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Abstract. The phenomena of prebifurcation noise amplifica-
tion and noise-dependent hysteresis are studied as prospec-
tive indicators of bifurcations (“noisy precursor”) in nonlin-
ear Geophysical systems. The phenomenon of prebifurca-
tion noise amplification arises due to decreasing of damp-
ing coefficients just before bifurcation. A simple method for
the estimation of the forced fluctuation variance is suggested
which is based on results of linear theory up to the boundary
of its validity. The upper level for the fluctuation variance
before the onset of the bifurcation is estimated from the con-
dition that the contribution of the non-linear term becomes
comparable (in the sense of mean squares) with that of the
linear term. The method has proved to be efficient for two
simple bifurcation models (period doubling bifurcation and
pitchfork bifurcation) and might be helpful in application to
geophysics problems. The transition of a nonlinear system
through the bifurcation point offers a new opportunity for es-
timating the internal noise using the magnitude of the noise-
dependent hysteretic loop, which occurs when the control pa-
rameter is changed in the forward and backward direction.

1 Introduction

This paper studies two fundamental phenomena, which could
be observed in geophysical systems near the threshold of
bifurcation: prebifurcation noise amplification and noise-
dependent hysteresis.

Analysis of prebifurcation noise amplification, performed
in paper (Wiesenfeld, 1987), is based on linear theory, which
demonstrates unlimited growth of fluctuations in the immedi-
ate vicinity of the bifurcation point. According to (Wiesen-
feld, 1987), prebifurcation noise amplification might be an
effective diagnostic instrument for nonlinear systems (so
named “noisy precursor” of bifurcation), see also (Wiesen-
feld, 1985). Nonlinear saturation of fluctuations in the vicin-
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ity of bifurcation point was studied in the papers (Kravtsov
and Surovyatkina, 2001; Kravtsov et al., 2003) for the case
of sufficiently slow (quasi-stationary) bifurcation. In this pa-
per we shall show, that rapid bifurcation transitions cause de-
creasing of the noise amplification.

At fast bifurcation transitions (“dynamical bifurcations”)
another phenomenon occures – the noise-dependent hystere-
sis. This phenomenon was first mentioned in paper (Kapral
and Mandel, 1985) where it was shown that under forward
bifurcation transitions, the time-delay1τ=τ+−τc between
the break-away pointτ+ and critical bifurcation valueτc is
proportional to

√
s, wheres is the rate of the control param-

eter change. Hysteretic loops in systems with bifurcations
were observed experimentally (Morris and Moss, 1986). The
most detailed investigation of the delay phenomenon was
performed in paper (Baesens, 1991), where asymptotic an-
alytical expressions for bifurcation diagram branches were
found. In addition, in (Baesens, 1991) the asymptotic scaling
was obtained for time-delays of period doubling bifurcations
in conditions of very weak noise, caused by the rounding er-
rors. In this work the phenomenon of hysteresis is studied for
the nonlinear oscillator, experiencing spontaneous symmetry
breaking. We shall show that characteristics of the histeretic
loop essentially depend on the noise level and might be of
practical interest for analysis of the nonlinear geophysical
systems.

The main goal of this publication is to attract the attention
of geophysicists to this phenomenon and thereby to stimu-
late searches for specific mechanisms that might be respon-
sible for noise amplification and noise-dependent hysteresis
in geophysics.

The phenomenon of prebifurcation noise amplification is
shortly outlined by the examples of period doubling bifurca-
tion in nonlinear map (Sect. 2) and a pitchfork bifurcation
in nonlinear oscillator (Sect. 3) with a special emphasis on
the transition from linear regime to the regime of nonlinear
saturation of amplification. Opportunity for the weak noise
measuring on basis of the nonlinear saturation of the prebi-
furcation noise amplification are discussed in Sect. 4.
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Fig. 1. Prebifurcation noise amplification for period doubling bifur-
cation in quadratic mapF(x)=µ−x2 (σ2

f
=3.3·10−9, ε=1).

The hysteretic phenomena in dynamic bifurcations in the
nonlinear oscillator are described in Sect. 5. In Sect. 6, we
shall point out an opportunity to use the noise-dependent
hysteresis in bifurcation systems for noise level measure-
ment. Conclusions (Sect. 7) summarize the main results of
the work.

2 Prebifurcation noise amplification at the threshold of
period doubling bifurcation

Nonlinear noisy map

xn+1 = F(xn, µ) + fn, (1)

where µ is a control parameter, andfn is an externalδ-
correlated random process,〈fnfm〉 =σ 2

f δnm, has a noiseless
fixed pointx̄ which obeys the equation̄x=F(x̄, µ). Fluctua-
tionsξn=xn−x̄ near stable state are governed by the equation

ξn+1 = γ ξn + εξ2
n + ... + fn, (2)

whereγ=
dF(x̄)

dx
andε=1

2
d2F(x̄)

dx2 . Bifurcation of period dou-
bling arises when the modulus of multiplierγ exceeds a unit:
|γ | >1.

In frame of the linear approach, when Eq. (2) takes the
form ξn+1=−γ ξn+fn, variance of fluctuations

〈
ξ2
n

〉
≡σ 2

f is
given by

(
σ 2

ξ

)
lin

=
σ 2

f

1 − γ 2
∼=

σ 2
f

2α
, (3)

where parameterα=1− |γ | characterizes closeness of the
nonlinear system to bifurcation threshold|γ |=1 (note, that
parameterα can also be written asα=µc−µ). According to
Eq. (3), in frame of the linear approach fluctuation variance
σ 2

ξ tends to the infinity atα→0, what corresponds to the case
studied by Wiesenfeld (Wiesenfeld, 1987).

In the “linear” regime, the fluctuationsξn consist of a sum
of a large number of independent terms. Hence, by virtue of
the central limit theorem, the sequenceξn is nearly Gaussian.

Linear theory is valid until the linear term in Eq. (2) be-
comes comparable (in the statistical sense) with the quadratic
term, that is when

(1 − γ 2)σ 2
ξ ≈ ε2

〈
ξ4

〉
. (4)

Using relation
〈
ξ4
n

〉
≈3σ 2

ξ , as for Gaussian values, one can
estimate (from Eqs.3 and4) the minimal valueαmin limiting
the area of linear theory validity:αmin=

√
3εσf /2.

Substitution ofαmin into Eq. (3) allows estimating the level
of saturated fluctuation (Eq. 4):

(σ 2
ξ )nonlin ≈

σf
√

3ε
. (5)

The dependence ofσ 2
ξ on α is presented on Fig. 1: at

α>αmin, one can use the results of linear theory, Eq. (3) (un-
limited dashed line), whereas atα<αmin, nonlinear estimate
(Eq.5) enters into the play (horizontal pointed line).

The estimates presented above, are in good agreement
with the results of numerical simulation, performed in
(Kravtsov and Surovyatkina, 2003) and shown by a continu-
ous line at Fig. 1. Estimate Eq. (5) happens to be only 30–
40% less as compared to numerical data.

3 Prebifurcation noise amplification in nonlinear oscil-
lator experiencing a pitchfork bifurcation

Nonlinear oscillator, described by the equation

ξ̈ + 2βξ̇ + Bξ + Aξ3
= f (t), (6)

whereβ is damping coefficient, admits pitchfork (symme-
try breaking) bifurcation at critical valueBc=0: unique sta-
ble stateξ̄=0 at B>0 converts into pair of stable states

ξ̄=±

√
−

B
2A

atB<0.

In the linear approximation (nonlinear termξ3 is consid-
ered to be negligibly small) varianceσ 2

ξ =
〈
ξ2

〉
is given by

(σ 2
ξ )lin =

σ 2
f τf

2βB
, (7)

whereτf is correlation time of the processf (t). According
to Eq. (7), in frame of linear theory fluctuation varianceσ 2

ξ

tends to infinity, whenB is approaching to the bifurcation
point Bc=0. The results of linear theory are shown at Fig. 2
by a dashed curve.

Variance of the elastic forceBξ+Aξ3 is equal to

Var(Bξ + Aξ3) = B2
〈
ξ2

〉
+ 2AB

〈
ξ4

〉
+ A2

〈
ξ6

〉
. (8)

The contribution of nonlinear term 2AB
〈
ξ4

〉
≈6ABσ 4

ξ in

Eq. (8) (
〈
ξ4

〉
is considered to be 3σ 4

ξ , as for Gaussian pro-
cess) becomes comparable with the contribution of linear
termB2σ 2

ξ when

σ 2
ξ ≈

B

6A
. (9)
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Taking forσ 2
ξ linear expression (Eq.7), one can estimate the

minimal value ofBmin, restricting the area of applicability of
linear theory:

Bmin ≈ σf

√
3Aτf

β
. (10)

This value, substituted in Eq. (9) provides nonlinear estimate
for fluctuation saturation at bifurcation thresholdB=0:(

σ 2
ξ

)
nonlin

≈ σf

√
τf

12Aβ
. (11)

This estimate is presented by a horizontal dotted line in
Fig. 2. Nonlinear estimate (Eq.11) is valid only at the bi-
furcation point in intervalB[0, Bmin].

It is convenient to define pre-bifurcation noise amplifica-
tion coefficient as the ratio of fluctuation intensity(σ 2

ξ )nonlin

in the area of saturation to the intensity of fluctuations(σ 2
ξ )lin

atω2
=B

K =
(σ 2

ξ )nonlin

(σ 2
ξ )lin

=
1

σf

(
β

3Aτf

)1/2

ω2. (12)

This quantity shows, by how many times fluctuation intensity
in the saturation zone exceeds stationary fluctuations in the
oscillator.

We discussed above fluctuations under slow (quasi-
stationary) change of parameterB. In the case of a rapid
bifurcation transition, one can expect some decrease of
(σ 2

ξ )nonlin as compared to slow (quasi-stationary) bifurcation
transitions.

Let parameterB depends on time:B=B(t) (dynamic bi-
furcations) and assume, that parameterB takes positive val-
uesB>0 at t<t∗, wheret∗ is the bifurcation point, and neg-
ative values att>t∗. For example, such a behavior is demon-
strated by function

B(t) = −ω2
0 arctgη(t − t∗). (13)

Coefficientη characterizes here the speed of the control pa-
rameter change.

The slow-down tendency ofσ 2
ξ growth rate with the speed

of transition through the point of bifurcationη can be illus-
trated by way of considering the limitη→∞. At t<t∗, B(t)

takes a constant valueω2
0, while at t>t∗B=−ω2

0. In both
cases, the intensity of fluctuations is identical and, in line
with Eq. (7), equals to

(σ 2
ξ )0 =

σ 2
f τf

2βB
,

so that the fluctuation amplification factor turns into a unit:
K=1.

Obviously, att>t∗, an exponential fluctuation growth will
be observed due to the loss of stability of the equilibrium
stateξ=0, but this has no effect on fluctuation behavior at
t<t∗.

In Sect. 5, we will discuss in more detail the influence of
noise on dynamic bifurcations in nonlinear oscillator.
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Fig. 2. Prebifurcation noise amplification for bifurcation of sponta-
neous symmetry breaking (σ2

η =10−8, τη=3.5·10−3, β=0.1,A=0.5).

4 On weak noise measurements on basis of nonlinear
saturation of prebifurcation noise amplification

A noticeable increase in the variation of fluctuationsσ 2
ξ near

the bifurcation threshold might be an effective diagnostic in-
strument for nonlinear geophysical systems. Signal amplifi-
cation in data time series can be connected with the approach
of the system to bifurcation threshold. Obviously, the hy-
pothesis of bifurcations present in the system should be thor-
oughly examined.

One of possible methods of examination can be the
method for weak noise measuring on the basis of phe-
nomenon of the prebifurcation noise amplification under
study. Our approach is based on a comparison of the max-
imal variation(σ 2

ξ )max∼σf at the bifurcation point with the

variationσ 2
ξ ≈σ 2

f far away from that point.
One can suggest another approach: having measured vari-

anceσ 2
ξ of variableξ in the very vicinity of bifurcation point,

varianceσ 2
f of the noise processf (t) can be determined ac-

cording to Eqs. (5) and (11) by ratio

σ 2
f ∼ σ 4

ξ .

This is true not only for period-doubling bifurcations
(Kravtsov and Surovyatkina, 2003), but also for pitchfork bi-
furcations.

This approach looks to be prospective for analysis of
different nonlinear geophysical systems in which period-
doubling bifurcations and pitchfork bifurcations take place.
Such a system is, for example, suggested in (Seongjoon and
Ghil, 2002) where a model of atmospheric zonal-flow vac-
illation with successive period-doubling bifurcations is sug-
gested. The model describes the origin of zonal-flow vac-
illation in the Southern Hemisphere (Kidson, 1988, 1991;
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Fig. 3. Bifurcation diagram and typical orbits of nonlinear oscillator
(Eq.6) in the case of constant sweep rate: orbit 1 – positive sweep
rate (η=3); orbit 2 – negative sweep rate (η=−3); orbit 3 – influence
of noiseσ2

η =1, 87·10−7 atη=3. 1τ1 – hysteretic loop size without
noise,1τ2 – hysteretic loop size decrease due to noise.

Hartmann and Lo, 1998) and Northern Hemisphere (Char-
ney and DeVore, 1979, 1981) observations. Another example
is the ocean’s overturning circulation between cold regions,
where water is heavier and sinks, and warm regions where it
is lighter and rises (Ghil, 2001) . The effect of temperature
on the water’s mass density and hence, motion, is in com-
petition with the effect of salinity. These competing effects
can also give rise to two distinct equilibria. In a simplified
mathematical setting, these two equilibria arise by a pitch-
fork bifurcation that breaks the problem’s mirror symmetry
(Quon and Ghil, 1992; Thual and McWilliams, 1992).

5 Noise-dependent hysteresis

The hysteretic phenomenon in dynamic bifurcations is mani-
fested in that, after passing over the bifurcation point, the sys-
tem for a considerable time remains on the unstable branch
and only later makes a rather quick transition to another sta-
ble state (Kapral and Mandel, 1985; Morris and Moss, 1986;
Baesens, 1991). Similar process takes place under the back-
ward transition, when control parameter decreases. Period-
ical change in the control parameter results in that the sys-
tem delays in the vicinity of the former stable points under
both forward and backward motions. The delay phenomenon
causes the emergence of the hysteretic loop. The higher is
the control parameter change speed, the more distinct is the
hysteretic phenomenon.

We observed the phenomenon when considering the model
of non-linear oscillator subject to a pitchfork bifurcation (see

Sect. 3). In a quasi-stationary mode, when parameterB

changes slowly, bifurcation in the system happens at criti-
cal valueB=B∗

=0. Under a swift change ofB, a pitchfork
bifurcation happens only some time after the critical value
B∗=0 is passed, the delay time being dependent on the speed
of change of parameterη.

Figure 3 presents results of numerical modeling of bifurca-
tion transition in nonlinear oscillator when parameterB con-
forms to Eq. (13). For illustrative purposes, the figure com-
bines the bifurcation diagram of the model, that is stable val-
ues at constantB, and the typical orbit of the nonlinear oscil-
lator, that is the dependencex(B) with changingB. With the
change ofB, the system having passed the valueB=B∗, still
resides for some time in the vicinity of the unstable branch
(this time depends considerably on speedη), and only after
that switches to one of the two possible stable states of equi-
librium. Similar process happens under backward transition
through the bifurcation point, with the delay resulting in the
emergence of hysteresis a hysteretic loop. Figure 3 illustrates
the phenomenon of hysteresis in nonlinear oscillator atη=3
(forward sweep, orbit 1) andη=−3 (backward sweep, orbit
2). The size of the emerged hysteretic loop is denoted as1τ1.

As seen from the figure, hysteretic loop diminishes with
noise (orbit 3). Notice, that under forward transition through
the bifurcation point, the system is more sensitive to noise
than under backward transition. This effect can be used
to measure weak noise in nonlinear systems as it was sug-
gested earlier for systems with period doubling bifurcations
(Butkovskii et al., 1997).

The phenomenon of the hysteretic was observed exper-
imentally in the case of transition from laminar to vortex
shedding flow in soap films (Horvath et al., 2000).

6 Use of noise-dependent hysteresis in bifurcation sys-
tems for noise measurement

The phenomenon of noise-dependent hysteresis can appear
useful for measuring weak noise in nonlinear systems with
bifurcation parameter changing with time.

Since pre-bifurcation fluctuation growth slows down under
swift transitions, noise measurement techniques described in
Sect. 4 become ineffective. In these conditions, the dynam-
ical method to infer noise levels from the characteristics of
hysteretic loops ensures a much higher sensitivity because
the size of hysteretic loop is very sensitive to noise level.

In order to estimate noise levelσ 2
f , it is suggested to mea-

sure the size of a hysteretic loop and, based on a correspond-
ing calibration graph, estimate the variance of internal noise
in the system.

An example in Fig. 4 shows the dependence of the hys-
teretic loop size1τ on noise levelσ 2

f in a system for nonlin-
ear oscillator. One can see that the size of the loop decreases
with noise.
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7 Conclusions

In this paper, nonlinear effects of noise at the threshold of
quasi-stationary and dynamic bifurcations are investigated.
In the case of slowly (quasi-stationary) changing control pa-
rameter, the variance of forced fluctuations increases with the
approach to the threshold of bifurcation. In the immediate
vicinity of the threshold, the variance saturates at a level pro-
portional to mean square of noise. It is shown, that prebifur-
cation noise amplification is most distinct under slow transi-
tion of a system through the bifurcation point, whereas under
swift transitions, the amplification effect diminishes.

In the case of dynamic bifurcations, periodical change in
the control parameter results in that the system delays in
the vicinity of the former bifurcation points under both for-
ward and backward sweeps. The delay phenomenon causes
the emergence of a hysteretic loop, whose characteristics are
very sensitive to the noise level.

The phenomenon of noise-dependent hysteresis takes
place not only in period doubling bifurcations but in a pitch-
fork bifurcation as well.

Noise-dependent nonlinear effects at the bifurcation
threshold are of practical interest for measuring noise in non-
linear systems:

– If the bifurcation parameter does not change, it is pos-
sible to use the method based on the phenomenon of
prebifurcation noise amplification.

– In the case of changing bifurcation parameter, it is pos-
sible to use the method on the basis of noise-dependent
hysteresis.

Such methods are promising for measuring very weak noise
in various nonlinear systems.
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