 25.0 8.57 –10.0 11.7

NoVOC NMHC: none 42 0 1248 3171 3138 33 529 568 255 25.1 8.52 –10.5 12.1

a
Emissions/budgets in Tg yr

−1
(TgN yr

−1
for NOx, TgC yr

−1
for isoprene); lifetimes in days for

O3 and years for CH4; biases in ppb.
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Table 4. Annual ozone budgets in the FRSGC/UCI CTM: sensitivity to physical processes
a
.

O3 Budget Lifetimes O3 Bias

Run Brief Description P L P-L STE Dep Burd O3 CH4 Mean RMS

Effects of Stratosphere-Troposphere Exchange

STE1 50% decreased O3 STE 4183 3700 484 253 737 281 23.1 9.20 –7.2 8.9

STE2 20% decreased O3 STE 4126 3776 351 395 746 286 23.1 9.13 –6.2 8.2

Base Control Run 4078 3842 236 519 756 290 23.0 9.07 –5.3 7.8

STE3 20% increased O3 STE 4047 3893 154 606 761 293 22.9 9.02 –4.6 7.4

STE4 50% increased O3 STE 3975 4013 -38 812 776 299 22.8 8.90 –3.0 7.1

Effects of Dry Deposition

Dry1 50% decreased dry dep 4051 4108 -57 517 460 302 24.1 8.78 –3.2 7.1

Dry2 20% decreased dry dep 4066 3936 130 518 649 295 23.5 8.97 –4.5 7.5

Base Control Run 4078 3842 236 519 756 290 23.0 9.07 –5.3 7.8

Dry3 20% increased dry dep 4091 3761 329 520 850 285 22.6 9.16 –5.9 8.2

Dry4 50% increased dry dep 4109 3656 453 521 975 280 22.0 9.28 –6.7 8.8

Effects of Wet Deposition

Wet1 50% decreased wet dep 4302 4046 255 517 772 300 22.7 8.52 –3.7 6.8

Wet2 20% decreased wet dep 4146 3905 242 518 760 293 22.9 8.89 –4.8 7.5

Base Control Run 4078 3842 236 519 756 290 23.0 9.07 –5.3 7.8

Wet3 20% increased wet dep 4028 3797 231 520 752 287 23.1 9.22 –5.6 8.1

Wet4 50% increased wet dep 3972 3745 227 521 749 285 23.1 9.40 –6.0 8.4

Effects of Temperature on Chemistry

Tem1 5
◦

C lower temperature 3940 3706 233 519 753 292 23.9 9.86 –4.8 7.4

Tem2 2
◦

C lower temperature 4019 3785 235 519 754 291 23.4 9.38 –5.1 7.7

Base Control Run 4078 3842 236 519 756 290 23.0 9.07 –5.3 7.8

Tem3 2
◦

C higher temperature 4141 3905 237 519 757 289 22.6 8.76 –5.4 7.9

Tem4 5
◦

C higher temperature 4245 4005 239 519 760 288 22.1 8.32 –5.5 8.1

Effects of Humidity on Chemistry

Hum1 20% decreased humidity 4030 3730 300 516 815 309 24.8 9.69 -2.3 6.0

Hum2 10% decreased humidity 4055 3789 266 518 783 299 23.8 9.35 -3.9 6.8

Base Control Run 4078 3842 236 519 756 290 23.0 9.07 -5.3 7.8

Hum3 10% increased humidity 4100 3891 209 520 731 282 22.3 8.82 -6.5 8.8

Hum4 20% increased humidity 4121 3936 185 521 709 275 21.6 8.61 -7.6 9.8

Effects of Convection

Cnv1 50% reduced convection 4118 3861 257 488 746 295 23.3 9.03 –4.9 7.5

Cnv2 20% reduced convection 4092 3850 242 508 751 291 23.1 9.05 –5.2 7.7

Base Control Run 4078 3842 236 519 756 290 23.0 9.07 –5.3 7.8

Cnv3 20% greater convection 4067 3837 230 529 760 289 22.9 9.08 –5.3 8.0

Cnv4 50% greater convection 4055 3830 224 542 767 287 22.8 9.09 –5.4 8.2

Effects of Lightning NOx

Lit1 No lightning NOx 3460 3284 176 524 701 260 23.8 11.03 –9.7 11.9

Lit2 50% decreased lightning 3802 3593 209 521 731 277 23.4 9.84 –7.2 9.5

Base Control Run (5 Tg NOx) 4078 3842 236 519 756 290 23.0 9.07 –5.3 7.8

Lit3 50% increased lightning 4316 4058 258 517 776 301 22.7 8.50 –3.6 6.6

Effects of Alternate Treatments

Alt1 Simple dry deposition 3914 3419 495 522 1019 268 22.0 9.67 –8.6 10.3

Alt2 non-local PBL mixing 3971 3799 172 519 691 288 23.4 9.20 –5.6 8.1

Alt3 Clear-sky photolysis 4060 3813 248 521 770 283 22.6 9.07 –6.1 8.7

Alt4 Aerosol in photolysis 4064 3830 233 519 753 290 23.1 9.13 –5.1 7.7

Alt5 C-profile lightning NOx 4236 4003 232 517 750 304 23.3 8.72 –3.5 6.6

a
Budgets in Tg yr

−1
; lifetimes in days for O3 and years for CH4; biases in ppb.
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Table 5. Annual ozone budgets in the FRSGC/UCI CTM: sensitivity to meteorology and

resolution
a
.

Meteorological Data O3 Budget Lifetimes O3 Bias

Run Description Resolution Year P L P-L STE Dep Burd O3 CH4 Mean RMS

Met96 IFS 1996 data T21 L19 1996 5247 4932 315 505 814 342 21.7 8.38 2.1 5.0

Met97 IFS 1997 data T21 L19 1997 4975 4663 312 535 849 336 22.2 8.79 0.9 5.9

Met97L – 37 levels T21 L37 1997 5103 4766 338 516 854 340 22.1 8.54 2.3 6.0

Met97R – T42 resolution T42 L37 1997 4982 4588 394 496 889 331 22.0 8.89 1.5 5.3

Met00 IFS 2000 data T21 L19 2000 5314 4972 342 524 869 345 21.5 8.02 2.4 5.6

Met00L – 37 levels T21 L37 2000 5310 4935 374 494 865 341 21.5 8.10 2.1 5.3

Met00R – T42 resolution T42 L37 2000 5160 4734 427 481 905 331 21.4 8.45 1.7 4.3

a
Budgets in Tg yr

−1
; lifetimes in days for O3 and years for CH4; biases in ppb.
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Table 6. Budget terms from the ACCENT model intercomparison corrected for differing emis-

sions, deposition and STE fluxes.

O3 Prod O3 Loss CH4 Lifetime

(Tg/yr) (Tg/yr) (years)

ACCENT study 5110±606 4668±727 9.79±1.74

Standardized values 5079±494 4639±513 9.71±1.33
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Fig. 1. Relationship between gross O3 production, P(O3), and precursor emissions for the

model studies described in Table 1 with and without hydrocarbon oxidation and for the ACCENT

model intercomparison studies described in Stevenson et al. (2006).
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Fig. 2. Comparison of the annual cycle of O3 in the FRSGC/UCI CTM with ozonesonde mea-

surements at 750, 500 and 250 hPa averaged over four latitude bands. Results for 3 model

simulations are shown: the BASE run (green), a run with IIASA emissions (red) and a T42L37

run for year 2000 with IIASA emissions (blue). Monthly mean mixing ratios at each site are

averaged over each band and are compared with model fields sampled in the same way; error

bars show the average interannual standard deviation at each station. Ozonesonde data are

from Logan (1999) and Thompson et al. (2003); the number of stations in each band is given

by “n”.
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Fig. 3. Isopleth plots showing the variations in O3 production, O3 burden and the tropospheric

lifetimes of O3 and CH4 for different combinations of NOx and Isoprene emissions using the

FRSGC/UCI CTM with 1996 meteorology at T21 resolution. The BASE run (“B”) and IIASA run

for the ACCENT studies (“A”) are indicated.
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Fig. 4. Effects of meteorology and model resolution on the annual flux of O3 through

stratosphere-troposphere exchange (STE), net chemistry (P-L) and surface deposition (Dep).
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Fig. 5. The relationship between the tropospheric burden of O3 and its lifetime to chemical

removal and deposition (left panels, a and c) and between the chemical removal of O3 and

the chemical lifetime of CH4 (right panels, b and d). The upper panels (a and b) show results

from published studies summarized in Table 1 and the lower panels (c and d) show the results

of sensitivity studies listed in Table 3. Tropospheric O3 removal rates are shown as diagonal

lines in the left panels (labelled in Tg/yr). For ease of comparison the domain of the sensitivity

studies shown in the lower panels c and d is highlighted in the upper panels with a box.
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