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Abstract. The ability to detect the chaotic signal from a
finite time series observation of hydrologic systems is ad-
dressed in this paper. The presence of random and sea-
sonal components in hydrological time series, like rainfall
or runoff, makes the detection process challenging. Tests
with simulated data demonstrate the presence of thresholds,
in terms of noise to chaotic-signal and seasonality to chaotic-
signal ratios, beyond which the set of currently available
tools is not able to detect the chaotic component. The in-
vestigations also indicate that the decomposition of a simu-
lated time series into the corresponding random, seasonal and
chaotic components is possible from finite data. Real stream-
flow data from the Arkansas and Colorado rivers are used to
validate these results. Neither of the raw time series exhibits
chaos. While a chaotic component can be extracted from
the Arkansas data, such a component is either not present or
can not be extracted from the Colorado data. This indicates
that real hydrologic data may or may not have a detectable
chaotic component. The strengths and limitations of the ex-
isting set of tools for the detection and modeling of chaos are
also studied.

1 Introduction

The presence of nonlinear dynamics and chaos has strong
implications for predictive modeling and the analysis of
dominant processes in any discipline. The existence of
chaotic behavior has been demonstrated in diverse areas
ranging from turbulence (e.g.Abarbanel, 1994), weather or
climate (e.g.Lorenz, 1969; Fraedrich, 1986, 1987; Essex
et al., 1987) and geophysics (e.g.Hense, 1987; Wilcox et al.,
1991; Lorenz, 1996; Porporato and Ridolfi, 1996; Sivaku-
mar, 2004), to biology or medicine (e.g.Almog et al., 1990),
finance (e.g.Hsieh, 1991; Trippi, 1995; Cornelis, 2000), and
electrical circuits (e.g.Yim et al., 2004). The presence
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of chaos in hydrology has been suggested by previous re-
searchers (e.g.Rodriguez-Iturbe et al., 1989; Islam et al.,
1993; Jayawardena and Lai, 1994; Stehlik, 1999; Sivakumar,
2000, 2002, 2003, 2004; Sivakumar et al., 2000, 2001a,b,
2002b; Elshorbagy, 2001; Elshorbagy et al., 2001, 2002a,b;
Islam and Sivakumar, 2002). The ability to detect and model
chaotic behavior from finite hydrologic time series has re-
cently been debated (e.g.Schertzer et al., 2002; Sivakumar
et al., 2002a).

Characterization of chaos from real-world observations is
known to be a difficult problem in nonlinear dynamics (e.g.
Fraedrich, 1986; Theiler et al., 1992; Basu and Foufoula-
Georgiou, 2002). The complexity was highlighted in the con-
text of climate models byWang(2004), who demonstrated
that sensitivity to initial conditions may become less apparent
when the randomness in internal atmospheric variables be-
gins to dominate. Fundamental questions still remain unan-
swered in these areas, for example the ability to detect chaos
from a finite time series with random and seasonal compo-
nents, the ability to decompose a time series into these com-
ponents, and the corresponding implications for predictive
modeling. However, addressing these questions is critical for
hydrology. This can be gauged from the wealth of hydro-
logic literature in areas like complexity analysis (e.g.Bras
and Rodriguez-Iturbe, 1976; Tessier et al., 1996; Douglas
and Barros, 2003), predictability (e.g.Islam and Sivakumar,
2002) and nonlinear predictive modeling (e.g.Kuligowski
and Barros, 1998a,b; Kim and Barros, 2001; Ganguly and
Bras, 2003).

This paper investigates the ability of nonlinear dynamical
tools to detect, characterize, and predict chaos from finite
hydrologic observations, using both simulated and real time
series. Realistic simulated data is generated by contaminat-
ing chaotic signals with random and seasonal components,
while real streamflow data are used from the Arkansas and
Colorado rivers. The correlation dimension method is used
for detecting the possible presence of chaos. Nonlinear pre-
dictive models, namely the phase-space reconstruction (PSR)
and artificial neural networks (ANN) are employed for time
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series decomposition and prediction. This study develops
several new insights and interesting results. The presence
of thresholds for the detect-ability of chaos is demonstrated,
specifically when a chaotic signal is mixed with random or
seasonal signals, or a combination thereof. These thresholds
can be expressed in terms of the relative dominance of the
chaotic component compared to the random or seasonal com-
ponents. The ability to decompose a time series into the con-
tributions from the individual components (random, seasonal
and chaotic) is shown. The corresponding implications for
predictive modeling and characterizing the nonlinear dynam-
ics are highlighted. Real streamflow data analysis provides
additional insights. First, not all hydrologic time series con-
tain chaotic components which can de detected and modeled.
Second, for certain finite hydrologic time series, the presence
of chaos can indeed be detected, isolated from random and
seasonal components, and utilized for predictive modeling.

The rest of the paper is organized as follows. Section 2
presents the tools and methods employed in this study. The
simulated and real hydrological data are discussed in Sect. 3.
Sections 4 and 5 present and discuss the results obtained
with simulated and real hydrological time series, respec-
tively. The summary and conclusions of this paper are pre-
sented in Sect. 6.

2 Tools and methods

2.1 State of the art and Literature Review: Tools and Con-
cepts

The theoretical concepts underlying the methodologies for
the detection and modeling of nonlinear dynamical and
chaotic components, as well as their implementation, are
available in the literature (e.g.Takens, 1980; Sivakumar
et al., 1998; Hilborn, 2000; Islam and Sivakumar, 2002).
The present study exploits the correlation dimension method,
as well as nonlinear predictive models like PSR and ANN.
These tools have been used widely for the identification and
modeling of nonlinear dynamics and low-dimensional chaos
in short hydrological time series (e.g.Jayawardena and Lai,
1994; Sivakumar et al., 2002b; Islam and Sivakumar, 2002).
Contributions include refinement of these tools in terms of
either the underlying methodologies or the applications. A
brief discussion of the tools and the present modifications is
described in this section.

2.1.1 Correlation dimension

An algorithm suggested byGrassberger and Procaccia
(1983) is the most commonly used method in hydrology
to characterize chaotic attractors. In a time series of a
single dynamic variable,zi , where i=1, 2, .., N , a vec-
tor in an m-dimensional phase space may be given as
Zj=(zj , zj−τ , .., zj−(m−1)τ ), wherej=

mτ
1t

, .., N ; 1t is the
time interval;τ is the delay time; andm is the embedding

dimension of the state space. The correlation sumC(r) is
expressed as

C(r) =
2

N(N − 1)

N∑
i=1

i−1∑
j=1

2(r − ‖Zi − Zj‖), (1)

where2 is the Heaviside step function;N is the number
of points in the time series; andr is the radius of a sphere
with its center at either of the current points,zi or zj . The
relation between correlation sumC(r) given by Eq. (1) and
correlation exponentν is expressed as

C(r) = lim
r→∞

crν, (2)

wherec is a constant andν=limr→∞
Ln C(r)

Ln r
. Since a real

data set consists of a finite number of points, there always ex-
ists a minimum distance,dmin, between the trajectory points.
Whenr<dmin, the correlation sumC(r) is zero and no longer
scales withr. Therefore, Eq. (2) with limitr→∞ cannot be
used directly to determine the correlation exponent. In an al-
ternative technique, a plot ofLn C(r) vs. Ln r is obtained.
Several methods are available to determine the correlation
exponent from this plot. The slope of the scaling region,
where the curve can be approximated as a straight line, gives
the correlation exponentν. In the present study, the least
squares method is used to fit a line using a moving window
of sized to plot the slope vs.Ln r curve. The adjacent slope
values lying close to a horizontal portion of the curve are
averaged to determine the correlation exponent. For the sys-
tem to be chaotic, the correlation exponent should increase
up to a certain point and then saturate with an increase in the
embedding dimension. To calculate the saturation value of
the correlation exponent, the acceptable error is defined as
ε=p · (maxci − minci), wherep is an acceptable percentage,
and maxci and minci are the respective maximum and mini-
mum correlation exponents in a set ofM values. In this study,
the values ofp andM are taken as 1% and 20, respectively.
The difference between the adjacent values of the correlation
exponent is given asδ=Cj−Ci , wherej=i+1. If δ≤ε, then
1=

|CM−Ci |

M−i
. If 1≤ε, thenCi is the saturation value of the

correlation exponent. The nearest integer above the satura-
tion value of the correlation exponent gives the correlation
dimension of the attractor. It has been proposed (e.g.Sugi-
hara and May, 1990; Sivakumar et al., 2002b) that the corre-
lation dimension may be related to the minimum number of
variables required to extract a multidimensional description
of the dynamical system. Ifδ>ε and saturation never occurs,
the presence of chaos cannot be confirmed.

Osborne and Provenzale(1989) observed that the finite
correlation exponent achieved using the correlation dimen-
sion method is not a good indicator of the presence of chaos
since linear stochastic processes may also yield a finite corre-
lation exponent. The determination of correlation exponent
is greatly influenced by several factors including limited data
size, the presence of noise, delay time, and the presence of
a large number of zeros in the data set. Hydrological time
series is finite, contaminated with noise, and may contain a
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large number of zeros. A finite and small data set produces
a smaller scaling region. This may not be sufficient to calcu-
late the slope of theLn C(r) vs.Ln r curve and may result
in an underestimation of the correlation exponent. A large
scaling region may be better delineated when a large data
set is used which, in turn, results in a better estimation of
the slope. Nerenberg and Essex(1990) suggested that the
minimum number of data points required for the correct esti-
mation of the correlation exponent isNmin=102+0.4m, where
m is the embedding dimension. The presence of noise may
affect the scaling behavior and may tend to make the slope of
theLn C(r) vs.Ln r plot larger for small values ofr result-
ing in an overestimation of the correlation exponent. If the
delay time,τ , is too small, the phase space may contain very
little information and may result in an underestimation of the
correlation exponent. Ifτ is too large, the phase space may
miss out nearby diverging trajectories resulting in an overes-
timation of the correlation exponent. The presence of a large
number of zeros in the time series produces a phase space
with limited information about the underlying dynamics and
results in an underestimation of the correlation exponent.

2.1.2 Artificial Neural Networks (ANNs)

ANNs have been used widely for modeling nonlin-
ear hydrologic processes such as rainfall-runoff, stream-
flow, ground-water management, water quality simula-
tion, and precipitation (e.g.ASCE, 2000). A predic-
tion is expressed by a function,̂fNN, that maps the in-
put (zt , zt−τ , .., zt−(m−1)τ ) to the expected outputẑt+T , i.e.
ẑt+T = f̂NN(zt , zt−τ , .., zt−(m−1)τ ), whereτ andm are the
delay time and number of variables required to model the
system, respectively. The present study employs the multi-
layer perceptron (MLP) as a nonlinear function approximator
in the context of time series observations (e.g.Weigend and
Gershenfeld, 1994; Zhang et al., 1998). For am-dimensional
phase space, an appropriate ANN architecture could com-
prisem inputs and one output. The number of hidden layers
and corresponding hidden nodes would then depend on the
complexity of the functional form to be modeled. In practical
applications, more than two hidden layers are seldom used,
while a single hidden layer is usually deemed adequate. The
choice of the optimal number of hidden nodes is still an open
research topic, although methods based on information cri-
teria and other approaches have been proposed (e.g.Bishop,
1995). For the purposes of this study, a single hidden layer
with integer(m/2) hidden nodes is employed. The ANN
is trained using the commonly used backpropagation algo-
rithm. This algorithm repeatedly computes an error between
the output of the network and the desired output and feeds
this error back to the network. The error input is used to ad-
just the weights until the error is minimized. In this study,
two-third of the data set is used for training and the remain-
ing one-third is used for predictions. The accuracy of the
prediction is calculated in terms of the goodness of fit statis-
tics, correlation coefficient (CC), and error statistics, mean
squared error (MSE), between the original data and the pre-

dicted data.
As the number of input nodes in the ANN is increased, the

prediction skills increase up to a certain point and then be-
come constant. A large number of input nodes reflects the
use of additional lagged variables to model the time series.
When the number of inputs is too low, the information con-
tent in the lagged values is not adequately captured. This re-
sults in a higher bias and hence lower prediction skills. When
the number is too large, the functional form to be modeled
grows complex, leading to a larger error variance and cor-
responding decay in skills. This bias-variance tradeoff (and
related issues) usually results in an optimal number of nodes
where the skills attain a maxima. In certain cases, the number
of input values representing the number of lagged variables
of a time series at which the skills attain a maxima have been
equated with the number of variables influencing the dynam-
ical system (e.g.Sivakumar et al., 2002b).

2.1.3 Phase-Space Reconstruction (PSR) prediction

The PSR (e.g.Farmer and Sidorowich, 1987) has been used
widely for predicting chaotic time series in hydrology. The
time series with a single dynamical variable is embedded
in a m-dimensional state space. The dynamical system can
be interpreted in the form of a nonlinear functionFT , i.e.
Zi+T =FT Zi , whereZi andZi+T are the current state space
and the future state space, respectively. In order to predict
ẑ(i + T ) using the current stateZi , a functionF̂T that maps
am-dimensional state space to a single scalar variable of the
system is employed as

ẑi+T = F̂T Zi . (3)

In the present study, the local approximation approach
suggested byFarmer and Sidorowich(1987) is used to deter-
mineF̂T . This approach reduces the complexity of this func-
tion by dividing its domain into many neighborhoods and es-
timating an approximation map for each neighborhood. As
suggested byPorporato and Ridolfi(1996), F̂T can be mod-
eled as a linear function for best results. Two-third of the
data set is used for calibrations and the remaining one-third
for predictions. The function of Eq. (3) is modeled by using
a linear regression model as

z11+T

z22+T

· · ·

zkk+T

 =


z11 z11−τ · · · z11−(m−1)τ

z22 z22−τ · · · z22−(m−1)τ

· · · · · · · · · · · ·

zkk zkk−τ · · · zkk−(m−1)τ




b1
b2
· · ·

bm

 , (4)

where, (z11, .., z11−(m−1)τ ), .., (zkk, .., zkk−(m−1)τ ) are the
k states nearest to the current state,Zi , and are com-
puted based on the Euclidean distance measure‖Zi−Zj‖,
where Zj=(zjj , .., zjj−(m−1)τ ); b1, .., bm are the function
coefficients; andz11+T , .., zkk+T are thek predicted data
points. Using function coefficients,bi , from Eq. (4),
the predicted value for the current state is given as
ẑi+T =

∑m
r=1 zi−(r−1)τbr , whereτ is the delay time. In the

present study, the values employed fork andτ are 25 and 1,
respectively. The prediction accuracy is represented in terms
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Fig. 1. Monthly streamflow time series observed at the Arkansas
river.

Fig. 2. Daily streamflow series observed at the Colorado river.

of CC andMSE between the original data and the predicted
data. It has been suggested (e.g.Sivakumar et al., 2002b)
that the embedding dimension at which theCC vs.m curve
saturates may indicate the minimum number of variables re-
quired to capture the dynamics of the system.

3 Data description

The effectiveness of the methods described in Sect. 2.1
in terms of their ability to detect the presence of low-
dimensional chaos, as well as for short-term predictions, is
investigated. This is accomplished through an analysis of
both simulated and real hydrologic data.

3.1 Simulated data

Hydrological time series are always finite and may be con-
taminated with noise and seasonality. To obtain realistic in-
sights, simulated data is generated by contaminating chaotic
time series with noise, i.e. white and autoregressive, and sea-
sonality. The chaotic time series is represented here by the
Lorenz system of equations as

dx

dt
= β(y − x),

dy

dt
= −xz + rx − y,

dz

dt
= xy − bz, (5)

where β=10; r=28; andb=8/3. The Lorenz system is
highly sensitive to the initial conditions and is, therefore,
chaotic. Seasonality implies periodicity which, in turn, could

Table 1. Streamflow data statistics (values inm3/s).

Parameter Arkansas river Colorado river

Data points 516 1461
Number of zeros 0 0

Mean 0.6529 0.1672
Standard deviation 0.684 0.0594

Variance 0.4678 0.00353
Maximum value 4.7571 0.2819
Minimum value 0.0187 0.0334

broadly include intra-annual and inter-annual cycles. For
this study, seasonality is represented by a periodic function,
x(t)=A cos(2πf t), whereA andf are the amplitude and
frequency, respectively. Noise consists of random varia-
tions in the data. White noise is generated by using normal
distribution withµ(mean)=0 and a user specified value of
σ (standard deviation).

3.2 Hydrologic time series

Real hydrologic series including monthly streamflow time
series of the Arkansas river at Little Rock and daily stream-
flow time series of the Colorado river below Parker dam are
investigated. The raw data is obtained from the U.S. Geolog-
ical Survey site.

The presence (or absence) of low-dimensional chaos in a
short hydrological (monthly streamflow) time series at the
Arkansas river at Little Rock in Arkansas is first studied. The
Arkansas River is the fourth longest river in the United States
and is a tributary of the Mississippi which flows east and
southeast through Colorado, Kansas, Oklahoma and the state
of Arkansas. It is located at Latitude 34◦45′00′′ and Lon-
gitude 92◦16′25′′. The associated drainage area is 158 090
square miles while the contributing drainage area is 135 849
square miles. The temperature at Little Rock ranges from a
mean low of 40◦F in January to a mean high of 81◦F in July.
The mean annual precipitation at Little Rock is 50.26 inches.
The streamflow data of 43 years (October 1927–September
1970) is analyzed. The monthly streamflow time series at the
Arkansas river is shown in Fig.1.

The daily streamflow data observed at the Colorado river
below Parker dam, Arizona-California is also investigated for
the existence of chaotic behavior. The Colorado River flows
through Colorado, New Mexico, Utah, California, Arizona
and Nevada. It drains a part of the arid regions on the western
slopes of the Rocky Mountains. The height, crest length and
base thickness of Parker dam are 320 feet, 856 feet, and 100
feet, respectively. It is located at Latitude 34◦17′44′′, Lon-
gitude 114◦08′22′′. The associated drainage area is 182 700
square miles while the contributing drainage area is 178 700
square miles. The average temperature varies from 43.1◦F in
winter to 107.5◦F in summer. The annual average precipita-
tion is 6.2 inches. The daily streamflow data observed for 4
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Fig. 3. Ln C(r) vs. Ln r plot for Lorenz (X-component) time se-
ries. The curves are shown from top to bottom in ascending order
of embedding dimension,m=2, 4,.., 20.

years (1 June 1959–31 May 1963) is analyzed. The variation
of the daily streamflow series at the Colorado river is shown
in Fig. 2.

Statistics of the streamflow data observed at the Arkansas
and Colorado rivers are given in Table1.

4 Results with simulated data

4.1 Pure chaotic, random and seasonal time series

In this study, a chaotic time series is represented by the
X component of Eq. (5); a random series is a normally-
distributed white noise withµ=0 andσ=0.16; and seasonal
series is represented by a periodic function, i.e. cosine func-
tion with a frequency of 10 Hz and an amplitude 10. Each
series has 1000 data points, which is greater than the num-
ber of points required (102+0.4∗m

=650, wherem=2 for the
Lorenz time series) for the correct estimation of the correla-
tion exponent of the Lorenz time series (e.g.Nerenberg and
Essex, 1990). The plot ofLn C(r) vs. Ln r described in
Sect. 2.1.1 for Lorenz time series is shown in Fig.3, while
the corresponding correlation exponent vs.m plot is shown in
Fig. 4. For chaotic series, the correlation exponent saturates
at an embedding dimension of 10. The saturation value of the
correlation exponent is 1.34, while the correlation dimension
of the Lorenz attractor is 2. For random series, no saturation
is observed as seen in Fig.4. For the random series, the cor-
relation exponent values at low embedding dimensions are
very small but non-zero. The correlation exponent shown in
Fig. 4 decreases rather markedly for the seasonal series con-
sidered here, while theLn C(r) vs.Ln r plot shows charac-
teristic steps (e.g.Hilborn, 2000). For purposes of general-
ity, uniform and objective methods are utilized to identify the
scaling regions and to calculate the slope through the mov-
ing window technique described above. A window size of 9
is chosen and the average of ten slope values fromLn r=0.8
to Ln r=1.7 in increments of 0.1 are taken. These parame-

Fig. 4. Relation between correlation exponent and embedding di-
mension for Lorenz (X component), seasonal, and random series.

ters are selected through trial and error. Once selected, they
are kept constant for all the case studies with simulated data.
While this ensures uniformity, there is a possibility that judg-
mental approaches on each series might have yielded differ-
ing values for the scaling region and smoothing windows.
However, one purpose of the paper is to motivate the devel-
opment of tools that can be utilized in an automated fashion
and that do not rely on user judgment or subjective consid-
erations. The results with predictive modeling approaches
like PSR and ANN indicate significant prediction skills, i.e.
CC=1 andMSE=0, for forecast lead time from one to ten
atm=10 for the chaotic and the seasonal series. For random
series, the predictive skills fluctuate around a lower value and
show only a slightly decreasing trend as shown in Fig.5.

4.2 Mixed time series

As described earlier and indicated by previous researchers
(e.g.Sugihara and May, 1990; Koutsoyiannis and Pachakis,
1996; Elshorbagy, 2001), hydrologic and other real systems
tend to generate observables that have random and seasonal
components, in addition to any nonlinear deterministic (or
chaotic) signal that may be present. Simulated data are gen-
erated using a mixture of these components to understand
the ability to identify, characterize and quantify chaos from
amidst seasonality and noise through the commonly used
tools for nonlinear dynamics and chaos.

4.2.1 Mixture of chaotic and seasonal series

The ability to distinguish chaotic signals, when mixed with
seasonal signals of varying amplitudes, is depicted by cor-
relation exponent vs.m plots shown in Fig.6. These plots
are obtained using the correlation dimension method. First,
it is seen that as the seasonal component is increased, i.e. the
amplitudes are made higher, the saturation value of the cor-
relation exponent also increases. Second, there appears to
be a threshold value, expressed as the seasonality to chaotic-
signal ratio, for the degree of seasonality beyond which the
chaotic component cannot be distinguished any longer. The
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Fig. 5. The variation ofCC andMSE with forecast lead time for
white noise withσ=0.16.

Fig. 6. Relation between correlation exponent and embedding
dimension for mixed time series. Series includes LorenzX-
component and seasonality withf =10 Hz and different amplitudes.

degree of seasonality is expressed in terms of the ampli-
tude of the seasonal component for fixed value of the chaotic
Lorenz series. From eye estimation, for amplitudes of 1 and
6 in Fig.6, the correlation exponent appears to saturate with
an increase in the embedding dimension. Based on objec-
tive techniques established in Sect. 2.1.1, it can be demon-
strated that the saturation indeed occurs and the correlation
exponent either decreases, or remains constant, or increases
within tolerable limits, till an amplitude of eleven. However,

        T i m e

           P e r i o d o g r a m  PSD (dB/Hz)X

  F r e q u e n c y (Hz)

Fig. 7. Mixed times series (LorenzX-component and seasonality)
and its periodograms showing the variation of power spectral den-
sity (PSD) with frequency. Top: LorenzX-component and sea-
sonality withf =10 Hz andA=5. Middle: LorenzX-component
and seasonality withf =25 Hz andA=10. Bottom: LorenzX-
component and seasonality withf =50 Hz andA=13.

for amplitudes larger than 11, the increase in correlation ex-
ponent no longer remains within the tolerable limits, thus
indicating the presence of a possible threshold. While the
presence of a threshold is indicated, the exact value can de-
pend to some extent on how the criteria for saturation and the
corresponding tolerances are defined. It may also depend on
the number of data points used for the analysis. It is further
observed that the amplitude of 11 corresponds to the high-
est integer value of the seasonal amplitude for whichσ of
the seasonal component is lower than that of the chaotic se-
ries. Theσ values for the pure chaotic series, pure seasonal
series with amplitude 11, and pure seasonal series with am-
plitude 12, are 8.31, 7.78, and 8.48, respectively. For an am-
plitude of 11, the seasonality to chaotic-signal ratio, i.e.σs

σc
,

is 0.94. Thus, the results: (a) appear to indicate the presence
of a threshold value, i.e. 0.94, for the degree of seasonality
beyond which chaotic components may no longer be distin-
guishable at least through the use of the correlation exponent
based approaches, and (b) suggest that the threshold may oc-
cur at the point where the seasonality to chaotic-signal ratio
roughly equals unity.

The separation of the nonlinear deterministic signal from
the seasonality is next considered. Frequency domain meth-
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Table 2. Separation of white noise from a mixture of chaotic, sea-
sonal and white noise series using the PSR withm = 10.

Org.σwn Cal.σwn % error MSE CC

0.075 0.0910 21.3 0.0083 0.9999
0.1 0.1254 25.4 0.0157 0.9999
0.1 0.2318 15.9 0.0537 0.9997
0.33 0.3608 9.33 0.1301 0.9992
1.0 1.1985 19.85 1.4349 0.9913
2.0 2.6403 32.01 6.9706 0.9587
3.0 4.1341 37.8 17.0917 0.9022
5.0 6.5895 31.8 43.4134 0.7806
10.0 12.624 26.24 159.3665 0.4948

ods are applied to identify the dominant frequencies of the
seasonal component. This implicitly assumes that the sea-
sonal component, if present, in a simulated or real hydro-
logic series, is dominant enough to be identifiable through
the periodogram estimate. Figure7 shows chaotic-signal
mixed with seasonal signals of different frequencies and am-
plitudes, and the corresponding periodogram estimates. As
shown in Fig.7, the dominant frequency is observed for each
simulation. The amplitudes selected here represent the min-
imum values of the amplitudes, corresponding to the given
frequencies, above which a peak can be distinguished in the
periodogram. Thus, seasonal components of higher frequen-
cies need higher amplitudes to make them identifiable. Once
the frequencies are obtained, curve fitting techniques can
be utilized to obtain the amplitudes of the seasonal compo-
nent. The remaining component is the non-seasonal portion,
which in this case would be the chaotic component. It is
noted again that when extending this observation to real data,
the non-seasonal component needs to be further decomposed
into random and deterministic components. The determinis-
tic component is next analyzed for chaotic signals. The sep-
aration of random and deterministic (possibly chaotic) sig-
nals is discussed in Sect. 4.2.2. Table2 provides an example
where the white noise component has been isolated from a
series which is a mixture of chaotic signal, seasonality, and
white noise. The original and recovered standard deviations
of the white noise are shown along with the corresponding
errors. Once the deterministic component, i.e. chaotic + sea-
sonality, is isolated from the mixture, the seasonal compo-
nent is separated by fitting a periodic curve with the domi-
nant frequency found using frequency domain analysis. The
remaining chaotic component is compared with the original
Lorenz series used for the simulation. It is seen that as the
white noise component in the mixture increases, the predic-
tion skills represented by statisticsCC andMSE decrease.
The PSR, with the embedding dimension of 10, is used for
multi-step ahead forecasting of a mixture of chaotic series
and seasonality (f =10,A=12; andf =10,A=40). Figure8
shows theCC vs. Forecast lead time andMSE vs. Fore-
cast lead time plots. Good prediction skills withCC=1 and
MSE=0 for a mixture of chaotic and seasonal series are ob-
served.

Fig. 8. Variation of CC and MSE with forecast lead time for
chaotic and mixed series. L, WN and S stand for Lorenz, white
noise and seasonality, respectively.

Fig. 9. Correlation exponent vs. embedding dimension plot for
mixed time series consisting of Lorenz (X-component) and white
noise.

4.2.2 Mixture of chaotic and random series

The ability to separate the deterministic component from a
mixture of chaotic and random series is studied. Correla-
tion exponent vs.m plot obtained using the correlation di-
mension method is shown in Fig.9. Each curve represents
a different value ofσ for the white noise component that
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Table 3. Separation of white noise from a mixture of Lorenz (X component) and white noise using the PSR withm=10.

σwn σwn (cal) % error µ (norm fit) µci (norm fit) σci (norm fit) MSE CC

0.075 0.0861 14.8 −0.0012 −0.0066−0.0041 0.0825−0.0901 0.0074 0.9999
0.1 0.1066 6.6 −0.0022 −0.0088−0.0045 0.1021−0.1115 0.0114 0.9999
0.2 0.2008 0.4 0.0 −0.0135−0.0115 0.1924−0.2101 0.0403 0.9997
0.33 0.3502 6.12 −0.0011 −0.0229−0.0208 0.3355−0.3664 0.1226 0.9991

Table 4. Separation of white noise from a mixture of Lorenz (X component) and white noise using the ANN withm=10.

σwn σwn (cal) % error µ (norm fit) µci (norm fit) σci (norm fit) MSE CC

0.075 0.0871 16.1 0.0 −0.0054−0.0054 0.0834−0.0911 0.0076 0.9999
0.1 0.1129 12.9 0.0 −0.007−0.007 0.1081−0.1181 0.0138 0.9999
0.2 0.2238 11.9 0.0 −0.014−0.014 0.2144−0.2341 0.05 0.9996
0.33 0.3541 7.3 0.0 −0.0221−0.0221 0.3392−0.3704 0.1391 0.9991

is mixed with the same underlying chaotic signal. Several
properties are observed. First, the saturation value of the cor-
relation exponent increases as the white noise component (σ )
increases. Second, a threshold value appears to exist for the
noise to chaotic-signal ratio, beyond which the latter cannot
be distinguished through the use of this method. The cor-
relation exponent does not saturate when theσ of the white
noise component becomes more than 0.17, which roughly
corresponds to a threshold value of 1/49 for the noise to
chaotic-signal ratio. Similar to the case of mixture of chaos
and seasonality described in the previous section, the results
presented here appear to suggest the existence of a threshold.
The actual value of the threshold may vary depending on the
predefined saturation criteria, tolerances and possibly on the
number of data points. However, the results do indicate that a
threshold value may exist, beyond which the chaotic compo-
nent can not be determined from a mixture of chaotic-signal
and white noise. The threshold value appears surprisingly
low (just two percent in terms of the ratio of the standard de-
viations) for a chaotic-signal contaminated with pure random
noise. Besides the white noise series, a mixture of chaotic se-
ries and colored noise generated from autoregressive process
of order one is studied (results not shown). The same thresh-
old value of 1/49 beyond which the chaotic component can
not be determined from a mixture of chaotic-signal and col-
ored noise is observed.

The separation of the nonlinear deterministic signal from
the random component is now considered. The separation
is obtained through the use of predictive modeling strate-
gies that have demonstrated value for chaotic systems. Sev-
eral assumptions are made for this purpose. First, it is as-
sumed that the functional form encapsulated by the trained
nonlinear predictive models can be utilized to model the
deterministic component of the time series. Thus, a de-
composition of the series into a deterministic and a ran-
dom component is realized. Second, it is assumed that the

chaotic-signal is contained within the deterministic com-
ponent and adequately modeled by the predictive models.
Thus, if a functional form̂fNN modeled by the ANN exists,
whereẑt+T =f̂NN(zt , zt−τ , .., zt−(m−1)τ )+ε, the ANN can be
trained using the entire data set to findf̂NN. Once trained, the
estimate of̂zt provided by the ANN is assumed to represent
the deterministic component, and the residual is assumed to
represent noise. This assumption holds as long as the func-
tional form modeled by the predictive model is valid. The
second assumption implies that the chaotic-signal, if any,
is contained within the deterministic signal isolated using
the predictive modeling-based decomposition strategy. It is
noted, however, that this approach does not distinguish be-
tween chaotic and non-chaotic determinism. Once the deter-
ministic component has been isolated, the presence of chaos
can be determined using the correlation dimension method.
For the simulated data, a mixture of chaotic-signal and white
noise is considered. Thus, the deterministic signal that can
be isolated is assumed to be chaotic, provided the signal has
been adequately modeled. The separated components can
also be compared with the original signals from which the
simulations are generated. Table3 shows the comparison
when the PSR is used as the predictive model, while Table4
shows the same for the ANN. The recovered noise is further
tested for normality. A perfect recovery would be indicated
by a passing of this test with a mean that is statistically in-
distinguishable from zero and a standard deviation indistin-
guishable from that of the original white noise. Once the
deterministic component has been isolated, it is compared
with the original chaotic series used for the simulation. The
prediction skills are related toMSE andCC values obtained
from the predictive models. The results presented in Tables3
and4 indicate that for the simulated data, a fairly good degree
of separation can be achieved. An embedding dimension of
10 is used at which the saturation value of the correlation
exponent of the Lorenz time series is obtained. When these
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Fig. 10. Correlation exponent vs. embedding dimension for
monthly streamflow series at the Arkansas river.

concepts are generalized to the real data, the nature of the de-
terministic component is not known a priori and needs to be
verified using tools like correlation exponent methodologies.
A mixture of chaotic series and white noise (σ=0.17) is an-
alyzed for multi-step ahead forecasting using the PSR with
the embedding dimension of 10. Figure8 shows theCC vs.
Forecast lead time andMSE vs. Forecast lead time plots.
It is observed thatCC decreases andMSE increases as the
forecast lead time increases. Due to randomness, the accu-
racy of the prediction for a chaotic series mixed with white
noise decreases with an increase in the forecast lead time.

5 Analysis with hydrologic time series

5.1 Arkansas river

The monthly streamflow time series at the Arkansas river
is shown in Fig.1 and is analyzed using the correlation di-
mension method to detect the presence (or absence) of low-
dimensional chaos in the system. The methodology used for
the analysis is described in Sect. 2.1.1. A moving window
of size 3 units is used to compute the slope. The number
of Ln r values for which the slope is available and con-
stant is limited for this data. The slope at a middle range
(aroundLn r=0.8) is used as the correlation exponent. Fig-
ure10shows the correlation exponent vs.m plot for the origi-
nal monthly streamflow series which does not saturate based
either on an eye estimation or the objective techniques de-
scribed in Sect. 2.1.1. This indicates that either the system is
stochastic or the chaotic component, if present, is dominated
by noise or seasonality. The time series is analyzed using the
PSR withm=10 to isolate the deterministic component from
the original series. The methodology is similar to that used
for simulated data, and is described in detail in Sect. 4.2.
The mean and standard deviation of the non-deterministic
component, i.e. noise, separated using the PSR are−0.0097
and 0.7159, respectively. The mean and standard devia-
tion of the original series and the series after the removal
of noise, i.e. deterministic series, areµ=0.6529; σ=0.6833

Fig. 11. Ln C(r) vs.Ln r plot for the series, after removing noise,
observed at the Arkansas river. The curves are shown in ascending
order of embedding dimension,m=1, 2,.., 20 from top to bottom.

Fig. 12. Multistep ahead predictions for the Arkansas river stream-
flow data. Top: one-step ahead predictions. Middle: two-step ahead
predictions. Bottom: three-step ahead predictions.

andµ=0.5908; σ=0.6564, respectively. In the present ex-
ample, the ratio ofσn (0.7159) andσc (0.6529) is 1.09 which
is greater than the threshold value (i.e. 0.02) obtained for the
simulated data in Sect. 4.2.2. An attempt to fit a periodic
function to the deterministic series to isolate seasonal behav-
ior is not made since no dominant frequency in the series is
observed from frequency domain analysis. The determinis-
tic series is analyzed using the correlation dimension method
with the same embedding dimension, i.e. 10, and window
size, i.e. 3, to examine a low-dimensional chaos in the sys-
tem. Figure11 shows theLn C(r) vs. Ln r plot for the
series. The correlation exponent vs.m plot in Fig.10 for the
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Fig. 13. Monthly streamflow data at the Arkansas river: Variation
of MSE with forecast lead time for the original and deterministic
data. The deterministic data is obtained after removing noise from
original data.

deterministic series shows that the correlation exponent satu-
rates after an embedding dimension of 15 based on the objec-
tive techniques. The saturation value of the correlation expo-
nent is 3.97. The number of variables required to model the
streamflow dynamical system would be 4. The low value of
correlation dimension suggests the possible presence of low-
dimensional chaos in the streamflow dynamics. Figure12
shows one-step, two-step, and three-step ahead predictions
for the original monthly streamflow series at the Arkansas
river. Figure13 showsMSE vs. Forecast lead time plots
for the original and deterministic series. TheMSE values at
Forecast lead time of 7 and 8 are 27.22 and 315.27, respec-
tively. For the original series,MSE values are high and in-
crease as the forecast lead time increases indicating the pres-
ence of non-deterministic component confirming the results
obtained earlier using the PSR. This, in turn, decreases the
prediction accuracy with an increase in the lead time. For the
deterministic series, the prediction accuracy is significantly
improved, i.e. theMSE values are very low as compared
with the original series values, indicating that the determin-
istic series is indeed chaotic. This confirms the results from
the correlation dimension method.

Fig. 14. Correlation exponent vs. embedding dimension plot for
daily streamflow series at the Colorado river.

5.2 Colorado river

The daily streamflow series observed at the Colorado river
below Parker dam is shown in Fig.2. This series is analyzed
for low-dimensional chaotic behavior using the correlation
dimension method. The slope is calculated by considering a
moving window of size 3 units. The correlation exponent is
the slope value atLn r=−2.2. The correlation exponent vs.
m plot for the original series is shown in Fig.14. Based on
an eye estimation and the objective techniques described in
Sect. 2.1.1, it is seen that the correlation exponent does not
reach a saturation value. This indicates that either the system
is stochastic or it contains some dominant noise/seasonality
component. To separate the non-deterministic component,
the original series withµ=0.1672 andσ=0.0594 is analyzed
using the PSR withm=10. The mean and the standard de-
viation of the non-deterministic component, i.e. noise, sep-
arated using the PSR are 0.0 and 0.0099, respectively. The
statistics for the deterministic component that might contain
chaos and seasonality are given asµ=0.1669 andσ=0.0593.
The ratio ofσn (0.0099) andσc (0.0593) is 0.167 which is
greater than the threshold value of 0.02, obtained for the
simulated data in Sect. 4.2.2. The series, after the removal
of noise, is analyzed using the frequency domain method to
determine the dominant frequency. No peak is observed in
the periodogram. However, based on an eye estimation a
possible seasonal behavior in the data is observed. To iso-
late and remove the possible presence of seasonality, a pe-
riodic function is chosen to fit the data such that theMSE

is minimized. This function is obtained using a trial and er-
ror procedure. The mean and the standard deviation of the
series after the removal of noise and seasonality, i.e. deter-
ministic series, according to the methods described earlier
are 0.0469 and 0.0328, respectively. The deterministic series
is analyzed using the correlation dimension method with the



S. Khan et al.: Detection and predictive modeling of chaos 51

Fig. 15. Ln C(r) vs. Ln r for daily streamflow series, after re-
moving noise and seasonality, at the Colorado river. The curves are
shown in ascending order of embedding dimension,m=1, 2,.., 20
from top to bottom.

same embedding dimension, i.e. 10, and window size, i.e. 3.
Figure15shows theLn C(r) vs.Ln r plot for the determin-
istic series. The correlation exponent vs.m curve shown in
Fig. 14 for the deterministic series does not saturate based
on an eye estimation and the objective techniques indicating
that the system is stochastic. Figure16shows one-step, two-
step, and three-step ahead predictions for the original daily
series at the Colorado river. TheMSE vs. Forecast lead time
plots for the original and deterministic series are shown in
Fig. 17. The prediction accuracy is high, i.e.MSE values
are low, due to the presence of seasonality in the data. For
the original series, theMSE increases with an increase in the
forecast lead time. The prediction accuracy does not change
significantly for the deterministic series, i.e.MSE values are
very close to the original series values, indicating the absence
of chaos in the deterministic series. This indicates that the
system is stochastic confirming the results from the correla-
tion dimension method. The streamflow measurement gauge
is located at a distance of 100 feet downstream of the dam
(USGS, 2004). In addition, the flow at the dam is regulated
based on requirements (BoR, 2004). These, in turn, may de-
pend on various factors on a day-to-day basis leading to sig-
nificant randomness in the observations. The measured flow
at the dam, thus, reflects a variety of human controls imply-
ing that natural variability no longer is the dominant factor.
This is the most likely cause for the loss of nonlinear dynam-
ical information in the time series.

6 Summary and conclusions

The strengths of the use of nonlinear dynamical tools in con-
junction with statistical time and frequency domain method-
ologies were demonstrated in this work. This study investi-
gated the ability to detect and model chaos from finite hy-
drologic observations, especially when randomness and sea-
sonality are present. The ability to detect and model non-
linear dynamical and chaotic components, from finite real-

Fig. 16. Multistep ahead predictions for the Colorado river stream-
flow data. Top: one-step ahead predictions. Middle: two-step ahead
predictions. Bottom: three-step ahead predictions.

Fig. 17. Daily streamflow data at the Colorado river: Variation of
MSE with forecast lead time for the original and deterministic data.
The deterministic data is obtained after separating white noise and
seasonality from the original data.

world observations, is likely to have significant implications
for scientific understanding and predictive modeling in mul-
tiple disciplines. This research represents a step forward
in these directions. The results of the present investigation
demonstrated the presence of thresholds, expressed in terms
of noise to chaotic-signal and seasonality to chaotic-signal
ratios. The ability to detect chaos from observations de-
pends on whether the chaotic component in the hydrologic
time series is dominant enough to satisfy the thresholds. It
was shown that the overall time series can be decomposed
into the contributing random, seasonal and chaotic compo-
nents. Time series was decomposed using nonlinear predic-
tive modeling for separating the chaotic component, statisti-
cal methods for characterizing random data, and frequency
domain approaches for isolating seasonality. This has direct
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implications for a scientific understanding of hydrologic phe-
nomena and the dominant processes that may be present as
well as in the development of predictive models. For exam-
ple, it was shown that the chaotic component, once detected
and isolated, can be better predicted in the short-term through
nonlinear models like ANN and PSR. The insights obtained
from simulated data were used to interpret the results of real
streamflow data from the Arkansas and Colorado rivers. It
was observed that a chaotic component can be detected, iso-
lated and utilized for improved predictive modeling from fi-
nite hydrologic time series like the Arkansas data. However,
it was seen that for certain hydrologic data like the Colorado
river data, this may not be possible. This may be due to
the absence of chaotic/nonlinear dynamical component in the
data. If the data observed at the Colorado river does contain
chaotic/nonlinear dynamic component, then it may be com-
pletely dominated by randomness introduced as a result of
the stochastic mode of dam operation on a daily basis.
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