N

N

Detection and predictive modeling of chaos in finite
hydrological time series
S. Khan, A. R. Ganguly, S. Saigal

» To cite this version:

S. Khan, A. R. Ganguly, S. Saigal. Detection and predictive modeling of chaos in finite hydrological
time series. Nonlinear Processes in Geophysics, 2005, 12 (1), pp.41-53. hal-00302460

HAL Id: hal-00302460
https://hal.science/hal-00302460
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00302460
https://hal.archives-ouvertes.fr

Nonlinear Processes in Geophysics (2005) 12581— 4 "* .
SRef-ID: 1607-7946/npg/2005-12-41 GG Nonlinear Processes

European Geosciences Union in Geophysics
© 2005 Author(s). This work is licensed -

under a Creative Commons License.

Detection and predictive modeling of chaos in finite hydrological
time series

S. Khant, A. R. Ganguly?, and S. Saigat

1civil and Environmental Engineering, University of South Florida, Tampa, FL, USA
2Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Received: 31 August 2004 — Revised: 22 December 2004 — Accepted: 23 December 2004 — Published: 17 January 2005

Part of Special Issue “Nonlinear deterministic dynamics in hydrologic systems: present activities and future challenges”

Abstract. The ability to detect the chaotic signal from a of chaos in hydrology has been suggested by previous re-
finite time series observation of hydrologic systems is ad-searchers (e.gRrodriguez-lturbe et 31.1989 Islam et al,
dressed in this paper. The presence of random and sed993 Jayawardena and L&ai994 Stehlik 1999 Sivakumay
sonal components in hydrological time series, like rainfall 2000 2002 2003 2004 Sivakumar et aJ.200Q 20014ab,
or runoff, makes the detection process challenging. Test2002h Elshorbagy 2001, Elshorbagy et al.2001, 2002ab;
with simulated data demonstrate the presence of thresholdsslam and Sivakuma002. The ability to detect and model
in terms of noise to chaotic-signal and seasonality to chaoticchaotic behavior from finite hydrologic time series has re-
signal ratios, beyond which the set of currently availablecently been debated (e.§chertzer et al2002 Sivakumar
tools is not able to detect the chaotic component. The in-et al, 20023.
vestigations also indicate that the decomposition of a simu- Characterization of chaos from real-world observations is
lated time series into the corresponding random, seasonal arikhown to be a difficult problem in nonlinear dynamics (e.g.
chaotic components is possible from finite data. Real streamFraedrich 1986 Theiler et al, 1992 Basu and Foufoula-
flow data from the Arkansas and Colorado rivers are used t@Georgioy2002. The complexity was highlighted in the con-
validate these results. Neither of the raw time series exhibitsext of climate models byang (2004, who demonstrated
chaos. While a chaotic component can be extracted fronthat sensitivity to initial conditions may become less apparent
the Arkansas data, such a component is either not present @fhen the randomness in internal atmospheric variables be-
can not be extracted from the Colorado data. This indicategjins to dominate. Fundamental questions still remain unan-
that real hydrologic data may or may not have a detectablgwered in these areas, for example the ability to detect chaos
chaotic component. The strengths and limitations of the exfrom a finite time series with random and seasonal compo-
isting set of tools for the detection and modeling of chaos arenents, the ability to decompose a time series into these com-
also studied. ponents, and the corresponding implications for predictive
modeling. However, addressing these questions is critical for
hydrology. This can be gauged from the wealth of hydro-
logic literature in areas like complexity analysis (eByas
and Rodriguez-lturbel976 Tessier et a).1996 Douglas

d Barros2003, predictability (e.glslam and Sivakumar
002 and nonlinear predictive modeling (e.guligowski
nd Barros1998ab; Kim and Barros 2001 Ganguly and
s 2003.

1 Introduction

The presence of nonlinear dynamics and chaos has stron
implications for predictive modeling and the analysis of

dominant processes in any discipline. The existence of
chaotic behavior has been demonstrated in diverse aredya

ranging from turbulence (e.d\barbanel 1994, weather or This paper investigates _the ability of qonlinear dynam?cgl

climate (e.g.Lorenz 1969 Fraedrich 1986 1987 Essex tools to Qetect, chgracterlzg, and prgdlct chaos from fmne
et al, 1987 and geophysics (e.¢lense 1987 Wilcox et al, hydrologlc opsgrvgtlons, using bpth simulated and real time
1991, Lorenz 199§ Porporato and Ridolfil99§ Sivaku- ~ Series. Rgall§tlc S|mqlated data is generated by contaminat-
mar, 2004, to biology or medicine (e.gAlmog et al, 1990, ing chaotic signals with random and seasonal components,

finance (e.gHsieh 1991 Trippi, 1995 Cornelis 2000, and while real streamflow data are used from the Arkansas and
electrical circuits (e.gYim et al, 2004. The presence Colorado rivers. The correlation dimension method is used

for detecting the possible presence of chaos. Nonlinear pre-
Correspondence toA. R. Ganguly dictive models, namely the phase-space reconstruction (PSR)
(aurcop@alum.mit.edu) and artificial neural networks (ANN) are employed for time
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series decomposition and prediction. This study developglimension of the state space. The correlation gi) is
several new insights and interesting results. The presencexpressed as
of thresholds for the detect-ability of chaos is demonstrated, X N1
specifically when a chaotic signal is mixed with random or _ ‘ ,
seasonal signals, or a combination thereof. These threshol s(r) ~ N(N — 1);;®(r —l1zi =2, @
can be expressed in terms of the relative dominance of the T
chaotic component compared to the random or seasonal conmwhere ® is the Heaviside step functiony is the number
ponents. The ability to decompose a time series into the conef points in the time series; andis the radius of a sphere
tributions from the individual components (random, seasonalwith its center at either of the current points,or z;. The
and chaotic) is shown. The corresponding implications forrelation between correlation su@r) given by Eq. (1) and
predictive modeling and characterizing the nonlinear dynam-correlation exponent is expressed as
ics are highlighted. Real streamflow data analysis provides ) )
additional insights. First, not all hydrologic time series con- € (") = ,lmmcr ’ @)
tain chaotic components which can de detected and modeled.
Second, for certain finite hydrologic time series, the presencavherec is a constant and=lim,_. ., 2" Since a real
of chaos can indeed be detected, isolated from random anglata set consists of a finite number of points, there always ex-
seasonal components, and utilized for predictive modeling. ists @ minimum distancemin, between the trajectory points.
The rest of the paper is organized as follows. Section 2Whenr <dmin, the correlation sura'(r) is zero and no longer
presents the tools and methods employed in this study. Th&cales withr. Therefore, Eq. (2) with limit— oo cannot be
simulated and real hydrological data are discussed in Sect. 3/Sed directly to determine the correlation exponent. In an al-
Sections 4 and 5 present and discuss the results obtaindg§rnative technique, a plot. dfn C(r) vs. Lnris obtained. .
with simulated and real hydrological time series, respec-several methods_are available to determine the_ correlgtlon
tively. The summary and conclusions of this paper are pre£xponent from this plot. The slope of the scaling region,
sented in Sect. 6. where the curve can be approximated as a straight line, gives
the correlation exponent. In the present study, the least
squares method is used to fit a line using a moving window
of sized to plot the slope vsLn r curve. The adjacent slope
values lying close to a horizontal portion of the curve are
averaged to determine the correlation exponent. For the sys-
2.1 State of the art and Literature Review: Tools and Con-tem to be chaotic, the correlation exponent should increase
cepts up to a certain point and then saturate with an increase in the
embedding dimension. To calculate the saturation value of
The theoretical concepts underlying the methodologies forthe correlation exponent, the acceptable error is defined as
the detection and modeling of nonlinear dynamical ande=p - (max; — min.;), wherep is an acceptable percentage,
chaotic components, as well as their implementation, areand may; and min; are the respective maximum and mini-
available in the literature (e.glakens 1980 Sivakumar  mum correlation exponents in a setfvalues. In this study,
et al, 1998 Hilborn, 200Q Islam and Sivakumar2002. the values ofp and M are taken as 1% and 20, respectively.
The present study exploits the correlation dimension methodThe difference between the adjacent values of the correlation
as well as nonlinear predictive models like PSR and ANN.exponent is given a8=C;—C;, wherej=i+1. If §<¢, then
These tools have been used widely for the identification andAz%_ If A<e, thenC; is the saturation value of the
modeling of nonlinear dynamics and low-dimensional chaoscorrelation exponent. The nearest integer above the satura-
in short hydrological time series (e.gayawardena and Lai  tion value of the correlation exponent gives the correlation
1994 Sivakumar et aJ.2002h Islam and Sivakuma2003).  dimension of the attractor. It has been proposed @ugi-
Contributions include refinement of these tools in terms ofhara and May199Q Sivakumar et a).20028 that the corre-
either the underlying methodologies or the applications. Ajation dimension may be related to the minimum number of
brief discussion of the tools and the present modifications isyariables required to extract a multidimensional description

2 Tools and methods

described in this section. of the dynamical system. &> ¢ and saturation never occurs,
the presence of chaos cannot be confirmed.
2.1.1 Correlation dimension Osborne and Provenza({@989 observed that the finite

correlation exponent achieved using the correlation dimen-
An algorithm suggested byGrassberger and Procaccia sion method is not a good indicator of the presence of chaos
(1983 is the most commonly used method in hydrology since linear stochastic processes may also yield a finite corre-
to characterize chaotic attractors. In a time series of dation exponent. The determination of correlation exponent
single dynamic variablez;, wherei=1,2,.., N, a vec- isgreatly influenced by several factors including limited data
tor in an m-dimensional phase space may be given assize, the presence of noise, delay time, and the presence of
Zi=(zj,2j—1+-2j—m-17), Wherej=5% . N; Aristhe  a large number of zeros in the data set. Hydrological time
time interval; t is the delay time; andh is the embedding series is finite, contaminated with noise, and may contain a
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large number of zeros. A finite and small data set produceslicted data.

a smaller scaling region. This may not be sufficient to calcu- As the number of input nodes in the ANN is increased, the
late the slope of thén C(r) vs. Ln r curve and may result prediction skills increase up to a certain point and then be-
in an underestimation of the correlation exponent. A largecome constant. A large number of input nodes reflects the
scaling region may be better delineated when a large datase of additional lagged variables to model the time series.
set is used which, in turn, results in a better estimation ofWhen the number of inputs is too low, the information con-
the slope. Nerenberg and Essg1990 suggested that the tentin the lagged values is not adequately captured. This re-
minimum number of data points required for the correct esti-sults in a higher bias and hence lower prediction skills. When
mation of the correlation exponentig,in=10°1%4" where  the number is too large, the functional form to be modeled
m is the embedding dimension. The presence of noise magrows complex, leading to a larger error variance and cor-
affect the scaling behavior and may tend to make the slope ofesponding decay in skills. This bias-variance tradeoff (and
theLn C(r) vs. Ln r plot larger for small values of result- related issues) usually results in an optimal number of nodes
ing in an overestimation of the correlation exponent. If the where the skills attain a maxima. In certain cases, the number
delay time,r, is too small, the phase space may contain veryof input values representing the number of lagged variables
little information and may result in an underestimation of the of a time series at which the skills attain a maxima have been
correlation exponent. I is too large, the phase space may equated with the number of variables influencing the dynam-
miss out nearby diverging trajectories resulting in an overesical system (e.gSivakumar et aJ.20021.

timation of the correlation exponent. The presence of a large

number of zeros in the time series produces a phase spacel.3 Phase-Space Reconstruction (PSR) prediction

with limited information about the underlying dynamics and

results in an underestimation of the correlation exponent. The PSR (e.grarmer and Sidorowicli987) has been used

widely for predicting chaotic time series in hydrology. The
2.1.2 Artificial Neural Networks (ANNS) _time ser.ies wi.th a single dynamical variablg is embedded
in am-dimensional state space. The dynamical system can

ANNs have been used widely for modeling nonlin- be interpreted in the form of a nonlinear functiés, i.e.

ear hydrologic processes such as rainfall-runoff, streamZi+r=FrZ;, whereZ; andZ;r are the current state space
ﬂOW, ground-water management' water qua“ty simula- and the future state space, respectively. |q order to prediCt
tion, and precipitation (e.gASCE, 2000. A predic- <( + T) using the current sta;, a functionFy that maps
tion is expressed by a functiorfyn, that maps the in- am-dimensional state space to a single scalar variable of the
PUL (27, Zr 1+ -.» 21— (m_1)r) tO the expected outpdt, 7, i.e.  Systemis employed as

Zt4+T = NNy 2y oo z,_(m_l)_f), wherert _andm are the Binr = Frz;. ©)
delay time and number of variables required to model the

system, respectively. The present study employs the multi- In the present study, the local approximation approach
layer perceptron (MLP) as a nonlinear function approximatorsuggested bffarmer and Sidorowic{1987) is used to deter-

in the context of time series observations (&\gigend and MineFr. This approach reduces the complexity of this func-
Gershenfeld1994 Zhang et al.1998. For am-dimensional  tion by dividing its domain into many neighborhoods and es-
phase space, an appropriate ANN architecture could comtimating an approximation map for each neighborhood. As
prisem inputs and one output. The number of hidden layerssuggested borporato and Ridol{{1996, Fr can be mod-
and corresponding hidden nodes would then depend on theled as a linear function for best results. Two-third of the
complexity of the functional form to be modeled. In practical data set is used for calibrations and the remaining one-third
applications, more than two hidden layers are seldom usedor predictions. The function of Eqg. (3) is modeled by using
while a single hidden layer is usually deemed adequate. Thé linear regression model as

choice of the optimal number of hidden nodes is still an open

i i X i e e b
research topic, although methods based on information cri- ;11” ;11 ;11 i ill (m=Dyr bl
teria and other approaches have been proposedBishpp 22+T = 22 2.2'_.7 sz(f”._l)f 2 , (4
1995. For the purposes of this study, a single hidden layer
Zkk+T Tkk Tkk—t ** Thk—(m—1)t b

with integer(m/2) hidden nodes is employed. The ANN
is trained using the commonly used backpropagation algowhere, (z11, .., z11-m—11), --, (Zkk, --» Zkk—(m—1)r) are the
rithm. This algorithm repeatedly computes an error betweerk states nearest to the current stal;, and are com-
the output of the network and the desired output and feedputed based on the Euclidean distance meafdre-Z;|,

this error back to the network. The error input is used to ad-where Z ;=(z;;, .., Zjj—m-1<); b1, .., by, are the function
just the weights until the error is minimized. In this study, coefficients; anc11+7, .., zxeer are thek predicted data
two-third of the data set is used for training and the remain-points.  Using function coefficientsh;, from Eq. (4),

ing one-third is used for predictions. The accuracy of thethe predicted value for the current state is given as
prediction is calculated in terms of the goodness of fit statis-Z; . 7= r_; zi—(—1)cb,, Wheret is the delay time. In the
tics, correlation coefficientC), and error statistics, mean present study, the values employed faandzt are 25 and 1,
squared errorM SE), between the original data and the pre- respectively. The prediction accuracy is represented in terms
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Table 1. Streamflow data statistics (valuesir/s).

=
=2 E 3 Parameter Arkansas river ~ Colorado river
% 2, Data points 516 1461
g = Number of zeros 0 0
GRS Mean 0.6529 0.1672
0 Standard deviation 0.684 0.0594
' ' ' ' ' ' ! Variance 0.4678 0.00353
0 100 200 300 400 500 600 Maximum value 4.7571 0.2819
Time (Month) Minimum value 0.0187 0.0334

Fig. 1. Monthly streamflow time series observed at the Arkansas

river.
broadly include intra-annual and inter-annual cycles. For

this study, seasonality is represented by a periodic function,
x(t)=A cog2rft), whereA and f are the amplitude and
frequency, respectively. Noise consists of random varia-
tions in the data. White noise is generated by using normal
distribution with x(mean=0 and a user specified value of

o (standard deviation).

= =
i} w
L ]

Streamflow
=]

(Cubic m/s)

0 . . . . . 3.2 Hydrologic time series
0 300 600 800 1200 1500
Time (Day)

Real hydrologic series including monthly streamflow time
series of the Arkansas river at Little Rock and daily stream-
flow time series of the Colorado river below Parker dam are
investigated. The raw data is obtained from the U.S. Geolog-
ical Survey site.

of CC andM SE between the original data and the predicted The presence (or absence) of low-dimensional chaos in a
data. It has been suggested (eSiuakumar et a).20020 short hydrological (monthly streamflow) time series at the
that the embedding dimension at which i€ vs.m curve  Arkansas river at Little Rock in Arkansas is first studied. The
saturates may indicate the minimum number of variables reArkansas River is the fourth longest river in the United States

quired to capture the dynamics of the system. and is a tributary of the Mississippi which flows east and
southeast through Colorado, Kansas, Oklahoma and the state

o of Arkansas. It is located at Latitude 3%'00” and Lon-

3 Data description gitude 921625’. The associated drainage area is 158 090
pQuare miles while the contributing drainage area is 135849
in terms of their ability to detect the presence of low- ?g;ﬁor\?v"gfi;l—:hﬁl Begﬂﬂzstg Z ?T:;‘::iigﬁ%ﬁ ‘;?L?r?iilgom a
_d|men_5|onal chac_)s,_ as well as for short-term predlctlon_s, 'Sr'he mean annual precipitation at Little Rock is 50.26 inches.
|nvest|.gated. This is accomphshed through an analysis OtI'he streamflow data of 43 years (October 1927-September
both simulated and real hydrologic data. 1970) is analyzed. The monthly streamflow time series at the
Arkansas river is shown in Fid.

The daily streamflow data observed at the Colorado river
Hydrological time series are always finite and may be con-below Parker dam, Arizona-California is also investigated for
taminated with noise and seasonality. To obtain realistic in-the existence of chaotic behavior. The Colorado River flows
sights, simulated data is generated by contaminating chaotithrough Colorado, New Mexico, Utah, California, Arizona
time series with noise, i.e. white and autoregressive, and se@nd Nevada. It drains a part of the arid regions on the western

sonality. The chaotic time series is represented here by thslopes of the Rocky Mountains. The height, crest length and
Lorenz system of equations as base thickness of Parker dam are 320 feet, 856 feet, and 100

dx dy dz feet, respectively. It is located at Latitude°3Z'44”, Lon-

— =B(y—x),— =—xz4+rx—y, — =xy—bz, (5) gitude 1140822’. The associated drainage area is 182 700
dt dt dt square miles while the contributing drainage area is 178 700
where §=10; r=28; andb=8/3. The Lorenz system is square miles. The average temperature varies frad?B3n
highly sensitive to the initial conditions and is, therefore, winter to 1075°F in summer. The annual average precipita-
chaotic. Seasonality implies periodicity which, in turn, could tion is 6.2 inches. The daily streamflow data observed for 4

Fig. 2. Daily streamflow series observed at the Colorado river.

The effectiveness of the methods described in Sect. 2

3.1 Simulated data
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0 1 329
T 28 —— Lorenz
-1 4 )
S 24 —o— Seasonal
9 2 5, —— Random
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c
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0 1 2 3 4 5 G Embedding Dimension

Fig. 4. Relation between correlation exponent and embedding di-
Fig. 3. Ln C(r) vs. Ln r plot for Lorenz ({-component) time se- mension for LorenzX component), seasonal, and random series.
ries. The curves are shown from top to bottom in ascending order
of embedding dimensiom=2, 4,.., 20.

ters are selected through trial and error. Once selected, they

_ ~ are kept constant for all the case studies with simulated data.

years (1 June 1959-31 May 1963) is analyzed. The variationyhile this ensures uniformity, there is a possibility that judg-
Of the da"y StreamﬂOW SerieS at the C0|0rad0 riVer iS ShOanenta| approaches on each Series m|ght have y|e|ded differ_

in Fig. 2. ing values for the scaling region and smoothing windows.
Statistics of the streamflow data observed at the Arkansasjowever, one purpose of the paper is to motivate the devel-
and Colorado rivers are given in Taldle opment of tools that can be utilized in an automated fashion

and that do not rely on user judgment or subjective consid-
erations. The results with predictive modeling approaches

4 Results with simulated data like PSR and ANN indicate significant prediction skills, i.e.
_ _ _ CC=1 andM SE=0, for forecast lead time from one to ten
4.1 Pure chaotic, random and seasonal time series atm=10 for the chaotic and the seasonal series. For random

series, the predictive skills fluctuate around a lower value and
In this study, a chaotic time series is represented by th&how only a slightly decreasing trend as shown in Big.
X component of Eq. (5); a random series is a normally-
distributed white noise witlu=0 ando=0.16; and seasonal 4.2 Mixed time series
series is represented by a periodic function, i.e. cosine func-
tion with a frequency of 10 Hz and an amplitude 10. EachAs described earlier and indicated by previous researchers
series has 1000 data points, which is greater than the nunte.g.Sugihara and May199Q Koutsoyiannis and Pachakis
ber of points required (F6%4" =650, wheren=2 for the 1996 Elshorbagy2001), hydrologic and other real systems
Lorenz time series) for the correct estimation of the correla-tend to generate observables that have random and seasonal
tion exponent of the Lorenz time series (eéNgrenberg and  components, in addition to any nonlinear deterministic (or
Essex 1990. The plot of Ln C(r) vs. Ln r described in  chaotic) signal that may be present. Simulated data are gen-
Sect. 2.1.1 for Lorenz time series is shown in Rgwhile erated using a mixture of these components to understand
the corresponding correlation exponentuslotis shownin  the ability to identify, characterize and quantify chaos from
Fig. 4. For chaotic series, the correlation exponent saturateamidst seasonality and noise through the commonly used
at an embedding dimension of 10. The saturation value of theools for nonlinear dynamics and chaos.
correlation exponent is.24, while the correlation dimension
of the Lorenz attractor is 2. For random series, no saturationt.2.1  Mixture of chaotic and seasonal series
is observed as seen in Fi@. For the random series, the cor-
relation exponent values at low embedding dimensions ar& he ability to distinguish chaotic signals, when mixed with
very small but non-zero. The correlation exponent shown inseasonal signals of varying amplitudes, is depicted by cor-
Fig. 4 decreases rather markedly for the seasonal series comelation exponent vsn plots shown in Fig6. These plots
sidered here, while thén C(r) vs. Ln r plot shows charac- are obtained using the correlation dimension method. First,
teristic steps (e.gHilborn, 2000. For purposes of general- itis seen that as the seasonal component is increased, i.e. the
ity, uniform and objective methods are utilized to identify the amplitudes are made higher, the saturation value of the cor-
scaling regions and to calculate the slope through the movrelation exponent also increases. Second, there appears to
ing window technique described above. A window size of 9 be a threshold value, expressed as the seasonality to chaotic-
is chosen and the average of ten slope values ftam=0.8 signal ratio, for the degree of seasonality beyond which the
to Ln r=1.7 in increments of (L are taken. These parame- chaotic component cannot be distinguished any longer. The
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Fig. 5. The variation ofCC and M SE with forecast lead time for Time Frequency (Hz)

white noise witho=0.16.

Fig. 7. Mixed times series (LorenX-component and seasonality)
and its periodograms showing the variation of power spectral den-
sity (PSD) with frequency. Top: LorenX-component and sea-
sonality with f=10Hz andA=5. Middle: LorenzX-component
and seasonality witlf=25Hz andA=10. Bottom: LorenzX-
component and seasonality with=50 Hz andA=13.

(=)
]

-

for amplitudes larger than 11, the increase in correlation ex-
ponent no longer remains within the tolerable limits, thus
indicating the presence of a possible threshold. While the
presence of a threshold is indicated, the exact value can de-
e A-15 pend to some extent on how the criteria for saturation and the
0 . . . . corresponding tolerances are defined. It may also depend on
the number of data points used for the analysis. It is further
observed that the amplitude of 11 corresponds to the high-
est integer value of the seasonal amplitude for whichf
Fig. 6. Relation between correlation exponent and embeddingthe seasonal component is lower thgn thaft of the chaotic se-
dimension for mixed time series. Series includes Lorefiz ries. Theo values for the pure chaotic series, pure seasonal
component and seasonality wifk=10 Hz and different amplitudes, ~ S€ries with amplitude 11, and pure seasonal series with am-
plitude 12, are 8.31, 7.78, and 8.48, respectively. For an am-
plitude of 11, the seasonality to chaotic-signal ratio, g-fe
degree of Seasona”ty is expressed in terms of the amp“ls 0.94. ThUS, the reSLzlltS: (a) appear to indicate the pres.ence
tude of the seasonal component for fixed value of the chaoti®f @ threshold value, i.e..84, for the degree of seasonality
Lorenz series. From eye estimation, for amplitudes of 1 andP€yond which chaotic components may no longer be distin-
6 in Fig. 6, the correlation exponent appears to saturate withduishable at least through the use of the correlation exponent
an increase in the embedding dimension. Based on objed?@séd approaches, and (b) suggest that the threshold may oc-
tive techniques established in Sect. 2.1.1, it can be demorfcUr at the point where the seasonality to chaotic-signal ratio
strated that the saturation indeed occurs and the correlatiofPughly equals unity.
exponent either decreases, or remains constant, or increasesThe separation of the nonlinear deterministic signal from
within tolerable limits, till an amplitude of eleven. However, the seasonality is next considered. Frequency domain meth-

Correlation Exponent
e
1
=
lIL

0 5 10 15 20
Embedding Dimension
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Table 2. Separation of white noise from a mixture of chaotic, sea- = e
sonal and white noise series using the PSR witk 10. 2 x““wxx
% 0.998 - h_""x\\
0, (=] 3
Org.oyn Cal.oy, % error MSE cC E 0.996 L \\x
0.075 0.0910 21.3 0.0083 0.9999 i —x— L+WN{0.17) \‘\x
0.1 0.1254 254  0.0157  0.9999 T o014 | A LES(A=12) .
0.1 0.2318 159  0.0537  0.9997 = —o— L+S(A=40}) *
0.33 0.3608 9.33 0.1301 0.9992 (&) 0.992 . . . . .
1.0 1.1985 19.85 1.4349 0.9913 T
2.0 2.6403 3201 69706  0.9587 0 2 4 6 8 10
3.0 41341  37.8  17.0017 0.9022 Forecast Lead Time
5.0 6.5895 31.8 43.4134  0.7806
10.0 12.624 26.24 159.3665 0.4948 11 /><
0.8 —— | ®
. . . . . —x— L+WN(0.17) /
ods are applied to identify the dominant frequencies of the 06 - e [+S(A=12) x
seasonal component. This implicitly assumes that the sea-l e L+SEA:4UJ X/
sonal component, if present, in a simulated or real hydro- = . rd
logic series, is dominant enough to be identifiable through
the periodogram estimate. Figureshows chaotic-signal
mixed with seasonal signals of different frequencies and am-

plitudes, and the corresponding periodogram estimates. As

shown in Fig.7, the dominant frequency is observed for each 0 2 4 6 8 10
simulation. The amplitudes selected here represent the min-

imum val f the ampli rr ndin he given_. . ) .
u alues of the amplitudes, corresponding to the give Fig. 8. Variation of CC and MSE with forecast lead time for

ghaotic and mixed series. L, WN and S stand for Lorenz, white
respectively.

Forecast Lead Time

frequencies, above which a peak can be distinguished in th
periodogram. Thus, seasonal components of higher frequenise and seasonality,
cies need higher amplitudes to make them identifiable. Once
the frequencies are obtained, curve fitting techniques can
be utilized to obtain the amplitudes of the seasonal compo-
nent. The remaining component is the non-seasonal portion
which in this case would be the chaotic component. Itis ;|
noted again that when extending this observation to real data E
the non-seasonal component needs to be further decompose §
into random and deterministic components. The determinis- £14 -
tic component is next analyzed for chaotic signals. The sep—"'é
aration of random and deterministic (possibly chaotic) sig-
nals is discussed in Sect. 4.2.2. TaBlgrovides an example
where the white noise component has been isolated from e 5
series which is a mixture of chaotic signal, seasonality, and© ; |
white noise. The original and recovered standard deviations
of the white noise are shown along with the corresponding ' —+— Lorenz+WN(0.25)
errors. Once the deterministic component, i.e. chaotic + sea- * " ' i '
sonality, is isolated from the mixture, the seasonal compo- 0 3 Embeddingmdimension = 20
nent is separated by fitting a periodic curve with the domi-

nant frequency found using frequency domain analysis. Thq:ig. 9. Correlation exponent vs. embedding dimension plot for

remaining chaotic component is compared with the originalmixed time series consisting of Lorenxcomponent) and white
Lorenz series used for the simulation. It is seen that as thggjse.

white noise component in the mixture increases, the predic-

tion skills represented by statisticaC and M SE decrease.

The PSR, with the embedding dimension of 10, is used for4.2.2 Mixture of chaotic and random series

multi-step ahead forecasting of a mixture of chaotic series

and seasonalityf{=10, A=12; andf=10, A=40). Figure8 The ability to separate the deterministic component from a
shows theCC vs. Forecast lead time and SE vs. Fore-  mixture of chaotic and random series is studied. Correla-
cast lead time plots. Good prediction skills witiC=1 and  tion exponent vsm plot obtained using the correlation di-
M S E=0 for a mixture of chaotic and seasonal series are obimension method is shown in Fi§. Each curve represents
served. a different value ofs for the white noise component that

—— Lorenz
— Lorenz+WN(0.073)
—— Lorenz+VWN(0.1)
—— Lorenz+WN(0 16)
—— Lorenz+WN(0 17)
(
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Table 3. Separation of white noise from a mixture of Lorenz (X component) and white noise using the PSixiith

own  own (cal) % error p (norm fit) wuci (norm fit) oci (normfit)y  MSE cc

0.075 0.0861 14.8 —0.0012 —-0.0066-0.0041 0.08250.0901 0.0074 0.9999
0.1 0.1066 6.6 —0.0022  —-0.0088-0.0045 0.102%+0.1115 0.0114 0.9999
0.2 0.2008 0.4 0.0 —0.0135-0.0115 0.19240.2101 0.0403 0.9997
0.33 0.3502 6.12 —0.0011  —-0.0229-0.0208 0.33550.3664 0.1226 0.9991

Table 4. Separation of white noise from a mixture of Lorenz (X component) and white noise using the AN witB.

own  own (cal) % error u (norm fit) wei (norm fit) oci (normfit) MSE cc

0.075 0.0871 16.1 0.0 —0.0054-0.0054 0.08340.0911 0.0076 0.9999
0.1 0.1129 12.9 0.0 —0.007-0.007 0.108%+0.1181 0.0138 0.9999
0.2 0.2238 11.9 0.0 —0.014-0.014 0.2144.0.2341 0.05 0.9996
0.33 0.3541 7.3 0.0 —0.0221-0.0221 0.33920.3704 0.1391 0.9991

is mixed with the same underlying chaotic signal. Severalchaotic-signal is contained within the deterministic com-
properties are observed. First, the saturation value of the coponent and adequately modeled by the predictive models.
relation exponentincreases as the white noise compoamgnt ( Thus, if a functional fornfan modeled by the ANN exists,
increases. Second, a threshold value appears to exist for theherez, . r=fnn(zs, zi—1, s Z—(m—1))+€, the ANN can be
noise to chaotic-signal ratio, beyond which the latter cannotrained using the entire data set to ffm{]_ Once trained, the
be distinguished through the use of this method. The corestimate of; provided by the ANN is assumed to represent
relation exponent does not saturate whendthef the white  the deterministic component, and the residual is assumed to
noise component becomes more thah70 which roughly  represent noise. This assumption holds as long as the func-
corresponds to a threshold value of49 for the noise to  tional form modeled by the predictive model is valid. The
chaotic-signal ratio. Similar to the case of mixture of chaossecond assumption implies that the chaotic-signal, if any,
and seasonality described in the previous section, the resulig contained within the deterministic signal isolated using
presented here appear to suggest the existence of a thresholfle predictive modeling-based decomposition strategy. It is
The actual value of the threshold may vary depending on theé\oted, however, that this approach does not distinguish be-
predefined saturation criteria, tolerances and possibly on th@yeen chaotic and non-chaotic determinism. Once the deter-
number of data points. However, the results do indicate that aninistic component has been isolated, the presence of chaos
threshold value may exist, beyond which the chaotic compocan be determined using the correlation dimension method.
nent can not be determined from a mixture of chaotic-signalFor the simulated data, a mixture of chaotic-signal and white
and white noise. The threshold value appears surprisinglyoise is considered. Thus, the deterministic signal that can
low (just two percent in terms of the ratio of the standard de-pe isolated is assumed to be chaotic, provided the signal has
viations) for a chaotic-signal contaminated with pure randompeen adequately modeled. The separated components can
noise. Besides the white noise series, a mixture of chaotic sealso be compared with the original signals from which the
ries and colored noise generated from autoregressive procesgmulations are generated. Tal8eshows the comparison
of order one is studied (results not shown). The same threshyhen the PSR is used as the predictive model, while Table
old value of ¥49 beyond which the chaotic component can shows the same for the ANN. The recovered noise is further
not be determined from a mixture of chaotic-signal and col-tested for normality. A perfect recovery would be indicated
ored noise is observed. by a passing of this test with a mean that is statistically in-
The separation of the nonlinear deterministic signal fromdistinguishable from zero and a standard deviation indistin-
the random component is now considered. The separatioguishable from that of the original white noise. Once the
is obtained through the use of predictive modeling strate-deterministic component has been isolated, it is compared
gies that have demonstrated value for chaotic systems. Se\Y\IIth the original chaotic series used for the simulation. The
eral assumptions are made for this purpose. First, itis asprediction skills are related t S E andC C values obtained
sumed that the functional form encapsulated by the trainedrom the predictive models. The results presented in Tebles
nonlinear predictive models can be utilized to model theand4indicate that for the simulated data, a fairly good degree
deterministic component of the time series. Thus, a def separation can be achieved. An embedding dimension of
Composition of the series into a deterministic and a ran_lo is used at which the saturation value of the correlation

dom component is realized. Second, it is assumed that thexponent of the Lorenz time series is obtained. When these
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Fig. 10. Correlation exponent vs. embedding dimension for _ _ _
month|y streamflow series at the Arkansas river. Flg 11.Ln C(r)vs.Lnr p|0t for the series, after removing noise,
observed at the Arkansas river. The curves are shown in ascending

order of embedding dimensiom=1, 2,.., 20 from top to bottom.
concepts are generalized to the real data, the nature of the de-
terministic component is not known a priori and needs to be
verified using tools like correlation exponent methodologies.

A mixture of chaotic series and white noise=£0.17) is an- z 32 1 One-step ahead p—
alyzed for multi-step ahead forecasting using the PSR withE £21 - - - - predicted
the embedding dimension of 10. FiguBshows theCC vs. 2 @fﬁ ;

Forecast lead time ant/ SE vs. Forecast lead time plots. YW

It is observed tha€ C decreases anl SE increases as the 0 20 40 60 Tiife {_mo%) 120 140 160 180
forecast lead time increases. Due to randomness, the accL '

racy of the prediction for a chaotic series mixed with white
noise decreases with an increase in the forecast lead time.

Two-step ahead
actual

- - = = predicted

Streamflow
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5 Analysis with hydrologic time series
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5.1 Arkansas river
Three-step ahead actual

- - - - predicted

The monthly streamflow time series at the Arkansas river
is shown in Fig.1 and is analyzed using the correlation di-
mension method to detect the presence (or absence) of low
dimensional chaos in the system. The methodology used for” =" o~ 1~ . ¢ ~* §— 1T

the analysis is described in Sect. 2.1.1. A moving window 2 ! Time (month)

of size 3 units is used to compute the slope. The number

of Ln r values for which the slope is available and con- Fig. 12. Multistep ahead predictions for the Arkansas river stream-
stant is limited for this data. The slope at a middle rangeflow Qa.ta. Top: one-step ahead predictions..M.iddIe: two-step ahead
(aroundLn r=0.8) is used as the correlation exponent. Fig- Predictions. Bottom: three-step ahead predictions.

ure10shows the correlation exponent wsplot for the origi-

nal monthly streamflow series which does not saturate based

either on an eye estimation or the objective techniques deand 41=0.5908 0 =0.6564, respectively. In the present ex-
scribed in Sect. 2.1.1. This indicates that either the system ismple, the ratio o, (0.7159) and, (0.6529) is 109 which
stochastic or the chaotic component, if present, is dominateds greater than the threshold value (i.€0Z) obtained for the

by noise or seasonality. The time series is analyzed using theimulated data in Sect. 4.2.2. An attempt to fit a periodic
PSR withm=10 to isolate the deterministic component from function to the deterministic series to isolate seasonal behav-
the original series. The methodology is similar to that usedior is not made since no dominant frequency in the series is
for simulated data, and is described in detail in Sect. 4.20bserved from frequency domain analysis. The determinis-
The mean and standard deviation of the non-deterministidic series is analyzed using the correlation dimension method
component, i.e. noise, separated using the PSR-@@097  with the same embedding dimension, i.e. 10, and window
and Q7159, respectively. The mean and standard deviasize, i.e. 3, to examine a low-dimensional chaos in the sys-
tion of the original series and the series after the removakem. Figurell shows theLn C(r) vs. Ln r plot for the

of noise, i.e. deterministic series, gre-0.6529 ¢=0.6833  series. The correlation exponent wsplot in Fig. 10 for the

Streamflow
cumec)




50 S. Khan et al.: Detection and predictive modeling of chaos

15 4 .. 3 4
;| Original
vz | . —=— original
w 7 5 —e— after removing noise
w S and seasonality
E 154 g_ 3 4
1 4 Ll
c
0.3 1 g
0 T T T ] g )
0 2 4 8 8 o
O
Forecast lead (Month)
1 -
. . 0 T T T 1
Deterministic - ] )
08 - 0 5 10 15 20
Embedding Dimension
w 267 Fig. 14. Correlation exponent vs. embedding dimension plot for
<) daily streamflow series at the Colorado river.
E |:|4 -
0.2 4 5.2 Colorado river
0 . . . | The daily streamflow series observed at the Colorado river
0 2 4 & g below Parker dam is shown in Fig. This series is analyzed
Forecast lead (Month) for low-dimensional chaotic behavior using the correlation

dimension method. The slope is calculated by considering a

Fig. 13. Monthly streamflow data at the Arkansas river: Variation MoVving window of size 3 units. The correlation exponent is
of MSE with forecast lead time for the original and deterministic the slope value atn r=—2.2. The correlation exponent vs.

data. The deterministic data is obtained after removing noise fromn plot for the original series is shown in Fig4. Based on
original data. an eye estimation and the objective techniques described in

Sect. 2.1.1, it is seen that the correlation exponent does not

reach a saturation value. This indicates that either the system

is stochastic or it contains some dominant noise/seasonality
deterministic series shows that the correlation exponent satisomponent. To separate the non-deterministic component,
rates after an embedding dimension of 15 based on the objedhe original series witln=0.1672 and» =0.0594 is analyzed
tive techniques. The saturation value of the correlation expousing the PSR witlm=10. The mean and the standard de-
nent is 397. The number of variables required to model the viation of the non-deterministic component, i.e. noise, sep-
streamflow dynamical system would be 4. The low value ofarated using the PSR areDGand 00099, respectively. The
correlation dimension suggests the possible presence of lowstatistics for the deterministic component that might contain
dimensional chaos in the streamflow dynamics. Figl2e chaos and seasonality are givenas0.1669 and>=0.0593.
shows one-step, two-step, and three-step ahead predictiofide ratio ofo,, (0.0099) ando, (0.0593) is 0167 which is
for the original monthly streamflow series at the Arkansasgreater than the threshold value ofB, obtained for the
river. Figurel3 showsM SE vs. Forecast lead time plots simulated data in Sect. 4.2.2. The series, after the removal
for the original and deterministic series. TREeSE values at  of noise, is analyzed using the frequency domain method to
Forecast lead time of 7 and 8 are.2Z and 3127, respec- determine the dominant frequency. No peak is observed in
tively. For the original series\ SE values are high and in- the periodogram. However, based on an eye estimation a
crease as the forecast lead time increases indicating the pregessible seasonal behavior in the data is observed. To iso-
ence of non-deterministic component confirming the resultdate and remove the possible presence of seasonality, a pe-
obtained earlier using the PSR. This, in turn, decreases thdodic function is chosen to fit the data such that M& E
prediction accuracy with an increase in the lead time. For thés minimized. This function is obtained using a trial and er-
deterministic series, the prediction accuracy is significantlyror procedure. The mean and the standard deviation of the
improved, i.e. theM SE values are very low as compared series after the removal of noise and seasonality, i.e. deter-
with the original series values, indicating that the determin-ministic series, according to the methods described earlier
istic series is indeed chaotic. This confirms the results fromare 00469 and 0328, respectively. The deterministic series
the correlation dimension method. is analyzed using the correlation dimension method with the
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same embedding dimension, i.e. 10, and window size, i.e. 3.

Figure15shows theLn C(r) vs. Ln r plot for the determin- Fig. 16. Multistep ahead predictions for the Colorado river stream-
istic series. The correlation exponent wscurve shown in flow data. Top: one-step ahead predictions. Middle: two-step ahead

Fig. 14 for the deterministic series does not saturate based"edictions. Bottom: three-step ahead predictions.
on an eye estimation and the objective techniques indicating

that the system is stochastic. Figdi@shows one-step, two- 0.0016

step, and three-step ahead predictions for the original daily

series at the Colorado river. TS E vs. Forecast lead time 0.0012 4

plots for the original and deterministic series are shown in LW

Fig. 17. The prediction accuracy is high, i.®/SE values & 0.0008 - —

are low, due to the presence of seasonality in the data. Foi 0.0004 - —+— Original

the original series, th#f SE increases with an increase in the ' —— Deterministic

forecast lead time. The prediction accuracy does not change 0
significantly for the deterministic series, i®.SE values are

very close to the original series values, indicating the absence

of chaos in the deterministic series. This indicates that the Forecast lead (Day)

system is stochastic confirming the results from the correla-

tion dimension method. The streamflow measurement gauggig. 17. Daily streamflow data at the Colorado river: Variation of
is located at a distance of 100 feet downstream of the dan SE with forecast lead time for the original and deterministic data.
(USGS 2004). In addition, the flow at the dam is regulated The deterministic data 'is. obtained after separating white noise and
based on requirement8¢R, 2004. These, in turn, may de- Seasonality from the original data.

pend on various factors on a day-to-day basis leading to sig-

nificant randomness in the observations. The measured flow

at the dam, thus, reflects a variety of human controls imply_world_obs_e_rvations, is Iik_ely to have s_ig_nificant implic_ations
ing that natural variability no longer is the dominant factor. for scientific understanding and predictive modeling in mul-

This is the most likely cause for the loss of nonlinear dynam-_t'pli d|sc&pl|ne§. Th'sh researlch rfep;]resents a gtep fPrW‘?‘rd
ical information in the time series. in these directions. The results of the present investigation

demonstrated the presence of thresholds, expressed in terms

of noise to chaotic-signal and seasonality to chaotic-signal
6 Summary and conclusions ratios. The ability to detect chaos from observations de-

pends on whether the chaotic component in the hydrologic
The strengths of the use of nonlinear dynamical tools in contime series is dominant enough to satisfy the thresholds. It
junction with statistical time and frequency domain method-was shown that the overall time series can be decomposed
ologies were demonstrated in this work. This study investi-into the contributing random, seasonal and chaotic compo-
gated the ability to detect and model chaos from finite hy-nents. Time series was decomposed using nonlinear predic-
drologic observations, especially when randomness and sedive modeling for separating the chaotic component, statisti-
sonality are present. The ability to detect and model non-cal methods for characterizing random data, and frequency
linear dynamical and chaotic components, from finite real-domain approaches for isolating seasonality. This has direct

0 i 4 & 8 10
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implications for a scientific understanding of hydrologic phe- Elshorbagy, A., Panu, U., and Simonovic, S.: Analysis of cross-
nomena and the dominant processes that may be present ascorrelated chaotic streamflows, Hydrological Sciences Journal,
well as in the development of predictive models. For exam- 46,5, 781-794, 2001.

ple, it was shown that the chaotic component, once detectefshorbagy, A., Simonovic, S. P., and Panu, U. S.: Estimation of
and isolated, can be better predicted in the short-term through MiSSing streamflow data using principles of chaos theory, Journal
nonlinear models like ANN and PSR. The insights obtained_ °f Hydrology, 285, 1-4, 123-133, 2002a. . .
from simulated data were used to interpret the results of real o 0/229% A, Simonovic, S. P., and Panu, U. S.: Noise reduction
streamflow data from the Arkansas and Colorado rivers. It :_r: fjrr];%t'c hzyggog)gf H;e feege;(:ml:z%cts and doubts, Journal of
was observed that a chaotic component can be detected, isg—ssgxy C.,giyookn;an, T and Nérenberé, M. A H: The climate
lated and utilized for improved predictive modeling from fi-  attractor on short time scales, Nature, 326, 64—66, 1987.

nite hydrologic time series like the Arkansas data. However,Farmer, J. D. and Sidorowich, J. J.: Predicting Chaotic Time Series,
it was seen that for certain hydrologic data like the Colorado Phys. Rev. Lett., 59, 845-848, 1987.

river data, this may not be possible. This may be due toFraedrich, K.: Estimating the dimensions of weather and climate
the absence of chaotic/nonlinear dynamical component in the attractors, J. Atmos. Sci., 43, 419-432, 1986.

data. If the data observed at the Colorado river does contaifrraedrich, K.: Estimating weather and climate predictability on at-
chaotic/nonlinear dynamic component, then it may be com-_ ractors, J. Atmos. Sci., 44, 722-728, 1987. o
pletely dominated by randomness introduced as a result of;‘-anguly, A. R. and Bras, R. L.: Distributed quantitative precipita-

the stochastic mode of dam operation on a dailv basis tion forecasting combining information from radar and numeri-
P y ) cal weather prediction model outputs, J. of Hydrometeorology,

American Meteorological Society, 4, 6, 1168-1180, 2003.
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