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Abstract

The ice nucleation characteristics of montmorillonite mineral dust aerosols with and

without exposure to ammonia gas were measured at different atmospheric tempera-

tures and relative humidities with a continuous flow diffusion chamber. The montmo-

rillonite particles were exposed to pure (100%) and diluted ammonia gas (25 ppm) at5

room temperature in a stainless steel chamber. There was no significant change in the

mineral dust particle size distribution due to the ammonia gas exposure. 100% pure

ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral

dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw) and 5

to 8 times at 100% RHw for 120 min exposure time within our experimental conditions.10

The percentages of active ice nuclei were 2 to 9 times higher at 90% RHw and 2 to

13 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared

to unexposed montmorillonite. All montmorillonite particles are more efficient as ice

nuclei with increasing relative humidities and decreasing temperatures. The activation

temperature of montmorillonite exposed to 100% pure ammonia was 12
◦
C higher than15

for unexposed montmorillonite particles at 90% RHw and 10
◦
C higher at 100% RHw.

In the 25 ppm ammonia exposed montmorillonite experiments, the activation tempera-

ture was 7
◦
C warmer than unexposed montmorillonite at 100% RHw. Degassing does

not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust

particles. This is the first experimental evidence that ammonia gas exposed mont-20

morillonite mineral dust particles can enhance its activation as ice nuclei and that the

activation can occur at temperatures warmer than –10
◦
C where natural atmospheric

ice nuclei are very scarce.

1 Introduction

Atmospheric aerosols are important for direct climate forcing due to their effect on25

scattering and absorption of solar radiation (Ramaswamy, 2001). Aerosol particles can
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modify the radiative properties of clouds by acting as cloud condensation nuclei (CCN)

and ice nuclei (IN) (Knopf and Koop, 2006; Ramanathan et al., 2001; Pruppacher and

Klett, 1997; Twomey, 1974). Understanding atmospheric ice formation processes is

important in predicting precipitation and cloud radiative properties, both major concerns

related to the uncertainties in contemporary climate change (Bailey and Hallett, 2002;5

Lohmann et al., 2000). Ice particle formation in the atmosphere is usually inefficient

since there are relatively few natural ice nuclei especially at temperatures above –

20
◦
C. Heterogeneous ice nucleation involving atmospheric aerosols is the first step in

the formation of ice crystals in supercooled liquid water clouds (Hobbs, 1974). This

paper presents experimental results where the ice nucleation occurs in the deposition10

or condensation/freezing mode.

Laboratory studies have indicated good ice nucleating properties associated with

some types of dust aerosols in the atmosphere (Isono et al., 1959), especially clay

minerals (Zuberi et al., 2002; Roberts and Hallett, 1968) and many of the metal ox-

ide components of dust (Hung, et al., 2003). Montmorillonite is frequently used as a15

surrogate for atmospheric dust particles in laboratory experiments because it is con-

sidered one of the main components of ice nucleating tropospheric mineral dust in the

submicron range (Lohmann and Diehl, 2006; Schaller and Fukuta, 1979; Kumai, 1961;

Kumai and Francis, 1962). In studies with a continuous flow diffusion chamber (Salam

et al., 2006) and in a large cloud chamber (Möhler et al., 2006) it was found that mont-20

morillonite mineral dust particles act as effective ice nuclei in deposition/condensation

nucleation modes.

Chemical and physical interactions can take place between atmospheric trace gases

and aerosol particles which may potentially change their ice activation properties (Dy-

marska et al., 2006; Dontsova et al., 2005; Umann et al., 2005; Russell, 1965). Am-25

monia is one such trace gas that is produced mainly from anthropogenic sources. In

a recent study the interaction of mineral dust particles with gaseous nitric acid, sul-

fur dioxide and ozone were investigated (Umann et al., 2005). Gaseous nitric acid

and ozone were adsorbed on the mineral dust surface, whereas no interaction was
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observed between sulfur dioxide and mineral dust aerosols (Umann et al., 2005). Dy-

marska et al. (2006) studied the ice nucleation of soot that was exposed to ozone and

found no significant effect of ozone. However, the ice nucleating behavior of mineral

dust aerosols due to exposure to ammonia gas has not been studied until now.

In this paper we study the ice nucleation characteristics of ammonia exposed ver-5

sus non-exposed montmorillonite mineral dust aerosols at temperatures between –5
◦
C

and –35
◦
C at different relative humidity conditions with the Continuous Flow Diffusion

Chamber (CFDC) at Dalhousie University, Canada.

2 Experimental methods

2.1 Aerosol aging10

A stainless steel cylindrical chamber 45 cm long with a diameter of 20 cm was used to

hold the mineral dust particles while being aged in the presence of ammonia gas. About

five grams of montmorillonite K10 (Sigma-Aldrich, Powder) mineral dust particles were

placed into the bottom of the cylindrical chamber for each aging session. Ammonia

gas (100% pure, or 25 ppm diluted in N2 gas), with a pressure of 0.5 atmospheres at15

room temperature was allowed to pass into the chamber with occasional stirring so that

ammonia exposure would be uniform on the dust particles for different exposure times

varying from 0 to 2.5 h for 100% ammonia and from 0 to 70 h for 25 ppm ammonia.

2.2 Degassing experiment

Ammonia exposed montmorillonite mineral dust particles were degassed at room tem-20

perature under a vacuum pressure of 1.3×10
−4

atmospheres. About 2.0 g of ammonia

exposed montmorillonite dust particles were placed in an aluminum container which

was placed into a vacuum jar and maintained at vacuum for about 24 h. The degassed

montmorillonite was used in FT-IR analyses and also for ice nucleation experiments.
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2.3 Aerosol surface characteristics

The Fourier transform infrared spectra (FT-IR) using the potassium bromide (KBr)

pressed disk technique (e.g., Ogloza and Malhotra, 1989) was conducted using

a Bruker FT-IR spectrometer (Model Vector 22). About 1.0 mg mineral dust and

100 mg KBr were weighted and ground in an agate mortar prior to pellet making under5

a load of 1.0×10
4

kg of pressure for 2 min. The pellet was transferred into the sample

holder and the FT-IR spectra were measured at room temperature over a wavenumber

range of 500–4000 cm
−1

.

2.4 Aerosol generation and impaction

The montmorillonite mineral dust particles were placed into the aerosol generator of10

the CFDC. The aerosol generator is an airtight reservoir with a vibrating membrane at

its base (Salam et al., 2006). The reservoir consists of an aluminum container with

a thin, conductive Mylar bottom. The Mylar bottom is held in place with an aluminum

collar with an o-ring seal, and is vibrated using a 40 W, 4Ω speaker. The speaker is

driven at 5 V using a square wave generator at 1000 Hz. The aerosol particles levitated15

by the generator were introduced to the flow entering the diffusion chamber. Before

entering the chamber the aerosol particles passed through an inertial impactor (Salam

et al., 2006; Marple and Willeke, 1976) to remove particles larger than 5µm allowing

only montmorillonite mineral dust particles smaller than 5µm to enter the CFDC.

2.5 Continuous Flow Diffusion Chamber (CFDC) System20

The ice nucleation experiments were carried out with the Dalhousie University CFDC

(Salam et al., 2006). The CFDC (Fig. 1) is a vertically oriented flow chamber consisting

of two concentric circular copper cylinders. The length of the chamber is 161 cm, the

top 123 cm is cooled while the bottom 38 cm has no active cooling. The region without

cooling is needed to evaporate any water droplets that might have potentially formed25
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and could be misinterpreted as ice crystals by the particle counter at the exit of the

CFDC. The annular gap between the two cylinders, in which the ice crystals grow,

is 0.45 cm and this results in a Reynolds Number of about 20, indicative of laminar

flow in the annulus gap. Prior to each experiment the annulus gap of the chamber

was flooded with water for about 2 s in order to freeze a thin film of ice on the inside5

walls. During the experiment the two walls are held at two different temperatures at

ice saturation which by the diffusion of heat and water vapor creates a steady-state

supersaturation with respect to ice near the center of the annulus gap through which

the aerosols are carried and, if activatied, will grow by water vapor deposition to ice

crystals. The air stream containing the aerosols is surrounded by two clean sheath10

air streams which confines all the aerosols to the center of the annulus gap where

the ice supersaturation conditions exist. Typical operating conditions of the chamber

are temperatures between –2
◦
C and –45

◦
C; temperature differences between the two

walls of 0
◦
C to 20

◦
C; supersaturation with respect to water (SSw) –30% to +10%;

supersaturation with respect to ice (SSi) 0% to +50%; total air flow 2.83 liters per minute15

(lpm) and the residence time for the aerosol particles in the actively cooled portion of

the chamber is 20 seconds. Further details of the CFDC can be found in Salam et

al. (2006).

2.6 Detection of Ice Crystals

Aerosol particles smaller than 5µm in diameter produced by the aerosol generator20

were injected into the center of the gap near the location of the maximum supersat-

uration. Ice crystals were activated, grew in the chamber while being carried by the

air stream and were identified with a MetOne (Model 278B) optical particle counter at

the outlet of the CFDC with a flow rate of 2.83 lpm (Salam et al., 2006). The MetOne

particle counter can measure particles with sizes from 0.3 to 20µm using 6 size bins.25

Since the impactor at the input to the CFDC removes all aerosol particles larger than

5µm we can assume, after performing the quality controls described in the next sub-

section, that all particles greater than 5µm detected by the MetOne are ice crystals.
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The activated ice nuclei fraction (IC>5/APS<5) was calculated from the ratio of the to-

tal number of ice crystals larger than 5µm detected by the MetOne during the growth

experiment (IC>5) to the average of the total number of aerosol particles smaller than

5µm (APS<5) measured before and after each ice nucleation experiment.

2.7 Quality Control of the CFDC Measurements5

All experiments used filtered and dried air for both the sheath and aerosol flows. An

ULPA air filter preceded by a HEPA air filter removed 99.97% of the ambient aerosols

larger than 0.1µm. The air streams were dried down to a dew point of –73
◦
C with an-

hydrous calcium sulfate Drierite (W. A. Hammond Drierite Co). To check the presence

of any ice particle artifacts both blank and dry experiments were conducted. In a blank10

experiment no aerosol particles are input into the chamber flow but the chamber walls

are coated with ice. In a dry experiment aerosol particles are input into the chamber but

there is no ice coating on the chamber walls. Before running any blank experiment we

passed dried and filtered air into the CFDC for about eight hours to remove all particles

that may have remained inside the system from the previous experiment.15

We used the total aerosol particle number concentrations smaller than 5 µm (APS<5)

before and after the ice nucleation experiments in the calculation of the percentage of

ice activation because it was not possible to measure the input aerosol number con-

centrations during the actual ice nucleation experiment. This is not a problem because

of the high reproducibility (±5%) that was obtainable for the input aerosol number con-20

centration. Moreover, we are unable to differentiate between aerosol and ice particles

below 5µm and so we had to use particles greater than 5µm as the criterion for ice

particles. Hence we are unable to report the total ice nucleation rate, but rather report

the ice nucleation percentage based on the ratio of ice crystals that grew to sizes larger

than 5µm to the pre-nucleation particle concentration.25

To rule out the possibility of hygroscopic growth by the aerosol particles within the

CFDC it was checked whether montmorillonite adsorbed enough water vapor to grow

larger than 5µm. The test was done by setting the temperature of both ice-covered
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walls of the chamber to –2
◦
C. The relatively warm temperature of –2

◦
C was picked

to get very close to water saturation conditions (98.1% RHw) in the chamber. The

ice crystal fraction (IC>5/APS<5) was only 0.04% at the outlet of the chamber, which

is within the noise level as determined by the blank as well as the dry experiments.

We also carried out ice nucleation experiments using water vapor instead of ammonia5

to age the montmorillonite dust aerosols. The percentage of the active ice nuclei of

montmorillonite dust aerosols due to the exposure to water vapor for 24 h instead of

ammonia gas was 1.02% at 90% RHw at –30
◦
C. However, the percentages of acti-

vated ice nuclei of water vapor exposed montmorillonite were similar to that of the pure

montmorillonite, which indicates that water vapor exposure alone has no significant10

effect on the ice nucleation ability of the montmorillonite dust aerosol particles.

3 Results and discussion

3.1 Aerosol size distributions

The initial size distributions of the mineral dust aerosol particles before injection into the

CFDC were determined with an aerodynamic particle sizer (APS), Model TSI 3321(Pe-15

ters and Leith, 2003) both with and without ammonia exposure (Fig. 2). The size

distribution curve shows the variation of aerodynamic diameter versus number con-

centration (dN/dlogDa) between 0.5 and 20µm. The total number concentration of

aerosol particles smaller than 5µm in diameter that are input into the CFDC is almost

the same (about 1.05×10
4

cm
−3

) for both ammonia-exposed and non-exposed mont-20

morillonite. Only 0.03% of all particles (3.2 cm
−3

) were found to be larger than 5µm in

diameter, which is below the noise level as shown in Fig. 2. The noise level was deter-

mined from particle artifacts measured during the blank and dry experiments described

in Sect. 2.7.
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3.2 Fourier Transform Infrared (FT-IR) Analysis

The spectra of montmorillonite, ammonia exposed montmorillonite and degassed (af-

ter ammonia exposure) montmorillonite mineral dust particles at room temperature are

given in Fig. 3. The FT-IR spectrum of pure montmorillonite is shown in Fig. 3a. It

shows the typical absorption bands of montmorillonite (Farmer, 1974), for example Al-5

OH-Al (Ogloza and Malhotra, 1989) stretching at 3625 cm
−1

, OH (Ogloza and Malhotra,

1989; Russell, 1965) stretching of water at 3434 cm
−1

and Si-O (Ogloza and Malhotra,

1989; Russell, 1965) bending at 1059 cm
−1

. However, there is a broad peak at the

band position of about 3220 cm
−1

in Figs. 3b and 3c, which is absent in Fig. 3a. Hy-

droxyl and amino groups show characteristic absorption bands (Coates, 2000; Ogloza10

and Malhotra, 1989) in the region from 3650 to 3200 cm
−1

. The 3220 cm
−1

absorption

band in ammonia exposed (Fig. 3b) and degassed (Fig. 3c) montmorillonite dust par-

ticles is likely due to the N-H stretching of ammonia (Russell, 1965). There is another

small IR signature peak for ammonium at around 1400 cm
−1

in Figs. 3b and 3c, which

is also less dominate in Fig. 3a. Thus, the similarity of the peak positions between15

ammonia exposed and degassed montmorillonite mineral dust indicates the retention

of ammonia into the montmorillonite interlayer space and/or that ammonia is adsorbed

chemically (Russell, 1965).

3.3 Ice nucleation experiments with varying exposure times

Ice nucleation experiments of aged montmorillonite dust particles were performed by20

varying the ammonia gas exposure times from 0 to 2.5 h for 100% pure ammonia (Fig. 4

top), and 0 to 70 h for 25 ppm ammonia (Fig. 4 bottom) before injecting them into the

CFDC at 100% and 90% relative humidities at a temperature of –20
◦
C. About 0.7% of

the 100% pure ammonia aged montmorillonite particles were activated as ice nuclei at

90% RHw, and 2.7% at 100% RHw with only one minute of ammonia gas exposure.25

In contrast, only about 0.4% and 0.7% of the non-aged montmorillonite particles were

activated as ice nuclei at 90% RHw and 100% RHw, respectively (Fig. 4 top). The
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percentage of activated aged montmorillonite ice nuclei increases with exposure times

up to 2 h and then reaches a saturation level at about 1.5% at 90% RHw and at about

7.8% at 100% RHw (Fig. 4 top). In the case of 25 ppm ammonia exposed montmoril-

lonite (Fig. 4 bottom), the active ice nuclei (%) increases below 20 hours exposure time

and then attains a saturation level with increasing exposure times. The higher fractions5

of activation in the case of aged montmorillonite at 100% RHw in Fig. 4 are caused by

either condensation freezing or enhanced deposition nucleation. It should be pointed

out that our percentages of ice activation may be underestimated since we are unable

to detect ice crystals smaller than 5µm exiting the CFDC.

3.4 Ice nucleation experiments with varying temperatures10

3.4.1 With 100% Pure Ammonia Gas

In this series of experiments the 100% pure ammonia exposure time was fixed at 2 h

at each temperature. The air temperature was varied between –5
◦
C and –35

◦
C at 90

to 100% RHw in 5
◦
C temperature intervals. There was a set of 15 experiments at

each temperature including blank and dry experiments. The active ice nuclei fraction15

(IC>5/APS<5), expressed as a percentage, versus temperature for montmorillonite min-

eral dust aerosols with and without exposure to ammonia gas at 90% and 100% RHw

is shown in Fig. 5. The fraction of montmorillonite dust particles that act as ice nuclei

increased 3 to 8 times due to exposure to 100% ammonia gas at 90% RHw, and 5 to

8 times at 100% RHw within the temperature range of –15
◦
C and –35

◦
C (Fig. 5). All20

montmorillonite aerosol particles are more efficient as ice nuclei with increasing rela-

tive humidities and decreasing temperatures. Ice nucleation activity was observed at

a temperature of –5
◦
C and –10

◦
C for the ammonia aged montmorillonite mineral dust

at 100% and 90% RHw, respectively, whereas no ice nucleation activity was observed

at temperatures above –15
◦
C at 100% RHw and above –27

◦
C at 90% RHw (Fig. 5) for25

pure montmorillonite mineral dust aerosol particles.
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3.4.2 With 25 ppm diluted Ammonia gas

Ice nucleation experiments of montmorillonite mineral dust particles were also carried

out with 25 ppm ammonia gas at temperatures between -5
◦
C and –35

◦
C at 90% and

100% RHw with an 18 h exposure time (Fig. 5). The concentration of the diluted ammo-

nia used in these series of experiments is still significantly higher than the concentration5

of atmospheric ammonia in polluted regions (e.g., Godish, 2003). Our experimental

setup prevented further dilution of the gas. However the effect of the ammonia gas

on ice nucleation will also be determined by the exposure time which can be longer

in the atmosphere and help to compensate for the lower concentrations found in the

real atmosphere. The fraction of montmorillonite dust particles that act as ice nuclei10

increased 2 to 13 times at 100% RHw and 2 to 9 times at 90% RHw due to the modi-

fication of the montmorillonite dust surface by 25 ppm ammonia from temperatures of

–15
◦
C to –35

◦
C. Our finding shows an effect that is opposite to the previous studies on

ice nucleation of gas-aged dust aerosols. For example, the investigations on the chemi-

sorption of trace gases on the surface of silver iodide particles by Birstein (1957, 1960)15

reported that the presence of ammonia gas lowers the threshold nucleation tempera-

ture of silver iodide particles considerably. Georgh (1963) also found that NO2 and NH3

are more effective in deactivating freezing nuclei. The concentration of ammonia nec-

essary to cause an appreciable effect is 4 to 5 orders of magnitude larger than the NH3

concentration generally found in the atmosphere (Georgh, 1963). Our study shows20

enhanced ice nucleation of montmorillonite dust particles aged with 25 ppm ammonia

gas exposure, which is 3 orders of magnitude larger than found in highly polluted situ-

ations (e.g., Godish, 2003). The activation temperature of 25 ppm ammonia exposed

montmorillonite mineral dust aerosols was –8
◦
C at 100% RHw (108% RHi) (Fig. 5);

whereas the activation temperature of unexposed montmorillonite was –15
◦
C at 109%25

RHi (Salam et al., 2006). This is a significant finding since natural ice nuclei that are

active at temperatures warmer than –10
◦
C are very scarce (e.g., Schaller and Fukuta,

1979). This is the first experimental evidence that diluted ammonia gas exposure to
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montmorillonite mineral dust particles can raise the heterogeneous ice nucleation acti-

vation temperature to warmer than –10
◦
C.

Some possible mechanisms for the ammonia adsorption or retention on the mont-

morillonite surface include coordination of ammonia to the exchangeable cations, for-

mation of ammonium cations, hydrogen bonding of NH3 to the montmorillonite surface5

and trapping of NH3 molecules in the interlayer space (e.g., Dontsova et al., 2005;

Russell, 1965; Mortland, et al., 1963). A likely scenario is that ammonia molecules

replace water in the interlayer space of montmorillonite in an atmosphere of ammonia

(Russell, 1965). In the current study the FT-IR measurements suggest that the am-

monia is chemically adsorbed in the montmorillonite. It is possible that the addition of10

ammonia enables liquid water uptake so that ammonia-aged montmorillonite mineral

dust aerosols are activated in condensation freezing mode first, and followed by depo-

sition mode, which enhanced the heterogeneous ice nucleation ability of ammonia gas

exposed montmorillonite mineral dust aerosol particles.

3.5 Ice nucleation experiments using degassed Montmorillonite15

The ice nucleation experiments using degassed montmorillonite (after 100% ammo-

nia exposure for 24 h) were carried out in the CFDC system and compared to 100%

ammonia exposed montmorillonite for the same duration without degassing. The ex-

perimental conditions for this comparison were at –30
◦
C and 90% RHw. Enhanced

ice nucleation was observed in both non-degassed and degassed ammonia exposed20

montmorillonite mineral dust aerosols with 4.90% active ice nuclei in the 100% ammo-

nia exposed and 4.89% active ice nuclei in the degassed experiment. This result indi-

cates that degassing does not reverse the ice nucleating ability of ammonia exposed

montmorillonite. This is expected if the ammonia molecules are chemically adsorbed

into the montmorillonite as suggested by the FT-IR spectra.25

394

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/383/2007/acpd-7-383-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/383/2007/acpd-7-383-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 383–403, 2007

Ammonia aged

montmorillonite as

ice nuclei

A. Salam et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

4 Conclusions

The importance of ammonia on the aging of montmorillonite mineral dust particles for

ice nucleation was studied for different exposure times, air temperatures and relative

humidity conditions with the Dalhousie University Continuous Flow Diffusion Chamber.

The ice nucleation increases with increasing ammonia gas exposure time and relative5

humidity. Only 1.5% of the 100% pure ammonia aged montmorillonite particles were

activated as ice nuclei that eventually grew to a size larger than 5µm at 90% RHw at

–20
◦
C. The ice nucleating fraction of montmorillonite dust particles increased 3 to 8

times at 90% RHw due to the exposure to 100% ammonia and 2 to 9 times at 90%

RHw due to the exposure to 25 ppm ammonia compared to nonexposed particles. The10

activation temperature of 100% pure ammonia aged montmorillonite mineral dust par-

ticles was found to be 10
◦
C warmer than that of the non-aged montmorillonite at 100%

RHw and 12
◦
C warmer at 90% RHw. The activation temperature of 25 ppm ammonia

exposed montmorillonite mineral dust aerosols was –8
◦
C at 100% RHw, which is 7

◦
C

warmer than pure montmorillonite. Ammonia exposed and then degassed montmoril-15

lonite dust aerosols have similar ice nucleation efficiencies. This along with the infrared

transmission spectra suggests that the ammonia is chemi-adsorbed in the montmoril-

lonite.

This is the first experimental evidence for an enhancement of ice nucleation by min-

eral dust aerosols exposed to ammonia gas. Although the ammonia concentrations20

used are higher than those found in the polluted atmosphere the effect has been

demonstrated and future experiments will be performed using lower concentrations.

Not only was there an increase in the activated fraction of montmorillonite aerosols for

the temperatures and relative humidities used in this study, but the aged aerosols were

able to initiate ice nucleation at temperatures warmer than –10
◦
C where very few nat-25

ural ice nuclei are found. This is potentially an important way that anthropogenic trace

gases can change the atmospheric cloud properties and precipitation development by

the ice particle phase with significant climate change implications.
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R., Krämer, M., Mangold, A., and Heymsfield, A. J.: Efficiency of the deposition mode ice

nucleation on mineral dust particles, Atmos. Chem. Phys. Discuss., 6, 1539–1577, 2006,

http://www.atmos-chem-phys-discuss.net/6/1539/2006/.20

Ogloza, A. A. and Malhotra, V. M.: Dehydroxylation Induced Structural Transformations in Mont-

morillonite: an Isothermal FTIR Study, Phys. Chem. Minerals, 16, 378–385, 1989.

Peters, T. M. and Leith, D.: Concentration measurement and counting efficiency of the aerody-

namic particle sizer 3321, J. Aero. Sci., 34(5), 627–634, 2003.

Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, Kluwer Academic,25

Norwell, Mass, 954, 1997.

Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the

hydrological cycle, Science, 294, 2119–2124, 2001.

Ramaswamy, V.: Radiative forcing of climate change, in Climate Change 2001, The Scientific

Basis, Cambridge Univ. Press, New York, 349–406, 2001.30

Roberts, P. and Hallett, J.: A laboratory study of the ice nucleating properties of some mineral

particulates, Quart. J. Royal Met. Soc., 94, 25–34, 1968.

Russell, J. D.: Infra-red Study of the Reactions of Ammonia with montmorillonite and Saponite,

397

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/383/2007/acpd-7-383-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/383/2007/acpd-7-383-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html
http://www.atmos-chem-phys-discuss.net/6/1539/2006/


ACPD

7, 383–403, 2007

Ammonia aged

montmorillonite as

ice nuclei

A. Salam et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Trans. Faraday Soc., 61, 2284–2294, 1965.

Salam, A., Lohmann, U., Crenna, B., Lesins, G., Klages, P., Rogers, D., Irani, R., MacGillivray,

A., and Coffin, M.: Ice Nucleation Studies of Mineral Dust Particles with a New Continuous

Flow Diffusion Chamber, Aero. Sci. Tech., 40(2), 134–143, 2006.

Schaller, R. C., and Fukuta, N.: Ice nucleation by aerosol particles: Experimental studies using5

a wedge-shaped ice thermal diffusion chamber, J. Atmos. Sci., 36, 1788–1802, 1979.

Twomey, S.: Pollution and planetary albedo, Atmos. Environ., 8(12), 1251–1256, 1974.

Umann, B., Arnold, F., Schaal, C., Hanke, M., Uecker, J., Aufmhoff, H., Balkanski, Y., and

Van Dingenen, R.: Interaction of mineral dust with gas phase nitric acid and sulfur dioxide

during the MINATROC II field campaign: First estimate of the uptake coefficient γHNO3 from10

atmospheric data, J. Geophys. Res., 110, D22306, doi: 10.1029/2005JD005906, 2005.

Zuberi, B., Bertram, A. K., Cassa, C. A., Molina, L. T., and Molina, M. J.: Heterogeneous

nucleation of ice in (NH4)2SO4–H2O particles with mineral dust immersions, Geophys. Res.

Lett., 29(10), 1504, doi: 10.1029/2001GL014289, 2002.

398

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/383/2007/acpd-7-383-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/383/2007/acpd-7-383-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 383–403, 2007

Ammonia aged

montmorillonite as

ice nuclei

A. Salam et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

 

CFDC

E
W

L
D

T

Clean Room Air

Aerosol

Generator

MetOne Particle

Counter

LED
APS

TSI 3321

Refrigerator

RTF 740

HEPA Filter

IM1IM2

Sheath Flow

Aerosol Flow

Icing air vent

Refrigerator Julabo

FP88

W
T

WP

DR

PD PDAP

F

F

FM
FM Electronics

Circuits

Electronics

Circuits

HD

Controlling

Computer

 

Fig. 1. Schematic Diagram of the Continuous Flow Diffusion Chamber (CFDC) at Dalhousie

University, Canada. Arrows indicate the airflow in the CFDC system. EWLDT = External Water

Level Detection Tube, WT = Water Tank, WP = Water Pump, DR = Drierite holder, F = Inline

Filter, FM = Flow Meter, PD = Pulse Dampeners, AP = Air Pump, IM = Impactor, and HD =

Computer Hard Disk.
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Fig. 2. Aerosol particle size distributions of montmorillonite mineral dust before and after aging

with ammonia gas as measured with an Aerodynamic Particle Sizer (TSI 3321) exiting the

aerosol generation of the CFDC. The dashed line indicates the noise level of the measurements

determined by blank and dry experiments. The vertical bars are the error bars equal to the

standard deviation of the 20 samples (duration of each sample is 60 s).
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Fig. 3. The Fourier transform infrared (FT-IR) spectra of pure montmorillonite Fig. 3a, ammonia

exposed montmorillonite Fig. 3b, degassed (after ammonia exposure) montmorillonite Fig. 3c

with Bruker FTIR instruments, Model Vector 22. The absorption band at 3220 cm
−1

suggests

chemi-adsorbed ammonia indicated by the dashed circle in Figs. 3b and 3c.
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Fig. 4. Percentage of activated ice nuclei versus 100% pure (top) and 25 ppm (bottom) am-

monia gas exposure time of montmorillonite mineral dust particles at 100% and 90% rela-

tive humidity with respect to water (RHw) at –20
◦

C. The percentage of activated ice nuclei

(IC>5/APS<5) was calculated from the ratio of the total number of ice crystals larger than 5µm

(IC>5) to the average of the total number of aerosol particles smaller than 5µm (APS<5) before

and after of each ice nucleation experiments. Results at 0 min exposure time stem from the

non-aged experiments.
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Fig. 5. Percentage of activated ice nuclei (as defined in Fig. 4) versus temperature (
◦

C) of

montmorillonite mineral dust particle exposed to 100% pure or 25 ppm ammonia gas and with-

out ammonia gas exposure at 90% and 100% relative humidity with respect to water (RHw).

The exposure time was 2 h for 100% pure ammonia and 18 h for 25 ppm ammonia. The vertical

bars are the error bars equal to the standard deviation of the 15 measurements conducted at

each temperature.
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