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Abstract. The fractal behaviour of the seismicity in the
Southern Iberian Peninsula is analysed by considering two
different series of data: the distance and the elapsed time
between consecutive seismic events recorded by the seismic
network of the Andalusian Institute of Geophysics (AIG).
The fractal analyses have been repeated by considering four
threshold magnitudes of 2.5, 3.0, 3.5 and 4.0. The re-scaled
analysis lets to determine if the seismicity shows strong ran-
domness or if it is characterised by time-persistence and
the cluster dimension indicates the degree of time and spa-
tial clustering of the seismicity. Another analysis, based
on the reconstruction theorem, permits to evaluate the mini-
mum number of nonlinear equations describing the dynam-
ical mechanism of the seismicity, its “loss of memory”, its
chaotic character and the instability of a possible predict-
ing algorithm. The results obtained depict some differences
depending on distances or elapsed times and the different
threshold levels of magnitude also lead to slightly different
results. Additionally, only a part of the fractal tools, the re-
scaled analysis, have been applied to five seismic crises in
the same area.

1 Introduction

The most relevant patterns of a complex nonlinear and dis-
sipative dynamical system, as that of the seismic activity,
can be determined by means of fractal theory. Some ex-
amples can be found in Smalley et al. (1987), who anal-
ysed earthquake clustering, Correig and Urquizú (1996), who
studied the chaotic behaviour of Coda waves, Correig et
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al. (1997a, b), who characterised the temporal occurrence
of events and studied the self-organised criticality of after-
shocks, and Urquiźu and Correig (1998), who analysed sev-
eral types of seismic signals. It has to be also mentioned the
book of Goltz (1997), where the fractal and chaotic proper-
ties of earthquakes are extensively analysed.

The elapsed times and distances between consecutive seis-
mic events belonging to the 1985–2000 Southern Iberian
Peninsula activity (Fig. 1a) are analysed by taking as
database the seismic catalogue of the Andalusian Institute of
Geophysics (IAG), which compiles more than 20 000 events.
With the aim of establishing the possible role of the seis-
mic magnitude, computations have been repeated for four
different threshold magnitudes of 2.5, 3.0, 3.5 and 4.0. The
Gutenberg-Richter law for this catalogue suggests that events
with magnitude less than 2.5 are not always well-detected
and therefore lower threshold magnitudes have not been con-
sidered. Additionally, if we want to obtain results with low
uncertainties, it is not advisable to apply fractal techniques
to series of distances and elapsed times of short length. Nev-
ertheless, the re-scaled analysis has been successfully used
to obtain the Hurst exponent for five seismic crises in the
Southern Iberian Peninsula, with the aim of detecting pos-
sible differences in the behaviour of the seismic crises and
the whole seismic catalogue. A detailed description of these
five crises can be found in Posadas et al. (2002). Complete-
ness of these sets of aftershocks is assured by the fulfilment
of the Omori’s law and by choosing magnitude intervals for
which the Gutemberg-Richter law is well fitted. Unfortu-
nately, other fractal techniques, as the cluster analysis and
analyses based on the reconstruction theorem need for longer
series of data and only the whole catalogue has been anal-
ysed.
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Table 1. Some characteristics of the complete seismic catalogue and 5 seismic crisis, from which the series of distances and elapsed times
between consecutive events are derived.

 mb range n0, events Recording time  θ (latitude) ϕ (longitude) 
5.2≥  5648 1985–2000 35ºN–40ºN -12ºW–0ºE 
0.3≥  1551 1985–2000 35ºN–40ºN -12ºW–0ºE 
5.3≥  441 1985–2000 35ºN–40ºN -12ºW–0ºE 

 
 IAG 

catalogue 
0.4≥  103 1985–2000 35ºN–40ºN -12ºW–0ºE 
5.1≥  346 Dec.1993–Mar. 1994 36.4ºN–37.0ºN 2.5ºW–3.3ºW Adra 

crisis ( 0.2≥ ) (764) 1985–2000 36.4ºN–37.0ºN 2.5ºW–3.3ºW 
5.1≥  101 5–15 Dec. 1988 36.99ºN–37.05ºN 3.8ºW–3.9ºW Agrón 

crisis ( 5.1≥ ) (525) 1985–2000 36.99ºN–37.05ºN 3.8ºW–3.9ºW 
5.2≥  56 Jun.1997–Jan. 1998 36.3ºN–36.7ºN 2.8ºW–3.4ºW Alborán 

crisis ( 0.2≥ ) (523) 1985–2000 36.3ºN–36.7ºN 2.8ºW–3.4ºW 
5.2≥  79 7–9 Jun.1989 36.9ºN–37.3ºN 4.4ºW–4.8ºW Antequera 

crisis ( 0.2≥ ) (288) 1985–2000 36.9ºN–37.3ºN 4.4ºW–4.8ºW 
0.2≥  146 Feb. –Jun.1985 37.1ºN–37.2ºN 4.1ºW–4.3ºW Loja 

crisis ( 0.2≥ ) (950) 1985–2000 37.1ºN–37.2ºN 4.1ºW–4.3ºW 
 
 
 For a better understanding of the database and an easier

discussion of the results, Table 1 includes some characteris-
tics of the different datasets employed.mb designs the range
of body-wave magnitude,n0 the number of events (number
of elements of the series to be analysed),t0 dates of the seis-
mic episode andθ andϕ the range of latitude and longitude
of the area where the seismic crisis was detected. Cases
within parenthesis correspond to sets of seismic events lo-
cated within the area defined by a seismic crisis, but extend-
ing in time to the 1985–2000 recording period. The well
detected minimum magnitude according to the Gutemberg-
Richter law is below 2.5 for some crisis due to the close mon-
itoring by the IAG of these areas.

2 Fractal techniques

A first approach to the fractal behaviour of the series consists
of the cluster analysis (Smalley et al., 1987; Korvin, 1992;
Posadas et al., 2002). The series of distances or elapsed times
between consecutive events are divided in different subsets,
each of them with the same numbern of elements.P (n, C0)

is defined as the probability of detecting in a subset ofn ele-
ments a distance or elapsed time exceeding a threshold value
C0, which will be given in kilometres or days depending on
the series analysed. If the series have a fractal behaviour,
P(n, C0) will depend onn according to the potential law

log[P(n, C0)] = a log[n] + b (1)

and the cluster dimensionD will be equal to 1−a. It should
be remembered that the fulfilment of the potential law (Eq. 1)
by the empiric data is a sign of fractal behaviour.

The re-scaled analysis and the Hurst exponent provide us
with another interesting point of view of the behaviour of
complex dynamic systems (Feder, 1988). Some examples of
this fractal technique, applied to different fields in geology

and geophysics, can be found in Korvin (1992) and Turcotte
(1992), among others. Very briefly, this process consists of
the evaluation of mean values, cumulative differences, max-
imum rangesR(n) of the integrated signal and standard de-
viationsS(n) for subsets of series with different numbern of
elements. If the fractal behaviour is confirmed, withH being
the Hurst exponent

R(n)

S(n)
= cnH . (2)

Values ofH close to 0.5 indicate randomness of the analysed
series, while values ofH clearly exceeding 0.5 indicate per-
sistence in the dynamical mechanism governing the seismic
activity.

One of the most complete descriptions of a complex dy-
namical system is achieved by means of a fractal analysis
based on the reconstruction theorem (Takens, 1981; Grass-
berger and Procaccia, 1983a, b). This analysis implies the
computation of the correlation dimensionµ, the Kolmogorov
entropyK and the Lyapunov exponentsλ.

The space of the dynamical system is reconstructed by
means of m-dimension vectors

Zi = {x(i), x(i + q), ..., x [i + q(m − 1)]} , (3)

which are generated from the seriesx(i) of elapsed times or
distances. The integer numberq is a shift parameter, which
is chosen equal to the lag order for which auto-correlation
function of the series analysed achieves its first null value.
Alternative ways of choosingq will be introduced in the in-
troduction of the results. The correlation dimension and the
Kolmogorov entropy are derived from the correlation integral
(Diks, 1999)

C(r) = lim
N→∞

{
1

N2

N∑
i,j=1

H
[
r −

∣∣Zi − Zj

∣∣]} (4)
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Fig. 1. Location of the area analysed (inner rectangle) with the
spatial distribution of seismic events recorded by the Andalusian
Institute of Geophysics.

H(•) represents the Heaviside function andZi andZj are
pairs of vectors of the space of the dynamical system. This
equation can be interpreted as the number of points of the
dynamical system inside a sphere of radiusr. The euclidean
metrics is assumed to evaluate the distance between pairs of
vectors (Zi , Zj ). After the definition of the correlation inte-
gral, it is straightforward to introduce the correlation dimen-
sion

µ = lim
r→0

log[C(r)]

log[r]
(5)

which constitutes a measure of the minimum number of non-
linear equations describing the dynamic system. In fact, a
stationary value ofµ is assumed to be a very good approach
to the correlation dimension for a high enough dimensionm,
usually designed as embedding dimensiondE . A high em-
bedding dimension is a sign of random behaviour of the dy-
namical system. Additionally, bearing in mind Eq. (4), the
Kolmogorov entropy (Cohen and Procaccia, 1983) is defined
as

K =
1

q
lim

m→∞
lim
r→0

[
ln

{
Cm(r)

Cm+1(r)

}]
, (6)

which is a consequence of the asymptotic evolution ofC(r)

(Diks, 1999)

Cm(r) ≈ rµe−qmK (7)

K is a definite positive parameter that measures the “loss of
memory” of the dynamical mechanism and characterises its
chaotic behaviour.K equal to zero would indicate a null
“loss of memory” and an absolutely deterministic mecha-
nism. On the contrary, a high value of the Kolmogorov en-
tropy is a sign of chaotic behaviour and relevant “loss of
memory”, which are outstanding shortcomings for a success-
ful forecasting of future states of the dynamical system. A

Table 2. Evolution of the cluster dimension,D, with the distance
and the elapsed time for different threshold levelsC0 given in km
and days. The square regression coefficients for the linear segments
in the log-log scale are included within parenthesis.

        mb=2.5          mb=3.0 
C0 (km) D C0 (km) D 

50 0.803 (0.978) 50 0.774 (0.999) 
100 0.699 (0.987) 100 0. 670 (0.999) 
150 0.593 (0.993) 150 0.581 (0.998) 
200 0.484 (0.996) 200 0.482 (0.992) 
250 0.370 (0.999) 250 0.333 (0.995) 
300 0.264 (0.999) 300 0.271 (0.997) 
350 0.215 (0.998) 350 0.179 (0.998) 
400 0.115 (0.999) 400 0.150 (0.998) 
450 0.058 (0.999) 450 0.120 (0.997) 
500 0.042 (0.999) 500 0.090 (0.997) 
550 0.023 (0.999) 550 0.075 (0.995) 

         mb=2.5        mb=3.0 
C0 (days) D C0 (days) D 

0.5 0.555 (0.984) 1.0 0.688 (0.979) 
1.0 0.396 (0.999) 2.0 0.551 (0.985) 
1.5 0.292 (0.999) 3.0 0.443 (0.991) 
2.0 0.223 (0.998) 4.0 0.351 (0.985) 
2.5 0.202 (0.997) 5.0 0.304 (0.989) 
3.0 0.155 (0.997) 6.0 0.264 (0.993) 
3.5 0.169 (0.998) 7.0 0.224 (0.989) 
4.0 0.136 (0.998) 8.0 0.215 (0.988) 
4.5 0.132 (0.997) 9.0 0.180 (0.992) 
5.0 0.108 (0.998) 10.0 0.147 (0.922) 
5.5 0.106 (0.997) 11.0 0.143 (0.995) 
6.0 0.102 (0.998) 12.0 0.110 (0.995) 
6.5 0.093 (0.998) 13.0 0.122 (0.997) 
7.0 0.081 (0.998) 14.0 0.105 (0.997) 
7.5 0.043 (0.997) 15.0 0.088 (0.995) 
8.0 0.040 (0.998) 16.0 0.103 (0.996) 

 

complete description of shortcomings that could appear in
the computation of the correlation dimension and the entropy
are described in Theiler (1988, 1990) and Diks (1999).

The last relevant feature of this fractal analysis are the Lya-
punov exponents, which are a measure of the instability of
the dynamical system. Very briefly, the largest Lyapunov ex-
ponentλ can be introduced as

λ = lim
i→∞

{
1

i
ln

∥∥∥∥ δZi

δZ0

∥∥∥∥}
(8)

with ‖•‖ being the norm of the Jacobian matrix,δZ0 an in-
finitesimal change in the starting point of the space of the
dynamical system andδZi the corresponding change for the
ith vector, reconstructed according to Eq. (3). Ifλ is pos-
itive, a future state of the dynamical system (the long-term
prediction) could strongly depend on uncertainties or pertur-
bations on the initial state, and unstable predictability will
characterise the process. A detailed description of a com-
putational algorithm to obtain not only the largest Lyapunov
exponent, but all the Lyapunov exponentsλj (j=1, . . . ,dE)
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Figure 2 

Fig. 2. Evolution of the probabilityP(n, C0) for series of distances.
The cases of seismic events equalling or exceeding magnitudes of
2.5 and 3.0 are computed for 11 different threshold values ofC0
ranging from 50 km (top) to 550 km (bottom) at intervals of 50 km.

can be found in Eckmann et al. (1986) and Stoop and Meier
(1988). From a practical point of view, the Lyapunov expo-
nents have to be computed for increasing values ofm, up to
observe their asymptotic evolution and to achieve the embed-
ding dimensiondE .

It has to be taken into account that the values of all the in-
troduced parameters could be strongly affected by a not high
enough number of reconstructed vectorsZi From a more
quantitatively point of view and according to Ruelle (1990),
a meaningful correlation dimensionµ should verify the re-
lationshipµ≤2ln(N), with N being the number of recon-
structed vectors. Whereas series of elapsed times and dis-
tances for the whole seismic catalogue are long enough to

Table 3. Hurst exponent,H , for the distance and elapsed time
between consecutive events and square regression coefficientsρ2.
Distinction is made between four different threshold magnitudes of
2.5, 3.0, 3.5 and 4.0.

Distance Elapsed time 

mb ρ2 H mb ρ2 H 

2.5 0.992 0.82 2.5 0.997 0.75 

3.0 0.993 0.80 3.0 0.997 0.75 

3.5 0.995 0.71 3.5 0.993 0.66 

4.0 0.980 0.62 4.0 0.975 0.65 

 

generate a high numberN of reconstructed vectors, those
generated from seismic crises (aftershocks of a main event)
are remarkably shorter and a high enough number of recon-
structed vectors for the fulfilment of Ruelle’s constraint is not
assured. Consequently, analyses based on the reconstruction
theorem are finally restricted to the whole seismic catalogue.

3 Results

With respect to the cluster analysis, we have to remember
that only series of elapsed times and distances between con-
secutive seismic events for the whole catalogue and magni-
tudes greater than 2.5 and 3.0 are long enough to obtain re-
liable results. Table 2 summarises the cluster dimensions,
D, obtained in each case. The square regression coefficients
are always close to 1.0, as the example shown in Fig. 2 sug-
gests, and summarised in Table 2. First, the relationship be-
tweenP (n, C0) andn departs systematically from a potential
law for high values ofn, or equivalently forP(n, C0) close
to 1.0, which is a quite common behaviour in some fractal
analyses. Then, the clustering dimensions derived for the
first threshold levels are doubtful, as they are obtained by
only fitting a very few points. Second, the number of fitted
points increases and dimensions are obtained with minor un-
certainty for higher threshold levels. In short, seismic events
associated with high elapsed times or distances tend to dis-
perse within the seismic catalogue, diminishing their cluster
dimension, in comparison with low and moderate threshold
values ofC0. Third, large threshold levels are associated
with cluster dimensions very close to 0 and a Poisson pro-
cess, without fractal structure, could model the case of high
elapsed times and long distances. In this way, the evolution
of the clustering dimension would suggest an intensification
of the fractal clustering with increasing values of the thresh-
old valueC0, but constrained by the mentioned behaviour for
large thresholds.

The re-scaled analysis is characterised by an almost per-
fect evolution of the maximum range and the standard devi-
ation of the series in terms of a potential law and the square
regression coefficients are in all cases very close to 1.0, as
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Figure 3a, 3b 
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Fig. 3. Examples of re-scaled analysis for the elapsed time between consecutive events of the whole catalogue and threshold magnitudes of
2.5 and 3.0(a) and for the distances and seismic crises of Loja and Antequera(b).

the two examples, shown in Fig. 3, illustrate. The set of
Hurst parameters obtained both for the whole catalogue and
for five seismic crises within the analysed area (Table 1) is
summarised in Tables 3 and 4, where the square regression
coefficients are included. According to Table 3 and the inter-
pretation of the Hurst exponent, a tendency towards random-
ness could be assumed when the threshold magnitudes in-
crease from 2.5 to 4.0, both for the elapsed times and for the
distances between consecutive events. The fact that the Hurst
exponent decreases with the threshold magnitude, showing
signs of a randomness, could be attributable to the relatively
low number of events formb greater than 3.5 and specially
for those greater than 4.0. Nevertheless, the potential Eq. (2)
performs very well empirical data, with square regression co-
efficients greater than 0.9. Consequently, the tendency to ran-
domness is a feature to be considered. It is also remarkable
that the mentioned behaviour should not be in agreement, at

least with respect to elapsed times, with results derived by
Bak et al. (2002), who obtained a universal behaviour for the
waiting times of earthquakes recorded in California, with a
simple unified scaling law from tens of seconds to tens of
years. With respect to distances between events, it should
be mentioned the work of Davidsen and Paczuski (2005),
who deduced for the Southern California seismic activity that
statistics of distances, ranging from 2 to 450 km, are inde-
pendent of the threshold magnitude as long as the catalogue
is complete.

The results depicted in Table 4 suggest clear signs of time-
persistence for the elapsed times derived from the seismic
crisis of Adra, Agŕon, Alboŕan and Loja, with Hurst expo-
nents exceeding 0.79 and achieving the highest value of 0.87
for Loja. Nevertheless, the value ofH for Antequera is quite
similar to those obtained for the series of distances derived
for Alborán and Adra crisis, which suggest some signs of
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Table 4. Hurst exponent,H , for the series of distances and elapsed
times derived from five seismic crisis within the area analysed.ρ2

represents the square regression coefficient.

Distance   Elapsed time   

Crisis H ρ2 Crisis H ρ2 

Adra 0.62 0.989 Adra 0.81 0.995 

Adra(1) 0.84 0.995 Adra(1) 0.85 0.997 

Agrón 0.78 0.993 Agrón 0.80 0.991 

Agrón(1) 0.82 0.997 Agrón(1) 0.85 0.994 

Alborán 0.66 0.992 Alborán 0.79 0.992 

Alborán(1) 0.83 0.993 Alborán(1) 0.86 0.995 

Antequera 0.65 0.995 Antequera 0.68 0.993 

Antequera (1) 0.80 0.992 Antequera (1) 0.86 0.988 

Loja 0.74 0.996 Loja 0.87 0.993 

Loja(1) 0.77 0.995 Loja(1) 0.81 0.998 

(1) Subset of the whole catalogue for Southern Spain covering  the same area. It includes the 
seismic crisis.  

 

Table 5. Embedding dimension,dE , Kolmogorov entropy,K, cor-
relation dimension,µ, and the two first positive Lyapunov expo-
nents,λ1 andλ2, for threshold magnitudes of 2.5 and 3.0.

D (km) T (days) 

mb 2.5 3.0 m 2.5 3.0 

dE 15 15 dE 14 14 

K 0.330 ± 0.021 0.215 ± 0.009 K 0.330 ± 0.009 0.232 ± 0.006 

µ 5.8 3.8 µ 4.1 2.4 

λ1 0.143 ± 0.003 0.167 ± 0.001 λ1 0.174 ± 0.004 0.178 ± 0.002 

λ2 0.105 ± 0.002 0.115 ± 0.001 λ2 0.121 ± 0.001 0.123 ± 0.004 

 

randomness. The other three crises, Antequera, Loja and spe-
cially Agrón, have a behaviour closer to persistence. Another
relevant feature is the comparison between Hurst exponents
derived for every seismic crisis and those derived taking a
subset of the whole catalogue, spatially coincident with the
geographical area of every crisis but extending in time to the
entire observational period (1985–2000). Whatever the se-
ries or area of crisis considered, it is worth mentioning that
the option covering all the recording period is always charac-
terised by an enhancement of persistence in front of random-
ness. Two relevant examples are those of Adra and Alborán,
for whichH increases 25–35% when the entire recording pe-
riod of the catalogue is considered.

Both cluster dimensions and Hurst exponents have been
obtained with a high degree of accuracy, in spite of the se-
ries of elapsed times and distances are not very long in some
cases (Table 1). Square regression coefficient achieves val-
ues exceeding 0.97, fact that suggests an evolution in terms
of potential laws. An illustrative example of the accuracy
obtained is illustrated by Figs. 3a and 3b, where the square
regression coefficients are very close to 1.0 and the uncer-
tainties onH are as much as±0.001.

With respect to the fractal analysis, based on the recon-
struction theorem, a question concerning the parameterq

used in the generation of reconstructed vectors have to be
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Figure 4 
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Fig. 4. Correlation function and correlation dimension (inner rect-
angle) for series of distances and elapsed times between consecutive
events. Reconstruction dimensions from 2 to 15 and from 2 to 11
are tested, respectively.

clarified. The correlation dimension and the Kolmogorov en-
tropy of a reconstructed system are independent ofq, except
for finite time series (Diks, 1999). Wu (1995) and Correig
et al. (1997), propose that a good approach of this parameter
should be given by the lag order of the first zero-crossing of
the autocorrelation function of the series analysed. Alterna-
tively, Diks (1999) and Buzug and Pfister (1992) assume that
a small value of q can be used if high embedding dimensions
are finally achieved. In fact, the time windowq(m−1) seems
to be the relevant factor of the reconstruction.

This last analysis, for the whole seismic catalogue, is sum-
marised in Table 5. Relevant differences are not observed
between the series of distances and elapsed times, at least
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with respect to Lyapunov exponents, Kolmogorov entropy
and embedding dimension. Consequently the “loss of mem-
ory” of the dynamical mechanism governing the seismicity
and the instability of a predictive algorithm should be quite
similar. Additionally, the relatively high value ofdE mani-
fests signs of randomness for both the spatial and temporal
evolution of the seismicity. Nevertheless, the correlation di-
mension suggests some differences in the complexity of the
non-linear equations describing the dynamical mechanism.

A relevant question is to chose the right interval ofr for a
wright computation of the parameterµ. The power law given
by Eq. (5) is many times disturbed by a set of effects, ex-
tensively discussed by Theiller (1988, 1990), and log{C(r)}

behaves linearly with log(r) for only a range ofr. As Cor-
reig and Urquiźu (1996) and Diks (1999) propose, a solution
consists of choosing the interval ofr for which the deriva-
tive of log[C(r)] with respect log[r] is approximately con-
stant. This procedure is equivalent to a visual inspection of
curvesC(r), detection of the linear range in a log-log scale
and computation of dimensionµ by means of a standard lin-
ear regression. Unfortunately, this process is difficult to im-
plement in computational routines and it requires a laborious
treatment. Figure 4 depicts an example of correlation inte-
gral and the corresponding dimension for events exceeding
or equalling to the threshold magnitude of 2.5. The linear
evolution of the correlation integral can be clearly observed
in a log-log scale for a relatively wide range of the argument
r. Nevertheless, a set of factors and shortcomings such as
lacunarity, sampling interval, random components or finite
length of the series (Theiler, 1988, 1990; Diks, 1999) leads
to relevant changes in the upper and lower limits for which
the correlation dimension can be accurately computed when
several reconstruction dimensionsm are attempted. In spite
of all these shortcomings, the evolution towards an asymp-
totic value of the correlation dimension for a high enough
dimensionm is observed. Figure 5 shows the evolution with
the reconstruction dimensionm of the Kolmogorov entropy
towards asymptotic values for the distances between consec-
utive events and threshold magnitude of 2.5 and 3.0. Accord-
ing to the interpretation ofK, the set of events exceeding or
equalling to 3.0 depicts minor “loss of memory” and chaotic
behaviour in comparison with those defined by the threshold
level of 2.5.

Finally, Fig. 6 describes the evolution of the first and sec-
ond Lyapunov exponents with the reconstruction dimension
m for seismic events with magnitudes exceeding or equalling
to 2.5 and 3.0, respectively, both for series of distances and
of elapsed times between consecutive seismic events. Even
though some differences are detected in the four cases, they
are not very relevant and the instability of a predictive mech-
anism of the seismicity should be assumed quite similar in
all cases.

A question that could be debatable is the estimation of
the correlation dimension, defined as the asymptotic value
achieved for a high enough embedding dimension. This
dimensiondE , and the associated correlation dimensionµ,
could be assumed well estimated due to the agreement with
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m >= 2.5
K= 0.330   0.021

m >= 3.0
K = 0.215   0.009+-
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Fig. 5. Asymptotic values achieved by the entropy after a high
enough dimension m for the series of distances between consecu-
tive events and threshold magnitudes of 2.5 and 3.0.

results derived from the evolution of the Kolmogorov entropy
and the Lyapunov exponents with dimensionm. In spite of
a slightly higher embedding dimension should not be dis-
carded, examples shown in Figs. 4, 5, and 6 suggest that
changes in entropy and Lyapunov exponents would be min-
ima and consequences concerning loss of memory, unstable
prediction and number of nonlinear equations describing the
dynamical system will be very similar.

4 Conclusions

The set of fractal analyses proposed (cluster dimension,
Hurst exponent, correlation dimension, Kolmogorov entropy
and Lyapunov exponents) manifests a fractal behaviour of
the seismic activity in the Southern Iberian Peninsula. The
dissipative dynamical system that should describe the seis-
mic activity in the Southern Iberian Peninsula is a nonlin-
ear underlying mechanism, with a relatively high number of
equations depending on the series and threshold magnitude
considered. The present objective is not to propose a system
of nonlinear equations to design a predictive schema for the
seismicity of the Southern Iberian Peninsula, but investigate
different behaviours for several thresholds levels, both for
elapsed times and distances. The prediction of the dynam-
ical system, with signs of chaotic and dissipative behaviour
due to the Kolmogorov entropies computed, seems to be
clearly unstable due to the presence of outstanding positive
Lyapunov exponents for all series and threshold magnitudes.
Nevertheless, these characteristics do not change remarkably
either with the series considered or with the threshold mag-
nitude. Only the evolution of the Hurst exponent with the
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Fig. 6. Evolution of the first and second Lyapunov exponents with the reconstruction dimensionm for seismic events with magnitudes
equalling or exceeding 2.5 and 3.0 for(a) series of distances and(b) series of elapsed times between consecutive seismic events.

increasing magnitude suggests that the use of just high mag-
nitudes does not simplify the predictive problem. On the con-
trary, it would become more complex and with outstanding
randomness. Moreover, the relatively large embedding di-
mension, for which values of entropy, correlation dimension
and Lyapunov exponents saturate, suggests the presence of
a relevant randomness in the dynamical mechanism. This
randomness, of course, increases the difficulties for earth-
quake prediction. These clear signs of randomness, chaotic
behaviour and unstable prediction of future states of seismic-
ity have been detected in other seismotectonic areas of the
Earth such as the Antarctica (Correig et al., 1997). Never-
theless, the predictive instability of the dynamical dissipative
system governing the seismicity is lesser in our case, as sug-
gested by a comparison of our Lyapunov exponents and those
derived by Correig et al. (1997).

The five seismic crises, which belong to the whole seismic
catalogue analysed, do not generate long enough series to ap-
ply the complete fractal analysis proposed for the entire cata-
logue. Nevertheless, a close look at Hurst exponents leads to
some interesting conclusions. Although the minimum mag-
nitude for most of the seismic crisis is lower than the mini-
mum well recorded magnitude of 2.5 for the entire catalogue,
due to the close monitoring of these crises, Hurst exponents
are similar to those derived for threshold magnitudes of 3.5
and 4.0, specially for the series of distances between events.
A certain degree of randomness, generated in both cases by
some loss on information concerning the seismic activity, can
be assumed. Magnitudes less than 2.5 have been discarded
in the first case and time length and space coverage of a
seismic crisis are considerably lesser than those offered by
the whole catalogue. Additionally, it can not be absolutely
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guaranteed that all aftershocks exceeding the threshold mag-
nitude have been detected by the seismic arrays. Another
question to mention is that Hurst exponents depart signifi-
cantly from randomness towards time-persistence when sub-
sets of the whole catalogue, covering the areas of every seis-
mic crisis, but expanding in time to the whole observational
period, are considered. Completeness of the catalogue, inter-
preted as appropriate time expand and spatial coverage, and
appropriate magnitude range, seem to be very important fac-
tors for the design of successful predictive algorithms.

Finally, a joint analysis of elapsed times and distances
could be another interesting point of view for a better un-
derstanding of the dynamical mechanism of the seismicity.
A first possibility could be based on a Lévy flight model
(Vázquez et al., 1998; Posadas et al., 2002). Alternatively,
Tosi et al. (2004) introduced a space-time combined correla-
tion integral and proposed time and space correlation dimen-
sions with very similar definitions to that used at present.
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Correig, A. M. and Urquiźu, M.: Chaotic behaviour of coda waves
in the Eastern Pyrenees, Geophys. J. Int., 126, 113–122, 1996.
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fractal approach to the clustering of earthquakes: application to
the seismicity of New Hebrides, Bull. Seism. Soc. Am., 77, 4,
1368–1381, 1987.

Stoop, R. and Meier, P. F.: Evaluation of Lyapunov exponents and
scaling functions from time series, J. Opt. Soc. Am. (B), 5, 1037–
1045, 1988.

Takens, F.: Detecting strange attractors in turbulence. In: Lecture
Note in Mathematics, edited by: Rand, D. A. and Young L. S.,
Springer, Berlin, 1981.

Theiler, J.: Lacunarity in a best estimator of fractal dimension,
Phys. Lett. (A), 133, 195–200, 1988.

Theiler, J.: Estimating fractal dimension, J. Opt. Soc. Am., 7, 1055–
1073, 1990.

Tosi, P., de Ruveis, V., Loreto, V., and Pietronero, L.: Influence
length and space-time correlation between earthquakes, Physics,
0409033,http://arxiv.org/abs/physics/0409033, 2004.

Turcotte, D. L.: Fractal and Chaos in Geology and Geophysics,
Cambridge University Press, New York, 1992.
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