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Abstract. We invoke a metric to quantify the correlation
between any two earthquakes. This provides a simple and
straightforward alternative to using space-time windows to
detect aftershock sequences and obviates the need to dis-
tinguish main shocks from aftershocks. Directed networks
of earthquakes are constructed by placing a link, directed
from the past to the future, between pairs of events that are
strongly correlated. Each link has a weight giving the rel-
ative strength of correlation such that the sum over the in-
coming links to any node equals unity for aftershocks, or
zero if the event had no correlated predecessors. A corre-
lation threshold is set to drastically reduce the size of the
data set without losing significant information. Events can
be aftershocks of many previous events, and also generate
many aftershocks. The probability distribution for the num-
ber of incoming and outgoing links are both scale free, and
the networks are highly clustered. The Omori law holds for
aftershock rates up to a decorrelation time that scales with
the magnitude,m, of the initiating shock astcutoff∼10βm with
β'3/4. Another scaling law relates distances between earth-
quakes and their aftershocks to the magnitude of the initiat-
ing shock. Our results are inconsistent with the hypothesis of
finite aftershock zones. We also find evidence that seismicity
is dominantly triggered by small earthquakes. Our approach,
using concepts from the modern theory of complex networks,
together with a metric to estimate correlations, opens up new
avenues of research, as well as new tools to understand seis-
micity.

1 Introduction

Seismicity is an exceedingly intermittent phenomena (Ka-
gan, 1994) exhibiting strong correlations in space and time.
Since the seismic rate increases sharply after a large earth-
quake in the region, events typically are classified as after-
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shocks or main shocks, and the statistics of aftershock se-
quences are studied. Usually, aftershocks are collected by
counting all events within a fixed space-time window (Gard-
ner and Knopoff, 1974; Keilis-Borok et al., 1980; Knopoff
et al., 1982; Knopoff, 2000) following a main event. The size
of the window may vary or scale with the magnitude of the
main event (Kagan, 2002a), and other refinements have been
made (Helmstetter, 2003). However, this method does not
allow a likelyhood to be estimated that an event thereby col-
lected is actually correlated to the main event under consider-
ation. As a result, no straightforward algorithm exists to de-
cide if the space-time windows are too large or too small for
minimizing errors in the procedure. Also, the method cannot
be easily extended to examine remote triggering (Hill et al.,
1993; Gomberg et al., 2001) where main shocks may trigger
aftershocks at great distance in space, or perhaps far away
in time. In addition, aftershocks may have several preceding
events to which they are correlated, perhaps with overlapping
space-time windows. Using conventional methods the con-
jecture that aftershocks can rumble on for centuries (Kagan,
2002b) cannot be tested.

In fact, a growing body of work indicates that the distinc-
tion between aftershocks and main shocks is relative (Baiesi
and Paczuski, 2004; Kagan, 2002b). There is no unique op-
erational way to distinguish between aftershocks and main
shocks (Bak et al., 2002). They are not caused by different
relaxation mechanisms (Hough and Jones, 1997; Helmstetter
and Sornette, 2003). Besides, a strict distinction may not be
the most useful way to describe the dynamics of seismicity.

A particular nuisance with employing space-time windows
arises from the entanglement of a vast range of scales in
space, time and magnitude in seismicity. One scale-free
property is theGutenberg and Richter(1941) (G-R) distri-
bution for the number of earthquakes of magnitudem in a
seismic region,

P(m)∼10−b m , (1)

with b usually ≈1. A second is the fractal appearance of
earthquake epicenters (Turcotte, 1997; Kagan, 1994; Hirata,
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1989), where the fractal dimensiondf ≈1.6 in S. Califor-
nia (Corral, 2003). A third is the Omori law (Omori, 1894;
Utsu et al., 1995) for the rate of aftershocks in time,

ν(t)∼
K

c + t
, (2)

wherec andK are constant in time, but depend on the mag-
nitudem (Utsu et al., 1995) of the earthquake.

One way forward has been suggested by (Bak et al., 2002)
who take the perspective of statistical physics: Neglecting
any classification of earthquakes as main shocks, foreshocks
or aftershocks, analyze seismicity patterns irrespective of
tectonic features and place all events on the same footing.
They consider spatial areas and their subdivision into square
cells of lengthL. For each of these cells, only events above
a threshold magnitudem are included in the analysis. In
this way, one can obtain a distribution of waiting times (Bak
et al., 2002; Corral, 2003; Davidsen and Goltz, 2004) and dis-
tances1 between successive events with epicenters both in the
same cell of linear extentL. Since both the threshold mag-
nitude and the length scale of the cell (or the space window)
are arbitrary, one looks for robust or universal features of this
distribution that appear when these parameters are varied.

We (Baiesi and Paczuski, 2004) have previously intro-
duced an alternative method for characterizing seismicity
that completely avoids using fixed space-time windows and,
at the same time, makes available powerful concepts and
methods that are being developed to describe complex net-
works (Albert and Barab́asi, 2002; Bornholdt and Schuster,
2002; Newman, 2003). Here we extend the method to al-
low more than one incoming link per earthquake. This al-
lows the network to deviate from a tree structure and exhibit
characteristic properties of complex networks, such as “clus-
tering”2, which may be relevant to characterizing seismicity.
Our method also takes into account, in an unbiased way, that
an aftershock can be correlated to many previous events. By
unbiased, we mean that we do not fix any length, time or
magnitude scales for identifying aftershocks. Nor do we fix
the number of events they can be aftershocks of.

2 The method

A general description of our method is as follows: The first
step is to propose, as a null hypothesis (Jaynes, 2003), that
earthquakes are uncorrelated in time. Then we detect in-
stances when that hypothesis is strongly violated, indicat-
ing that the opposite is true. The second step is to assign
a real number, or metric, that quantifies the correlation be-
tween any two earthquakes, based on gross violations of the
null hypothesis. The third step is to construct a directed net-
work where the events that are correlated according to the
metric are nodes connected by links. Each link contains sev-
eral variables such as the time between the linked events, the
spatial distance between their epicenter or hypocenters, the

1Davidsen, J. and Paczuski, M.: e-print cond-mat/0411297.
2See also: Baiesi, M.: e-print cond-mat/0406198.

magnitudes of the earthquakes, and the metric or correlation
between the linked pairs. We can study the statistical proper-
ties of the network and its ensemble of space/time/magnitude
variables to gain new insights into seismicity. Note that many
variations of the null hypothesis and associated metric are
possible, but the key feature of a useful null hypothesis, in
this context, is that earthquakes are uncorrelated in time.

The null hypothesis, which we previously used, is that
earthquakes occur with a distribution of magnitudes given
by the G-R law, with epicenters located on a fractal of di-
mensiondf , at random in time. Of course, it is patently false
that earthquakes are uncorrelated in time. It is also unclear
if epicenters form a monofractal with dimensiondf ≤2. The
point is to look for strong violations of the null hypothesis.

Consider an earthquakej in the seismic region, which oc-
curs at timeTj at locationRj . Look backward in time to
the appearance of earthquakei of magnitudemi at timeTi ,
at locationRi . One can ask, how likely is eventi given that
eventj occurred where and when it did? According to the
null hypothesis, the expected number of earthquakes of mag-
nitude within an interval1m of mi that would be expected
to have occurred within the time intervalt=Tj−Ti seconds,
and within a distancel=|Ri − Rj | meters is

nij ≡ (const) t ldf 10−bmi 1m . (3)

Note that the space-time domain(t, l) appearing in Eq. (3)
is selected by the particular history of seismic activity in the
region and not preordained by any observer. The constant
term in Eq. (3) is estimated by the overall seismic rate in the
region over the time span of recorded events and is evalu-
ated later. However, our results are insensitive to the pre-
cise value of this constant, since its value is absorbed into a
threshold we define later,c<. We find that many of the sta-
tistical properties of the networks are robust with respect to
varying parameters such asc<, df , andb. In particular, we
can choosedf =2 without substantially varying the results.
See also (Baiesi and Paczuski, 2004).

Consider a pair of earthquakes(i, j) wherenij�1; so that
the expected number of earthquakes according to the null hy-
pothesis is very small. However, eventi actually occurred
relative toj , which, according to the metric, is surprising.
Hence, it is unlikely that the pair would occur in that space-
time domain if they were uncorrelated. A small valuenij�1
indicates that the correlation betweenj andi is very strong,
and vice versa. By this argument, the correlationcij between
any two earthquakesi andj can be estimated to be inversely
proportional tonij , or

cij=1/nij . (4)

As we show later, the distribution of the correlation variables
cij for all pairsi, j is extremely broad. Therefore, for each
earthquakej , some exceptional events in its past have much
stronger correlation than all the others combined. These
strongly correlated pairs of events can be marked as linked
nodes, and the collection of linked nodes forms a sparse net-
work of highly clustered graphs. Unless otherwise stated
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Table 1. Network quantities for the Southern California data set,
unless otherwise noted.

Quantity Symbol Value

magnitude threshold m< 3

magnitude precision 1m 0.1

Gutenberg-Richter exponent b 0.95

fractal dimension of epicenters df 1.6

fractal dimension of hypocenters Df 2.6

number of earthquakes Nnode 8858

in this work, earthquakes are linked only if their correlation
value,cij , is greater thanc<=104, or the expected number of
events according to the null hypothesis,nij , is less than 10−4.
The error made in ignoring weakly linked pairs of events is
discussed later.

In the language of modern complex network theory (Al-
bert and Barab́asi, 2002; Bornholdt and Schuster, 2002;
Newman, 2003), a time-oriented weighted network grows,
where nodes (earthquakes) have internal variables (magni-
tude, occurrence time, and location), and links between the
nodes carry a strength (the correlationcij ) and are directed
from the older to the newer nodes. Empirically, we find that
both the distribution of outgoing and incoming links are scale
free. The network is composed of highly clustered, discon-
nected graphs of correlated earthquakes. Events with incom-
ing links, or aftershocks, typically connect to many previous
events rather than just one. However, the networks are sparse
and the number of links in the network is much less (about
0.1%) than the number of pairs of earthquakes. We find nei-
ther that every earthquake is correlated to every other event,
nor that events typically are correlated to zero or one pre-
vious events, but a picture in between where the number of
events an aftershock is correlated to is scale-free.

Due to the continuous nature of the link variable,cij ,
no event is purely an aftershock or a main shock, and it is
not possible to separate events into distinct classes. This
is consistent with previous studies indicating no physical
distinction between main shocks and aftershocks (Hough
and Jones, 1997; Bak et al., 2002). Note that singularities
in Eq. (3) are eliminated by taking a small scale cutoff in
time (heretmin=60 s) and a minimum spatial resolution (here
lmin=100 m).

3 Data and parameters

The catalog we have analyzed is maintained by the Southern
California Earthquake Data Center, and can be downloaded
via the Internet athttp://www.data.scec.org/ftp/catalogs/
SCSN/. We use data ranging from 1 January 1984 to 31 De-
cember 2003, and follow a procedure similar to our previous
work (seeBaiesi and Paczuski(2004) for more details).

Table 2. Parameters for the network of Southern California ob-
tained with the 2D version of the metric, unless otherwise noted.

Quantity Symbol Value

seismicity constant (see Eq.3) const 10−11

correlation threshold c< 104

number of links Nlink 166507

average in-degree 〈kin〉 18.8

number of clusters Ncluster 2252

Table 3. Parameters for the network of Southern California ob-
tained with the 3D version of the metric, unless otherwise noted.

Quantity Symbol Value

seismicity constant (see Eq.8) const’ 10−15

correlation threshold c< 104

number of links Nlink 154792

average in-degree 〈kin〉 17.5

number of clusters Ncluster 2327

The relevant quantities for our present work are summa-
rized in Tables1, 2, and3. Events with magnitude smaller
than m<=3 are discarded, and1m=0.1. The number of
earthquakes or nodes in the network constructed using the
entire catalog isNnode=8858. Theb-value of the G-R law is
b'0.95 for this data set, whiledf '1.6 was found byCorral
(2003).

We consider two closely related variants of the metric: in
the two-dimensional (2D) version, the earthquake depth is
not considered, and the distance between two eventsi andj

is measured as the arc length on the Earth’s surface,

lij =R0 arccos[ sin(θi) sin(θj ) +

cos(θi) cos(θj ) cos(φi − φj ) ] , (5)

where the Earth radius isR0=6.3673×106 m, and (θi ,φi) are
the latitude and longitude, in radians, of the epicenter of th
i’th event in the catalogue.

The second version (3D) takes into account the depthhi of
each event. Hence Euclidean distances between hypocenters
are calculated,

lij=

√√√√ 3∑
a=1

(xa
i − xa

j )2 (6)

with

x1
i = (R0 − hi) cosθi cosφi

x2
i = (R0 − hi) cosθi sinφi (7)

x3
i = (R0 − hi) sinθi

http://www.data.scec.org/ftp/catalogs/SCSN/
http://www.data.scec.org/ftp/catalogs/SCSN/
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Fig. 1. (a) Scale free network of earthquakes obtained with the 2D metric using m< = 4 and c< = 104. This network has 791 nodes, and
its 7931 links follow the color code in the legend. Several clusters are evident, the biggest being related to the Landers earthquake. The
Northridge cluster, enclosed within a dashed box in (a), is enlarged in (b), where the solid black dot represents the epicenter of the Northridge
event. Figures (c) and (d) are obtained using the 3D metric with m< = 4 and c< = 5× 103 giving 7947 links, very close to the number of
links in the 2D version. Note that the networks found using these two metrics are similar, indicating that the method is robust to variations in
the metric.

where the sum is over all earthquakes k with links going into
j. The weighted number of aftershocks attributable any event
i is then

Nafter,i =

out
∑

j

wij . (12)

Here, the sum is over all of the outgoing links from event
i. In the limit that η → ∞, the extremal network studied by
Baiesi and Paczuski (2004) is recovered, since only the single
incoming link to aftershock j, with the largest correlation cij ,
contributes. In that case, for each node, the quantity Nafter

discussed here coincides with the quantity kout in Baiesi and

Paczuski (2004). In the following, we consider the case η =
1.

Sampling over all earthquakes, we get a probability dis-
tribution for the number of (weighted) aftershocks as also
shown in Fig. 3. It is a power law distribution, P (Nafter) ∼
(Nafter)

−γ scaling over more than three decades, with an in-
dex γ = 2.0(1). This distribution is very close to the distri-
bution we obtained previously for the number of aftershocks
in the extremal network, corresponding to the limit η → ∞.
The distribution for the number of weighted aftershocks ap-
pears to be universal, in the sense that the power law expo-
nent does not depend on η, for η ≥ 1. Note that chosing
a positive η gives more weight to more strongly correlated

Fig. 1. (a) Scale free network of earthquakes obtained with the 2D metric usingm<=4 andc<=104. This network has 791 nodes, and
its 7931 links follow the color code in the legend. Several clusters are evident, the biggest being related to the Landers earthquake. The
Northridge cluster, enclosed within a dashed box in (a), is enlarged in(b), where the solid black dot represents the epicenter of the Northridge
event.(c) and(d) are obtained using the 3D metric withm<=4 andc<=5×103 giving 7947 links, very close to the number of links in the
2D version. Note that the networks found using these two metrics are similar, indicating that the method is robust to variations in the metric.

and df in the metric is replaced by the hypocenter fractal
dimensionDf , which is approximated asDf =df +1'2.6
for Southern California. Thus, the 3D metric is

nij ≡ const’t lDf 1m 10−bmi . (8)

Most of the statistical results we find are not sensitive to the
choice of the metric, nor to the precise values ofb, df , or
Df . For this reason, we pick as a standard metric the 2D
version (Eq.3), and use the 3D metric only when explicitly
stated.

The constant in Eq. (3) was estimated to beconst=10−11

for the 2D metric using the same method as inBaiesi and
Paczuski(2004). However in that work a fractal dimen-
sion of df =1.2 was inadvertently used to estimateconst,
resulting in a different value. Similarly, here we compute
const’=10−15 for the 3D metric, Eq. (8). Both values give
consistent results, but they are not expected to be precise due
to the high variability of seismicity rates in the region even
over a time span of years. However, varying the constants,
constandconst’, in our analysis is equivalent to varying the
correlation threshold for linking events,c<. We observe that
many of the statistical results presented below are robust to
variations ofc<. This is primarily for two reasons. First, as
we will show the distribution of link weightsP(c) is very

broad and doesn’t pick out preferred values. Second, the dis-
tributions we compute are weighted using the link weight.
Reducing the threshold for included links only adds earth-
quake pairs that give progressively lower contribution to the
final correlation structure. We give later a numerical estimate
for the error made in throwing out these degrees of freedom.
The advantage, obviously, is that a sparse network withc<

chosen appropriatly, enables us to vastly reduce the size of
the data set from approximately 10–100 Gigabytes to around
10 Megabytes or so, without losing important information
about correlations between earthquakes. The network al-
lows a “renormalization” which removes irrelevant degrees
of freedom, or links with low weightscij while keeping im-
portant ones.

4 Results

Networks constructed using our method are shown in Fig.1.
For comparison, networks obtained with the 2D metric
(Figs.1a and1b) and with the 3D metric (Figs.1c and1d)
are both displayed. For visual clarity, a higher threshold for
earthquake magnitudesm<=4 was used in order to reduce
the number of nodes and links in the figure. Adjusting the
parameterc< slightly, two networks with a similar number
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Fig. 2. The probability distribution of the correlation, c, between all
earthquake pairs in the data base, with m< = 3, using both the 2D
metric and the 3D one. They are scale free distributions over many
orders of magnitude. The threshold c< = 104 where correlations
are considered significant and links are made is indicated in the fig-
ure. Note that, with that threshold, most links are eliminated from
the network, giving a reduced data set to examine seismic proper-
ties.
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Fig. 3. The in-degree and out-degree distributions of the network of
earthquakes and aftershocks. The out-degree, kout, is the number
of outgoing links from an earthquake, linking it to its aftershocks.
The in-degree, kin, is the number of incoming links to an earth-
quake, linking it to its main shocks. These two distributions are
similar. Also shown is the distribution of the weighted number of
aftershocks, P (Nafter), from any event, using η = 1 in Eqs. 11 and
12. This has the same scaling behavior as the extremal network,
with η →∞.

pairs and is therefore consistent with using a threshold c< to
eliminate weakly correlated ones.

4.2.2 Is Seismicity driven by small or large earthquakes?

The average number of aftershocks of an earthquake of mag-
nitude m has been proposed to scale with m (Utsu, 1969;
Kagan and Knopoff, 1987) as

Nafter(m) ∼ 10αm . (13)
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Fig. 4. The total number of outgoing links from all events of magni-
tude m (diamonds), the total number of weighted aftershocks of all
events of magnitude m (triangles) and average number of incoming
links (〈kin(m)〉, circles and histogram) as a function of m. The first
two quantities have a scaling consistent with the law ∼ 10αm, with
α′ ≈ b − 0.5 ≈ 0.45 for outgoing links, and α ≈ b − 0.15 ≈ 0.8
for weighted aftershocks. For 〈kin(m)〉 there is no evident depar-
ture from the average value 〈kin〉 ' 18.8 (dotted line).

Larger main shocks release more energy and therefore “trig-
ger” more aftershocks than smaller earthquakes. However,
smaller earthquakes are more frequent, as indicated by the G-
R relation. The total number of aftershocks generated by all
earthquakes of magnitude m is therefore given by the prod-
uct of these two relations as

NTOT(m) = Nafter(m)P (m) ∼ 10(α−b)m . (14)

If the exponent α > b then small earthquakes are the domi-
nant triggering mechanism for seismicity, whereas if α < b
the large earthquakes dominate aftershock production. Often
it is assumed that α = b (Kagan and Knopoff, 1987; Reasen-
berg and Jones, 1989).

Recently, Helmstetter (2003) analyzed earthquake cata-
logues by means of a ”stacking” method using space-time
windows, and found that aftershocks were predominantly
triggered by small earthquakes. She determined the value
of the exponent α to be between α = 0.72 and α = 0.82,
depending on the parameters of the aftershock detection al-
gorithm that she used.

Fig. 4 shows NTOT(m) obtained using the 2D metric with
η = 1. The results shown in this figure also suggests that
small earthquakes are the dominant mechanism driving af-
tershock production. We determine the value of the expo-
nent α ≈ 0.8, consistent with Helmstetter’s previous find-
ings. Thus at this rather detailed level, results obtained using
our method are consistent with results obtained using tradi-
tional methods of aftershock detection. This is true despite
the fact that aftershocks in our algorithm are typically at-
tached to many previous events rather than just one, and no
space-time scales are used by us for aftershock identification.

Fig. 4 also shows the total number of links emanating from
events of magnitude m, Nout(m). This corresponds to an

Fig. 2. The probability distribution of the correlation,c, between
all earthquake pairs in the data base, withm<=3, using both the 2D
metric and the 3D one. They are scale free distributions over many
orders of magnitude. The thresholdc<=104 where correlations are
considered significant and links are made is indicated in the figure.
Note that, with that threshold, most links are eliminated from the
network, giving a reduced data set to examine seismic properties.

of links, with very similar clusters of correlated events are
formed. There is a more abundant presence of long dis-
tance links in the 2D version but the similar details in the
Northridge clusters (Fig.1b and1d) suggest that it is mainly
seismic history that determines the network structure, rather
than the precise details of our metric.

4.1 Explanation of method

Figure2 shows the probability distribution of correlation val-
ues,P(c), obtained by sampling the valuescij over all earth-
quake pairs in the data set. It is a fantastically broad distribu-
tion that exhibits power law behavior over sixteen orders of
magnitude (in the 3D case):

P(c)∼c−τ (9)

with τ=1.43±0.03 using the 2D metric andτ=1.38±0.03
using the 3D one.

Given such a broad distribution, for any earthquakej ,
some extreme eventsi exist whose correlationcij are much
larger than all the others. Therefore, it makes sense to rep-
resent these earthquake pairs as nodes that are linked, while
not linking pairs that have much smaller values ofcij . Then
the sequence of earthquakes may be usefully represented as a
sparse network, where links exist between the most strongly
correlated events, i.e. those pairs(i, j) wherecij>c<. Hence
a natural decomposition of the network into disconnected
clusters is achieved, where the first earthquake in the directed
cluster has no incoming link, or correlation variable into it
greater thanc<. Clearly, the first earthquake in the entire cat-
alogue also no incoming link. The correlated events are reli-
ably detected whenc< is greater than one but not extremely
large. In the latter case, correlated events detach, and a very
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12. This has the same scaling behavior as the extremal network,
with η →∞.

pairs and is therefore consistent with using a threshold c< to
eliminate weakly correlated ones.

4.2.2 Is Seismicity driven by small or large earthquakes?

The average number of aftershocks of an earthquake of mag-
nitude m has been proposed to scale with m (Utsu, 1969;
Kagan and Knopoff, 1987) as

Nafter(m) ∼ 10αm . (13)
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Fig. 4. The total number of outgoing links from all events of magni-
tude m (diamonds), the total number of weighted aftershocks of all
events of magnitude m (triangles) and average number of incoming
links (〈kin(m)〉, circles and histogram) as a function of m. The first
two quantities have a scaling consistent with the law ∼ 10αm, with
α′ ≈ b − 0.5 ≈ 0.45 for outgoing links, and α ≈ b − 0.15 ≈ 0.8
for weighted aftershocks. For 〈kin(m)〉 there is no evident depar-
ture from the average value 〈kin〉 ' 18.8 (dotted line).

Larger main shocks release more energy and therefore “trig-
ger” more aftershocks than smaller earthquakes. However,
smaller earthquakes are more frequent, as indicated by the G-
R relation. The total number of aftershocks generated by all
earthquakes of magnitude m is therefore given by the prod-
uct of these two relations as

NTOT(m) = Nafter(m)P (m) ∼ 10(α−b)m . (14)

If the exponent α > b then small earthquakes are the domi-
nant triggering mechanism for seismicity, whereas if α < b
the large earthquakes dominate aftershock production. Often
it is assumed that α = b (Kagan and Knopoff, 1987; Reasen-
berg and Jones, 1989).

Recently, Helmstetter (2003) analyzed earthquake cata-
logues by means of a ”stacking” method using space-time
windows, and found that aftershocks were predominantly
triggered by small earthquakes. She determined the value
of the exponent α to be between α = 0.72 and α = 0.82,
depending on the parameters of the aftershock detection al-
gorithm that she used.

Fig. 4 shows NTOT(m) obtained using the 2D metric with
η = 1. The results shown in this figure also suggests that
small earthquakes are the dominant mechanism driving af-
tershock production. We determine the value of the expo-
nent α ≈ 0.8, consistent with Helmstetter’s previous find-
ings. Thus at this rather detailed level, results obtained using
our method are consistent with results obtained using tradi-
tional methods of aftershock detection. This is true despite
the fact that aftershocks in our algorithm are typically at-
tached to many previous events rather than just one, and no
space-time scales are used by us for aftershock identification.

Fig. 4 also shows the total number of links emanating from
events of magnitude m, Nout(m). This corresponds to an

Fig. 3. The in-degree and out-degree distributions of the network
of earthquakes and aftershocks. The out-degree,kout, is the number
of outgoing links from an earthquake, linking it to its aftershocks.
The in-degree,kin, is the number of incoming links to an earth-
quake, linking it to its main shocks. These two distributions are
similar. Also shown is the distribution of the weighted number of
aftershocks,P(Nafter), from any event, usingη=1 in Eqs.11 and
12. This has the same scaling behavior as the extremal network,
with η→∞.

fragmented network appears. For smallc< some uncorre-
lated events make links, and a giant cluster appears. Both for
the 2D and for the 3D case we setc<=104, unless otherwise
noted, obtaining a similar number of links in the realization
of the networks.

4.2 The scale-free network

The resulting network of earthquakes is scale free. As shown
in Fig. 3, both the distribution of the number of incoming
links, or the “in-degree”kin, to a node and the distribution of
the number of outgoing links, or the “out-degree”kout, to any
node exhibit power law behavior,

P(kin)∼1/kin , P (kout)∼1/kout (10)

up to a degree≈100.

4.2.1 Aftershocks with more than one main shock

Since an earthquake can have more than one incoming link,
in attributing aftershocks to an event we must be careful not
to overweight aftershocks with many incoming links. To pre-
vent the overcounting of aftershocks, one can consider a new
event with two incoming links, for example, to be “half an
aftershock” of both of its precursors, or they can be weighted
in a different fashion according to their correlation values. In
general, we can attribute the relative correlation to previous
events, so that each event contributes a total weight of unity
to the global aftershock number if it is linked to at least one
previous event, and zero otherwise, as follows:
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Fig. 3. The in-degree and out-degree distributions of the network of
earthquakes and aftershocks. The out-degree, kout, is the number
of outgoing links from an earthquake, linking it to its aftershocks.
The in-degree, kin, is the number of incoming links to an earth-
quake, linking it to its main shocks. These two distributions are
similar. Also shown is the distribution of the weighted number of
aftershocks, P (Nafter), from any event, using η = 1 in Eqs. 11 and
12. This has the same scaling behavior as the extremal network,
with η →∞.

pairs and is therefore consistent with using a threshold c< to
eliminate weakly correlated ones.

4.2.2 Is Seismicity driven by small or large earthquakes?

The average number of aftershocks of an earthquake of mag-
nitude m has been proposed to scale with m (Utsu, 1969;
Kagan and Knopoff, 1987) as

Nafter(m) ∼ 10αm . (13)
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Fig. 4. The total number of outgoing links from all events of magni-
tude m (diamonds), the total number of weighted aftershocks of all
events of magnitude m (triangles) and average number of incoming
links (〈kin(m)〉, circles and histogram) as a function of m. The first
two quantities have a scaling consistent with the law ∼ 10αm, with
α′ ≈ b − 0.5 ≈ 0.45 for outgoing links, and α ≈ b − 0.15 ≈ 0.8
for weighted aftershocks. For 〈kin(m)〉 there is no evident depar-
ture from the average value 〈kin〉 ' 18.8 (dotted line).

Larger main shocks release more energy and therefore “trig-
ger” more aftershocks than smaller earthquakes. However,
smaller earthquakes are more frequent, as indicated by the G-
R relation. The total number of aftershocks generated by all
earthquakes of magnitude m is therefore given by the prod-
uct of these two relations as

NTOT(m) = Nafter(m)P (m) ∼ 10(α−b)m . (14)

If the exponent α > b then small earthquakes are the domi-
nant triggering mechanism for seismicity, whereas if α < b
the large earthquakes dominate aftershock production. Often
it is assumed that α = b (Kagan and Knopoff, 1987; Reasen-
berg and Jones, 1989).

Recently, Helmstetter (2003) analyzed earthquake cata-
logues by means of a ”stacking” method using space-time
windows, and found that aftershocks were predominantly
triggered by small earthquakes. She determined the value
of the exponent α to be between α = 0.72 and α = 0.82,
depending on the parameters of the aftershock detection al-
gorithm that she used.

Fig. 4 shows NTOT(m) obtained using the 2D metric with
η = 1. The results shown in this figure also suggests that
small earthquakes are the dominant mechanism driving af-
tershock production. We determine the value of the expo-
nent α ≈ 0.8, consistent with Helmstetter’s previous find-
ings. Thus at this rather detailed level, results obtained using
our method are consistent with results obtained using tradi-
tional methods of aftershock detection. This is true despite
the fact that aftershocks in our algorithm are typically at-
tached to many previous events rather than just one, and no
space-time scales are used by us for aftershock identification.

Fig. 4 also shows the total number of links emanating from
events of magnitude m, Nout(m). This corresponds to an

Fig. 4. The total number of outgoing links from all events of mag-
nitudem (diamonds), the total number of weighted aftershocks of
all events of magnitudem (triangles) and average number of incom-
ing links (〈kin(m)〉, circles and histogram) as a function ofm. The
first two quantities have a scaling consistent with the law∼10αm,
with α′

≈b−0.5≈0.45 for outgoing links, andα≈b−0.15≈0.8 for
weighted aftershocks. For〈kin(m)〉 there is no evident departure
from the average value〈kin〉'18.8 (dotted line).

For each eventj that has at least one incoming link, so
that it can be called an aftershock, define a weight for each
“parent” earthquakei it is linked to as

wij=
c
η
ij∑in

k c
η
kj

, (11)

where the sum is over it all earthquakesk with links going
into j . The weighted number of aftershocks attributable any
eventi is then

Nafter,i=

out∑
j

wij . (12)

Here, the sum is over all of the outgoing links from event
i. In the limit thatη→∞, the extremal network studied by
Baiesi and Paczuski(2004) is recovered, since only the single
incoming link to aftershockj , with the largest correlationcij ,
contributes. In that case, for each node, the quantityNafter
discussed here coincides with the quantitykout in Baiesi and
Paczuski(2004). In the following, we consider the caseη=1.

Sampling over all earthquakes, we get a probability
distribution for the number of (weighted) aftershocks as
also shown in Fig.3. It is a power law distribution,
P(Nafter)∼(Nafter)

−γ scaling over more than three decades,
with an indexγ=2.0(1). This distribution is very close to
the distribution we obtained previously for the number of af-
tershocks in the extremal network, corresponding to the limit
η→∞. The distribution for the number of weighted after-
shocks appears to be universal, in the sense that the power
law exponent does not depend onη, for η≥1. Note that chos-
ing a positiveη gives more weight to more strongly corre-
lated pairs and is therefore consistent with using a threshold
c< to eliminate weakly correlated ones.

4.2.2 Is seismicity driven by small or large earthquakes?

The average number of aftershocks of an earthquake of mag-
nitude m has been proposed to scale withm (Utsu, 1969;
Kagan and Knopoff, 1987) as

Nafter(m)∼10αm . (13)

Larger main shocks release more energy and therefore “trig-
ger” more aftershocks than smaller earthquakes. However,
smaller earthquakes are more frequent, as indicated by the G-
R relation. The total number of aftershocks generated by all
earthquakes of magnitudem is therefore given by the product
of these two relations as

NTOT(m)=Nafter(m)P (m)∼10(α−b)m . (14)

If the exponentα>b then small earthquakes are the dominant
triggering mechanism for seismicity, whereas ifα < b the
large earthquakes dominate aftershock production. Often it
is assumed thatα=b (Kagan and Knopoff, 1987; Reasenberg
and Jones, 1989).

Recently,Helmstetter(2003) analyzed earthquake cata-
logues by means of a ”stacking” method using space-time
windows, and found that aftershocks were predominantly
triggered by small earthquakes. She determined the value of
the exponentα to be betweenα=0.72 andα=0.82, depend-
ing on the parameters of the aftershock detection algorithm
that she used.

Figure 4 showsNTOT(m) obtained using the 2D metric
with η=1. The results shown in this figure also suggests that
small earthquakes are the dominant mechanism driving af-
tershock production. We determine the value of the exponent
α≈0.8, consistent with Helmstetter’s previous findings. Thus
at this rather detailed level, results obtained using our method
are consistent with results obtained using traditional meth-
ods of aftershock detection. This is true despite the fact that
aftershocks in our algorithm are typically attached to many
previous events rather than just one, and no space-time scales
are used by us for aftershock identification.

Figure4 also shows the total number of links emanating
from events of magnitudem, Nout(m). This corresponds to
an unweighted aftershock number, withNout(m)∼10−(α′

−b)

andα′
=0.45. Since bothα andα′ are less thanb, our results

suggest that irrespective of the manner in which aftershocks
are weighted, small earthquakes are the dominant mecha-
nism driving aftershock production. Note however, that the
largest events may appear to present a deviation from this
behavior, but the statistical uncertainties of single events are
large.

4.2.3 B̊ath’s law

In Fig. 4, we also show the dependence of the number of
incoming links to a node on its magnitude. The quantity
〈kin(m)〉, is the average number of incoming links to earth-
quakes of magnitudem. This quantity is independent of
earthquake magnitude for 3≤m≤5. For larger magnitudes,
the poor statistics forces us to averagekin(m) over wider bins,



M. Baiesi and M. Paczuski: Networks of earthquakes 7

chosen so that there is a significant number of events inside
each one. These averages are indicated as horizontal lines in
Fig. 4, while vertical lines denote the bin boundaries. The
averages do not show any detectable trend for larger earth-
quakes.

Our results suggest that earthquakes of all magnitudes are
equally likely to be aftershocks, and support the conclusion
reached byHelmstetter and Sornette(2003) that observations
of Båth’s law are due to biases in labelling earthquakes as
aftershocks. According to B̊ath’s law (Båth, 1965), the av-
erage magnitude difference between a main shock and its
largest aftershock is around 1.2, independently of the main
shock magnitude. Of course, the definitions we use here
for main shocks, as nodes giving outgoing links, and after-
shocks, where nodes have incoming links (so that a single
event can be both a main shock and aftershock), differs from
the standard definition.

4.2.4 Clustering of nodes

Among the concepts in network theory that may be useful
to characterize seismicity, and are not accessible via other
approaches, the clustering of nodes deserves particular atten-
tion. Indeed, the clustering in space and time of earthquakes
can be quantified in their network by the clustering coeffi-
cient. The clustering coefficient of a nodei is the number1i

of linked triangles it forms with itski neighbors (or equiv-
alently, the pairs of linked neighbors) divided by the max-
imum number of linked triangles it could potentially have
(ki(ki − 1)/2), i.e.

Ci=
21i

ki(ki − 1)
. (15)

This definition ignores the directionality of links. Thus, in
this formula the degree of nodei, is the sum of its incom-
ing and outgoing degrees, i.e.ki=ki,in+ki,out. In all cases
0≤Ci≤1, andCi=0 if less than two links are joined to nodei,
or if no links between its linked neighbors are present, while
Ci=1 only if all neighbors are linked to each other.

Using Eq. (15) to compute the average clustering coeffi-
cient of the network,

C=
1

Nnode

Nnode∑
i=1

Ci , (16)

we obtainC=0.50 form<=3. This value is relatively stable
with respect to variations ofm<. For instance, withm<=4.5
we getC=0.55. The same values are obtained for the 3D
version of the metric. These are remarkably high values of
C, compared to many other complex networks, such as tech-
nological or biological ones (Newman, 2003).

4.2.5 Universal clustering properties of seismic networks

The average of the clustering coefficient can be performed
over nodes with the same degreek. This quantity is shown
in Fig. 5, where one can observe that it does not depend onk

for small values ofk and approaches a power lawC(k)∼k−δ
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unweighted aftershock number, with Nout(m) ∼ 10−(α′
−b)

and α′ = 0.45. Since both α and α′ are less than b, our
results suggest that irrespective of the manner in which af-
tershocks are weighted, small earthquakes are the dominant
mechanism driving aftershock production. Note however,
that the largest events may appear to present a deviation from
this behavior, but the statistical uncertainties of single events
are large.

4.2.3 Båth’s Law

In Fig. 4, we also show the dependence of the number of
incoming links to a node on its magnitude. The quantity
〈kin(m)〉, is the average number of incoming links to earth-
quakes of magnitude m. This quantity is independent of
earthquake magnitude for 3 ≤ m ≤ 5. For larger magni-
tudes, the poor statistics forces us to average kin(m) over
wider bins, chosen so that there is a significant number of
events inside each one. These averages are indicated as hor-
izontal lines in Fig. 4, while vertical lines denote the bin
boundaries. The averages do not show any detectable trend
for larger earthquakes.

Our results suggest that earthquakes of all magnitudes are
equally likely to be aftershocks, and support the conclusion
reached by Helmstetter and Sornette (2003) that observations
of Båth’s law are due to biases in labelling earthquakes as
aftershocks. According to Båth’s law (Båth, 1965), the av-
erage magnitude difference between a main shock and its
largest aftershock is around 1.2, independently of the main
shock magnitude. Of course, the definitions we use here
for main shocks, as nodes giving outgoing links, and after-
shocks, where nodes have incoming links (so that a single
event can be both a main shock and aftershock), differs from
the standard definition.

4.2.4 Clustering of nodes

Among the concepts in network theory that may be useful
to characterize seismicity, and are not accessible via other
approaches, the clustering of nodes deserves particular atten-
tion. Indeed, the clustering in space and time of earthquakes
can be quantified in their network by the clustering coeffi-
cient. The clustering coefficient of a node i is the number ∆i

of linked triangles it forms with its ki neighbors (or equiv-
alently, the pairs of linked neighbors) divided by the max-
imum number of linked triangles it could potentially have
(ki(ki − 1)/2), i.e.,

Ci =
2∆i

ki(ki − 1)
. (15)

This definition ignores the directionality of links. Thus, in
this formula the degree of node i, is the sum of its incoming
and outgoing degrees, i.e. ki = ki,in + ki,out. In all cases
0 ≤ Ci ≤ 1, and Ci = 0 if less than two links are joined to
node i, or if no links between its linked neighbors are present,
while Ci = 1 only if all neighbors are linked to each other.
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Fig. 5. The network density, or clustering coefficient as a function
of the degree, k, of a node, where k = kin + kout. For small
values of k, the clustering coefficient is independent of k and c<,
and C ≈ 0.80. For large values of k, C(k) tends toward power law
behavior C(k) ∼ k−δ , with δ ≈ 1.3. The power law regime takes
place at smaller k for larger thresholds c<.

Using Eq. (15) to compute the average clustering coeffi-
cient of the network,

C =
1

Nnode

Nnode
∑

i=1

Ci , (16)

we obtain C = 0.50 for m< = 3. This value is relatively
stable with respect to variations of m<. For instance, with
m< = 4.5 we get C = 0.55. The same values are ob-
tained for the 3D version of the metric. These are remark-
ably high values of C, compared to many other complex net-
works, such as technological or biological ones (Newman,
2003).

4.2.5 Universal clustering properties of seismic networks

The average of the clustering coefficient can be performed
over nodes with the same degree k. This quantity is shown in
Fig. 5, where one can observe that it does not depend on k for
small values of k and approaches a power law C(k) ∼ k−δ

with δ ≈ 1.3 for large values of k. This power law be-
havior is typically found in networks with a modular struc-
ture (Ravasz and Barabási, 2003). At small k, C(k) ap-
proaches a universal value approximately equal to 0.8, which
is independent of k and of the thresholds c< and m< used to
construct the network. The power law exponent δ at large
values of k also appears to be independent of c<, and may
also be a universal quantity for seismic networks.

4.3 Scaling Law for Aftershock Distances

In the network constructed using the 2D metric, the link
length, l, is the distance between the epicenters of an earth-
quake and one of its aftershocks, weighted according to the
link weight w. In the corresponding network constructed us-
ing the 3D metric, the link length is the distance between

Fig. 5. The network density, or clustering coefficient as a function
of the degree,k, of a node, wherek=kin+kout . For small val-
ues ofk, the clustering coefficient is independent ofk andc<, and
C≈0.80. For large values ofk, C(k) tends toward power law be-
haviorC(k)∼k−δ , with δ≈1.3. The power law regime takes place
at smallerk for larger thresholdsc<.

with δ≈1.3 for large values ofk. This power law behavior is
typically found in networks with a modular structure (Ravasz
and Barab́asi, 2003). At small k, C(k) approaches a univer-
sal value approximately equal to 0.8, which is independent
of k and of the thresholdsc< andm< used to construct the
network. The power law exponentδ at large values ofk also
appears to be independent ofc<, and may also be a universal
quantity for seismic networks.

4.3 Scaling Law for aftershock distances

In the network constructed using the 2D metric, the link
length,l, is the distance between the epicenters of an earth-
quake and one of its aftershocks, weighted according to the
link weightw. In the corresponding network constructed us-
ing the 3D metric, the link length is the distance between
the hypocenters of an earthquake and one of its aftershocks,
weighted according to the link weightw. The distribution
Pm(l) of link lengths depends on the magnitudem of the pre-
decessor, being on average greater for largerm. To compute
this distribution, we put the weight of each link into a bin
corresponding to itsl value and the magnitude of the prede-
cessorm to getPm(l). A maximum in the distribution oc-
curs, which shifts to largerl on increasingm, as shown in
Fig. 6. This behavior is superficially consistent with using
larger space-time windows to collect aftershocks from larger
events, or theKagan(2002a) hypothesis of aftershock zone
scaling with main shock magnitude.

4.3.1 Comparison with aftershock zone scaling

It is widely believed that an aftershock zone exists which
is equivalent to the rupture length. Within the aftershock
zone, earthquakes generate aftershocks, while outside the
zone they do not. The rupture length,R, is believed to scale
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the hypocenters of an earthquake and one of its aftershocks,
weighted according to the link weight w. The distribution
Pm(l) of link lengths depends on the magnitude m of the
predecessor, being on average greater for larger m. To com-
pute this distribution, we put the weight of each link into a
bin corresponding to its l value and the magnitude of the pre-
decessor m to get Pm(l). A maximum in the distribution
occurs, which shifts to larger l on increasing m, as shown in
Fig. 6. This behavior is superficially consistent with using
larger space-time windows to collect aftershocks from larger
events, or the Kagan (2002a) hypothesis of aftershock zone
scaling with main shock magnitude.

4.3.1 Comparison with Aftershock Zone Scaling

It is widely believed that an aftershock zone exists which
is equivalent to the rupture length. Within the aftershock
zone, earthquakes generate aftershocks, while outside the
zone they do not. The rupture length, R, is believed to scale
as R ∼ 100.5m with the magnitude of the main shock. This
is a restatement of the relation derived by Kanamori and An-
derson (1975), who argued that the seismic moment M ∼
101.5m scales with R as M ∼ R3, at least for intermedi-
ate magnitude earthquakes. For a generalization to all earth-
quakes, see Kagan (2002a). In this scenario main shocks of
all magnitudes generate aftershocks at the same rate within
their respective aftershock zones, so that the greater number
of aftershocks coming from large events is due solely to their
larger aftershock zones. Needless to say, the observation of
aftershock zone scaling is based on the idea that the after-
shock zone is finite – on the order of tens of kilometers for
large main shocks.

In contrast, we find the distribution of lengths between
main shocks and their aftershocks exhibits no cutoff at large
distances, but rather decays slowly as a power law with l, up
to the linear extent of the seismic region covered by the cat-
alog, hundreds of kilometers. The two distributions are both
consistent with a scaling ansatz:

Pm(l) ' 10−σmF
(

l/10σm
)

(17)

where l is measured in meters and F (x) is a scaling function.
Remarkably in both cases, σ ≈ 0.37. Note in particular that
σ 6= 0.5.

For x À 1, the tail of the scaling function is a power
law, i.e. F (x) ∼ x−λ with λ ≈ 2 (2D) or λ ≈ 2.6 (3D).
The results obtained using the data collapse technique ap-
plied using ansatz (17) are shown in the insets of Fig. 6(a)
and (b). Such slow decays at large distances calls into ques-
tion the use of sharply defined space windows for collecting
aftershocks, as already pointed out by Ogata (1998a). The
length scale we find l∗m ∼ 100.37m to describe the fat-tailed
distribution of distances between earthquakes and their af-
tershocks should not be confused with the scaling of a fi-
nite aftershock zone as proposed by Kagan (2002a). Instead,
our results are consistent with observations of remote trig-
gering of aftershocks by Hill et al. (1993) and Gomberg et al.

100 m 1 km 10 km 100 km 1000 km
l

-8

-6

-4

-2

lo
g 10

 P
(l

)

3.5 ≤ m < 4.5
4.5 ≤ m < 5.5
5.5 ≤ m < 6.5
6.5 ≤ m < 7.5

0 1 2 3 4
         log

10
[l /10

σ m
]

-6

-4

-2

   
  l

og
10

[P
(l

) 
10

σ 
m

](a)   2D metric

100 m 1 km 10 km 100 km 1000 km
l

-8

-6

-4

-2

lo
g 10

 P
(l

)

3.5 ≤ m < 4.5
4.5 ≤ m < 5.5
5.5 ≤ m < 6.5
6.5 ≤ m < 7.5

0 1 2 3 4
         log

10
[l /10

σ m
]

-6

-4

-2

   
  l

og
10

[P
(l

) 
10

σ 
m

](b)  3D metric

Fig. 6. Link length distribution for different magnitudes of the emit-
ting earthquake, (a) for the 2D case and (b) for the 3D one. The
length where the maximum in the distribution occurs increases with
magnitude roughly as lmax ∼ 100.37m in both cases. Both distri-
butions also have a fat tail, extending up to hundreds of kilome-
ters even for intermediate magnitude events. These distributions
are consistent with a hierarchical organization of events, where big
earthquakes preferentially link at long distance with intermediate
ones, which in turn link to more localized aftershocks, and so on.
Insets: Distributions rescaled according to Eq. 17 with σ = 0.37
and with m equal to the central magnitude of the range for each
distribution.

(2001) as well as the observation that the distribution of dis-
tances between subsequent earthquakes in regions of size L
is a power law, not trivially given by the correlation dimen-
sion, d2 of earthquakes, and which is cutoff only by the size
of the region L (see footnote 1).

4.4 The Omori Law for Earthquakes of All Magnitudes

Figure 7 shows the rate of aftershocks for the Landers, Hec-
tor Mine, and Northridge events, obtained with the 2D met-
ric. The weights, w, of the links to aftershocks occurring
at time t after one of these events are binned into geomet-
rically increasing time intervals. The number of weighted
aftershocks in each bin is then divided by the temporal width
of the bin to obtain a rate of weighted aftershocks per second.

Fig. 6. Link length distribution for different magnitudes of the
emitting earthquake,(a) for the 2D case and(b) for the 3D one.
The length where the maximum in the distribution occurs increases
with magnitude roughly aslmax∼100.37m in both cases. Both dis-
tributions also have a fat tail, extending up to hundreds of kilome-
ters even for intermediate magnitude events. These distributions
are consistent with a hierarchical organization of events, where big
earthquakes preferentially link at long distance with intermediate
ones, which in turn link to more localized aftershocks, and so on.
Insets: Distributions rescaled according to Eq. (17) with σ=0.37
and withm equal to the central magnitude of the range for each
distribution.

asR∼100.5m with the magnitude of the main shock. This is a
restatement of the relation derived byKanamori and Ander-
son(1975), who argued that the seismic momentM∼101.5m

scales withR asM∼R3, at least for intermediate magnitude
earthquakes. For a generalization to all earthquakes, seeKa-
gan(2002a). In this scenario main shocks of all magnitudes
generate aftershocks at the same rate within their respective
aftershock zones, so that the greater number of aftershocks
coming from large events is due solely to their larger after-
shock zones. Needless to say, the observation of aftershock
zone scaling is based on the idea that the aftershock zone
is finite – on the order of tens of kilometers for large main
shocks.

In contrast, we find the distribution of lengths between
main shocks and their aftershocks exhibits no cutoff at large

distances, but rather decays slowly as a power law withl, up
to the linear extent of the seismic region covered by the cat-
alog, hundreds of kilometers. The two distributions are both
consistent with a scaling ansatz:

Pm(l)'10−σmF
(
l/10σm

)
(17)

wherel is measured in meters andF(x) is a scaling function.
Remarkably in both cases,σ≈0.37. Note in particular that
σ 6=0.5.

Forx�1, the tail of the scaling function is a power law, i.e.
F(x)∼x−λ with λ≈2 (2D) or λ≈2.6 (3D). The results ob-
tained using the data collapse technique applied using ansatz
(17) are shown in the insets of Figs.6a and6b. Such slow de-
cays at large distances calls into question the use of sharply
defined space windows for collecting aftershocks, as already
pointed out by Ogata(1998a). The length scale we find
l∗m∼100.37m to describe the fat-tailed distribution of distances
between earthquakes and their aftershocks should not be con-
fused with the scaling of a finite aftershock zone as proposed
by Kagan(2002a). Instead, our results are consistent with
observations of remote triggering of aftershocks byHill et al.
(1993) andGomberg et al.(2001) as well as the observation
that the distribution of distances between subsequent earth-
quakes in regions of sizeL is a power law, not trivially given
by the correlation dimension,d2 of earthquakes, and which
is cutoff only by the size of the regionL (see footnote 1).

4.4 The Omori law for earthquakes of all magnitudes

Figure7 shows the rate of aftershocks for the Landers, Hec-
tor Mine, and Northridge events, obtained with the 2D met-
ric. The weights,w, of the links to aftershocks occurring
at time t after one of these events are binned into geomet-
rically increasing time intervals. The number of weighted
aftershocks in each bin is then divided by the temporal width
of the bin to obtain a rate of weighted aftershocks per second.
The same procedure is applied to each remaining event, not
aftershocks of these three. An average is made for the rate
of aftershocks linked to events having a magnitude within an
interval1m of m. Figure7 also shows the averaged results
for m=3 (1871 events),m=4 (175 events),m=5 (28 events)
andm=5.9 (4 events).

The collection of aftershocks linked to earthquakes of all
magnitudes is one of the main results of our method. Even
intermediate magnitude events can have aftershocks that per-
sist up to years. Earthquakes of all magnitudes have after-
shocks which decay according to the Omori law (Omori,
1894; Utsu et al., 1995),

ν(t)∼
K

c + t
, for t < tcutoff (18)

wherec andK are constant in time, but depend on the mag-
nitudem (Utsu et al., 1995) of the earthquake. We find that
the Omori law persists up to a decorrelation timetcutoff that
also depends onm.
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Fig. 7. The Omori law for aftershock rates. These rates are mea-
sured for aftershocks linked to earthquakes of different magnitudes.
For each magnitude, the rate is consistent with the original Omori
law, Eq. 2, up to a cutoff time that depends on m. As guides to the
eye, dashed lines represent a decay ∼ 1/t. The dense curves repre-
sent the fits obtained by means of Eq. 19 for m = 3, m = 4, and
m = 5.
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Fig. 8. Decorrelation time, tcutoff of the aftershock rates to fall out
of the Omori regime, as a function of the earthquake magnitude.
The horizontal line indicates 20 years, i.e. the time span of the
catalogue. The dashed line is the interpolation given in Eq. 20.

The same procedure is applied to each remaining event, not
aftershocks of these three. An average is made for the rate
of aftershocks linked to events having a magnitude within an
interval ∆m of m. Figure 7 also shows the averaged results
for m = 3 (1871 events), m = 4 (175 events), m = 5 (28
events) and m = 5.9 (4 events).

The collection of aftershocks linked to earthquakes of all
magnitudes is one of the main results of our method. Even
intermediate magnitude events can have aftershocks that per-
sist up to years. Earthquakes of all magnitudes have after-
shocks which decay according to the Omori law (Omori,
1894; Utsu et al., 1995),

ν(t) ∼
K

c + t
, for t < tcutoff (18)

where c and K are constant in time, but depend on the mag-
nitude m (Utsu et al., 1995) of the earthquake. We find that
the Omori law persists up to a decorrelation time tcutoff that
also depends on m.

A rough estimate of the decorrelation times can be ex-
tracted by non-linear fits of log10 νm(t) vs log10 t, using an
interpolating function

νm(t) ∼ t−1e−t/tcutoff . (19)

The range of the fit excludes short times, where the the af-
tershock rates are not yet scaling as 1/t. The short time de-
viation from power law behavior is presumably due to sat-
uration of the detection system, which is unable to reliably
detect events happening at a fast rate. However, this prob-
lem does not occur at later times, where the rates are lower.
Some examples of these fits are also shown in Fig. 7 for the
intermediate magnitude events.

In Fig. 8 we show the resulting values of tcutoff , for m up
to 6. The horizontal dotted line represents the time span of
the catalogue we study, which precludes accurate estimates
of much longer tcutoff . Thus, from the rates of aftershocks
of events with 3 ≤ m ≤ 4.6, where the time span of the
catalogue is comparable or longer than the estimated decor-
relation time, we find that the increase of tcutoff with m can
be fitted by the function

tcutoff(m) ' 105.25+0.74m sec , (20)

represented as a dashed line in Fig. 8. It roughly corresponds
to tcutoff ≈ 11 months for m = 3, and to tcutoff ≈ 5 years
for m = 4. An extrapolation yields tcutoff ≈ 1400 years for
an event with m = 7.3 such as the Landers event! However,
we stress that Eq. 20 is just rough estimate of tcutoff(m).

Note that Helmstetter (2003) also found an Omori law
for aftershocks of earthquakes of all magnitudes using finite
space-time windows. However, for this reason, she was not
able to estimate the decorrelation of aftershocks or the cutoff
in the duration of the Omori regime for different magnitudes.

5 Discussion

At present, we are unaware of any reliable method to de-
termine the best metric. Thus, the best route to study how
sensitive the results are to variations of the metric or to the
parameters of the metric. Although we have not yet made an
exhaustive and detailed study to determine which properties
may be universal and hold for many different metrics, several
general conclusions are already apparent.

5.1 Robustness with respect to changes in parameters

Many of the statistical results we find are relatively robust
with respect to variations in the metric. For instance, using
both the 2D metric (Eq. 3) and the 3D metric (Eq. 8), simi-
lar networks are found as indicated qualitatively in Fig. 1. In
addition, the scaling behaviors demonstrated in Figs. 2-7 are
independent of the metric, with the notable exception of the
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viation from power law behavior is presumably due to sat-
uration of the detection system, which is unable to reliably
detect events happening at a fast rate. However, this prob-
lem does not occur at later times, where the rates are lower.
Some examples of these fits are also shown in Fig.7 for the
intermediate magnitude events.

In Fig. 8 we show the resulting values oftcutoff, for m up
to 6. The horizontal dotted line represents the time span of
the catalogue we study, which precludes accurate estimates
of much longertcutoff. Thus, from the rates of aftershocks
of events with 3≤m≤4.6, where the time span of the cata-
logue is comparable or longer than the estimated decorrela-
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for m=4. An extrapolation yieldstcutoff≈1400 years for an
event withm=7.3 such as the Landers event! However, we
stress that Eq. (20) is just rough estimate oftcutoff(m).
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space-time windows. However, for this reason, she was not
able to estimate the decorrelation of aftershocks or the cutoff
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The same procedure is applied to each remaining event, not
aftershocks of these three. An average is made for the rate
of aftershocks linked to events having a magnitude within an
interval ∆m of m. Figure 7 also shows the averaged results
for m = 3 (1871 events), m = 4 (175 events), m = 5 (28
events) and m = 5.9 (4 events).

The collection of aftershocks linked to earthquakes of all
magnitudes is one of the main results of our method. Even
intermediate magnitude events can have aftershocks that per-
sist up to years. Earthquakes of all magnitudes have after-
shocks which decay according to the Omori law (Omori,
1894; Utsu et al., 1995),

ν(t) ∼
K

c + t
, for t < tcutoff (18)

where c and K are constant in time, but depend on the mag-
nitude m (Utsu et al., 1995) of the earthquake. We find that
the Omori law persists up to a decorrelation time tcutoff that
also depends on m.

A rough estimate of the decorrelation times can be ex-
tracted by non-linear fits of log10 νm(t) vs log10 t, using an
interpolating function

νm(t) ∼ t−1e−t/tcutoff . (19)

The range of the fit excludes short times, where the the af-
tershock rates are not yet scaling as 1/t. The short time de-
viation from power law behavior is presumably due to sat-
uration of the detection system, which is unable to reliably
detect events happening at a fast rate. However, this prob-
lem does not occur at later times, where the rates are lower.
Some examples of these fits are also shown in Fig. 7 for the
intermediate magnitude events.

In Fig. 8 we show the resulting values of tcutoff , for m up
to 6. The horizontal dotted line represents the time span of
the catalogue we study, which precludes accurate estimates
of much longer tcutoff . Thus, from the rates of aftershocks
of events with 3 ≤ m ≤ 4.6, where the time span of the
catalogue is comparable or longer than the estimated decor-
relation time, we find that the increase of tcutoff with m can
be fitted by the function

tcutoff(m) ' 105.25+0.74m sec , (20)

represented as a dashed line in Fig. 8. It roughly corresponds
to tcutoff ≈ 11 months for m = 3, and to tcutoff ≈ 5 years
for m = 4. An extrapolation yields tcutoff ≈ 1400 years for
an event with m = 7.3 such as the Landers event! However,
we stress that Eq. 20 is just rough estimate of tcutoff(m).

Note that Helmstetter (2003) also found an Omori law
for aftershocks of earthquakes of all magnitudes using finite
space-time windows. However, for this reason, she was not
able to estimate the decorrelation of aftershocks or the cutoff
in the duration of the Omori regime for different magnitudes.
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At present, we are unaware of any reliable method to de-
termine the best metric. Thus, the best route to study how
sensitive the results are to variations of the metric or to the
parameters of the metric. Although we have not yet made an
exhaustive and detailed study to determine which properties
may be universal and hold for many different metrics, several
general conclusions are already apparent.

5.1 Robustness with respect to changes in parameters

Many of the statistical results we find are relatively robust
with respect to variations in the metric. For instance, using
both the 2D metric (Eq. 3) and the 3D metric (Eq. 8), simi-
lar networks are found as indicated qualitatively in Fig. 1. In
addition, the scaling behaviors demonstrated in Figs. 2-7 are
independent of the metric, with the notable exception of the
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5 Discussion

At present, we are unaware of any reliable method to de-
termine the best metric. Thus, the best route to study how
sensitive the results are to variations of the metric or to the
parameters of the metric. Although we have not yet made an
exhaustive and detailed study to determine which properties
may be universal and hold for many different metrics, several
general conclusions are already apparent.

5.1 Robustness with respect to changes in parameters

Many of the statistical results we find are relatively robust
with respect to variations in the metric. For instance, using
both the 2D metric (Eq.3) and the 3D metric (Eq.8), simi-
lar networks are found as indicated qualitatively in Fig. 1. In
addition, the scaling behaviors demonstrated in Figs. 2–7 are
independent of the metric, with the notable exception of the
exponentλ characterizing the fat tailed distribution of after-
shock distances. However, the exponentσ for the rescaled
variable combining main shock magnitude and aftershock
distance is independent of the metric, as is the Omori be-
havior. Furthermore, the distribution of correlationsP(c)

depends only weakly on the metric, and the scale-free and
clustering properties of the network are insensitive as well.

One could object that the values ofb, df andDf can de-
pend on the region of the Earth being considered, or may
fluctuate depending on the specific fault zone being studied.
However, the statistical results we find, as shown in the fig-
ures, are also robust to variations in either of these parame-
ters, or of the thresholdm<. This robustness was also found
in the Baiesi and Paczuski(2004) studies of the extremal
earthquake network. For instance, varyingdf over a wide
range, from 1 to 2 does not alter considerably the distribu-
tion of incoming or outgoing links. The distribution of cor-
relationsP(c) is even more insensitive to variations ofb and
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df . Also the Omori law withp≈1, shown in Fig.7, does not
depend sensibly on the parameters, and holds for aftershocks
linked to earthquakes of all magnitudes.

Our interpretation of this observed robustness is that the
correlation structure of seismicity is unambiguous and clear-
cut, and has a network structure similar to other complex net-
works. Even if we use an approximate measure, or metric,
the underlying correlations are sufficiently strong that they
survive the approximation and can be reliably detected.

5.2 Errors and data set reduction

One could also object that the parameterc< is arbitrary, and
its choice plays a similar role to choosing space-time win-
dows in the traditional manner. However, one can consider
all pairs of earthquakes, using their weightscij , so the pa-
rameterc< is conceptually unnecessary. This differs from
the necessity of choosing space-time windows in the tradi-
tional approach. However, as a practical matter, to reduce
the size of the data set, it is useful to choose a particularc<,
and thereby construct a sparse network. The choice involves
a trade-off between the amount of data stored, and the accu-
racy of the representation of seismicity one can make using
that data set. From the distributionP(c) shown in Fig. 2,
and from the average number of incoming links〈kin〉 with a
given choice ofc<, we can estimate the error made in throw-
ing out weak links. The average correlationc contribution
from all of the≈Nnode=8858 incoming links that are pruned
from any earthquake when imposing the thresholdc< is

Nnode

∫ c<

cmin

cP (c)dc'ANnodec
2−τ
< , (21)

whereA is a constant given by the amplitude ofP(c), and
cmin is the minimum value ofc observed in the measurement
of P(c).

The average correlation contribution from the incoming
links actually represented in the network with that choice of
c< is

〈kin〉

∫ cmax

c<

cP (c)dc'A〈kin〉c2−τ
max , (22)

with cmax≈1012 for the 2D metric. The relative error with a
givenc< can thus be estimated as

Error=
Nnode

〈kin〉

( c<

cmax

)2−τ
. (23)

With our choicec<=104 we get an estimate of the relative
error to be approximately one percent, or Error=0.013 with
the fraction the data set storedNlink/N2

node≈0.002. In other
words, throwing out about 99.8% of the data set we can accu-
rately represent the correlation structure of seismicity using a
sparse network with an estimated error of order one percent.
Conversely, we are not aware of any quantitative estimate of
the error with particular choices of space time windows.

5.3 Bench mark test for models of seismicity

The statistical properties of the network of seismicity we find
can be used to test various models of seismicity. A self-
organized critical model proposed byOlami et al. (1992)
exhibits a universal Gutenberg-Richter law for earthquakes
(Lise and Paczuski, 2001), independent of the dissipation
parameter, as well as foreshocks and aftershocks (Hergarten
and Neugebauer, 2002). However, no evident self-organized
spatial structure corresponding to the recurrence of earth-
quakes on a heterogeneous system of faults exists. For this
reason, we believe it is unlikely that this model can reproduce
the observed network properties of seismicity. Although
no satisfactory dynamical model of the self-organization of
the Earth’s crust and resultant seismicity exists at present,
a stochastic branching process, known as the ETAS model
(Kagan and Knopoff, 1987; Ogata, 1998a), or its spatially
extended version (Helmstetter and Sornette, 2002) could be
tested by constructing a network using our method for par-
ticular realizations of that process in space, time and mag-
nitude, and comparing with our results. For instance, the
appearance of the scaling variablel10−σm combining spatial
distances with main shock magnitude could be ascertained.
Since the distance variable between mother daughter pairs in
the spatially extended ETAS model is chosen from a power
law distribution,8(r), independent of the parent’s magni-
tude, this model is unlikely to reproduce observed behavior
and would have to be modified. Conversely, one could also
check if our method of constructing networks linking main
shocks and aftershocks correctly identifies mother-daughter
pairs given by the algorithm of the ETAS process or if there
might be differences.
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