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Abstract. In our previous papers we have shown that the
fractal (monofractal) dimension (Do) showed a significant
increase before the Guam earthquake occurred on 8 August,
1993. In order to have a further support to this precursory
effect to the general rupture (earthquake) we have carried
out the corresponding multifractal analysis (by means of de-
trended fluctuation analysis) for the same data to study the
statistical self-similar properties in a wide range of scales.
We have analyzed the ULF geomagnetic data (the most in-
tenseH component) observed at Guam observatory. As
the result, we have found that we could observe signifi-
cant changes in the multifractal parameters at Guam such
that αmin showed a meaningful decrease about 25 days be-
fore the earthquake and correspondingly1α increased be-
causeαmax exhibited no significant change at all. The most
sensitive parameter seems to be non-uniformity factor1.
Correspondingly, the generalized multifractal dimensionDq

(q>1) showed a significant decrease (whereasDq (q<0)
showed no change) andD0 (=Dq (q=0) (as already found
in our previous papers) is reconfirmed to increase before the
earthquake. These multifractal characteristics seem to be
a further support that these changes are closely associated
with the earthquake as a precursor to the Guam earthquake,
providing us with appreciable information on the pre-rupture
evolution of the earthquake.

1 Introduction

An important question in geophysics and in material science
is to investigate whether any precursory signature exists or
not before a macroscopic rupture or an earthquake and then
to identify such an earthquake precursor if it exists.

We understand that when a heterogeneous material is
strained, its evolution toward the final breaking is character-
ized by the nucleation and coalescence of microcracks before
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the final rupture. The two physical quantities are recognized
as being most indicative of microfracturing process in the
focal zone; that is, (1) ULF electromagnetic emissions and
(2) acoustic emissions (Hayakawa, 2001; Hayakawa et al.,
2004). There have recently been found a lot of convincing
evidences on the electromagnetic emissions in a wide fre-
quency range from DC, ULF to VHF associated with earth-
quakes, which are known to take place prior to the final
breakup (e.g. Hayakawa and Fujinawa, 1994; Hayakawa,
1999; Hayakawa and Molchanov, 2002). Our main tool in
this paper is to monitor the microfractures which are known
to occur before the final breakup in the focal zone of an earth-
quake, by recording the ULF emissions. The presence of pre-
cursory signature of earthquakes is clearly identified in the
ULF range for large (magnitude greater than 7) earthquakes
such as Spitak, Loma Prieta, Guam, Biak etc. (Fraser-Smith
et al., 1990; Mochanov et al., 1992; Kopytenko et al., 1993;
Hayakawa et al., 1996, 1999, 2000).

The ULF emissions are found to take place from a few
weeks to a few days prior to large destructive earthquakes
(including Spitak, Loma Prieta, Guam etc.), which are con-
sidered as the so-called precursors of the general fracture.
The emissions in the higher frequency range (like, VLF and
HF/VHF) (Kapiris et al., 2004) are likely to be occurring in
the focal zone of an earthquake, but they cannot be detected
on the Earth’s surface because of their extremely severe at-
tenuation in the crust. So, those higher frequency emissions
might be generated as secondary effect near the Earth’s sur-
face, and their generation mechanism is very unclear at the
moment. In comparision with this, the ULF emissions are
very definite to have been generated in the focal zone and to
have propagated up to the subsurface ULF sensors. We can
list the following reasons for this.

(1) When we estimate the skin-depth for ULF waves (pe-
riod: 0.1 to 200 s) for the earthquake source depths from 5 km
to 100 km, it will be less than 100 km. Hence, we can expect
that those ULF waves are definitely coming from the source
region.
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Fig. 1. Relative location of our ULF observing station and the epi-
center of the earthquake, together with the earthquake characteris-
tics.

(2) Dynamic process in seismo-active areas can produce
current systems of different kinds (see e.g. Molchanov and
Hayakawa, 1995; Vallianatos and Tzanis, 1999 and refer-
ences therein), which can be local sources for electromag-
netic waves at different frequencies. The ULF range is the
most possible to come from the source region with the least
attenuation.

Based on these arguments, we can consider that those ULF
emissions would carry the information on the microfractur-
ing taking place near the focal zone. For example, as already
mentioned before, Molchanov and Hayakawa (1995) pro-
posed the generation mechanism of seismogenic ULF emis-
sions on the basis of microfracturing.

One more important notice for those ULF emissions is the
necessity of sophisticated signal processing. Signal process-
ing is found to be of potential significance in finding out
weak seismogenic ULF emissions especially in the general
case when the observatory is located relatively away from
the epicenter, so that the seismogenic emission is embed-
ded in the noise. We have proposed so far several possible
methods, including the polarization analysis method (using
the ratio of vertical to horizontal magnetic field components)
(Hayakawa et al., 1996), fractal (mono-) analysis (Hayakawa
et al., 1999), principal component analysis (PCA) (Gotoh et
al., 2002) etc. The first and third methods are simply mathe-
matical, but the second is a physical analysis method, which
was exactly the first step of this paper.

Because the dynamics of earthquakes is well known to
exhibit properties which are characteristics for the self-
organized criticality (SOC) state (e.g. Bak et al., 1987; Bak,
1997), we have made the first attempt to use the fractal anal-

ysis to the seismogenic ULF emissions for the Guam earth-
quake (Hayakawa et al., 1999). Since the principal feature
of the SOC state is a fractal organization of the output pa-
rameters both in space (scale-invariant structure) and in time
(flicker noise or 1/f noise). If the time series of ULF data is
a temporal fractal, we expect a power-law spectral density of
the recorded time series:S(f )∝f −β (β: spectral exponent).
Hayakawa et al. (1999) have found a significant change in
this spectral exponent (β) just before the Guam earthquake in
such a way that the value ofβ is approaching unity (becom-
ing flicker noise) before the rupture, and later the similar be-
havior has also been confirmed for another large earthquake
at Biak (Hayakawa et al., 2000). This estimation of fractal
dimension was based on the spectral slope,β in the spec-
tral analysis, but later Smirnova et al. (2001) and Gotoh et
al. (2003, 2004) have compared different analysis methods
in estimating the fractal dimension (spectral slope, Burlaga
and Klein (1986) and Higuchi (1988) methods). Their con-
clusion is that the Higuchi method provides us with the most
reliable value of the fractal dimension. The seismicity spatial
and temporal distribution is known to reveal statistically self-
similar properties in a wide range of scales and can be tread
as multifractal (e.g. Turcotte, 1997). Our previous studies are
just a monofractal analysis, but we are interested in examin-
ing the multifractal nature of the ULF electromagnetic data
for the same Guam earthquake.

This paper is a further extension of our previous papers
dealt with the monofractal analysis (Hayakawa et al., 1996,
2000; Smirnova et al., 2001; Gotoh et al., 2003, 2004).
We have already found a significant precursory change in
the monofractal dimension before the Guam earthquake
(Hayakawa et al., 1999; Smirnova et al., 2001; Gotoh et al.,
2003, 2004). This data set is also studied in this paper, to
which we have applied the multifractal analysis, and this will
be the first attempt in seismogenic ULF data.

2 Experimental ULF data and analysis procedure

The details of the ULF data for the Guam earthquake have
already been given in Hayakawa et al. (1999), but we have to
repeat only the important points as follows. The Guam earth-
quake with magnitudeMs=8, occurred on 8 August 1993 at
08:34 UT suddenly and without any foreshock. Its epicenter
was located in the sea near the Guam island (geographic co-
ordinates: 12.98◦ N, 1444.80◦ E), and its depth was 60 km.
The Guam observatory where the ULF data were recorded,
is located at∼65 km from the epicenter. Figure 1 illustrates
the relative location of our ULF observatory with respect to
the epicenter. A regular magnetic observation is maintained
there using a three-axis ring-core-type fluxgate magnetome-
ter (Hayakawa et al., 1996). Three components of magnetic
variations are usually recorded on a digital cassette tape with
a sampling rate of 1 s, but we use only theH component
(which is the most intense) (though Gotoh et al., 2004 have
already found the similar behavior in the monofractal dimen-
sion for theZ component as well). We analyze the data
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during one whole year of 1993, and we analyze the data dur-
ing daytime (LT=14:00–15:00), because Gotoh et al. (2004)
have found that the most significant change in the monofrac-
tal dimension was observed for the Guam earthquake during
daytime. One hour data are treated, so that the number of
data is 3600 points per day.

We now describe the multifractal analysis. The general
description can be found in Feder (1988) and Mandelbrot
(1989). There have been developed a few methods for mul-
tifractal analysis, but we have adopted the MFDFA (mul-
tifractal detrended fluctuation analysis) (Kanterhardt et al.,
2002). The MFDFA is apparent to be much more accurate
than the conventional box counting, and the detrended fluctu-
ation analysis (DFA) has become a widely-used technique for
the determination of fractal scaling properties and the detec-
tion of long-range correlations in noisy, nonstationary time
series (Gotoh et al., 2004). One reason to employ the DFA
method is to avoid spurious detection of correlations that are
artifacts of nonstationariteis in the time series. The data used
are not filtered by using any filter before the multifractal anal-
ysis. We followed the analysis of DFA method developed by
Kantelhardt et al. (2002). Let us suppose thatxk is a time
series of lengthN (N=3600 points for one hour every day),
and we first determine the profile

Y (i) ≡

i∑
k=1

[xk − 〈x〉](i = 1, · · · , N)

(where<x> is the mean over our relevant one-hour inter-
val), which means that we remove the DC bias. Next we
divide the profileY (i) into Ns≡int (N/s) (int means integer)
non-overlapping segments of equal lengths. Since the length
N of the series is often not a multiple of the considered time
scales, a short part at the end of the profile may remain. In
order not to disregard this part of the series, the same pro-
cedure is repeated starting from the opposite end. Thereby,
2Ns segments are obtained altogether. Then, we calculate the
local trend for each of the 2Ns segments by a least-square fit
of the series and we determine the variance;

F 2(ν, s) ≡
1

s

s∑
i=1

{Y [(ν − 1) s + i] − yν(i)}
2

for each segment

ν(ν = 1, · · · , Ns)

and

F 2(ν, s) ≡
1

s

s∑
i=1

{Y [(ν − 1) s + i] − yν(i)}
2

for ν=Ns+1, · · · , 2Ns . Here,yν(i) is the fitting polynomial
in segmentν. We have used the sixth-order (m=6) polyno-
mials in the fitting procedure. In the paper by Kantelhardt
et al. (2002) they have used the values ofm=2 or 3, but we
could not get sufficient fitting for thesem values. Simply
increasing m value, we have found thatm=6 gave sufficient

Fig. 2. Examples ofFq(s)−s curves on a particular day of 12
March 1993, for a few selectedq values (q=−0.5, 0,+0.5).

fitting. We then average over all segments to obtain the qth
order fluctuation function.

Fq(s) ≡

{
1

2Ns

2Ns∑
ν=1

[
F 2(ν, s)

]q/2
}1/q

.

Of course,Fq(s) depends on the DFA orderm, and by con-
structionFq(s) is only defined fors≥m+2. Kantelhardt
et al. (2002) have suggested the value fors in such a way
thats<N/4. So that we have adopted a reasonable range of
s=10∼300, and so the obtained results are acceptable. We
show one example ofFq(s) (q=−0.5, 0,+0.5) on a partic-
ular day of 12 March 1993 in Fig. 2. This figure shows the
s dependence ofFq, which indicates thatFq(s) decreases
as a power law for large values ofs if the seriesxk are long-
range power-law corrected, and we can estimate theh(q), the
generalized Hurst exponent. It is seen thatFq(s) can be ap-
proximated as∝sτ (q), so that we can estimate theτ(q). Here
we had better comment on how good the fitting of the fluctu-
ation functionFq(s) by a linear approximation is. One way
to estimate this is the use ofr2 values as the square of the
correlation coefficient. Ther2 values are found to be over
0.8 in Fig. 2, which are not so bad as compared with the cor-
responding values on the monofractal estimation by Gotoh et
al. (2004).

On the basis of obtainedτ(q) characteristics, we
can estimate the well-known curves off (α)−α (where
α is the Lipschitz-Ḧolder exponent) andDq curve by
means of the following relationships(α(q)=dτ(q)

/
dq,

f (α(q))=qα(q)−τ(q), andD(q)=Dq=τ(q)
/
(q−1)) (see

the textbooks by Goltz (1997) and Feder (1988)). Fig-
ure 3 is an example ((a)D(q) curve and (b)f (α)−α

curve) obtained for the same day on 12 March 1993. The
multifractal parameters characterizing thisf (α) spectrum
are (1) αmin, (2) αmax(αmin and αmax satisfy f (α)=0),
(3) w(≡αmax−αmin), (4) fmax, (5) α(fmax), and (6) non-

uniformity factor 1≡

(
αmax−αmin

fmax
=

w
fmax

)
. Figure 3b can



160 Y. Ida et al.: Multifractal analysis for the ULF geomagnetic data

Fig. 3. An example of(a) Dq−q curve and(b) f (α)−α curve on the same day of 12 March 1993.

be interpreted as follows: The spectrum which looks like
an upside-down parabola, peaks atfmax (at α(fmax)) and
stretches fromαmin to αmax. That is, the rangew (αmin to
αmax) quantifies the non-uniformity of the fractal, whilef (α)

tells how frequently events with scaling exponentα occur.
Figure 4 illustrates the whole-one year plot of the variations
of those multifractal parameters. The thin lines are the daily
variations (the corresponding value for one particular day),
and the full lines indicate the running average over±5 days
on a current day (+5 days including the current day and−5
days including the current day; Total 9 days). The vertical
line in all the plots (as shown as 8/8) indicates the date of the
Guam earthquake (i.e. 8 August). The top panel is the tem-
poral evolution of geomagnetic activity expressed by theAp

index. The multifractal parameters are given from top;1,
α(fmax), fmax, w, αmax, andαmin. By means of a close look
at Fig. 4, we can notice the following important findings for
the multifractal parameters.

1. The temporal variations of bottom three panels (αmin,
αmax, and w) has indicated a significant change (in-
crease) inw about 30 days before the earthquake. This
is entirely dependent on the significant decrease in
αmin, becauseαmax is not found to exhibit any obvious
changes.

2. α(fmax) seems to show no significant change, butfmax
itself is found to indicate a significant decrease before
the earthquake.

3. The most pronounced effect is clearly seen in the tem-
poral evolution of the non-uniformity factor,1. That is,
the value1 of is found to show a significant increase
about 30 days before the earthquake and remain at a
high value until a few days before the earthquake. This
1 value is seen to be back to the background value a
few months later than the earthquake.

4. Significant changes (increase) in1 before the earth-
quake are apparent to have no correlation with the ge-
omagnetic activity because we are during geomagneti-
cally quiet period.

In order to give some more quantitative estimate on the sig-
nificant change in1 (conclusions (3) and (4)), we have plot-
ted the mean value (over the whole period) (horizontal line)
and the corresponding 1σ (σ : standard deviation (over the
whole year)). Even the running mean (over 9 days) of1 is
found to exceed the mean plus one standard deviation, and
the daily1 is seen to fluctuate at a high level (like the mean
plus 2σ ). This behavior is apparent to be very abnormal.

Another form of presentation is the use ofDq(q) curve for
the same one year of 1993, including the earthquake day of
8 August. The result is given in Fig. 5, in which the ordinate
is the value ofq and the value ofDq is indicated in different
color. We can notice the following facts.

(1) As for Do (capacity dimension) we find a significant
increase about 30days before the earthquake, which seems to
support the previous works by Hayakawa et al. (1990) and
Gotoh et al. (2004) based on the monofractal analysis. The
most significant effect is seen forq=0.5.

(2) In the region ofq>1, Dq is found to decrease about
30 days before the earthquake, whileDq (q<0) did not show
any particular changes.

3 Discussion and conclusion

In our previous monofractal analyses by Hayakawa et
al. (1999) and Gotoh et al. (2004), we have already found that
the monofractal dimension (corresponding toDo in this anal-
ysis) showed a significant increase before the Guam earth-
quake, which seems to be a precursor (Hayakawa et al.,
1999) to the Guam earthquake (Hayakawa et al., 1999). In
addition to this monofractal analysis, our first attempt of
multifractal analysis (by means of MFDFA) in this paper
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Fig. 4. Temporal evolution of multifractal parameters during a
whole year of 1993. From the bottom,αmin, αmax, w, fmax,
α(fmax), and1, and in the very top,Ap index (geomagnetic ac-
tivity). A vertical line of 8 August indicates the day of earthquake
occurrence. This lines refer to the daily values and the full lines in-
dicate the running mean of the daily values over 9 days around the
current day. In the plot of1, the horizontal line indicates the mean
value over one year and dotted horizontal lines indicate the mean
plus (and minus) one standard deviation.

has elucidated further characteristics of scaling properties of
ULF geomagnetic data for the Guam earthquake.

Our multifractal analysis has yielded a significant insight
into the precursory effects of earthquakes. It seems clear that
the temporal variations inw and 1 provide some obvious
message for the short-time earthquake forecast. Especially,
the non-uniformity factor,1 has indicated a significant in-
crease starting about 30 days before and lasting just before
the earthquake. This1 value is normalized by the denomi-
nator (fmax). The most influential point is the shift ofαmin to
the left, which indicates that the clustering within the most
clustered areas becomes more intense (the local fractal di-
mension increases within these vicinities). The correspond-
ing increase inw indeed means a transition from homo-
geneous (random, space filling) to heterogeneous (ordered,
complex, clustered) patterns.

We here comment on the 25–30 days precursory warning.
The presence of ULF signatures in this period has already
been found for a few large earthquakes like Loma Prieta and

Fig. 5. Temporal evolution ofDq (multifractal dimension) during
the one year of 1993. The value ofDq is indicated in color. Also,
the earthquake date of 8 August is given by a vertical line.

some others. This kind of temporal evolution has been at-
tempted to explain by means of the microfracturing model
by Molchanov and Hayakawa (1995) based on a space-time
model of microfracture progression.

While the multifractality of earthquake patterns has been
firmly established by now (Goltz, 1997), there have been
very few reports on the use of multifractal spectral change as
a precursor to earthquakes. Only a few sources are known to
us; Jiang (1993) and Hirabayashi et al. (1992). Jiang (1993)
was interested in the change in mutifractal parameters for
moderately large earthquakes (long-term variation of the or-
der of a year) and he concludes that the temporal variations
in w and1f provide some message for medium-term fore-
cast of earthquakes. Then, the main focus of Hirabayashi
(1992)’s paper was on showing that seismicity from three
major regions (California, Greece and Eastern Japan) consti-
tutes multifractal measures. But, they analyzed the temporal
behavior of the spectrum of generalized dimensions (theDq

curve) obtained from the epicenter distributions. The similar
work to these has been recently published by Kiyaschenko
et al. (2003) in order to find out some medium-term earth-
quake precursors. The epicenter distributions analyzed by
Jiang (1993) and Hirabayashi et al. (1992) are known to be
useful for the medium-term prediction, but the short-term
earthquake prediction seems to be possible only with the use
of electromagnetic phenomena (Hayakawa and Molchanov,
2002). Our mutifractal analysis for the geomagnetic ULF
data is found to be of great potential in short-term earthquake
prediction. Also, we will take into account the mutifractal
changes as obtained in this paper in the improvement of our
previous generation mechanism (Molchanov and Hayakawa,
1995).
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