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Abstract. We use a four-dimensional variational data assim-
ilation (4D-VAR) algorithm to observe the growth of 2-D
plumes from a point heat source. In order to test the pre-
dictability of the 4D-VAR technique for 2-D plumes, we per-
turb the initial conditions and compare the resulting predic-
tions to the predictions given by a direct numerical simula-
tion (DNS) without any 4D-VAR correction. We have stud-
ied plumes in fluids with Rayleigh numbers between 106 and
107 and Prandtl numbers between 0.7 and 70, and we find
the quality of the prediction to have a definite dependence
on both the Rayleigh and Prandtl numbers. As the Rayleigh
number is increased, so is the quality of the prediction, due
to an increase of the inertial effects in the adjoint equations
for momentum and energy. The horizon predictability time,
or how far into the future the 4D-VAR method can predict,
decreases as Rayleigh number increases. The quality of the
prediction is decreased as Prandtl number increases, how-
ever. Quality also decreases with increased prediction time.

1 Introduction

Scientists often do not know the exact initial conditions for
a numerical simulation. For example, a meteorologist can
never know the exact state of the atmosphere at a given time.
Therefore, there will always be errors in the initial condi-
tions for meteorological forecasts (Daley, 1991). Due to the
instability of the atmosphere with respect to small amplitude
perturbations, two slightly different states may evolve into
appreciably different states (Lorenz, 1982). This means that
atmospheric forecasts have an intrinsic upper bound to pre-
dictability of about two weeks (Lorenz, 1984). Similarly,
geophysicists cannot know the exact position of the conti-
nents in the past, nor the full temperature and velocity fields
at a given instant. Consequently, any numerical simulation of
mantle convection will always have uncertainties in the initial
conditions (Bunge et al., 2003; Ismail-Zadeh et al., 2004). It
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is even difficult to set initial conditions for simulations mod-
eling the behavior of individual plumes in the present mantle
since tomographic data can be noisy, and the resolution can
vary greatly with location.

The effect of inaccurate initial conditions can be decreased
using variational data assimilation (Courtier et al., 1993).
This method was developed by meteorologists to increase
the accuracy of weather predictions (Daley, 1991). Using
the adjoint equations allows the simulation to move back-
ward in time to correct inaccuracies in the initial conditions
(Courtier, 1997; Errico, 1997). For example, a weather fore-
cast is started with a set of initial conditions. These initial
conditions consist of measurements of the state of the atmo-
sphere and oceans at a given time. As the simulation is com-
puted, the meteorologists continue to collect more weather
data at future times. Variational data assimilation allows
them to add these observations into the model. The simu-
lation can then move backward in time to correct the old ini-
tial conditions and give results closer to the new observations
when the model reaches the point in time at which the new
observations were taken. This method allows meteorologists
to continually improve the data integrated into the simulation
with time and leads to more accurate forecasts. It also allows
data that occurs after the analysis time to be integrated into
the simulation (Zhu et al., 2003). For example, in climate
research one would want to integrate observations about the
present state of the atmosphere into a model that provides
information about the past state of the atmosphere.

Lack of knowledge about the initial conditions is a com-
mon problem in geophysical modeling. Often geophysicists
want to use the current state of a system to predict a system’s
previous state. A common example is locating the source
of a groundwater contaminant. This requires one to back-
ward model the present distribution of the contaminant to
its source. The adjoint equations provide the ideal means of
dealing with these questions because they express the back-
ward probability of a state, or the likelihood of the present
state resulting from a previous state (Neupauer and Wilson,
2001).



258 C. A. Hier Majumder et al.: Data assimilation for plume models

The adjoint equations have also been used to find the
thermal state of the Earth’s mantle in the mid-Cretaceous
(100 mya) (Bunge et al., 2003). This mantle study begins
with the present state of the mantle as known from seismic
tomography. It then moves backward and forward in time
while using variational data assimilation to incorporate data
from past plate motions and decrease the residuals. The cor-
rection process becomes stationary after 100 iterations, and
the final output is a thermal picture of the mantle 100 mya.

Four-dimensional variational data assimilation (4D-VAR)
takes advantage of the powers of both the adjoint equations
and variational data assimilation. It uses a periodic update of
the adjoint sensitivity field to integrate time distributed ob-
servations into the simulation (Daescu and Navon, 2003). It
has been used in simulations of floods in river and dam sys-
tems (Bélanger and Vincent, 2005; Bélanger et al., 2003).
These simulations need river height as an initial condition.
The river height, however, can be quite variable due to pre-
cipitation and water discharge throughout the watershed. It is
impossible to know in advance the exact river height this type
of system will experience. Therefore, the initial river height
used is always erroneous. With variational data assimilation
the modeler can develop a simulation that is less dependent
on the error in the initial river height.

This study focuses on the behavior of thermal plumes.
Plumes of type are important to a wide variety of phenomena,
including mantle convection (Kaminski and Jaupart, 2003;
Lithgow-Bertelloni et al., 2001), deep sea thermals (Lavelle,
1997), solar convection (Rast, 1998, 2000), and fires (Cete-
gen et al., 1998). Many advances have been made in the
past ten years on the development of laboratory experimen-
tal techniques for the study of finite Prandtl plumes (Moses
et al., 1993; Cetegen et al., 1998; Lithgow-Bertelloni et al.,
2001; Kaminski and Jaupart, 2003). The 4D-VAR technique
discussed here can be used as an optimal control tool to allow
experimentalists to check their ongoing experiments in real
time or even as a prediction technique to help determine the
expected behavior at some future time. Although the method
developed here deals with finite Prandtl plumes, it can be eas-
ily adpated for use with the infinite Prandtl equations. This
would allow the technique to be used to incorporate seismic
tomography data available for mantle plumes (Montelli et al.,
2004; Zhao, 2001) into numerical models.

The goal of our study is to use the 4D-VAR method to
prove that we can predict the behavior of turbulent, finite-
Prandtl plumes even if we do not have a complete knowledge
of their initial conditions. We know both the initial and final
states of a plume with a defined set of initial conditions. We
call this data our “observations”. We take our defined initial
conditions and add a small error to them. We then use the
4D-VAR method to test whether we can predict the behavior
of the plume using the erroneous initial conditions. We refer
to the plume calculated from the erroneous initial conditions
as the “forecast” or “prediction”. For a given time, we iter-
ate forward/backward and look at the residuals between the
observation and forecast after the iterations are done. We
vary the time to test how long we can accurately predict the

behavior of a plume whose initial conditions are not exactly
known. We vary the Rayleigh number from 1×106 to 3×107

and the Prandtl number from 0.7 to 70 in order to test how
the predictability changes with Rayleigh and Prandtl number.

2 The 4D-VAR technique and the equations of the
plume

The 4D-VAR variational assimilation method can be de-
scribed in the following way. First, a cost function is con-
ceived to measure the error between the forecast and the ob-
servations (Talagrand and Courtier, 1987). Then the adjoint
equations, which are used to evaluate the gradient of this cost
function, are obtained by applying a variational procedure
to the Lagrangian problem (Courtier et al., 1993). The cost
function and its gradient are minimized by a minimization
algorithm, such as the steepest descent (Burden and Faires,
1993), in order to find the optimal initial conditions that will
give the optimal forecast.

2.1 The cost function

When using a variational method, it is necessary to write the
problem as a functional that one wants to minimize. This
functional is known as the cost function. It is a measure of
the error between the observations and predictions that one
wants to minimize. In general, the cost function is written:

J =

∫ t2

t1

∫
�

f (
−→
9 , x, t) dx dt, (1)

wheref (9, x, t) is a scalar function defined on a domain,
�, and a time interval,[t1, t2] (Sanders and Katopodes,
2000). f (9, x, t) is a function of9 that represents the state
variables, such as the speed or the temperature. In this study,
the cost function used is:

J =
1

2

∫
�

∫ t2

t1

(Hcal − Hobs)(Hcal − Hobs)dt dx, (2)

whereHcal is the forecasted convective heat flux, andHobs is
the observed convective heat flux. The heat flux is calculated
at each grid point by taking the vertical velocity,vz, and the
temperature,T :

H = vzT . (3)

Our cost function is similar to the objective functional of the
temperature used byIsmail-Zadeh et al.(2004) except that
we took into account errors in both the velocity and temper-
ature field by using the heat flow.

2.2 The adjoint equations

The 4D-VAR problem can be formulated as follows: we
want to find the trajectory in space-time for the variables of
state9 that minimize the cost function (Eq.2) while obeying
the physical equationsE (9, x, t)=0, which act as the con-
straints. Therefore, this is a problem of minimization with
constraints (Talagrand and Courtier, 1987).
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Usually, when trying to solve a problem with constraints,
one uses the Lagrangian. The formulation of the undeter-
mined Lagrangian multipliers are constructed for the system
that one wants to study:

L(
−→
9 ,

−→
λ ) = J (

−→
9 )+

∫ t2

t1

∫
�

−→
λ (x, t)·E(

−→
9 , x, t) dx dt, (4)

whereJ (9) is the cost function andλ (x, t) are the unde-
termined Lagrangian multipliers, also called the adjoint vari-
ables (Sanders and Katopodes, 1999). It has been demon-
strated that finding the stationary point of the cost function
with the constraintsE (9, x, t) =0 is equivalent to finding
the stationary points of the Lagrangian with respect of9 and
λ (Dimet and Talagrand, 1986).

When we minimize the Lagrangian, the stationary points
that we want to find are saddle points; rather than the abso-
lute maximums or minimums (Dimet and Talagrand, 1986).
In order to accomplish this task, we will apply the variational
operatorδ to the Lagrangian. Here, the displacement direc-
tions are the physical variables of the system as well as the
adjoint variables. Taking the variation of the Lagrangian, we
obtain:

δL =
−→
∇ −→

9
L · δ

−→
9 +

−→
∇ −→

λ
L · δ

−→
λ

=
∂L
∂
−→
9

δ
−→
9 +

∂L
∂
−→
λ

δ
−→
λ . (5)

Also note that we have linearized the problem in the same
step (Ehrendorfer, 1992). For an arbitrary displacement
(δ9, δλ), we are at a minimum only ifδL=0 (Daley, 1991).
This indicates that the derivative of the Lagrangian with re-
spect to each direction must be zero:

∂L
∂
−→
λ

= E(
−→
9 , x, t) = 0 (6)

and

∂L
∂
−→
9

= Adj(
−→
λ ) +

∂J

∂
−→
9

= 0, (7)

where Adj(λ) represents the adjoint equations after integra-
tion by parts (Schr̈oter et al., 1993). Note that Eq. (6) is the
system of equations that one had at the beginning and that
Eqs. (6) and (7) are the Euler-Lagrange equations (Dimet and
Talagrand, 1986).

Unfortunately, an efficient means for directly solving the
Euler-Lagrange equations does not exist. This situation
forces us to reformulate our problem to one without con-
straints (Talagrand and Courtier, 1987). Since the physical
equations of the model are deterministic, it is evident that the
state of the system at the time of the observations depends
only on the initial conditions,90, of the system. Therefore,
the cost function is an implicit function of the initial condi-
tions. It is by varying the initial conditions that we will solve
the physical equations while minimizing the cost function
(Ehrendorfer, 1992). According the theory of optimal con-
trol (Lions, 1968), the control variables of the problem are

C. A. Hier Majumder et al.: Data Assimilation for Plume Models 3

physical equations J �K, �1 "�%#%$ 
 �
, which act as the con-

straints. Therefore, this is a problem of minimization with
constraints (Talagrand and Courtier, 1987).

Usually, when trying to solve a problem with constraints,
one uses the Lagrangian. The formulation of the undeter-
mined Lagrangian multipliers are constructed for the system
that one wants to study:L ���� �M� �� N $ 
O	P�%�� �Q$SR � ���

���
� � �� N �  "�!#%$�T J �%�� �M�1 U�%#%$S&* �&*# (4)

where
	<�-, $

is the cost function and V �  "�%#%$ are the unde-
termined Lagrangian multipliers, also called the adjoint vari-
ables (Sanders and Katopodes, 1999). It has been demon-
strated that finding the stationary point of the cost function
with the constraints J �-, �! "�%#%$ 
 � is equivalent to finding
the stationary points of the Lagrangian with respect of

,
andV (Dimet and Talagrand, 1986).

When we minimize the Lagrangian, the stationary points
that we want to find are saddle points; rather than the abso-
lute maximums or minimums (Dimet and Talagrand, 1986).
In order to accomplish this task, we will apply the variational
operator W to the Lagrangian. Here, the displacement direc-
tions are the physical variables of the system as well as the
adjoint variables. Taking the variation of the Lagrangian, we
obtain:W L 
 �� X �� � L T W �� �YR �� X �� N L T W �� N
[Z LZ �� � W �� �\R Z LZ �� N W �� N (5)

Also note that we have linearized the problem in the same
step (Ehrendorfer, 1992). For an arbitrary displacement� W , � WHV $ , we are at a minimum only if W L 
 �

(Daley,
1991). This indicates that the derivative of the Lagrangian
with respect to each direction must be zero:Z LZ �� N 
 J � �� ���1 "�%#%$ 
 � (6)

andZ LZ �� � 

Adj

� �� N $]R Z 	Z �� � 
 �
(7)

where Adj
� V $ represents the adjoint equations after integra-
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Fig. 1. Algorithm for the 4D-VAR method.

(Ehrendorfer, 1992). According the theory of optimal con-
trol (Lions, 1968), the control variables of the problem are
the initial conditions. One can also use the boundary condi-
tions as control variables (Schröter et al., 1993). In our prob-
lem, we have removed the constraints since no restrictions
are applied to the initial conditions.

Finally, the gradient of the cost function (Eq. 2) with re-
spect to the initial vertical heat flux is given by the adjoint
variables evaluated at time ` 
 # 3 (Courtier, 1997):ab	*c2de

fhgH��i �1jk� ` 
 #�3I$ (8)a�	*lmde

n g �oi �1jk� ` 
 # 3 $ (9)ab	*p*de
rq+gH�oi �!j�� ` 
 # 3 $ (10)ab	*s2de
 F g �oi �!j�� ` 
 # 3 $ (11)

2.3 The 4D-VAR data assimilation algorithm

Starting from initial conditions obtained by current exper-
imental observations or a previous numerical simulation,
a direct simulation generates a traditional (DNS) forecast
(Fig. 1). After reading the observations taken at the end of
the forecast period, the initial error between the forecast and
the observations is calculated. This initial error will provide
a first guess to a minimization algorithm.

In this theoretical study, we needed to vary the accu-
racy and the input parameters to test the 4D-VAR tech-
nique. Since we were testing the validity of the technique,
we did not use real data. Many experimental studies have
been conducted on the behavior of finite Prandtl number
plumes (Kaminski and Jaupart, 2003; Lithgow-Bertelloni
et al., 2001; Cetegen et al., 1998; Moses et al., 1993). The
4D-VAR method introduced here will allow integration of
experimental studies into numerical models. The technique

Fig. 1. Algorithm for the 4D-VAR method.

the initial conditions. One can also use the boundary condi-
tions as control variables (Schr̈oter et al., 1993). In our prob-
lem, we have removed the constraints since no restrictions
are applied to the initial conditions.

Finally, the gradient of the cost function (Eq.2) with re-
spect to the initial vertical heat flux is given by the adjoint
variables evaluated at timeτ=t2 (Courtier, 1997):

∇Ju0 = u∗(x, z, τ = t2) (8)

∇Jw0 = w∗(x, z, τ = t2) (9)

∇JP0 = P ∗(x, z, τ = t2) (10)

∇JT0 = T ∗(x, z, τ = t2). (11)
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the forecast period, the initial error between the forecast and
the observations is calculated. This initial error will provide
a first guess to a minimization algorithm.

In this theoretical study, we needed to vary the accu-
racy and the input parameters to test the 4D-VAR tech-
nique. Since we were testing the validity of the technique,
we did not use real data. Many experimental studies have
been conducted on the behavior of finite Prandtl number
plumes (Kaminski and Jaupart, 2003; Lithgow-Bertelloni
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et al., 2001; Cetegen et al., 1998; Moses et al., 1993). The
4D-VAR method introduced here will allow integration of
experimental studies into numerical models. The technique
could also be used to incorporate the tomographic data avail-
able of mantle plumes (Montelli et al., 2004; Zhao, 2001).

For the data assimilation run, we have perturbed the ini-
tial conditions with a sinusoidal function. A direct simula-
tion with the perturbed initial conditions permits us to obtain
a simple forecast. After reading the observations (obtained
previously), we calculate the initial error between the fore-
cast and the observations. Then, we use a minimization algo-
rithm, such as the steepest descent, in order to minimize the
cost function (Eq.2) with the aid of its gradient (Sect.2.2).
When the minimum has been found, we have the new initial
conditions. These initial conditions are optimal because a
second direct simulation using them will be an optimal fore-
cast. The final error between this forecast and the observa-
tions will be minimal.

2.4 The direct equations for a localized thermal plume

The physical equations describing Rayleigh-Bénard convec-
tion with the Boussinesq approximation that we used are:

∇ · v = 0 (12)

∂v

∂t
= v × ω − ∇P +

1

Re
∇

2v + T êz (13)

∂T

∂t
= −v · ∇T +

1

Pe
∇

2T , (14)

whereω is the vorticity (Hier Majumder et al., 2004). The
equations have been nondimensionalized with the free-fall
velocity:

U =
√

αg1T Lz, (15)

whereα is the coefficient of thermal expansion,g is the grav-
itational acceleration,1T is the initial temperature differ-
ence between the heating point and the surrounding fluid,
andLz is the box height. The Rayleigh (Ra) and Prandtl
(Pr) numbers are the nondimensional numbers often used in
thermal convection equations. We defineRa as:

Ra =
gα1T L3

z

κν
, (16)

whereκ is the thermal diffusivity andν is the kinematic vis-
cosity. The Prandtl number is defined as:

Pr =
ν

κ
. (17)

The nondimensional numbers that appear in Eqs. (13) and
(14) are the Reynolds number:

Re =
ULz

ν
(18)

and the Ṕeclet number:

Pe =
ULz

κ
(19)

(Tritton, 1988). TheRe andPe are related to the Rayleigh
number (Ra) and the Prandtl number (Pr) of the plume by:

Ra = PeRe (20)

and

Pr =
Pe

Re
. (21)

2.5 The adjoint equations for a localized thermal plume

Following the method in Sect.2.2, we obtained the adjoint
equations (Marchuk, 1995):

∂u∗

∂τ
= v · ∇u∗

− u
∂w∗

∂z
+ w

∂w∗

∂x
+

1

Re
∇

2u∗
+ u∇

2P ∗

− 2u
∂2P ∗

∂x2
− 2w

∂2P ∗

∂x∂z
+ T

∂T ∗

∂x
−

∂J

∂u
(22)

∂w∗

∂τ
= v · ∇w∗

+ u
∂u∗

∂z
− w

∂u∗

∂x
+

1

Re
∇

2w∗
+ w∇

2P ∗

− 2u
∂2P ∗

∂x∂z
− 2w

∂2P ∗

∂z2
+ T

∂T ∗

∂z
−

∂J

∂w
(23)

∇
2P ∗

=
∂u∗

∂x
+

∂w∗

∂z
−

∂J

∂P
(24)

∂T ∗

∂τ
= v · ∇T ∗

+
1

Pe
∇

2T ∗
+ w∗

−
∂P ∗

∂z
−

∂J

∂T
, (25)

whereτ=t2−t is the inverse time. The initial conditions are:

δu(x, z, t |t1) = 0 u ∗ (x, z, t |t2) = 0

δv(x, z, t |t1) = 0 v ∗ (x, z, t |t2) = 0

δT (x, z, t |t1) = 0 T ∗ (x, z, t |t2) = 0 (26)

and the boundary conditions are:

u ∗ (0, z, t) = 0 u ∗ (Lx, z, t) = 0

v ∗ (0, z, t) = 0 v ∗ (Lx, z, t) = 0

T ∗ (0, z, t) = 0 T ∗ (Lx, z, t) = 0

P ∗ (0, z, t) = 0 P ∗ (Lx, z, t) = 0 (27)

u ∗ (x, 0, t) = 0 u ∗ (x, Lz, t) = 0

v ∗ (x, 0, t) = 0 v ∗ (x, Lz, t) = 0

T ∗ (x, 0, t) = 0 T ∗ (x, Lz, t) = 0

P ∗ (x, 0, t) = 0 P ∗ (x, Lz, t) = 0 (28)

∂u∗

∂x

∣∣∣∣
x=0

= 0
∂u∗

∂z

∣∣∣∣
z=0

= 0

∂v∗

∂x

∣∣∣∣
x=0

= 0
∂v∗

∂z

∣∣∣∣
z=0

= 0

∂P ∗

∂x

∣∣∣∣
x=0

= 0
∂P ∗

∂z

∣∣∣∣
z=0

= 0

∂T ∗

∂x

∣∣∣∣
x=0

= 0
∂T ∗

∂z

∣∣∣∣
z=0

= 0
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∂u∗

∂x

∣∣∣∣
x=Lx

= 0
∂u∗

∂z

∣∣∣∣
z=Lz

= 0

∂v∗

∂x

∣∣∣∣
x=Lx

= 0
∂v∗

∂z

∣∣∣∣
z=Lz

= 0

∂P ∗

∂x

∣∣∣∣
x=Lx

= 0
∂P ∗

∂z

∣∣∣∣
z=Lz

= 0

∂T ∗

∂x

∣∣∣∣
x=Lx

= 0
∂T ∗

∂z

∣∣∣∣
z=Lz

= 0. (29)

3 Prediction: what can be expected for the 4D-VAR?

We start with a plume defined by a temperature and velocity
field (Fig.2a). We use this temperature and velocity field as
exact initial conditions for a DNS. We save the temperature
and velocity field at each iteration of the DNS to create the
observations. We then take the plume defined by the exact
initial conditions from the DNS and perturb its convective
heat flux. This perturbation produces an error in the initial
temperature and velocity fields that needs to be corrected by
the 4D-VAR technique (Fig.2b). The same perturbation is
used for all Rayleigh and Prandtl numbers. A grid size of
64×192 is used for all runs. The timestep and number of
iterations is set optimal for a given run. The 4D-VAR al-
gorithm is relatively fast to compute. Individual simulations
took no longer than a few hours on an IBM Power4 System:
pSeries 690 (Regatta).

We did not use a multigrid or continuous deformation grid
so we needed to have the same equally spaced grid for each
run throughout time and space. It is desirable to use a coarser
grid because it requires less computational time. This can be
dangerous, however, in systems with strong nonlinearities. In
our case, a turbulence model, such as a large-eddy simulation
(LES), was not used. This means that the grid size must be
large enough to account for features that occur at the turbu-
lent dissipation scale. Numerical diffusion, an artifact due to
a coarse grid, may produce an artificially stable solution over
the computational grid. Indeed, if the grid is too large, there
is not enough resolution. The small-scale process will not
be accounted for, and dissipation will occur purely through
numerical diffusion (Roache, 1976). Since the turbulent dis-
sipation at small-scales increases with the turbulent Reynolds
number, the grid size must increase in each direction as the
turbulent Reynolds number increases:

N ∼ Ret , (30)

whereN is the number of grid points andRet is the turbu-
lent Reynolds number. Since our grid is static in time and
space, it must have adequate resolution to model the maxi-
mum turbulent Reynolds number that occurs throughout time
and space during the simulation.

To test the predictability of the 4D-VAR method, we ran
DNS and 4D-VAR simulations starting with the erroneous
initial conditions for both simulations. Simulations were
run for Pr=7 atRa=1×106, Ra=2×106, Ra=3×106, and
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3 Prediction: What Can Be Expected for the 4D-VAR?

We start with a plume defined by a temperature and velocity
field (Fig. 2a). We use this temperature and velocity field as
exact initial conditions for a DNS. We save the temperature
and velocity field at each iteration of the DNS to create the
observations. We then take the plume defined by the exact
initial conditions from the DNS and perturb its convective
heat flux. This perturbation produces an error in the initial
temperature and velocity fields that needs to be corrected by
the 4D-VAR technique (Fig. 2b). The same perturbation is
used for all Rayleigh and Prandtl numbers. A grid size of�¡ _�¢�I£*9

is used for all runs. The timestep and number of
iterations is set optimal for a given run. The 4D-VAR al-
gorithm is relatively fast to compute. Individual simulations
took no longer than a few hours on an IBM Power4 System:
pSeries 690 (Regatta).

We did not use a multigrid or continuous deformation grid
so we needed to have the same equally spaced grid for each
run throughout time and space. It is desirable to use a coarser
grid because it requires less computational time. This can be
dangerous, however, in systems with strong nonlinearities. In
our case, a turbulence model, such as a large-eddy simulation
(LES), was not used. This means that the grid size must be
large enough to account for features that occur at the turbu-
lent dissipation scale. Numerical diffusion, an artifact due to
a coarse grid, may produce an artificially stable solution over
the computational grid. Indeed, if the grid is too large, there
is not enough resolution and the small-scale turbulent pro-
cesses will not be accounted for and dissipation will occur
purely through numerical diffusion (Roache, 1976). Since
the turbulent dissipation at small-scales increases with the
turbulent Reynolds number, the grid size must increase in
each direction as the turbulent Reynolds number increases:

¤¦¥ � | � (30)

where
¤

is the number of grid points and � | � is the turbu-
lent Reynolds number. Since our grid is static in time and
space, it must have adequate resolution to model the maxi-
mum turbulent Reynolds number that occurs throughout time
and space during the simulation.

To test the predictability of the 4D-VAR method, we ran
DNS and 4D-VAR simulations starting with the erroneous
initial conditions for both simulations. Simulations were run
for
q��§
©¨

at ��� 
 �e���I� � , ��� 
 9§���I� � , ��� 
 � ����� � ,
and ��� 
 �8�{�I� � . For ��� 
 �U�{��� � , simulations were also
run at

q���
 ��ª ¨
and 70.

3.1 Direct numerical simulation

We used the function « �2��� #%$ to measure the difference be-
tween the observations and the predictions created from
the perturbed initial conditions. « �2��� #%$ is a measure
of the difference between the predicted convective heat
flux (

:B¬-­�®��oi �!¯�$
) and the observed convective heat flux

Fig. 2. Plume with °U±M²´³�µ¶³¸·I¹ and º"»v²�¼ . This shows a
plume developed from a 2-D point heat source. We use this plume
to define the initial conditions for our simulations. a) Defined ini-
tial temperature field for observations. b) Error map showing dif-
ference between the defined initial temperature and the erroneous
initial temperature.

(
:B½!¾K¿2��i �%¯�$

) after the prediction has been run for a given
time,

#
, where time is scaled by the free-fall time:# 
 #%À ~� E (31)

where
# À

is the dimensional time,
~

is the free-fall velocity
(Eq. 15), and � E is the box height. The error quantity is
defined as:

« �2��� #%$ 
6Á¢: ¬-­�® �oi �%¯�$ � : ½!¾K¿ �oi �!¯�$UÂ � #%$ (32)

where
Á Â

is the quadratic mean over
��i �%¯�$

.
For the DNS method, « �2��� #%$ at

# ¥ �
is the same as the

initial error applied to the defined initial conditions to cre-
ate the erroneous initial conditions. Since no correction has
been applied, the prediction is wrong by the same amount as
the error added to the initial conditions. As time increases,« �2��� #%$ remains roughly the same. For ��� 
 �v�
�I� �

it
begins to increase only after

# 
 �kª � (Fig. 3a). The time
at which the error begins to increase decreases with ��� . For��� 
 9"�Ã��� � , « �I��� #%$ begins to increase after 0.20 (Fig. 3b),
and « �2��� #%$ increases after 0.15 for ��� 
 � �Ä�I� � (Fig. 3c).
For ��� 
 �6�¢��� �

, the error starts to increase immediately
(Fig. 3d). The error in the direct simulation begins to increase
after nonlinear, inertial terms become important. These terms
are larger with increasing Rayleigh number. Therefore, we
cannot predict as long with increasing Rayleigh number.

3.2 4D-VAR

The 4D-VAR method is used to decrease the errors due to the
perturbed initial conditions. The cost function is minimized
with the steepest descent method through use of its gradient

Fig. 2. Plume withRa=1×106 andPr=7. This shows a plume
developed from a 2-D point heat source. We use this plume to de-
fine the initial conditions for our simulations.(a) Defined initial
temperature field for observations.(b) Error map showing differ-
ence between the defined initial temperature and the erroneous ini-
tial temperature.

Ra=1×107. For Ra=1×106, simulations were also run at
Pr=0.7 and 70.

3.1 Direct numerical simulation

We used the functionErr(t) to measure the difference be-
tween the observations and the predictions created from
the perturbed initial conditions. Err(t) is a measure
of the difference between the predicted convective heat
flux (Hcal(x, y)) and the observed convective heat flux
(Hobs(x, y)) after the prediction has been run for a given
time, t , where time is scaled by the free-fall time:

t =
tdU

Lz

, (31)

wheretd is the dimensional time,U is the free-fall velocity
(Eq. 15), andLz is the box height. The error quantity is
defined as:

Err(t) =< Hcal(x, y) − Hobs(x, y) > (t), (32)

where<> is the quadratic mean over(x, y).
For the DNS method,Err(t) at t ∼ 0 is the same as the

initial error applied to the defined initial conditions to cre-
ate the erroneous initial conditions. Since no correction has
been applied, the prediction is wrong by the same amount as
the error added to the initial conditions. As time increases,
Err(t) remains roughly the same. ForRa=1×106 it begins
to increase only aftert=0.3 (Fig.3a). The time at which the
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Fig. 3. Comparison between DNS and 4D-VAR at different times after an initial perturbation has been set for °U±)²�³§µ�³¸· ¹ . Squares
represent Åy»�»¡ÆÈÇ�É when Ê�Ë�Ì-Í is calculated using the DNS method. Diamonds represent Åy»C»*ÆÈÇ-É when Ê§Ë�Ì-Í is calculated using the 4D-VAR
method. Time, Ç , is scaled by the free-fall time. a) °U±�²�³yµ�³¸·2¹ . b) °U±�²bÎ�µ{³¸·�¹ . c) °U±�²ÐÏ�µQ³�·I¹ . d) °8±�²Ñ³Òµ{³¸·2Ó .
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Fig. 4. Minimization of the cost function for °8±B²Ô³�µ_³¸· ¹ , Ç"²·¡Õ ·¡³ .
calculated from the adjoint equations. We have shown the
minimization of the cost function for an example plume of��� 
 �_�
�I� �

,
q��r
Ö¨

(Fig. 4). The free-fall velocity
forecast time for this simulation was 0.01. The cost function
is minimized by 14% over 7 iterations.

The error near
# ¥ �

in the 4D-VAR case is significantly
lower than in the DNS case (Fig. 3). The correction is max-
imal and the error is minimal a very short time after

# 
 �
.

In fact, « �I��� #%$ is almost 0. This indicates that the erroneous
initial conditions have been fully corrected by the 4D-VAR

method. As time is increased, « �2��� #%$ increases, and the
quality of the 4D-VAR prediction degrades. At some time,
known as the horizon of predictability, the 4D-VAR predic-
tion is no better than the DNS prediction to which no correc-
tion was applied.

3.2.1 Effect of Rayleigh number

The horizon of predictability depends on Rayleigh number.
For ��� 
 �Q����� �

the horizon of predictability was 0.25
(Fig. 3a). For ��� 
 9��Ð��� � it decreased to 0.20 (Fig. 3b).
For ��� 
 � �¶��� � it decreased further to 0.17 (Fig. 3c), and
for ��� 
 �§�¶��� � it is about 0.14 (Fig. 3d). As the Rayleigh
number increases, the nonlinear, inertial terms become more
important, and the horizon of predictability decreases.

The quality of the 4D-VAR method is compared for dif-
ferent Rayleigh numbers in Fig. 5. We defined the quality of
the 4D-VAR prediction as:× � #%$ 
 « �I��� #%$ /DNS

4 � « �2��� #%$ / 4D-VAR
4

(33)

The quality increases with the Rayleigh number for small
forecast times. This is due to the fact that the inertia in-
creases with the Rayleigh number. As the inertia increases,
the plume becomes less sensitive to initial conditions. As
the forecast time increases the quality decreases. This de-
crease in quality, however, is less drastic for lower Rayleigh
numbers. This is due to the fact that the higher the inertia

Fig. 3. Comparison between DNS and 4D-VAR at different times after an initial perturbation has been set forRa=1×106. Squares represent
Err(t) whenHcal is calculated using the DNS method. Diamonds representErr(t) whenHcal is calculated using the 4D-VAR method.
Time, t , is scaled by the free-fall time.(a) Ra=1×106. (b) Ra=2×106. (c) Ra=3×106. (d) Ra=1×107.
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Fig. 4. Minimization of the cost function for °8±B²Ô³�µ_³¸· ¹ , Ç"²·¡Õ ·¡³ .
calculated from the adjoint equations. We have shown the
minimization of the cost function for an example plume of��� 
 �_�
�I� �

,
q��r
Ö¨

(Fig. 4). The free-fall velocity
forecast time for this simulation was 0.01. The cost function
is minimized by 14% over 7 iterations.

The error near
# ¥ �

in the 4D-VAR case is significantly
lower than in the DNS case (Fig. 3). The correction is max-
imal and the error is minimal a very short time after

# 
 �
.

In fact, « �I��� #%$ is almost 0. This indicates that the erroneous
initial conditions have been fully corrected by the 4D-VAR

method. As time is increased, « �2��� #%$ increases, and the
quality of the 4D-VAR prediction degrades. At some time,
known as the horizon of predictability, the 4D-VAR predic-
tion is no better than the DNS prediction to which no correc-
tion was applied.

3.2.1 Effect of Rayleigh number

The horizon of predictability depends on Rayleigh number.
For ��� 
 �Q����� �

the horizon of predictability was 0.25
(Fig. 3a). For ��� 
 9��Ð��� � it decreased to 0.20 (Fig. 3b).
For ��� 
 � �¶��� � it decreased further to 0.17 (Fig. 3c), and
for ��� 
 �§�¶��� � it is about 0.14 (Fig. 3d). As the Rayleigh
number increases, the nonlinear, inertial terms become more
important, and the horizon of predictability decreases.

The quality of the 4D-VAR method is compared for dif-
ferent Rayleigh numbers in Fig. 5. We defined the quality of
the 4D-VAR prediction as:× � #%$ 
 « �I��� #%$ /DNS

4 � « �2��� #%$ / 4D-VAR
4

(33)

The quality increases with the Rayleigh number for small
forecast times. This is due to the fact that the inertia in-
creases with the Rayleigh number. As the inertia increases,
the plume becomes less sensitive to initial conditions. As
the forecast time increases the quality decreases. This de-
crease in quality, however, is less drastic for lower Rayleigh
numbers. This is due to the fact that the higher the inertia

Fig. 4. Minimization of the cost function forRa=1×106, t=0.01.

error begins to increase decreases withRa. ForRa=2×106,
Err(t) begins to increase after 0.20 (Fig.3b), andErr(t) in-
creases after 0.15 forRa=3×106 (Fig. 3c). ForRa=1×107,
the error starts to increase immediately (Fig.3d). The error
in the direct simulation begins to increase after nonlinear, in-
ertial terms become important. These terms are larger with
increasing Rayleigh number. Therefore, we cannot predict as
long with increasing Rayleigh number.

3.2 4D-VAR

The 4D-VAR method is used to decrease the errors due to the
perturbed initial conditions. The cost function is minimized
with the steepest descent method through use of its gradient
calculated from the adjoint equations. We have shown the
minimization of the cost function for an example plume of
Ra=1×106, Pr=7 (Fig. 4). The free-fall velocity forecast
time for this simulation was 0.01. The cost function is mini-
mized by 14% over 7 iterations.

The error neart∼0 in the 4D-VAR case is significantly
lower than in the DNS case (Fig.3). The correction is maxi-
mal and the error is minimal a very short time aftert=0. In
fact, Err(t) is almost 0. This indicates that the erroneous
initial conditions have been fully corrected by the 4D-VAR
method. As time is increased,Err(t) increases, and the qual-
ity of the 4D-VAR prediction degrades. At some time, known
as the horizon of predictability, the 4D-VAR prediction is no
better than the DNS prediction to which no correction was
applied.

3.2.1 Effect of Rayleigh number

The horizon of predictability depends on Rayleigh num-
ber. ForRa=1×106 the horizon of predictability was 0.25
(Fig. 3a). For Ra=2×106 it decreased to 0.20 (Fig.3b).
For Ra=3×106 it decreased further to 0.17 (Fig.3c), and
for Ra=1×107 it is about 0.14 (Fig.3d). As the Rayleigh
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Fig. 5. Quality of the 4D-VAR prediction, Ø�ÆÈÇ-É , versus free-fall
time, Ç . All plumes have a Prandtl number of 7. Four different
Rayleigh numbers are shown: ³�µ_³�·I¹ , stars; Î+µ_³�·I¹ , diamonds;Ï§µ�³¸·�¹ , squares; ³yµQ³�·2Ó , circles.

in a system, the more difficult it becomes to deterministi-
cally compute its exact state through time. Therefore, for
the higher Rayleigh numbers the quality of the 4D-VAR pre-
diction decreases more rapidly in time than for the lower
Rayleigh numbers.

This means that a higher inertial system is not as likely
to be affected by small fluctuations; therefore, it has better
predictability (Lorenz, 1963). This is known as the butterfly
effect. If highly inertial system, such as the atmosphere, were
very sensitive to small perturbations, a butterfly flapping its
wings in Brazil could cause a tornado in Texas (Lorenz,
1972). The horizon of predictability decreases with ��� . This
means that although we can generate better predictions for
higher inertial systems, we cannot generate predictions for
as long as we can for lower inertia systems.

3.2.2 Effect of numerical resolution

In order to test whether we had used adequate numerical
resolution in our simulations, we also ran the prediction for��� 
 �I� � , q���
©¨ in double precision (Fig. 6). Our simula-
tions were run using 32 bit single precision which gives 7 sig-
nificant digits on the IBM Regatta used in this study. There is
a small decrease in the horizon of predictability from 0.25 to
0.22 indicating that it may be slightly more difficult to pre-
dict higher resolution simulations for a longer time period.
We see that there is a 12% improvement in the quality of the
prediction near

# ¥ �
for the doubled numerical resolution

(Fig. 7). The improvement in the quality of the prediction
due to the increased numerical resolution, however, drops as
the forecast time increases. This indicates that we can im-
prove our short term predictions by using double precision,
but that it does not tend to improve longer term predictions.

3.2.3 Effect of initial perturbation

We also tested the method with single precision using a more
random perturbation of the initial conditions (Fig. 8). This
perturbation was created by linear superposition of several
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Fig. 6. Comparison of the DNS and 4D-VAR prediction for °U±6²³�µv³¸·I¹ , º"»�²�¼ with double resolution. DNS is shown with dia-
monds and 4D-VAR with squares.
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Fig. 7. Quality of the 4D-VAR prediction, Ø§ÆÈÇ-É versus free-fall
time, Ç . The Quality is defined as the difference between the error
of the DNS and the 4D-VAR simulations. Data is shown °U±�²³yµ{³¸·I¹ , º"»y²�¼ . Single precision is shown by squares and double
precision by diamonds.

different sinusoidal perturbations. We found that the horizon
of predictability increased for ��� 
 �+�Ð��� � , q��{
Y¨ from
0.25 for the original perturbation to 0.30 for the more random
perturbation (Fig. 9). For ��� 
 9B�Ð�I� � , q��B
Y¨ , the hori-
zon of predictability increased from 0.20 to 0.25 (Fig. 10).
There is also significant improvement in the quality of the
predictions for the more random initial perturbation (Fig. 11)
versus the more regular perturbation (Fig. 5). By perturbing
different modes we do expect the response of the system to be
slightly different due to the fact that each scale has an intrin-
sic horizon of predictability (Lorenz, 1969). However, the
general conclusion still holds that the larger Rayleigh num-
ber flow has a shorter horizon of predictablity but a lower
quality prediction.

3.2.4 Effect of Prandtl number

We next ran simulations at ��� 
 �{����� �
with

q�� � �kª ¨
and

q��Ñ
Ù¨ �
using single precision and the more regular

perturbation. For a given ��� , the 4D-VAR predictions are
better for a lower

q��
at small forecast times (Figs. 12). This

Fig. 5. Quality of the 4D-VAR prediction,Q(t), versus free-fall
time, t . All plumes have a Prandtl number of 7. Four different
Rayleigh numbers are shown: 1×106, stars; 2×106, diamonds;
3×106, squares; 1×107, circles.
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in a system, the more difficult it becomes to deterministi-
cally compute its exact state through time. Therefore, for
the higher Rayleigh numbers the quality of the 4D-VAR pre-
diction decreases more rapidly in time than for the lower
Rayleigh numbers.

This means that a higher inertial system is not as likely
to be affected by small fluctuations; therefore, it has better
predictability (Lorenz, 1963). This is known as the butterfly
effect. If highly inertial system, such as the atmosphere, were
very sensitive to small perturbations, a butterfly flapping its
wings in Brazil could cause a tornado in Texas (Lorenz,
1972). The horizon of predictability decreases with ��� . This
means that although we can generate better predictions for
higher inertial systems, we cannot generate predictions for
as long as we can for lower inertia systems.

3.2.2 Effect of numerical resolution

In order to test whether we had used adequate numerical
resolution in our simulations, we also ran the prediction for��� 
 �I� � , q���
©¨ in double precision (Fig. 6). Our simula-
tions were run using 32 bit single precision which gives 7 sig-
nificant digits on the IBM Regatta used in this study. There is
a small decrease in the horizon of predictability from 0.25 to
0.22 indicating that it may be slightly more difficult to pre-
dict higher resolution simulations for a longer time period.
We see that there is a 12% improvement in the quality of the
prediction near

# ¥ �
for the doubled numerical resolution

(Fig. 7). The improvement in the quality of the prediction
due to the increased numerical resolution, however, drops as
the forecast time increases. This indicates that we can im-
prove our short term predictions by using double precision,
but that it does not tend to improve longer term predictions.

3.2.3 Effect of initial perturbation

We also tested the method with single precision using a more
random perturbation of the initial conditions (Fig. 8). This
perturbation was created by linear superposition of several
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monds and 4D-VAR with squares.

0 0.02 0.04 0.06 0.08 0.1
0.6

0.8

1

1.2

1.4

1.6 x 10−3

t

Q
(t

)

Fig. 7. Quality of the 4D-VAR prediction, Ø§ÆÈÇ-É versus free-fall
time, Ç . The Quality is defined as the difference between the error
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different sinusoidal perturbations. We found that the horizon
of predictability increased for ��� 
 �+�Ð��� � , q��{
Y¨ from
0.25 for the original perturbation to 0.30 for the more random
perturbation (Fig. 9). For ��� 
 9B�Ð�I� � , q��B
Y¨ , the hori-
zon of predictability increased from 0.20 to 0.25 (Fig. 10).
There is also significant improvement in the quality of the
predictions for the more random initial perturbation (Fig. 11)
versus the more regular perturbation (Fig. 5). By perturbing
different modes we do expect the response of the system to be
slightly different due to the fact that each scale has an intrin-
sic horizon of predictability (Lorenz, 1969). However, the
general conclusion still holds that the larger Rayleigh num-
ber flow has a shorter horizon of predictablity but a lower
quality prediction.

3.2.4 Effect of Prandtl number

We next ran simulations at ��� 
 �{����� �
with

q�� � �kª ¨
and

q��Ñ
Ù¨ �
using single precision and the more regular

perturbation. For a given ��� , the 4D-VAR predictions are
better for a lower

q��
at small forecast times (Figs. 12). This

Fig. 6. Comparison of the DNS and 4D-VAR prediction for
Ra=1×106, Pr=7 with double resolution. DNS is shown with
diamonds and 4D-VAR with squares.

number increases, the nonlinear, inertial terms become more
important, and the horizon of predictability decreases.

The quality of the 4D-VAR method is compared for dif-
ferent Rayleigh numbers in Fig.5. We defined the quality of
the 4D-VAR prediction as:

Q(t) = Err(t)[DNS] − Err(t)[4D-VAR]. (33)

The quality increases with the Rayleigh number for small
forecast times. This is due to the fact that the inertia in-
creases with the Rayleigh number. As the inertia increases,
the plume becomes less sensitive to initial conditions. As
the forecast time increases, the quality decreases. This de-
crease in quality, however, is less drastic for lower Rayleigh
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in a system, the more difficult it becomes to deterministi-
cally compute its exact state through time. Therefore, for
the higher Rayleigh numbers the quality of the 4D-VAR pre-
diction decreases more rapidly in time than for the lower
Rayleigh numbers.

This means that a higher inertial system is not as likely
to be affected by small fluctuations; therefore, it has better
predictability (Lorenz, 1963). This is known as the butterfly
effect. If highly inertial system, such as the atmosphere, were
very sensitive to small perturbations, a butterfly flapping its
wings in Brazil could cause a tornado in Texas (Lorenz,
1972). The horizon of predictability decreases with ��� . This
means that although we can generate better predictions for
higher inertial systems, we cannot generate predictions for
as long as we can for lower inertia systems.

3.2.2 Effect of numerical resolution

In order to test whether we had used adequate numerical
resolution in our simulations, we also ran the prediction for��� 
 �I� � , q���
©¨ in double precision (Fig. 6). Our simula-
tions were run using 32 bit single precision which gives 7 sig-
nificant digits on the IBM Regatta used in this study. There is
a small decrease in the horizon of predictability from 0.25 to
0.22 indicating that it may be slightly more difficult to pre-
dict higher resolution simulations for a longer time period.
We see that there is a 12% improvement in the quality of the
prediction near

# ¥ �
for the doubled numerical resolution

(Fig. 7). The improvement in the quality of the prediction
due to the increased numerical resolution, however, drops as
the forecast time increases. This indicates that we can im-
prove our short term predictions by using double precision,
but that it does not tend to improve longer term predictions.

3.2.3 Effect of initial perturbation

We also tested the method with single precision using a more
random perturbation of the initial conditions (Fig. 8). This
perturbation was created by linear superposition of several
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Fig. 6. Comparison of the DNS and 4D-VAR prediction for °U±6²³�µv³¸·I¹ , º"»�²�¼ with double resolution. DNS is shown with dia-
monds and 4D-VAR with squares.

0 0.02 0.04 0.06 0.08 0.1
0.6

0.8

1

1.2

1.4

1.6 x 10−3

t

Q
(t

)

Fig. 7. Quality of the 4D-VAR prediction, Ø§ÆÈÇ-É versus free-fall
time, Ç . The Quality is defined as the difference between the error
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different sinusoidal perturbations. We found that the horizon
of predictability increased for ��� 
 �+�Ð��� � , q��{
Y¨ from
0.25 for the original perturbation to 0.30 for the more random
perturbation (Fig. 9). For ��� 
 9B�Ð�I� � , q��B
Y¨ , the hori-
zon of predictability increased from 0.20 to 0.25 (Fig. 10).
There is also significant improvement in the quality of the
predictions for the more random initial perturbation (Fig. 11)
versus the more regular perturbation (Fig. 5). By perturbing
different modes we do expect the response of the system to be
slightly different due to the fact that each scale has an intrin-
sic horizon of predictability (Lorenz, 1969). However, the
general conclusion still holds that the larger Rayleigh num-
ber flow has a shorter horizon of predictablity but a lower
quality prediction.

3.2.4 Effect of Prandtl number

We next ran simulations at ��� 
 �{����� �
with

q�� � �kª ¨
and

q��Ñ
Ù¨ �
using single precision and the more regular

perturbation. For a given ��� , the 4D-VAR predictions are
better for a lower

q��
at small forecast times (Figs. 12). This

Fig. 7. Quality of the 4D-VAR prediction,Q(t) versus free-fall
time,t . The Quality is defined as the difference between the error of
the DNS and the 4D-VAR simulations. Data is shownRa=1×106,
Pr=7. Single precision is shown by squares and double precision
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Fig. 8. A more random perturbation on the initial temperature con-
ditions for °U±B²O³�µ_³�· ¹2Ú º"»�²r¼ . The initial conditions are the
same as shown in Fig. 2a. Scale for the nondimensional temperature
ranges from 0 for black to 0.06 for white.
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squares.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

3.5

4 x 10−3

t

E
rr

(t
)

Fig. 10. Comparision of DNS and 4D-VAR prediction for a more
random initial perturbation of a plume with °U±�²bÎ]µe³�·2¹ , º"»"²b¼ .
DNS prediction is shown by diamonds and 4D-VAR prediction by
squares.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3 x 10−3

t

Q
(t

)

Fig. 11. Comparision of quality of 4D-VAR prediction for plumes
of different Rayleigh number with a more random initial pertur-
bation °U±Û²Ü³�µ�³¸· ¹ , º"»r²Ý¼ is shown by diamonds, and°U±�²�Î�µ�³¸· ¹ , º"»"²�¼ is shown by squares.

is due to the fact that inertia strengthens as
q��

decreases.
We were only able to study plumes with Prandtl numbers up
to 70 in this study. Previous studies of plume behavior with
Prandtl numbers up to 20,000 (Hier Majumder et al., 2004)
have shown that there are still significant differences between
finite and infinite Prandtl plumes even at these Rayleigh num-
bers. It would be interesting conduct similar studies on the
predictability of high and infinite Prandtl number plumes.
Although our method can theoretically handle higher Prandtl
numbers, it would be necessary, however, to deal with the
increasing stiffness of the finite Prandtl number convection
equations along with the resulting large grid sizes. For ex-
ample, plumes with Prandtl numbers on the order of

���(Þ
at

Rayleigh numbers of
��� �

would require grid sizes of 512 x
1536 (Hier Majumder et al., 2004). Since each step of the
forward solution is needed to solve the adjoint solution, the
major computational expense of the adjoint method is the
memory resources needed for storage of the forward solu-
tion (Daescu et al., 2003). Methods that have been devel-
oped for using the adjoint method with the stiff equations of
atmospheric chemistry could prove useful for predictability
studies of the large Prandtl numbers plumes (Elbern et al.,
1997; Daescu et al., 2000; Sandu et al., 2003; Daescu et al.,
2003).

4 Conclusions

We found that the 4D-VAR method is successful at correct-
ing simulations that have erroneous initial conditions for fi-
nite Prandtl plumes. This technique can increase the ability
to model plume phenomena for which observations, such as
laboratory and seismic data, are available, but where the ex-
act initial conditions are not well known. The 4D-VAR cor-
rection only works for a limited time, however. The time
limit for the prediction is known as the predictability time.

We saw that as the inertia of the system increases with in-
creasing Rayleigh number, the predictability time decreases.
However, we also saw that we can generate better 4D-VAR

Fig. 8. A more random perturbation on the initial temperature con-
ditions forRa=1×106, P r=7. The initial conditions are the same
as shown in Fig.2a. Scale for the nondimensional temperature
ranges from 0 for black to 0.06 for white.

numbers. This is due to the fact that the higher the inertia
in a system, the more difficult it becomes to deterministi-
cally compute its exact state through time. Therefore, for
the higher Rayleigh numbers the quality of the 4D-VAR pre-
diction decreases more rapidly in time than for the lower
Rayleigh numbers.

This means that a higher inertial system is not as likely
to be affected by small fluctuations; therefore, it has bet-
ter predictability (Lorenz, 1963). This is known as the but-
terfly effect. If a highly inertial system, such as the atmo-
sphere, were very sensitive to small perturbations, a butterfly
flapping its wings in Brazil could cause a tornado in Texas
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Fig. 8. A more random perturbation on the initial temperature con-
ditions for °U±B²O³�µ_³�· ¹2Ú º"»�²r¼ . The initial conditions are the
same as shown in Fig. 2a. Scale for the nondimensional temperature
ranges from 0 for black to 0.06 for white.
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Fig. 9. Comparision of DNS and 4D-VAR prediction for a more
random initial perturbation of a plume with °U±�²�³mµe³�· ¹ , º"»"²b¼ .
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is due to the fact that inertia strengthens as
q��

decreases.
We were only able to study plumes with Prandtl numbers up
to 70 in this study. Previous studies of plume behavior with
Prandtl numbers up to 20,000 (Hier Majumder et al., 2004)
have shown that there are still significant differences between
finite and infinite Prandtl plumes even at these Rayleigh num-
bers. It would be interesting conduct similar studies on the
predictability of high and infinite Prandtl number plumes.
Although our method can theoretically handle higher Prandtl
numbers, it would be necessary, however, to deal with the
increasing stiffness of the finite Prandtl number convection
equations along with the resulting large grid sizes. For ex-
ample, plumes with Prandtl numbers on the order of
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at

Rayleigh numbers of
��� �

would require grid sizes of 512 x
1536 (Hier Majumder et al., 2004). Since each step of the
forward solution is needed to solve the adjoint solution, the
major computational expense of the adjoint method is the
memory resources needed for storage of the forward solu-
tion (Daescu et al., 2003). Methods that have been devel-
oped for using the adjoint method with the stiff equations of
atmospheric chemistry could prove useful for predictability
studies of the large Prandtl numbers plumes (Elbern et al.,
1997; Daescu et al., 2000; Sandu et al., 2003; Daescu et al.,
2003).

4 Conclusions

We found that the 4D-VAR method is successful at correct-
ing simulations that have erroneous initial conditions for fi-
nite Prandtl plumes. This technique can increase the ability
to model plume phenomena for which observations, such as
laboratory and seismic data, are available, but where the ex-
act initial conditions are not well known. The 4D-VAR cor-
rection only works for a limited time, however. The time
limit for the prediction is known as the predictability time.

We saw that as the inertia of the system increases with in-
creasing Rayleigh number, the predictability time decreases.
However, we also saw that we can generate better 4D-VAR

Fig. 9. Comparision of DNS and 4D-VAR prediction for a more
random initial perturbation of a plume withRa=1×106, Pr=7.
DNS prediction is shown by diamonds and 4D-VAR prediction by
squares.
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Fig. 8. A more random perturbation on the initial temperature con-
ditions for °U±B²O³�µ_³�· ¹2Ú º"»�²r¼ . The initial conditions are the
same as shown in Fig. 2a. Scale for the nondimensional temperature
ranges from 0 for black to 0.06 for white.
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is due to the fact that inertia strengthens as
q��

decreases.
We were only able to study plumes with Prandtl numbers up
to 70 in this study. Previous studies of plume behavior with
Prandtl numbers up to 20,000 (Hier Majumder et al., 2004)
have shown that there are still significant differences between
finite and infinite Prandtl plumes even at these Rayleigh num-
bers. It would be interesting conduct similar studies on the
predictability of high and infinite Prandtl number plumes.
Although our method can theoretically handle higher Prandtl
numbers, it would be necessary, however, to deal with the
increasing stiffness of the finite Prandtl number convection
equations along with the resulting large grid sizes. For ex-
ample, plumes with Prandtl numbers on the order of
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Rayleigh numbers of
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would require grid sizes of 512 x
1536 (Hier Majumder et al., 2004). Since each step of the
forward solution is needed to solve the adjoint solution, the
major computational expense of the adjoint method is the
memory resources needed for storage of the forward solu-
tion (Daescu et al., 2003). Methods that have been devel-
oped for using the adjoint method with the stiff equations of
atmospheric chemistry could prove useful for predictability
studies of the large Prandtl numbers plumes (Elbern et al.,
1997; Daescu et al., 2000; Sandu et al., 2003; Daescu et al.,
2003).

4 Conclusions

We found that the 4D-VAR method is successful at correct-
ing simulations that have erroneous initial conditions for fi-
nite Prandtl plumes. This technique can increase the ability
to model plume phenomena for which observations, such as
laboratory and seismic data, are available, but where the ex-
act initial conditions are not well known. The 4D-VAR cor-
rection only works for a limited time, however. The time
limit for the prediction is known as the predictability time.

We saw that as the inertia of the system increases with in-
creasing Rayleigh number, the predictability time decreases.
However, we also saw that we can generate better 4D-VAR

Fig. 10. Comparision of DNS and 4D-VAR prediction for a more
random initial perturbation of a plume withRa=2×106, Pr=7.
DNS prediction is shown by diamonds and 4D-VAR prediction by
squares.

(Lorenz, 1972). Although the quality of the prediction im-
proves withRa, the horizon of predictability decreases with
Ra. This means that although we can generate better predic-
tions for higher inertial systems, we cannot generate predic-
tions for as long as we can for lower inertia systems.

3.2.2 Effect of numerical resolution

In order to test whether we used adequate numerical res-
olution in our simulations, we also ran the prediction for
Ra=106, Pr=7 in double precision (Fig.6). Our simula-
tions were run using 32 bit single precision which gives 7 sig-
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We were only able to study plumes with Prandtl numbers up
to 70 in this study. Previous studies of plume behavior with
Prandtl numbers up to 20,000 (Hier Majumder et al., 2004)
have shown that there are still significant differences between
finite and infinite Prandtl plumes even at these Rayleigh num-
bers. It would be interesting conduct similar studies on the
predictability of high and infinite Prandtl number plumes.
Although our method can theoretically handle higher Prandtl
numbers, it would be necessary, however, to deal with the
increasing stiffness of the finite Prandtl number convection
equations along with the resulting large grid sizes. For ex-
ample, plumes with Prandtl numbers on the order of
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would require grid sizes of 512 x
1536 (Hier Majumder et al., 2004). Since each step of the
forward solution is needed to solve the adjoint solution, the
major computational expense of the adjoint method is the
memory resources needed for storage of the forward solu-
tion (Daescu et al., 2003). Methods that have been devel-
oped for using the adjoint method with the stiff equations of
atmospheric chemistry could prove useful for predictability
studies of the large Prandtl numbers plumes (Elbern et al.,
1997; Daescu et al., 2000; Sandu et al., 2003; Daescu et al.,
2003).

4 Conclusions

We found that the 4D-VAR method is successful at correct-
ing simulations that have erroneous initial conditions for fi-
nite Prandtl plumes. This technique can increase the ability
to model plume phenomena for which observations, such as
laboratory and seismic data, are available, but where the ex-
act initial conditions are not well known. The 4D-VAR cor-
rection only works for a limited time, however. The time
limit for the prediction is known as the predictability time.

We saw that as the inertia of the system increases with in-
creasing Rayleigh number, the predictability time decreases.
However, we also saw that we can generate better 4D-VAR

Fig. 11. Comparision of quality of 4D-VAR prediction for plumes
of different Rayleigh number with a more random initial perturba-
tion Ra=1×106, Pr=7 is shown by diamonds, andRa=2×106,
Pr=7 is shown by squares.

nificant digits on the IBM Regatta used in this study. There is
a small decrease in the horizon of predictability from 0.25 to
0.22 indicating that it may be slightly more difficult to pre-
dict higher resolution simulations for a longer time period.
We see that there is a 12% improvement in the quality of
the prediction neart∼0 for the doubled numerical resolution
(Fig. 7). The improvement in the quality of the prediction
due to the increased numerical resolution, however, drops as
the forecast time increases. This indicates that we can im-
prove our short term predictions by using double precision,
but that it does not tend to improve longer term predictions.

3.2.3 Effect of initial perturbation

We also tested the method with single precision using a more
random perturbation of the initial conditions (Fig.8). This
perturbation was created by linear superposition of several
different sinusoidal perturbations. We found that the horizon
of predictability increased forRa=1×106, Pr=7 from 0.25
for the original perturbation to 0.30 for the more random per-
turbation (Fig.9). ForRa = 2 × 106, Pr=7, the horizon of
predictability increased from 0.20 to 0.25 (Fig.10). There is
also significant improvement in the quality of the predictions
for the more random initial perturbation (Fig.11) versus the
more regular perturbation (Fig.5). By perturbing different
modes we do expect the response of the system to be slightly
different due to the fact that each scale has an intrinsic hori-
zon of predictability (Lorenz, 1969). However, the general
conclusion still holds that the larger Rayleigh number flow
has a shorter horizon of predictablity but a lower quality pre-
diction.
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Fig. 12. Quality of the 4D-VAR prediction, Ø§ÆÈÇ�É , versus free-fall time, Ç for °U±§²
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predictions for higher inertial systems. The quality of the
prediction increased with increasing ��� and decreasing

q��
.

Therefore, we conclude that there is a trade-off in the finite
Prandtl system. As inertia increases, the quality of the pre-
diction increases, but the horizon of predictability decreases.

There are many other geophysical applications where a
knowledge of the predictability is important. Water can sig-
nificantly alter the behavior of mantle minerals. Water has
a significant effect on the rheology of both olivine (Mei and
Kohlstedt, 2000). Despite its importance in mantle dynam-
ics, researchers are just beginning to develop models on how
convection may distribute water in the mantle (Richard et al.,
2002). We are currently working on applying this method
to determine how well simulations can predict mantle wa-
ter distribution despite a lack of knowledge about the initial
distribution of water in the Earth’s mantle.

The method in this study could also be adapted to sedimen-
tary transport problems. In high Rayleigh number flow, such
as in this study, diffusive processes are relatively weak. This
is similar to the Navier-Stokes equation of turbulent flow in
sediment transport where the viscous term is negligible in
relation to the turbulent momentum exchange (Clifford and
French, 1993).

Another potential use of the adjoint method would be in
the modeling of sedimentary basins. Inverse methods have
been used in the past to model the development of sedimen-
tary basins. For example, reverse modeling has been used to
restore the initial conditions of a sedimentary deposit before
deformation due to Rayleigh-Taylor instabilities created by
salt domes (Kaus and Podlachikov, 2001). Inverse methods
and sensitivity analysis have also been used to help deter-
mine the deformation history of sedimentary basins (White
and Bellingham, 2002; Bellingham and White, 2002). Since
these types of studies are similar to the case of mantle con-
vection discussed earlier (Bunge et al., 2003) in that the fi-
nal state is observable but the initial conditions are not well
known, the use of the adjoint equations and variational data
assimilation would be applicable to these types of studies.
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Fig. 12. Quality of the 4D-VAR prediction,Q(t), versus free-fall time,t for Ra=1×106. (a) Diamonds representPr=70, and squares
representPr=7. (b) Diamonds representPr=7, and squares representPr=0.7.

3.2.4 Effect of Prandtl number

We next ran simulations atRa=1×106 with Pr=0.7 and 70
using single precision and the more regular perturbation. For
a givenRa, the 4D-VAR predictions are better for a lowerPr

at small forecast times (Fig.12). This is due to the fact that
inertia strengthens asPr decreases. We were only able to
study plumes with Prandtl numbers up to 70 in this study.
Previous studies of plume behavior with Prandtl numbers
up to 20 000 (Hier Majumder et al., 2004) have shown that
there are still significant differences between finite and infi-
nite Prandtl plumes even at these Rayleigh numbers. It would
be interesting to conduct similar studies on the predictability
of high and infinite Prandtl number plumes. Although our
method can theoretically handle higher Prandtl numbers, it
would be necessary to deal with the increasing stiffness of
the finite Prandtl number convection equations along with the
resulting large grid sizes. For example, plumes with Prandtl
numbers on the order of 104 at Rayleigh numbers of 106

would require grid sizes of 512×1536 (Hier Majumder et al.,
2004). Since each step of the forward solution is needed to
solve the adjoint solution, the major computational expense
of the adjoint method is the memory resources needed for
storage of the forward solution (Daescu et al., 2003). Meth-
ods that have been developed for using the adjoint method
with the stiff equations of atmospheric chemistry could prove
useful for predictability studies of the large Prandtl numbers
plumes (Elbern et al., 1997; Daescu et al., 2000; Sandu et al.,
2003; Daescu et al., 2003).

4 Conclusions

We found that the 4D-VAR method is successful at correct-
ing simulations that have erroneous initial conditions for fi-
nite Prandtl plumes. This technique can increase the ability
to model plume phenomena for which observations, such as
laboratory and seismic data, are available, but where the ex-

act initial conditions are not well known. The 4D-VAR cor-
rection only works for a limited time, however. The time
limit for the prediction is known as the predictability time.

We saw that as the inertia of the system increases with in-
creasing Rayleigh number, the predictability time decreases.
However, we also saw that we can generate better 4D-VAR
predictions for higher inertial systems. The quality of the
prediction increased with increasingRa and decreasingPr.
Therefore, we conclude that there is a trade-off in the finite
Prandtl system. As inertia increases, the quality of the pre-
diction increases, but the horizon of predictability decreases.

There are many other geophysical applications where a
knowledge of the predictability is important. Water can sig-
nificantly alter the behavior of mantle minerals. Water has
a significant effect on the rheology of both olivine (Mei and
Kohlstedt, 2000). Despite its importance in mantle dynam-
ics, researchers are just beginning to develop models on how
convection may distribute water in the mantle (Richard et al.,
2002). We are currently working on applying this method
to determine how well simulations can predict mantle wa-
ter distribution despite a lack of knowledge about the initial
distribution of water in the Earth’s mantle.

The method in this study could also be adapted to sedimen-
tary transport problems. In high Rayleigh number flow, such
as in this study, diffusive processes are relatively weak. This
is similar to the Navier-Stokes equation of turbulent flow in
sediment transport where the viscous term is negligible in
relation to the turbulent momentum exchange (Clifford and
French, 1993).

Another potential use of the adjoint method would be in
the modeling of sedimentary basins. Inverse methods have
been used in the past to model the development of sedi-
mentary basins. For example, reverse modeling has been
used to restore the initial conditions of a sedimentary de-
posit before deformation due to Rayleigh-Taylor instabilities
created by salt domes (Kaus and Podlachikov, 2001). In-
verse methods and sensitivity analysis have also been used to
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help determine the deformation history of sedimentary basins
(White and Bellingham, 2002; Bellingham and White, 2002).
Since these types of studies are similar to the case of mantle
convection discussed earlier (Bunge et al., 2003) in that the
final state is observable, but the initial conditions are not well
known, the use of the adjoint equations and variational data
assimilation would be applicable to these types of studies.
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