
HAL Id: hal-00302422
https://hal.science/hal-00302422

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A study on the relationship between mass
concentrations, chemistry and number size distribution
of urban fine aerosols in Milan, Barcelona and London

S. Rodríguez, R. van Dingenen, J.-P. Putaud, A. Dell’Acqua, J. Pey, X.
Querol, A. Alastuey, S. Chenery, K.-F. Ho, R. M. Harrison, et al.

To cite this version:
S. Rodríguez, R. van Dingenen, J.-P. Putaud, A. Dell’Acqua, J. Pey, et al.. A study on the relationship
between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan,
Barcelona and London. Atmospheric Chemistry and Physics Discussions, 2007, 7 (1), pp.605-639.
�hal-00302422�

https://hal.science/hal-00302422
https://hal.archives-ouvertes.fr


ACPD

7, 605–639, 2007

Mass, chemistry and

number size

distribution of urban

aerosols
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Abstract

A physicochemical characterization of the urban fine aerosol (aerosol number size dis-

tribution, chemical composition and mass concentrations) in Milan, Barcelona and Lon-

don is presented in this article. The objective is to obtain a comprehensive picture

on the involvement of the microphysical processes of the aerosol dynamic in the: 1)5

regular evolution of the urban aerosol (daily, weekly and seasonal basis) and in the

day-to-day variations (from clean-air to pollution-events), and 2) link between “aerosol

chemistry and mass concentrations” with the “number size distribution”.

The mass concentrations of the fine PM2.5 aerosol exhibit a high correlation with

the number concentration of particles >100 nm (which only accounts for <20% of the10

total number concentration N of fine aerosols) and do not correlate with the num-

ber of particles <100 nm (“ultrafine particles”, which accounts for >80% of fine par-

ticles). Organic matter (OM) and black-carbon (BC) are the only aerosol components

showing a significant correlation with ultrafine particles (attributed to vehicles emis-

sions), whereas ammonium-nitrate, ammonium-sulphate and also OM and BC cor-15

relate with N>100(nm) (attributed to gas-to-particle transformation mechanisms and

some primary emissions). Time series of the aerosol DpN diameter (dN/dlogD mode),

mass PM2.5 concentrations and number N>100(nm) concentrations, exhibit corre-

lated day-to-day variations which point to a significant involvement of condensation

of semi-volatile compounds during urban pollution events. This agrees with the fact20

that ammonium-nitrate is the component exhibiting the highest increases from mid-to-

high pollution episodes, when the highest DpN increases are observed. The results

indicates that “fine PM2.5 particles urban pollution events” tend to occur when conden-

sation processes have made particles grow enough to produce significant concentra-

tions of N>100(nm). In contrast, because the low contribution of ultrafine particles to25

the fine aerosol mass concentrations, high “ultrafine particles N<100(nm) events” fre-

quently occurs under low PM2.5 conditions. The data of this study point that vehicles

emissions are strongly involved in this ultrafine particles aerosol pollution (for example,
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the “morning-rush-hours to nocturnal-background” concentrations ratio is 1.5–2.5 for

“particles 10–100 nm” and <1.5 for both “particle >100 nm and PM2.5”).

1 Introduction

Atmospheric aerosol (or particulate matter-PM) is now one of the most concerning

air pollutants owing to its ability to influence on climate, its adverse effects on human5

health and the difficulties in controlling their emissions (e.g. Wichmann et al., 2000; Sun

et al., 2005; IPCC, 2001). Studies on urban fine atmospheric aerosol are experiencing

a growing interest owing to: 1) the aerosol characterisation is difficult because it is

made up of a complex mixture of solid and liquid substances (some of them semi-

volatile) with a large range in particle size and 2) the still not very well characterised10

links between “urban and regional air quality” and “climate change”.

This concern on aerosol pollution in Europe has resulted in several studies focused

on the composition and physical properties of PM throughout the continent (e.g. Ru-

uskanen et al., 2001; Van Dingenen et al., 2004; Putaud et al., 2004; Querol et al.,

2004; Götschi et al., 2005; Rodŕıguez et al., 2007). In Europe, fine PM2.5 particles15

are mainly constituted by primary and secondary matter linked to combustion emis-

sions, and also by mineral dust and sea salt. Although, the sources and composition

of fine particles are being understood (except the biogenic contribution to organic mat-

ter; e.g. Janson et al., 2001), there are still significant uncertainties. The involvement

of the different microphysical processes of the aerosol dynamics (i.e. nucleation, co-20

agulation, condensation, evaporation, etc. . . ) in the “urban and regional fine aerosol

pollution events” has not deeply been characterized. In order to contribute to reduce

the uncertainties on this subject, we have performed a study on fine aerosols chem-

ical composition, mass concentrations and number size distribution in three cities of

Western Europe: Milan, Barcelona and London. The objective are: 1) to provide a25

comprehensive picture on the involvement of the above cited microphysical processes

in the regular daily, weekly and seasonal evolution of the urban aerosol, and 2) to
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study the microphysical processes leading to high mass concentration episodes by

linking the aerosol chemistry with the changes in the number size distribution. For this

purpose, the data set from each study city was analysed in detail. Because the size of

the data base and because we have made an effort in avoiding strong data reductions

(e.g. avoiding so many “averages” which lead to information looses), the set of analysis5

performed provided a large amount of results. We have made an effort for synthesizing

in one single article the key findings, in order to provide this general view of fine ur-

ban aerosols. Finally, the implications of these findings on our current “view” of urban

aerosol pollution are discussed.

2 Study regions10

The factors affecting the pollutants transport and dispersion, as well as the aerosol

composition, in Western Europe experience significant variations from South to North

(Millán et al., 2002; Rodŕıguez et al., 2007). The three cities selected for this study are

representative of some of these differences (Fig. 1).

London is located within a meteorological context favouring the frequent renovation15

of air masses. This is due to the relatively flat terrain, the predominant mean westerly

winds and frequent passages of cold fronts and depressions resulting in rain (Fig. 1).

These are the predominant conditions at the North of the Alps and Pyrenees. In con-

trast, the areas surrounding the Western Mediterranean basin are characterised by

an abrupt topography, which coupled with the characteristic synoptic scale patterns,20

results in low mean wind speeds and regional circulations that hinder the air mass

renovations and favour the accumulation of aerosols in the surrounds of the emission

regions (Fig. 1).

Barcelona is within a region where meteorological conditions favour the occurrence

of high background levels of PM due to: 1) the predominant meteorology favouring25

regional pollution events because of weak gradient conditions and regional recircula-

tions, 2) the low precipitation rates in the region (the lowest of Europe) which enhances
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the residence time of aerosol, 3) an enhancement of the mineral dust resuspension

processes in cities (by road traffic) due to the scarce roads cleaning because of the

low precipitation rates, and in rural areas due to the arid soils.

Milan is within the bottom of the Po valley, where intense urban pollution events are

favoured by the very low wind speed and the frequent occurrence of inversion layers5

near the ground in winter.

These differentiated conditions in the three cities are clearly evidenced in the local

meteorological variables, such as in-situ wind speed (Fig. 1f) and the boundary layer

depth (BLD; Fig. 1e). For example, observe how in summer the BLD maximises in

Milan and London because of the thermal convective activity, whereas in Barcelona10

it exhibits a minimum owing to the subsidence over the coast because of the vertical

recirculation of air masses along the coastal ranges (resulting in a decrease in the

“thickness of the in-land sea breeze layer”).

Another factor that contributes to differentiate the Mediterranean aerosol composition

is the Saharan dust transport, which occurs with a much higher frequency in Southern15

than in Central-Northern Europe.

3 Methodology

This study was performed in central urban background sites of Milan (Via-Messina),

Barcelona (Institute “Jaume Almera” – CSIC) and London (Bloomsbury).

3.1 Aerosol chemical characterization20

Sampling of PM2.5 (24-h sampling) was performed on quartz filters once every 4 days

using DIGITEL™ high volume samplers. After filter conditioning, mass concentrations

were determined by gravimetry. The concentrations of non-sea-salt-SO
=

4 , NO
−

3
, NH

+

4 ,

sea salt (Na+Cl+sea-salt-SO
=

4 ), mineral dust (Al2O3+SiO2+Ca+CO
=

3+Ti+Fe+Sr), or-

ganic matter (OM=1.6*OC) and black carbon (BC) and some trace elements, were de-25
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termined by ion chromatography, thermal-optical-reflectance, ICP-AES, ICP-MS and

some indirect determinations described by Querol et al. (2001) and Cao et al. (2004).

A total of 96, 94 and 65 PM2.5 samples from Milan, Barcelona and London were anal-

ysed in this 1-year study, respectively.

3.2 Aerosol physical characterization5

Aerosol number size distribution measurements were performed by using TSI™ Differ-

ential Mobility Particle Sizers (particle size 10-800nm in MILAN and BARCELONA and

10–415 nm in London).

Gravimetric equivalent hourly mass concentrations of PM2.5 were determined by

multiplying the hourly concentrations of aerosol volume (in Milan), “GRIMM™” PM2.510

(in Barcelona) and “TEOM™” PM2.5 (in London) by factors (slope of the linear relation-

ships) obtained by cross correlating the PM2.5 concentrations determined by the filter

sampling versus the aerosol volume (Milan), the “GRIMM™” PM2.5 (in Barcelona) and

the “TEOM™” PM2.5 (in London), respectively.

At Milan and Barcelona, these measurements were performed from November 200315

to December 2004. At London, the number size distribution was measured from Jan-

uary to December 2003, whereas the chemical characterization was performed from

April 2004 to April 2005.

4 Results and discussion

The results are presented in several specific sections which gives response to the main20

questions which prompted this study. Because during the data treatment we tried to

avoid strong data reductions, some of the figures that will be shown in the following

sections provide a high density of information. Our discussion will focus only on the

most relevant points and mainly in the common aerosol features at the three sites.
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4.1 Mean physical properties

Table 1 and Fig. 2 show the mean PM2.5 and number concentrations, as well as the

mean size distributions at the three study sites. Annual mean concentrations of PM2.5,

N>10(nm) and N10-100 at the three sites are within the range of typical values across

Western Europe (Ruuskanen et al., 2001; Van Dingenen et al., 2004), PM2.5: 20–5

45µg/m
3
, N>10(nm): 10–25×10

3
cm

−3
and N10-100: 10–20×10

3
cm

−3
. N10-415 ac-

counts for ∼99% of N>10(nm), whereas the ultrafine fraction N10-100 accounts for

80–85% of N>10(nm) at the 3 sites. The Milan and Barcelona to London ratios for

PM2.5, N>10(nm) and N10-100 are equals to 2.3, 2.2 and 2.3 and 1.3, 1.5 and 1.5,

respectively. The mode of the number (DpN: ∼37nm), surface (DpS: 180–230 nm) and10

volume (DpV: 300–440 nm) size distribution exhibits the very well known displacement

toward coarser fractions.

4.2 Mean chemical composition

Table 2 shows the mean chemical composition of PM2.5. The ‘most to less’ important

PM2.5 contributors are: 1) OM (28–31% of PM2.5), 2) NO
−

3
at Milan (21%) & Lon-15

don (11%) and nss-SO
=

4 at Barcelona (14%), 3) nss-SO
=

4 at Milan (10%) and London

(9%) and NO
−

3
at Barcelona (10%), 4) NH

+

4 (10% at Milan and 6–7% at Barcelona

and London), and 5) BC (6–7%). Mineral dust concentrations are much higher at

Barcelona (4.6µg/m
3
) than at the other sites (1.7µg/m

3
at Milan and 0.6µg/m

3
at Lon-

don), whereas nss-SO
=

4 concentrations are much lower in London (2.8µg/m
3
) than in20

the other sites (4.6µg/m
3
).

MILAN exhibits the highest PM2.5 concentrations because of the much higher

concentrations of OM and ammonium-nitrate. The difference PM2.5 (Milan) minus

PM2.5 (Barcelona or London): 15µgPM2.5/m
3
= 7.0µgNO

−

3
/m

3
+ 5.5µgOM/m

3
+

2.5µgNH
+

4 /m
3
.25

612

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/605/2007/acpd-7-605-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/605/2007/acpd-7-605-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 605–639, 2007

Mass, chemistry and

number size

distribution of urban

aerosols
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4.3 Aerosol daily evolution

The processes prompting the daily evolution of aerosols have been studied by perform-

ing the following analysis: 1) the daily evolution of the hourly mean values of the “road

traffic intensity”, “primary trace gases concentrations (CO, NOx and SO2)” and “several

aerosols parameters (including the size distribution mode, mass concentrations and5

number concentration in several size ranges)” during every day of the week (Fig. 3),

2) calculation of the increase ratio in the aerosol concentrations from the “nocturnal

background (02:00-05:00)” to the “morning rush hours (06:00–08:00)” and to the whole

“daylight period (06:00–18:00)” for the mass concentrations and for the number con-

centrations in several size ranges (Fig. 4), 3) calculation of the correlation coefficient10

between the weekly evolution of the aerosol mass concentrations, aerosol number con-

centrations (in several size ranges) and trace gases linked to combustions emissions

(Fig. 5). The following discussion is based on the results plotted in Figs. 3–5.

All metrics of the aerosol concentration exhibit a maximum during the morning rush

hours of the working days owing to the vehicles emissions (Figs. 3a–b). Road traf-15

fic emissions result in a higher increase in the concentrations of ultrafine (<100 nm)

than in the coarser particles (Fig. 4). The “morning-rush hours” to “nocturnal-

background” concentrations ratio is 1.5–3.0 for particles <50 nm and ≤1.5 for par-

ticles >200 nm (Fig. 4a1). The same trend is observed for the increase from the

‘nocturnal-background’ to the whole “daylight period” (Fig. 4b1). The DpN particle20

diameter (dN/dlogD mode) exhibits values within the ranges 35–50 nm during daylight

and 50–70 nm at night (Fig. 3c). This daily evolution is the result of: 1) an abrupt

DpN decrease in the morning because the sharp increase in road traffic emissions, 2)

low DpN values along the daylight owing to the “contribution of photochemical nucle-

ation particles”, “evaporation of semi-volatile compounds from the particle’s surface”25

and the still on course vehicle emissions (with a lower intensity than in the morning),

and 3) a strong nocturnal DpN increase owing to the lack of significant emissions and

the particles growth because the effects “particles coagulation” and “condensation of
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semi-volatile species onto pre-existing particles”. The daylight-to-night change in the

ambient conditions influences on this DpN daily evolution, by favouring evaporation

during daylight (due to the increase in temperature and to the decrease of the gas-

phase precursors concentrations owing to the dilution induced by the higher boundary

layer depth; Fig. 1e) and condensation at night (conditions opposites to the diurnal5

ones). Particle growth by coagulation in short time scales (∼hours) is the origin of the

low residence time of particles <50 nm that we have observed, and contributes to the

above cited high “morning-rush hours” and “daylight” to “nocturnal-background” con-

centrations ratios (Fig. 4). Notice how N10-20 experiences a strong decrease after

the evening-rush hour, which is not observed in the number concentration of particles10

>100 nm owing to: 1) the growth of particles with an initial size <100nm contributes to

N>100(nm), and 2) coagulation is not as important for particles >100 nm. These ob-

servations on the road traffic influence on the aerosol number size distribution, its daily

evolution and the working-days to weekends changes, agrees with other observations

in urban areas (e.g. Wehner et al., 2002; Wehner and Widensohler, 2003; Kittelson et15

al., 2004; Harrison and Jones, 2005).

This analysis of the urban aerosol in the 3 study cites shows that:

1) the ultrafine particles N10-100 better reflect road traffic emissions than PM2.5

(e.g. observed this at MILAN in Fig. 3a1–b1). This is also valid for N>10(nm) owing to

the ultrafine fraction N10-100 accounts for a very high portion of N>10(nm) (80–85%).20

2) the daily evolution of PM2.5 is much better correlated with that of N>100(nm) than

with that of dominant ultrafine N10-100 particles (Fig. 5). Observe in Fig. 3 how the

above description for the particles >100 nm applies for PM2.5 as well. This is attributed

to the fact that particles >100nm contributes to the aerosol mass and volume much

more than ultrafine particles (even the later accounts for 80–85% of the total number25

of fine particles; Fig. 1).

3) the daily evolution of the road traffic derived gas pollutants correlates better with

the number concentration N than with PM2.5 (Figs. 5a2–d2).
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4.4 Seasonal evolution and PM2.5 events

Figure 6 shows the “daily mean concentrations of PM2.5 including its most important

contributors”, and the “hourly mean values of the aerosol size distribution mode (DpN),

aerosol mass PM2.5 concentrations and aerosol number concentration in several size

ranges’. In order to identify the processes involved in the “day-to-day changes of the5

aerosol features” and in the “seasonal evolution of aerosols”, the following analysis

were applied to the data plotted in Fig. 6: 1) the occurrence of “urban PM pollution

episodes”, “African dust outbreaks” and “clean air events” was identified on the basis

of the meteorology by analysing the time series of several aerosol parameters (using

a methodology described in Rodŕıguez et al. (2005, and references therein); see some10

examples in Fig. 7), and 2) a study of the mean chemical composition and daily evolu-

tion of aerosols during events of low (PM2.5<30th-percentile), mid (30th<PM2.5<80th)

and high (PM2.5>80th) mass PM2.5 concentrations (Fig. 8).

Some of the PM2.5 chemical components exhibit features commonly observed

across Europe (Fig. 6): 1) BC, OM and NO
−

3
levels maximises in winter, 2) nss-SO

=

415

exhibits higher background levels and a higher relative contribution in summer, and

3) nss-SO
=

4 and NO
−

3
mainly occurs as ammonium salts (ionic balance analysis not

shown). Moreover, the number concentration in all size ranges exhibits higher levels in

winter than in summer (Fig. 6). This winter maximum is prompted by several mecha-

nisms, such as: 1) concentration of PM and its gaseous precursors owing to the less20

“dilution” prompted by the “lower boundary layer depth”, and 2) lower temperature that

favour condensation and rapid nucleation from fresh emissions. The differences in the

aerosol mean concentration and in the intensity of the winter maximum observed at the

three studied cities are strongly related to the meteorological features described above

(Fig. 1).25

As stated above, the occurrence of the main types of “aerosol episodes” was iden-

tified on the basis of the meteorology (details on meteorological features will not be

discussed here). As expected, “low PM – clean air episodes” mostly occurred dur-
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ing high wind speed events (frequently associated with air masses renovation linked

to cold front passages), “PM pollution episodes” were favoured by weak baric gradi-

ent conditions and anticyclonic situations (frequently associated with winter inversion

layers near the ground at MILAN), and “Saharan dust transport” occurred under well

known meteorological scenarios.5

The most important PM2.5 pollution events occur in winter, when OM and

ammonium-nitrate are the most important contributors (these components accounts

for 75%, 50% and 47% of PM2.5 mass in winter (November–February) and 32%, 25%

and 34% of PM2.5 in summer (June–August) at Milan, Barcelona and London, respec-

tively). During periods dominated by concatenations of “urban pollution events” and10

“clean air-low PM episodes”, the daily mean PM2.5 and DpN time series show signifi-

cant correlations, indicating that PM2.5 is made up of coarser particles during “pollution

events” than under “clean air conditions”. Figure 7 (where the types of events are high-

lighted) shows some examples from the three studied cities, where it can be observed

how DpN increases from 30 to ∼65 nm are associated with PM2.5 increases from 20 to15

80µg/m
3

at Milan and Barcelona and to 50µg/m
3

at London, from “clean air” to “urban

pollution” events. Observe in Fig. 8 (where the mean chemical composition and daily

evolution of aerosols under different pollution degrees is shown) how the increase in

the aerosol PM2.5 mass concentrations throughout the sequence “low-mid-high” lev-

els is associated with an increase in the nocturnal DpN values, leaving the diurnal20

DpN values relatively constant throughout the sequence. This indicates that an in-

crease in the aerosol PM2.5 mass concentrations is associated with an enhancement

in the nocturnal particle growth described above (“daily evolution” section). A detailed

event-to-event analysis corroborates this simultaneous DpN and PM2.5 correlated in-

creases at night during PM2.5 episodes (examples of episodes not shown for the sake25

of brevity).

Although both “coagulation between particles” and “condensation of semi-volatile

species onto pre-existing particles” may contribute to this nocturnal particle growth just

described above (Figs. 8a to c), only condensation may accounts for the observed
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simultaneous increase in the particle’s DpN diameter and mass PM2.5 concentra-

tions. This condensation of semi-volatile species is enhanced when temperature de-

creases (e.g. winter vs. summer or night vs. daylight) and when reducing the “boundary

layer depth” (owing to less dilution increases the concentration of gas-phase precur-

sors favouring that these compounds easily exceed the equilibrium vapour pressure,5

i.e. supersaturation). Our data points that condensation onto pre-existing particles of

ammonium-nitrate at the three study sites and some OM species at MILAN are strongly

involved in the particle growth from the “mid” to “high” PM2.5 events (when the high-

est “daylight-to-night” DpN increase is observed; Fig. 8c). This is supported by these

observations (Fig. 8):10

1) ammonium and nitrate are the compounds exhibiting the highest increase from

“mid” to “high” PM2.5 episodes at the three sites, with “high/mid concentration” ratios=

4.5 and 2.9 at Milan and London, and =3.5 and 2.5 at Barcelona for nitrate and ammo-

nium, respectively, and <2 for the other major components (except for OM at Milan).

This nocturnal formation of ammonium-nitrate, that would increase the particle diame-15

ter by condensation, has already been documented (Weber et al., 2001 and Alastuey

et al., 2004).

2) the increase in the concentrations of OM from “mid” to “high” PM2.5 episodes is

much higher than that of BC at Milan (“high/mid” events ratios= 3.1 for OM and 1.5 for

BC) than at Barcelona (1.5 for OM and 1.2 for BC) and London (1.4 for OM and 1.120

for BC). Because the BC (a primary particle) increase is mainly attributed to the lower

dilution during pollution episodes (because the lower “boundary layer depth”), the much

higher OM increase at Milan is attributed to condensation processes (secondary OM

formation).

These enhanced condensation conditions at Milan with respect to the other sites,25

are favoured by: 1) lower winter temperatures, and 2) the much lower boundary layer

depth due to the frequent occurrences of winter temperature inversions layers. This

enhanced condensation may accounts for the: 1) larger summer-to-winter increase in

OM, DpN and N>100(nm) at MILAN than the other sites (see these ratios in the up-
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per left corner of Figs. 6c, 6g, 6j), 2) much higher winter (∼9.5) than summer (∼5.8)

OM/BC ratios at Milan, whereas these ratios remains relatively constant from summer

to winter both at Barcelona (∼5.2) and London (∼5.6). Notice how the most important

daylight to night DpN increase is observed in Milan (Fig. 8), where the highest concen-

trations of semi-volatile components (ammonium-nitrate and unidentified OM species)5

are recorded.

Saharan dust transport also contributed to PM2.5 levels (Fig. 6d): 4 events occurred

in Barcelona (over 94 filter samples), 3 events in Milan (96 samples) and any one in

London (65 samples). Mineral dust concentrations during these Saharan dust episodes

were into the ranges 8–15µg/m
3

in Barcelona and 4–11µg/m
3

in Milan. During mineral10

dust events attributed to local urban sources (e.g. road traffic resuspension, demolition

and contribution works), dust concentrations within the ranges 7–22µg/m
3
, 3–6µg/m

3

and 1–2µg/m
3

in Barcelona, Milan and London, respectively, were observed. Min-

eral dust experiences a seasonal evolution with a winter maximum both at Milan and

London, and a summer maximum in Barcelona.15

Finally, in the examples shown in Fig. 7, it can be observed how the total number con-

centration N>10(nm) also tend to increase from the “clean air” to the “urban pollution”

events, frequently from <1×10
4

to >2×10
4

cm
−3

. However, the degree of correlation

between PM2.5 and the number concentration changes significantly depending on the

particle size. Observe, in the examples shown in Fig. 7, how: 1) N>100(nm) shows20

a good correlation with PM2.5, 2) N10-100 may exhibit concentrations equally high

during both high and low PM2.5 concentrations episodes, 3) N10-30 may even reach

higher concentrations during low than during high PM2.5, and 4) the number concen-

tration and DpN doesn’t experience any significant variation during the Saharan dust

events. These relationships are “quantified”, and its origin discussed, in the following25

section.
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4.5 Relationship between PM2.5 and number size distribution

The relationship between the aerosol PM2.5 mass concentrations and the number size

distribution has been studied by: 1) calculating and analysing the correlation coeffi-

cient between PM2.5 and the number concentration in several size ranges (Fig. 9), 2)

analysing the “scatter plots” of PM2.5 versus the number concentration in several size5

ranges (Fig. 10), and 3) calculating and analysing the correlation coefficient between

the main PM2.5 chemical constituents and the number concentration in several size

ranges (Fig. 11). The following discussion is based on these analysis performed over

the 1 year data base.

Because the particle mass increases with the particle size, the correlation between10

PM2.5 and number concentrations increases with the particle diameter, from “r”<0.2

for 10–20 nm to 0.6–1.0 for >400 nm (Fig. 9a). As consequence, PM2.5 correlates

much better with N>100(nm) (a fraction which only accounts for a 15–20% of the total

number concentration N>10(nm)) than with the dominant ultrafine fraction N10-100

(Fig. 9).15

The correlation of most of PM2.5 components with the number concentration in-

creases with the particle diameter (Figs. 11c–k, this analysis is not available for Lon-

don). This is more clearly observed for secondary species such as nss-SO
=

4 , NO
−

3
and

NH
+

4 (Figs. 11f, g and h), whose gas-to-particle conversion rates onto the surface of

pre-exiting particles are favoured under the presence of particles with a large surface20

(such as those >100nm; Fig. 2b): “according to the Kelvin effect the equilibrium vapour

pressure over a sphere increases when the sphere’s diameter decreases”. In contrast,

BC and OM exhibits high “r” values both in the ultrafine and >100 nm size fraction owing

to the primary vehicles emissions and the subsequent particle growth by coagulation

and condensation (Figs. 1d–e). Observe how BC and OM are the only components25

exhibiting a significant correlation with the ultrafine N10-100 particles (Figs. 11a–b).

These size distributions of the correlation coefficients (Figs. c–k) resemble those of the

chemical PM2.5 components obtained by cascade impactor sampling (Putaud et al.,
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2004; Cabadas et al., 2004).

Because both the particle’s surface and mass increases with the particle’s diameter,

the N>100(nm) number, mass PM2.5 concentration and surface concentrations are

positively correlated (Figs. 9, 10c–d). This indicates that: 1) an increase in N>100(nm)

results in an increase of the aerosol surface available for gas-to-particle transfer of5

matter by condensation, and 2) “urban PM2.5 pollution events” mostly occurs when

particles are grown enough to result in high N>100(nm) values (e.g. by condensation

onto the surface of pre-existing particles of ammonium-nitrate; Figs. 11f–h). Observe

in Fig. 7 how N>100(nm) is the only particle’s size fraction that exhibits high concen-

trations only during PM2.5 episodes.10

4.6 PM2.5 versus ultrafine particles events

The data analysis described above (Figs. 7–11) also allowed to study the relationship

between aerosol PM2.5 mass and ultrafine N10-100 particles events.

The relationship of the ultrafine N10-100 fraction (and its subsets) with PM2.5 is

more complex than the “simple positive correlation between PM2.5 and N>100(nm)”.15

Observe in Fig. 7 how N10-30, N10-100 and N>10(nm) may exhibits high concen-

trations during both high and low PM2.5 events. According to the involvement of the

different microphysical processes on the relationship between PM2.5 and ultrafine par-

ticles, we distinguish these events:

A) Simultaneous high or low “PM2.5 and N10-100 events” are observed during con-20

catenations of some “clean air” and “PM2.5 pollution” events (e.g. 1–7 and 29–31

March 2004 at Milan, 1–9 February 2004 at Barcelona or 1–12 November 2003 at

London; Fig. 7), when the previously discussed influence of meteorology results in the

increase or decrease of PM concentrations. The data of the central part of the PM2.5

vs. N10-30 and PM2.5 vs. N10-100 scatter plots are associated with this type of events25

(Figs. 10a–b). During these episodes, the increase in PM2.5 levels occur because par-

ticles have grown enough to produce a significant N>100(nm) values (observe in Fig. 7

the DpN and N>100(nm) increases during the above cited examples).

620

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/605/2007/acpd-7-605-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/605/2007/acpd-7-605-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 605–639, 2007

Mass, chemistry and

number size

distribution of urban

aerosols
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B) Low PM2.5 and high N10-100 episodes (also associated with N10-30 events) are

frequently recorded (e.g. 20–24 of March 2004 at Milan, 9–13 and 17 of February 2004

at Barcelona and 21–22 and 24 of November 2003 at London; Fig. 7). These events

are caused by the occurrence of “very small fresh particles” (observe in Fig. 7 the low

“DpN and N>100(nm)” and high “N10-30” values during the above cited examples) as-5

sociated with two possible processes: 1) recent primary emissions (e.g. BC and some

OM species) and 2) new particles formation by nucleation (e.g. sulphate and some OM

species; Jung et al., 2006). The fact that the aerosol surface concentrations are low

during these events (Fig. 10d) favours the occurrence of these very small particles, be-

cause under low aerosol surface concentrations: 1) the coagulation rates remain low10

(increasing the residence time of these fresh small particles), and 2) the condensation

rates decreases and consequently the gas-to-particle transfer of matter by nucleation

is favoured with respect to higher PM2.5 concentration events (this is due to the fact

that condensation and nucleation are competing processes, being the first favoured

under high aerosol surface concentrations and vice versa; see a discussion on this in15

Rodŕıguez et al., 2005). This type of events accounts for the data located in the right

lower corner (“labelled as fresh PM”) of the PM2.5 vs. N10-30 and PM2.5 vs. N10-100

scatter plots (Figs. 10a–b).

C) High PM2.5 and low N10-100 episodes. Examples (Fig. 7): 4 and 13–15 March

2004 at Milan and 7, 18–19 and 21 February 2004 at Barcelona. The following mecha-20

nisms may be involved in these events: 1) an enhancement of coagulation and conden-

sation processes in relatively “aged air” (e.g. during pollution events at night; Fig. 8c),

and 2) the presence of high density primary particles (e.g. fly-ashes, metals or mineral

local or Saharan dust). These types of events account for the data located in the left

upper corner (“labelled as aged PM” according to the first mechanism cited above) of25

the PM2.5 vs. N10-30 and PM2.5 vs. N10-100 scatter plots (Fig. 10a–b).

The influence of the above cited mechanisms favouring the presence of ultrafine

particles under low PM2.5 concentrations is also observed in Fig. 8: the decrease in

the aerosol concentrations from “high-to-mid” and “mid-to-low” PM2.5 events exhibits
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ratios ∼0.5 for PM2.5, 0.6 for N>100(nm), 0.8 for N10-100 and 0.9 for N10-30 at the

3 sites. Observe how the decrease is much less important for ultrafine particles. This

could have implications for air quality improvements strategies: “a decrease in the

aerosol precursor emissions may raise the ultrafine particles load in urban air”. The

relationships leading to these conclusions have also been observed in urban and rural5

areas (Wichmann et al., 2000; Laakso et al., 2003; Rodŕıguez et al., 2005).

5 Summary and conclusions

In this article, data on urban fine aerosol physicochemical characterization in Milan,

Barcelona and London are studied. The analysis of the aerosol number size distri-

bution, chemical composition and mass PM2.5 concentrations data, provides a com-10

prehensive picture on the involvement of the different microphysical processes of the

aerosol dynamics (i.e. nucleation, coagulation, condensation, evaporation, etc. . . ) in

the regular evolution of the urban aerosol in a daily, weekly and seasonal basis as well

as in the aerosol evolution from clean to pollution episodes.

Mean concentrations of PM2.5 and N>10(nm) at the three sites are within the range15

of typical values across Western Europe, PM2.5: 20–45µg/m
3

and N>10(nm): 10–

25×10
3

cm
−3

, being the highest concentrations recorded in Milan and the lowest in

London. Ultrafine particles N10-100 accounts 80–85% of the total number concen-

tration of fine aerosol, and the number size distribution mode (DpN) is ∼37 nm. The

results of this study evidence the much higher levels of: 1) “mineral dust” in the Mediter-20

ranean cities (4.6µg/m
3

in Barcelona, 1.7µg/m
3

in Milan and 0.6µg/m
3

in London)

and 2) organic matter and ammonium-nitrate in the Po Valley (Milan 7.0µgNO
−

3
/m

3
,

5.5µgOM/m
3

and 2.5µgNH
+

4 /m
3

higher than in Barcelona and London). The links

between “aerosol chemical composition and mass concentrations” with the “number

size distribution” have been studied in terms of the involvement of the microphysical25

processes.

Because the particle’s mass increases with the particle’s diameter, the mass con-
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centrations of fine PM2.5 aerosols exhibits a high correlation with the number concen-

tration of particles >100nm (N>100(nm) and its subsets) and a low correlation with

the number of particles <100 nm (N<100(nm) and its subsets). These associations,

which are consistently observed all across the analysis of the daily, weekly and sea-

sonal evolution, as well as in the day-to-day aerosol variations, indicates that PM2.55

is significantly influenced by the microphysical processes leading to the presence of

N>100(nm). The following positive correlations are observed: 1) ammonium-nitrate

and ammonium-sulphate with N>100(nm), attributed to gas-to-particle transformation

mechanisms involving “condensation onto” and/or “reaction with” the surface of pre-

existing particles, 2) organic matter (OM) and black-carbon (BC) with both the ultrafine10

N<100(nm) and the coarser N>100(nm), attributed to road traffic emissions and sub-

sequent particle growth due to coagulation and condensation processes. Moreover,

OM and BC are the only aerosol components showing a significant correlation with the

ultrafine particles, which is attributed to road traffic emissions.

The involvement of the different microphysical processes on aerosol variations in15

several time scales has been studied:

Daily evolution. Because the diurnal “primary emissions, nucleation and evapora-

tion processes” and the nocturnal “particle growth by condensation and coagulation”,

aerosol tend to be lesser during daylight (DpN: 35–50 nm) than at night (DpN: 50–

70 nm). Road traffic emissions results in a much higher increase in the ultrafine than in20

coarser particles: “nocturnal-background” to “morning rush hours” increase of 1.5–2.5

for ultrafine N10-100 particles and <1.5 for N>100(nm) and PM2.5.

Seasonal evolution and pollution PM2.5 events. Time series of daily mean values

of DpN, PM2.5 and N>100(nm) tend to exhibits day-to-day correlated variations dur-

ing the concatenation of “urban pollution events” and “classical clean air episodes (in25

terms of PM2.5)”. This tendency to increase the DpN diameter when increasing PM2.5

concentrations is attributed to condensation of semi-volatile species, being ammonium-

nitrate (and OM in MILAN) the component exhibiting the highest increase from “mid”-

to-“high” PM2.5 episodes (when the highest DpN increase is observed). These results
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indicates that PM2.5 events tend to occur when condensation processes have made

particles grown enough to produce significant concentrations of N>100(nm).

Ultrafine N10-100 versus PM2.5. Because the very low contribution of ultrafine N10-

100 particles to the mass concentration of fine PM2.5 aerosols, N10-100 do not shows

a systematic positive or negative correlation with PM2.5. N>100(nm) is the only parti-5

cle size-fraction which exhibits high concentration only during PM2.5 episodes. Events

of low PM2.5 and high N10-100 concentrations occur frequently, and these are at-

tributed to fresh vehicles emissions and new particle formation by nucleation. These

results have important implications on how aerosol pollution is being monitored, since

most of observations are based in terms of mass concentrations (PM2.5). This study10

shows how PM2.5: 1) is mainly weighted by particles >100 nm, which only accounts

for <20% of the total number concentration of fine particles, and 2) doesn’t account

for the dominant ultrafine N10-100 fraction of urban aerosols (>80% of fine particles).

Because vehicles primary emissions mainly occur in the ultrafine fraction, a specific

monitoring of the ultrafine aerosols is important.15
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Table 1. Aerosol number (N) and mass (PM2.5) concentrations statistic at Milan (Novem-

ber 2003–December 2004), Barcelona (November 2003–December 2004) and London (April

2004–April 2005 for PM2.5 and January–December 2003). DpN, DpS, DpV: mode of the num-

ber, surface and volume size distribution. m1: mode of the mean size distribution, m2 and

med.: mean and median of all hourly values of the size distribution modes. ND: number of

daily mean data used for the calculations.
1
PM2.5: values calculated from sampling on filter

(1day every 4-days),
2
PM2.5: values computed from continuous measurements after correcting

for gravimetric equivalence.

Milan Barcelona London

N cm
−3

% cm
−3

% cm
−3

%

10–800 25833 16811

10–415 25676 99 16759 99 11 409

10–20 2455 10 1941 12 1348 12

20–30 4145 16 3386 20 1986 17

30–50 5634 22 3988 24 2693 24

50–100 8365 32 5093 30 3302 29

100–200 3795 15 1855 11 1601 14

200–415 1283 5 496 3 475 4

415–800 157 < 1 49 < 1

nm m1 m2 med m1 m2 med m1 m2 med

DpN 36 47 41 36 39 36 38 50 43

DpS 233 213 179 179 178 179 198 228 198

DpV 309 340 309 309 294 309 437 355 379

µg/m
3

ND mean 90th ND mean 90th ND mean 90th

1
PM2.5 96 47 87 94 34 55 63 31 45

2
PM2.5 264 45 81 365 26 40 362 20 33
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Table 2. Statistic of PM2.5 composition based on 96, 94 and 65 samples collected in Milan,

Barcelona and London from December 2003 to December 2004, December 2003 to December

2004, and April 2004 to April 2005, respectively. Trace elements: sum of Zn, V, Cr, Co, Ni, Cu,

As, Cd and Pb.

Milan Barcelona London

mean 90th mean 90th mean 90th

µg/m
3

% µg/m
3

µg/m
3

% µg/m
3

µg/m
3

% µg/m
3

PM2.5 47.0 86.8 34.3 54.5 31.0 45.5

OM 14.8 31 32.3 9.7 28 14.8 9.0 29 14.3

BC 1.8 4 2.9 1.9 6 2.8 1.6 5 2.5

NO
−

3
10.1 21 23.4 3.5 10 8.0 3.5 11 9.3

nss-SO
=

4 4.6 10 8.4 4.6 14 9.1 2.8 9 5.5

NH
+

4 4.8 10 10.0 2.2 6 4.7 2.1 7 5.9

OM+BC 16.5 35 34.7 11.6 34 18.1 10.6 34 15.7

SIC 19.4 41 39 10.4 30 20 8.4 27 21.0

Mineral 1.7 4 3 3.7 11 8 0.6 2 0.9

Sea-salt 0.2 0.4 0.4 0.7 2.2 1 0.7 2.1 1.7

Trace 0.1 0.2 0.2 0.1 0.4 0 0.04 0.1 0.1

S chemistry 38 27 20

%Determined 81 77 66
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Figure 1 

μμ μμ

Fig. 1. Maps of topography and 2000–2005 climatology of several meteorological fields over

Europe (a–d) and daily mean evolution per month during 2004 of the Boundary Layer Depth

and in-situ wind speed (e–f) at London (L), Barcelona (B) and Milan (M).
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S. Rodŕıguez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

 

dS/dlogD dV/dlogD

C)

dN/dlogD

B)A) μm3·cm-3
cm-3 μm2·cm-3

Diameter, nmDiameter, nmDiameter, nm

L
O

N
D

O
N

B
A

R
C

E
L

O
N

A
M

IL
A

N

0

10000

20000

30000

10 100 1000

0

500

1000

10 100 1000

0

25

50

10 100 1000

dS/dlogD dV/dlogD

C)

dN/dlogD

B)A) μm3·cm-3
cm-3 μm2·cm-3

Diameter, nmDiameter, nmDiameter, nm

L
O

N
D

O
N

B
A

R
C

E
L

O
N

A
M

IL
A

N

L
O

N
D

O
N

L
O

N
D

O
N

B
A

R
C

E
L

O
N

A
B

A
R

C
E

L
O

N
A

M
IL

A
N

M
IL

A
N

0

10000

20000

30000

10 100 1000

0

500

1000

10 100 1000

0

25

50

10 100 1000

 

Figure 2 
Fig. 2. Mean size distribution of aerosol number, surface and volume concentrations during the

1-year study period.
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Figure 3 

Fig. 3. Hourly mean concentrations of aerosol parameters, gaseous pollutants and road traffic

intensity (only at MILAN) averaged over every day of the week during the 1-year study period.
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S. Rodŕıguez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

μμ μμ

 

1.0

2.5

1.5

2.0

1.0

2.5

1.5

2.0

N
1

0
-2

0

N
2

0
0
-3

0
0

N
2

0
-3

0

N
3

0
-5

0

P
M

2
.5

N
4
1

5
-8

0
0

N
1

0
0
-2

0
0

N
3
0

0
-4

1
5

N
5

0
-1

0
0

N
1

0
-1

0
0

N
>

1
0

0
(n

m
)

B2)

A2)

B1)

A1)

daylight / night-background

morning-rush / nocturnal-background

co
n

ce
n
tr

at
io

n
s 

ra
ti

o

L
O

N
D

O
N

M
IL

A
N

B
A

R
C

E
L

O
N

A

N
>

1
0

(n
m

)

1.0

2.5

1.5

2.0

1.0

2.5

1.5

2.0

N
1

0
-2

0

N
2

0
0
-3

0
0

N
2

0
-3

0

N
3

0
-5

0

P
M

2
.5

N
4
1

5
-8

0
0

N
1

0
0
-2

0
0

N
3
0

0
-4

1
5

N
5

0
-1

0
0

N
1

0
-1

0
0

N
>

1
0

0
(n

m
)

B2)

A2)

B1)

A1)

daylight / night-background

morning-rush / nocturnal-background

co
n

ce
n
tr

at
io

n
s 

ra
ti

o

L
O

N
D

O
N

M
IL

A
N

B
A

R
C

E
L

O
N

A
L

O
N

D
O

N
L

O
N

D
O

N
M

IL
A

N
M

IL
A

N
B

A
R

C
E

L
O

N
A

B
A

R
C

E
L

O
N

A

N
>

1
0

(n
m

)

 

Figure 4 Fig. 4. “Morning rush hours (06:00–08:00) to nocturnal-background (02:00–05:00)” and “day-

light (06:00–18:00) to night-background (02:00–05:00)” ratios of the aerosol PM2.5 mass and

number concentration in several size ranges during working days of the 1-year study period.
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Figure 5 

μ
μ

μμμ
μμ

Fig. 5. Correlation coefficient between the weekly cycles (Monday to Sunday daily cycles)

of “PM2.5, N10-20, N10-100 and N>10(nm)” and those of “the aerosol PM2.5 mass, number

concentrations (in several size ranges) and gases”.
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Figure 6 

Fig. 6. Daily mean concentrations of PM2.5 and including its major contributors (a–d) and

hourly mean concentrations of PM2.5 and the aerosol-number concentration in several size

ranges (e–j). w/s = mean winter (November–February)/summer (May–August) concentrations

ratio. 634
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Figure 7 

Fig. 7. Daily mean values of the aerosol PM2.5 mass concentrations, number concentrations

(in several size ranges) and size distribution mode (DpN) at the 3 study cities during selected

periods when different types of aerosol episodes took place. Events of “Saharan dust”, “ur-

ban pollution” and “ultrafine particles” are highlighted (previous identification was performed by

using the methodology described in Rodŕıguez et al. (2005, and references therein).
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Figure 8 Fig. 8. Daily mean evolution of several aerosol parameters (a–c) and mean PM2.5 aerosol

chemical composition during events of “low (<30th percentile)”, “mid (30–80th percentile)” and

“high (>80th percentile)’ PM2.5 concentrations in the 3 study sites. (d): “ND”=Non-Determined

(PM2.5 – sum of chemistry), “trace” = trace elements (see Table 2), “mineral” = Mineral dust.
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Figure 9 

μ
μ

μ
μ

μ
μ

Fig. 9. Correlation coefficient between the aerosol hourly “mass PM2.5 concentrations” and

“number concentration (in several size ranges)” during the 1-year study period (each value

obtained with more than 8000 hourly data).
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Figure 10 Fig. 10. Hourly mean aerosol PM2.5 mass concentrations versus number concentrations (in

several size ranges) during the 1-year study period.
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Figure 11 Fig. 11. Correlation coefficient between the daily mean aerosol PM2.5 mass concentrations

and number concentrations (in several size ranges) during the 1-year study period.
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