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Abstract. Magnetohydrodynamic dynamo action is often in-
voked to explain the existence of magnetic fields in several
astronomical objects. In this work, we present direct numeri-
cal simulations of MHD helical dynamos, to study the expo-
nential growth and saturation of magnetic fields. Simulations
are made within the framework of incompressible flows and
using periodic boundary conditions. The statistical proper-
ties of the flow are studied, and it is found that its helicity
displays strong spatial fluctuations. Regions with large ki-
netic helicity are also strongly concentrated in space, form-
ing elongated structures. In dynamo simulations using these
flows, we found that the growth rate and the saturation level
of magnetic energy and magnetic helicity reach an asymp-
totic value as the Reynolds number is increased. Finally, ex-
tensions of the MHD theory to include kinetic effects rele-
vant in astrophysical environments are discussed.

1 Introduction

In magnetohydrodynamic (MHD) dynamos, an initially
small magnetic field is amplified and sustained by currents
induced solely by the motion of a conducting fluid (Mof-
fatt, 1978). Dynamo action is often invoked to explain the
existence of magnetic fields in several astronomical objects,
including the Sun (Larmor, 1919; Parker, 1955; Leighton,
1969; Dikpati and Charbonneau, 1999), late-type stars (Bran-
denburg et al., 1998; Tobias, 1998), accretion disks (Bland-
ford and Payne, 1982; Matsumoto et al., 1996; Casse and
Keppens, 2004), and the Earth (Bullard, 1949; Braginsky,
1964; Glatzmaier et al., 1999; Buffett, 2000). Together with
rotation, turbulence is ubiquitous in all these objects, and the
generation of a magnetic field by a turbulent flow has be-
come a crucial aspect of dynamo theory. Evidence of the
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existence of turbulent flows in astrophysics can be found in
a large number of objects, such as the interstellar medium
(Armstrong et al., 1995; Minter and Spangler, 1996) or the
solar convective region (Espagnet et al., 1993; Krishan et al.,
2002).

In the last decades dynamo theory made significant ad-
vances, pushed forward by the positive feedback from di-
rect numerical simulations (DNS), and the growing power
of computers. The linear (or kinematic) regime of dynamo
action was first studied theoretically within the framework of
mean field magnetohydrodynamics (Steenbeck et al., 1966;
Krause and R̈adler, 1980). Later, its nonlinear regime was
studied using MHD closures, such as the EDQNM (Pouquet
et al., 1976). These studies led to the conclusion that a heli-
cal flow can under general conditions generate a large scale
magnetic field through theα-effect or the inverse cascade of
magnetic helicity. Since then, direct simulations of MHD
turbulence have given an important insight into the problem.

The first numerical simulation of dynamo action was made
by Meneguzzi et al.(1981). Although computer resources
were insufficient at the time to span magnetic diffusion
timescales, the results made clear that a helical flow can am-
plify an initially small magnetic field exponentially fast, as
well as significantly increase its spatial correlation. Later,
several turbulent simulations were carried using mechanic
helical forces (e.g. ABC type force), most of them with ide-
alized conditions (Galanti et al., 1991; Brandenburg, 2001;
Archontis et al., 2003; Mininni et al., 2003).

These simulations are often made in the incompressible
MHD limit (see howeverMeneguzzi and Pouquet(1989);
Cattaneo(1999); Balsara and Pouquet(1999) for studies
of the effect of compressibility or stratification), and using
periodic boundary conditions. Extensions of these models
to include idealized boundaries can be found e.g. inBran-
denburg and Dobler(2001). These conditions are far from
astrophysical or geophysical applications, but allow drastic
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simplifications in the equations and numerical methods. In
turn, these simplifications allow to resolve a larger separa-
tion of scales, which is crucial to study turbulent dynamo
action. Actually, the strongest limitation for DNS is related
with the extreme computational resources needed to ensure
this scale separation. A systematic study of different flows,
long simulations, or simulations in the range of parameters
found in astrophysics are impossible in the foreseeable fu-
ture. As a result, it seems evident that theory and simulations
must evolve together to reach a deeper understanding of the
problem.

On the other hand, in DNS the conditions that the flow
must satisfy to amplify and sustain a magnetic field can be
studied directly. In this work we follow this path and review
recent results in the study of helical dynamo action. In Sect.2
we introduce the MHD equations, and in Sect.3 we present
results for the time evolution of the MHD helical dynamo.
In the last years, new effects relevant in several astrophysi-
cal scenarios have been introduced into the theory and sim-
ulations. Section4 reviews a few of these extensions, and
discuss recent results found within the framework of Hall-
MHD. Finally, in Sect.5 we present the conclusions of this
work.

2 The equations

Incompressible MHD is described by the induction and the
Navier-Stokes equations,

∂B

∂t
= ∇× (U×B) + η∇

2B (1)

∂U

∂t
= − (U · ∇) U + (B · ∇) B −

− ∇

(
P +

B2

2

)
+ F + ν∇

2U , (2)

with the additional constraints∇·U=∇·B=0. The external
forceF is assumed to be solenoidal, and the velocityU and
magnetic fieldB are expressed in units of a characteristic
speedU0. The pressureP was divided by the constant fluid
density. Here,η andν are respectively the magnetic diffusiv-
ity and the kinematic viscosity (assumed constant and uni-
form).

The MHD system has three ideal quadratic invariants (i.e.
for η=ν=0)
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1
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1

2
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HereE is the mean energy density,Hm is the mean magnetic
helicity, andHc is the mean cross helicity. It is standard prac-
tice in numerical simulations to compute the volume average
of the ideal invariants over the total volumeV (indicated by

< . . . >), rather than their total values. The vector potential
A is defined byB=∇×A.

The simulations discussed in the following sections were
made using a parallel pseudospectral code (Mininni et al.,
2003, 2004; Gómez et al., 2004). Equations (1) and (2)
are integrated in a cubic box with periodic boundary con-
ditions. The code implements Runge-Kutta of several orders
to evolve the equations in time, but most of the simulations
were performed using Runge-Kutta of order two. The total
pressurePT =P+B2/2 is computed solving a Laplace equa-
tion in Fourier space at each time step, to ensure the incom-
pressibility condition∇·U=0 (Canuto et al., 1988). To sat-
isfy the divergence-free condition for the magnetic field, the
induction equation (1) is replaced by an equation for the vec-
tor potential

∂A

∂t
= U×B − ∇φ + η∇

2A , (6)

whereφ (the self-consistent electrostatic potential) is com-
puted at each time step to satisfy the gauge∇·A=0, by solv-
ing another Laplace equation with the same method used to
obtain the pressure. The code uses the 2/3-rule to control
aliasing error (Canuto et al., 1988), and therefore the largest
wavenumberkmax that can be resolved in a spatial grid of
N3 points is given bykmax=N/3. In this paper, we show
simulations up to resolutions of 2563 grid points.

3 MHD helical dynamos

It is clear from the equations presented in the previous sec-
tion, that effects such as stratification, magnetic buoyancy, or
rotation are neglected. As a result, no natural mechanism is
present to break the mirror symmetry in the flow. Therefore,
a net kinetic helicity must be injected into the fluid by the
body forceF . Usually, eigenfunctions of the curl operator
are used to force the fluid, ensuring both injection of energy
and kinetic helicity at large scales. To help scale separation,
the energy injection band is often restricted to a few wave
numbers around the wavenumberkf orce. In our simulations
we use an ABC forceF with A=B=C (Childress, 1970),
acting atkf orce (seeMininni et al. (2003) for details).

The amount of helicity in the flow is measured by the ki-
netic helicity (Moffatt, 1978)

Hk =
1

2 V

∫
V

U · ω dV =
1

2
< U · ω > , (7)

whereω=∇×U is the vorticity. It is also useful to normal-
ize this quantity between 1 and−1 introducing the relative
helicity 2Hk/(

〈
U2
〉 〈

ω2
〉
)1/2.

The main question is whether a turbulent flow can amplify
and sustain a magnetic field. As a result, no source of mag-
netic field is used except for a small amplitude random seed
at scales smaller than the energy injection band.

3.1 Helical flows

Before introducing the magnetic seed, a fully developed tur-
bulent flow is needed. To this end, a forced hydrodynamic
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Fig. 1. (a) Kinetic energy spectrum at different Reynolds num-
bers. (b) Spectrum of kinetic energy, and kinetic helicity divided
by }V~��i�k��� . The Kolmogorov’s law is showed as a reference.

simulation is carried out until it reaches a statistically steady
state. The resulting flow has, say, positive helicity (in all the
simulations discussed here this will be the case). The r.m.s
value of the velocity 243 ��w 2 �/x zi| � is used to define the
Reynolds number � � 2�3���3 S * . The value of � in all our
simulations is well above the threshold ( � Hv� c 1 ) in which
the ABC flow destabilizes (Podvigina and Pouquet, 1994).

We will first study the hydrodynamic properties of the
flow, since when the small magnetic field is introduced the
Lorentz force � P � in equation (2) can be neglected. Equa-
tion (1) is linear in the magnetic field, and the electromotive
force ��P �

is the only term able to amplify
�

. Therefore,
the geometrical properties of the flow are directly responsible
for the observed amplification.

Figure 1.a shows the kinetic energy spectrum
6 p � [ � in

a hydrodynamic simulation for different values of � and[nf/goh Hkj � Z . As the Reynolds number is increased, a scale
separation between the energy injection wavenumber and the
dissipation wavenumber appears. Then, three regions can be

Fig. 2. Isosurfaces of kinetic helicity (at 20% of the maximum
value) in a helical hydrodynamic simulation with �T�N�/� grid points
( �����N�T� , }V~��o��������� ). Green (above) indicates positive helic-
ity, while red (below) corresponds to negative helicity. Note the
presence of elongated structures. Both snapshots correspond to the
same time. The region displayed is 1/8 of the box.

identified in Fourier space. The energy injection band, the in-
ertial range, and the dissipation range. The energy is injected
at [nfTgih Hkj , cascades down to smaller scales through the iner-
tial range (which follows a Kolmogorov’s [���� | a law), and
finally dissipates at small scales. The dissipation wavenum-
ber scales as [n� ���ow{y �Jx�S * � �izi|i� . In all the simulations, this
wavenumber is smaller than [ C]\_^ and all scales in the flow
are well resolved.

The kinetic helicity injected at [�f/gih Hkj also cascades
down to smaller scales, and its spectrum is proportional to[nf/goh Hkj{6 � [ � . The direct cascade of kinetic helicity was ex-
pected from theoretical arguments (Brissaud, Frisch, Léorat,
Lesieur, and Mazure, 1973; Kraichnan, 1973; Moffatt, 1978),
and verified only recently in DNS (Chen, Chen, and Eyink,

Fig. 1. (a)Kinetic energy spectrum at different Reynolds numbers.
(bfb) Spectrum of kinetic energy, and kinetic helicity divided by
kf orce. The Kolmogorov’s law is showed as a reference.

simulation is carried out until it reaches a statistically steady
state. The resulting flow has, say, positive helicity (in all
the simulations discussed here this will be the case). The
r.m.s value of the velocityU0=

〈
U2
〉1/2

is used to define the
Reynolds numberR = U0L0/ν. The value ofR in all our
simulations is well above the threshold (Rc

≈50) in which the
ABC flow destabilizes (Podvigina and Pouquet, 1994).

We will first study the hydrodynamic properties of the
flow, since when the small magnetic field is introduced the
Lorentz forceJ×B in Eq. (2) can be neglected. Equation
(1) is linear in the magnetic field, and the electromotive force
U ×B is the only term able to amplifyB. Therefore, the ge-
ometrical properties of the flow are directly responsible for
the observed amplification.

Figure 1a shows the kinetic energy spectrumEk(k) in
a hydrodynamic simulation for different values ofR and
kf orce=3. As the Reynolds number is increased, a scale sepa-
ration between the energy injection wavenumber and the dis-
sipation wavenumber appears. Then, three regions can be
identified in Fourier space. The energy injection band, the in-
ertial range, and the dissipation range. The energy is injected
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ertial range, and the dissipation range. The energy is injected
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tial range (which follows a Kolmogorov’s [���� | a law), and
finally dissipates at small scales. The dissipation wavenum-
ber scales as [n� ���ow{y �Jx�S * � �izi|i� . In all the simulations, this
wavenumber is smaller than [ C]\_^ and all scales in the flow
are well resolved.

The kinetic helicity injected at [�f/gih Hkj also cascades
down to smaller scales, and its spectrum is proportional to[nf/goh Hkj{6 � [ � . The direct cascade of kinetic helicity was ex-
pected from theoretical arguments (Brissaud, Frisch, Léorat,
Lesieur, and Mazure, 1973; Kraichnan, 1973; Moffatt, 1978),
and verified only recently in DNS (Chen, Chen, and Eyink,

Fig. 2. Isosurfaces of kinetic helicity (at 20% of the maximum
value) in a helical hydrodynamic simulation with 2563 grid points
(R=560,kf orce=3). Green (above) indicates positive helicity, while
red (below) corresponds to negative helicity. Note the presence of
elongated structures. Both snapshots correspond to the same time.
The region displayed is 1/8 of the box.

at kf orce, cascades down to smaller scales through the iner-
tial range (which follows a Kolmogorov’sk−5/3 law), and
finally dissipates at small scales. The dissipation wavenum-
ber scales askν=(

〈
ω2
〉
/ν2)1/4. In all the simulations, this

wavenumber is smaller thankmax and all scales in the flow
are well resolved.

The kinetic helicity injected atkf orce also cascades
down to smaller scales, and its spectrum is proportional to
kf orceE(k). The direct cascade of kinetic helicity was ex-
pected from theoretical arguments (Brissaud et al., 1973;
Kraichnan, 1973; Moffatt, 1978), and verified only recently
in DNS (Chen et al., 2003; Chenet et al., 2003; Gómez and
Mininni, 2004). Note that the kinetic helicity spectrum is not
a positive defined quantity (Fig.1b). However, as positive
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Fig. 3. PDF of the spatial density of kinetic helicity normalized by
the r.m.s. values of velocity and vorticity, in the same simulation
( �T��� � grid points, �����N�T� ). Note that although Schwartz inequal-
ity ensures that the total relative helicity is bounded between �]�
and 1, point to point this relation does not hold.

2003; Chen, Chen, Eyink, and Holm, 2003; Gómez and
Mininni, 2004). Note that the kinetic helicity spectrum is not
a positive defined quantity (Figure 1.b). However, as positive
helicity is injected at [nf/gih Hkj , all the wavenumbers up to [ �
are dominated by positive helicity. This does not imply that
the flow in real space has positive helicity at every point (see
Figure 2). The nonlinear terms in the Navier-Stokes equation
generates patches with different relative helicities. Indeed,
the instantaneous flow shows regions with strong positive he-
licity isotropically distributed in space, and also regions with
negative helicity. The filling factor of the positive regions is
larger, and as a result positive helicity dominates at all scales.
Helical regions display an elongated structure in real space.

The fluctuations of kinetic helicity can also be observed
in its probability density function (PDF), shown in Figure
3. The PDF is centered around zero, but it is asymmetric
and has a stronger tail in the positive direction. As a result,
regions with strong positive helicity have a larger probability
than regions with strong negative helicity. The mean value of
relative kinetic helicity in this simulation is 1#L � .

Although the spectra of energy and kinetic helicity are pro-
portional, the spectrum of relative helicity (not shown, see
for instance Borue and Orszag (1997)) follows a [�� z law,
and large scales are relatively more helical than small scales.

3.2 Kinematic regime

Once the hydrodynamic steady state is reached, a random and
non-helical magnetic field is introduced. The initial magnetic
seed is usually generated by a � -correlated vector potential,
centered at [n  j�j�¡ . This wavenumber is chosen to be smaller

Fig. 4. Kinetic (above) and magnetic energy (below) as a function
of time, for simulations with different Reynolds numbers ( }d~��o�����¢�� ).

than the dissipation wavenumber, but larger than [=f/goh Hkj . Its
amplitude must be much smaller than the kinetic energy, at
all scales. Then the simulation is continued with the same
external helical force in the Navier-Stokes equation, to study
the growth of magnetic energy due to dynamo action.

In a flow capable of dynamo action, amplification only
takes place when the magnetic Reynolds number � C �243���3 S � is larger than a critical value. For helical flows this
threshold is small ( � H£� 7 , see Galanti, Sulem, and Pou-
quet (1992); Brandenburg (2001); Brandenburg and Subra-
manian (2004)), and all the simulations we consider are well
above the critical case. The simulations we show are also
for magnetic Prandtl number

" C � * S � � 7 , and therefore� C � � .
Under these conditions, after a short time while magnetic

energy is redistributed in Fourier space, the magnetic field
grows exponentially as a function of time. Figure 4 shows
the magnetic and kinetic energy as a function of time for sim-
ulations with different Reynolds numbers and [ fTgih Hkj � Z .
During this kinematic stage, the r.m.s. value for the veloc-
ity is 2 3 �Qw 2 �Vx zo| � � e

. The turnover time for the energy
containing eddies ( [�f/goh Hkj � Z ) is then approximately equal
to ¤ � �	1#L Z . Therefore, as shown in Figure 4, the kinematic
regime lasts for about ten to twenty turnover times. Note also
that the growth rate during the kinematic regime approaches
an asymptotic value as � is increased (Archontis, Dorch, and
Nordlund, 2003; Mininni, Gómez, and Mahajan, 2004).

In this first stage, the magnetic energy is still weak and the
velocity field is not strongly affected by the Lorentz force.
As a result, during the exponential growth of magnetic en-
ergy the kinetic energy remains approximately constant. The
evolution in the kinematic regime can be explained using
the mean field induction equation (Steenbeck, Krause, and
Rädler, 1966; Krause and Rädler, 1980)� ����	�¥��
	¦ ��
 �Q� � �¨§©��� j fªf � � � L (8)

Here the overline denotes mean field quantities (defined us-
ing an average satisfying Taylor’s hypothesis), and

� j f�f is the

Fig. 3. PDF of the spatial density of kinetic helicity normalized by
the r.m.s. values of velocity and vorticity, in the same simulation
(2563 grid points,R=560). Note that although Schwartz inequality
ensures that the total relative helicity is bounded between−1 and 1,
point to point this relation does not hold.

helicity is injected atkf orce, all the wavenumbers up tokν

are dominated by positive helicity. This does not imply that
the flow in real space has positive helicity at every point (see
Fig. 2). The nonlinear terms in the Navier-Stokes equation
generates patches with different relative helicities. Indeed,
the instantaneous flow shows regions with strong positive he-
licity isotropically distributed in space, and also regions with
negative helicity. The filling factor of the positive regions is
larger, and as a result positive helicity dominates at all scales.
Helical regions display an elongated structure in real space.

The fluctuations of kinetic helicity can also be observed
in its probability density function (PDF), shown in Fig.3.
The PDF is centered around zero, but it is asymmetric and
has a stronger tail in the positive direction. As a result, re-
gions with strong positive helicity have a larger probability
than regions with strong negative helicity. The mean value
of relative kinetic helicity in this simulation is 0.4.

Although the spectra of energy and kinetic helicity are pro-
portional, the spectrum of relative helicity (not shown, see
for instanceBorue and Orszag(1997)) follows a k−1 law,
and large scales are relatively more helical than small scales.

3.2 Kinematic regime

Once the hydrodynamic steady state is reached, a random and
non-helical magnetic field is introduced. The initial magnetic
seed is usually generated by aδ-correlated vector potential,
centered atkseed . This wavenumber is chosen to be smaller
than the dissipation wavenumber, but larger thankf orce. Its
amplitude must be much smaller than the kinetic energy, at
all scales. Then the simulation is continued with the same
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than the dissipation wavenumber, but larger than [=f/goh Hkj . Its
amplitude must be much smaller than the kinetic energy, at
all scales. Then the simulation is continued with the same
external helical force in the Navier-Stokes equation, to study
the growth of magnetic energy due to dynamo action.

In a flow capable of dynamo action, amplification only
takes place when the magnetic Reynolds number � C �243���3 S � is larger than a critical value. For helical flows this
threshold is small ( � H£� 7 , see Galanti, Sulem, and Pou-
quet (1992); Brandenburg (2001); Brandenburg and Subra-
manian (2004)), and all the simulations we consider are well
above the critical case. The simulations we show are also
for magnetic Prandtl number

" C � * S � � 7 , and therefore� C � � .
Under these conditions, after a short time while magnetic

energy is redistributed in Fourier space, the magnetic field
grows exponentially as a function of time. Figure 4 shows
the magnetic and kinetic energy as a function of time for sim-
ulations with different Reynolds numbers and [ fTgih Hkj � Z .
During this kinematic stage, the r.m.s. value for the veloc-
ity is 2 3 �Qw 2 �Vx zo| � � e

. The turnover time for the energy
containing eddies ( [�f/goh Hkj � Z ) is then approximately equal
to ¤ � �	1#L Z . Therefore, as shown in Figure 4, the kinematic
regime lasts for about ten to twenty turnover times. Note also
that the growth rate during the kinematic regime approaches
an asymptotic value as � is increased (Archontis, Dorch, and
Nordlund, 2003; Mininni, Gómez, and Mahajan, 2004).

In this first stage, the magnetic energy is still weak and the
velocity field is not strongly affected by the Lorentz force.
As a result, during the exponential growth of magnetic en-
ergy the kinetic energy remains approximately constant. The
evolution in the kinematic regime can be explained using
the mean field induction equation (Steenbeck, Krause, and
Rädler, 1966; Krause and Rädler, 1980)� ����	�¥��
	¦ ��
 �Q� � �¨§©��� j fªf � � � L (8)

Here the overline denotes mean field quantities (defined us-
ing an average satisfying Taylor’s hypothesis), and

� j f�f is the

Fig. 4. Kinetic (above) and magnetic energy (below) as a func-
tion of time, for simulations with different Reynolds numbers
(kf orce=3).

external helical force in the Navier-Stokes equation, to study
the growth of magnetic energy due to dynamo action.

In a flow capable of dynamo action, amplification only
takes place when the magnetic Reynolds numberRm=0L0/η

is larger than a critical value. For helical flows this thresh-
old is small (Rc

≈1, seeGalanti et al.(1992); Brandenburg
(2001); Brandenburg and Subramanian(2004)), and all the
simulations we consider are well above the critical case. The
simulations we show are also for magnetic Prandtl number
Pm=ν/η=1, and thereforeRm=R.

Under these conditions, after a short time while magnetic
energy is redistributed in Fourier space, the magnetic field
grows exponentially as a function of time. Figure4 shows
the magnetic and kinetic energy as a function of time for
simulations with different Reynolds numbers andkf orce=3.
During this kinematic stage, the r.m.s. value for the velocity

isU0=
〈
U2
〉1/2

≈6. The turnover time for the energy contain-
ing eddies (kf orce=3) is then approximately equal to1t=0.3.
Therefore, as shown in Fig.4, the kinematic regime lasts for
about ten to twenty turnover times. Note also that the growth
rate during the kinematic regime approaches an asymptotic
value asR is increased (Archontis et al., 2003; Mininni et
al., 2004).

In this first stage, the magnetic energy is still weak and the
velocity field is not strongly affected by the Lorentz force.
As a result, during the exponential growth of magnetic en-
ergy the kinetic energy remains approximately constant. The
evolution in the kinematic regime can be explained using the
mean field induction equation (Steenbeck et al., 1966; Krause
and R̈adler, 1980)

∂B

∂t
= ∇×

(
U×B + αB

)
+ ηeff ∇

2B. (8)

Here the overline denotes mean field quantities (defined us-
ing an average satisfying Taylor’s hypothesis), andηeff is
the effective turbulent diffusivity. Theα-effect (Pouquet et
al., 1976)

α =
τ

3

(
−u · ω + b · j

)
, (9)



D. O. Gómez and P. D. Mininni: Simulations of helical dynamo action 623
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Fig. 5. Spectrum of magnetic energy during the kinematic regime,
in a simulation with }V~��o�����«�¥� and �¥�)�N�T� ( �����T� grid points).
Starting at ¬­�.� (below) up to ¬­���V® � (above), the time interval
between different spectra is ¯°¬����d® � . All the modes grow with the
same growth rate. The time ¬ corresponds to the one showed in Fig-
ures 4 and 7. The Kazantsev slope }±��²o³ is displayed for reference.

effective turbulent diffusivity. The � -effect (Pouquet, Frisch,
and Léorat, 1976)� ��´Z ¦i� µ��¶s � · �i¸ § , (9)

represents the back-reaction of the turbulent motions in the
mean field. Here µ and

·
are respectively the small-scale ve-

locity and magnetic fields, s¹�U�?P�µ and ¸��U�?P ·
are

the small-scale vorticity and current, and ´ is a typical corre-
lation time for these turbulent motions. Attempts to measure
this quantity in direct simulations using different methods
can be found in Cattaneo and Hughes (1996), and Branden-
burg (2001). In the absence of a mean flow � , equation (9)
predicts an exponential growth above a certain threshold if�5º�51 (as it is the case in helical turbulence).

In the kinematic regime, all the magnetic modes grow with
the same rate (Figure 5), and the spectrum of magnetic en-
ergy is peaked at small scales. As � is increased, the peak in
the spectrum moves to smaller scales (Figure 6), but the ratio
between the amplitudes of the large scale modes ( [ � 7 , % )
is virtually unchanged. The Kazantsev spectrum (Kazant-
sev, 1968), which corresponds to a random velocity field � -
correlated in time, is displayed in Figure 5 for reference. Al-
though the hypothesis behind this spectrum are not satisfied,
a qualitative agreement can be observed, as has also been re-
ported by Haugen, Brandenburg, and Dobler (2004).

Magnetic helicity (Figure 7) also grows exponentially dur-
ing the kinematic regime, and with a sign which is opposite
to the one of the kinetic helicity of the flow. This growth of
magnetic helicity can also be explained using the � -effect.
From equations (1), (4) and (6), the net magnetic helicity
is conserved except for magnetic diffusion events at small
scales< BDC<d�»�t� % � : � � �Q< a¶¼ L (10)

Fig. 6. Spectrum of magnetic energy during the kinematic regime
( ¬��r� ), in simulations with }d~��o�k���I�¹� and different Reynolds
numbers.

But at large scales the � effect can inject helicity on the mean
field (Seehafer, 1996). From equation (8) we obtain for the
time evolution of the mean field magnetic helicity< B C<±�½� % : � � $ � � � j fªf � � ���o< a�¼ L (11)

This equation represents a transfer of magnetic helicity from
small scales to large scales. Since the net magnetic helicity
is conserved, and the initial helicity is zero, magnetic helic-
ity of different signs is segregated in different spatial scales,
or different wavenumbers in Fourier space. The � -effect is
responsible for this process. It creates equal but opposite
amounts of magnetic helicity in the small and large scales.
The spectra of magnetic helicity confirm this (Figure 8). But
magnetic diffusion destroys the small scale magnetic helicity
in reconnection events, leaving a net helicity of opposite sign
at large scales (Brandenburg, 2001).

Note that from equation (11) the mean magnetic helicity
has the same sign as the � coefficient, and therefore (from
equation (9)) the sign opposite to that of kinetic helicity. The
signs shown in Figure 7 are in good agreement with this re-
lation.

This effect is expected to decrease as the magnetic
Reynolds number � C is increased. Moreover, several au-
thors claim that the total magnetic helicity generated by the� -effect must approach zero in the high � C limit (Gilbert,
2002; Hughes, Cattaneo, and Kim, 1996; Brandenburg and
Subramanian, 2004). However, as it is also observed in
the growth of magnetic energy, the growth rate of magnetic
helicity during the kinematic regime approaches an asymp-
totic value as � is increased (Mininni, Gómez, and Mahajan,
2004).

3.3 Saturation of the dynamo

When the Lorentz force is strong enough, saturation takes
place and the magnetic energy stops growing exponentially
(see Figure 4). Since the kinetic energy spectrum follows a

Fig. 5. Spectrum of magnetic energy during the kinematic regime,
in a simulation withkf orce=3 andR=560 (2563 grid points). Start-
ing at t=1 (below) up tot=2.5 (above), the time interval between
different spectra is1t=0.3. All the modes grow with the same
growth rate. The timet corresponds to the one showed in Figs.4
and7. The Kazantsev slopek3/2 is displayed for reference.

represents the back-reaction of the turbulent motions in the
mean field. Hereu and b are respectively the small-scale
velocity and magnetic fields,ω=∇×u andj=∇×b are the
small-scale vorticity and current, andτ is a typical correla-
tion time for these turbulent motions. Attempts to measure
this quantity in direct simulations using different methods
can be found inCattaneo and Hughes(1996), andBranden-
burg (2001). In the absence of a mean flowU , Eq. (9) pre-
dicts an exponential growth above a certain threshold ifα 6=0
(as it is the case in helical turbulence).

In the kinematic regime, all the magnetic modes grow with
the same rate (Fig.5), and the spectrum of magnetic energy
is peaked at small scales. AsR is increased, the peak in
the spectrum moves to smaller scales (Fig.6), but the ratio
between the amplitudes of the large scale modes (k=1, 2)
is virtually unchanged. The Kazantsev spectrum (Kazant-
sev, 1968), which corresponds to a random velocity fieldδ-
correlated in time, is displayed in Fig.5 for reference. Al-
though the hypothesis behind this spectrum are not satisfied,
a qualitative agreement can be observed, as has also been re-
ported byHaugen et al.(2004).

Magnetic helicity (Fig.7) also grows exponentially during
the kinematic regime, and with a sign which is opposite to
the one of the kinetic helicity of the flow. This growth of
magnetic helicity can also be explained using theα-effect.
From Eqs. (1, 4 and6), the net magnetic helicity is conserved
except for magnetic diffusion events at small scales

dHm

dt
= −2η

∫
J · B d3x . (10)

But at large scales theα effect can inject helicity on the mean
field (Seehafer, 1996). From Eq. (8) we obtain for the time
evolution of the mean field magnetic helicity

dHm

dt
= 2

∫
(αB

2
− ηeff J · B)d3x . (11)
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and Léorat, 1976)� ��´Z ¦i� µ��¶s � · �i¸ § , (9)

represents the back-reaction of the turbulent motions in the
mean field. Here µ and

·
are respectively the small-scale ve-

locity and magnetic fields, s¹�U�?P�µ and ¸��U�?P ·
are
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lation time for these turbulent motions. Attempts to measure
this quantity in direct simulations using different methods
can be found in Cattaneo and Hughes (1996), and Branden-
burg (2001). In the absence of a mean flow � , equation (9)
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sev, 1968), which corresponds to a random velocity field � -
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though the hypothesis behind this spectrum are not satisfied,
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to the one of the kinetic helicity of the flow. This growth of
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But at large scales the � effect can inject helicity on the mean
field (Seehafer, 1996). From equation (8) we obtain for the
time evolution of the mean field magnetic helicity< B C<±�½� % : � � $ � � � j fªf � � ���o< a�¼ L (11)

This equation represents a transfer of magnetic helicity from
small scales to large scales. Since the net magnetic helicity
is conserved, and the initial helicity is zero, magnetic helic-
ity of different signs is segregated in different spatial scales,
or different wavenumbers in Fourier space. The � -effect is
responsible for this process. It creates equal but opposite
amounts of magnetic helicity in the small and large scales.
The spectra of magnetic helicity confirm this (Figure 8). But
magnetic diffusion destroys the small scale magnetic helicity
in reconnection events, leaving a net helicity of opposite sign
at large scales (Brandenburg, 2001).

Note that from equation (11) the mean magnetic helicity
has the same sign as the � coefficient, and therefore (from
equation (9)) the sign opposite to that of kinetic helicity. The
signs shown in Figure 7 are in good agreement with this re-
lation.

This effect is expected to decrease as the magnetic
Reynolds number � C is increased. Moreover, several au-
thors claim that the total magnetic helicity generated by the� -effect must approach zero in the high � C limit (Gilbert,
2002; Hughes, Cattaneo, and Kim, 1996; Brandenburg and
Subramanian, 2004). However, as it is also observed in
the growth of magnetic energy, the growth rate of magnetic
helicity during the kinematic regime approaches an asymp-
totic value as � is increased (Mininni, Gómez, and Mahajan,
2004).

3.3 Saturation of the dynamo

When the Lorentz force is strong enough, saturation takes
place and the magnetic energy stops growing exponentially
(see Figure 4). Since the kinetic energy spectrum follows a

Fig. 6. Spectrum of magnetic energy during the kinematic regime
(t=2), in simulations withkf orce=3 and different Reynolds num-
bers.

This equation represents a transfer of magnetic helicity from
small scales to large scales. Since the net magnetic helicity
is conserved, and the initial helicity is zero, magnetic helic-
ity of different signs is segregated in different spatial scales,
or different wavenumbers in Fourier space. Theα-effect is
responsible for this process. It creates equal but opposite
amounts of magnetic helicity in the small and large scales.
The spectra of magnetic helicity confirm this (Fig.8). But
magnetic diffusion destroys the small scale magnetic helicity
in reconnection events, leaving a net helicity of opposite sign
at large scales (Brandenburg, 2001).

Note that from Eq. (11) the mean magnetic helicity has the
same sign as theα coefficient, and therefore (from Eq.9) the
sign opposite to that of kinetic helicity. The signs shown in
Fig. 7 are in good agreement with this relation.

This effect is expected to decrease as the magnetic
Reynolds numberRm is increased. Moreover, several au-
thors claim that the total magnetic helicity generated by the
α-effect must approach zero in the highRm limit (Gilbert,
2002; Hughes et al., 1996; Brandenburg and Subramanian,
2004). However, as it is also observed in the growth of mag-
netic energy, the growth rate of magnetic helicity during the
kinematic regime approaches an asymptotic value asR is in-
creased (Mininni et al., 2004).

3.3 Saturation of the dynamo

When the Lorentz force is strong enough, saturation takes
place and the magnetic energy stops growing exponentially
(see Fig.4). Since the kinetic energy spectrum follows a
power lawk−5/3, and during the kinematic regime all the
magnetic modes grow with the same rate peaking at small
scales (Figs.5 and6), saturation takes place first at the small
scales. This was predicted byPouquet et al.(1976) using the
EDQNM closure. Indeed, Eq. (9) shows that theα-effect is
quenched by the termj×b, proportional to the current helic-
ity at small scales.
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Fig. 7. Evolution of magnetic helicity (negative), in dynamo simu-
lations with different Reynolds numbers ( }d~_�o�k���¾��� ).

Fig. 8. Spectrum of magnetic helicity at ¬©�¥� , normalized by the
magnetic energy at each } . Note the peak and the change in sign
close to }V~��i�k��� . Large scales are dominated by negative magnetic
helicity, while the kinetic helicity of the flow is positive at all scales
(see e.g. Figure 1.b).

power law [O��� | a , and during the kinematic regime all the
magnetic modes grow with the same rate peaking at small
scales (Figures 5 and 6), saturation takes place first at the
small scales. This was predicted by Pouquet, Frisch, and
Léorat (1976) using the EDQNM closure. Indeed, equation
(9) shows that the � -effect is quenched by the term ¸�P ·

,
proportional to the current helicity at small scales.

During and after the saturation, the magnetic field is
stronger than the velocity field at small scales (Figure 9).
Note that the kinetic energy spectrum at small scales is
quenched by the Lorentz force, and therefore velocity fluc-
tuations at small scales are suppressed by the growing mag-
netic field. The kinetic energy spectrum deviates from the
Kolmogorov’s law, and its slope is steeper than � c SJZ (see
Figure 9.b).

This effect can be seen more clearly as the Reynolds num-
ber and the scale separation between the energy injection
band and the small scales are increased (Mininni, Gómez,

Fig. 9. Spectrum of kinetic (solid lines) and magnetic energy
(dashed lines) during saturation at small scales, in a simulation with}V~��i�k���¢��� and �����T��� : (a) ¬��
� , (b) ¬���¿ , and (c) ¬���À .

and Mahajan, 2004). Figure 10 shows the compensated en-
ergy spectrum

6 � [ � [#� | aTÁN� � | a in a simulation with [nf/gih Hkj �Z and � � cVe 1 , where Á is the energy injection rate. If the
energy spectrum

6 � [ � follows a Kolmogorov’s law in the in-
ertial range

6 � [ � �	m©Â Á � | a [ ��� | a , (12)

then the compensated spectrum should be flat in this range,
and its amplitude corresponds to the Kolmogorov’s constantmÃÂ .

As can be seen from Figure 10, small scales are dominated
by the magnetic energy, and the kinetic energy spectrum is
steeper than � c SVZ during the saturation. However, the total
energy spectrum follows a Kolmogorov’s law. This power
law is satisfied by the total energy during the complete evo-
lution of the dynamo (kinematic regime, saturation, and final
state).

Fig. 7. Evolution of magnetic helicity (negative), in dynamo simu-
lations with different Reynolds numbers (kf orce=3).
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(see e.g. Figure 1.b).

power law [O��� | a , and during the kinematic regime all the
magnetic modes grow with the same rate peaking at small
scales (Figures 5 and 6), saturation takes place first at the
small scales. This was predicted by Pouquet, Frisch, and
Léorat (1976) using the EDQNM closure. Indeed, equation
(9) shows that the � -effect is quenched by the term ¸�P ·

,
proportional to the current helicity at small scales.

During and after the saturation, the magnetic field is
stronger than the velocity field at small scales (Figure 9).
Note that the kinetic energy spectrum at small scales is
quenched by the Lorentz force, and therefore velocity fluc-
tuations at small scales are suppressed by the growing mag-
netic field. The kinetic energy spectrum deviates from the
Kolmogorov’s law, and its slope is steeper than � c SJZ (see
Figure 9.b).

This effect can be seen more clearly as the Reynolds num-
ber and the scale separation between the energy injection
band and the small scales are increased (Mininni, Gómez,

Fig. 9. Spectrum of kinetic (solid lines) and magnetic energy
(dashed lines) during saturation at small scales, in a simulation with}V~��i�k���¢��� and �����T��� : (a) ¬��
� , (b) ¬���¿ , and (c) ¬���À .

and Mahajan, 2004). Figure 10 shows the compensated en-
ergy spectrum

6 � [ � [#� | aTÁN� � | a in a simulation with [nf/gih Hkj �Z and � � cVe 1 , where Á is the energy injection rate. If the
energy spectrum

6 � [ � follows a Kolmogorov’s law in the in-
ertial range

6 � [ � �	m©Â Á � | a [ ��� | a , (12)

then the compensated spectrum should be flat in this range,
and its amplitude corresponds to the Kolmogorov’s constantmÃÂ .

As can be seen from Figure 10, small scales are dominated
by the magnetic energy, and the kinetic energy spectrum is
steeper than � c SVZ during the saturation. However, the total
energy spectrum follows a Kolmogorov’s law. This power
law is satisfied by the total energy during the complete evo-
lution of the dynamo (kinematic regime, saturation, and final
state).

Fig. 8. Spectrum of magnetic helicity att=5, normalized by the
magnetic energy at eachk. Note the peak and the change in sign
close tokf orce. Large scales are dominated by negative magnetic
helicity, while the kinetic helicity of the flow is positive at all scales
(see e.g. Fig.1b).

During and after the saturation, the magnetic field is
stronger than the velocity field at small scales (Fig.9). Note
that the kinetic energy spectrum at small scales is quenched
by the Lorentz force, and therefore velocity fluctuations at
small scales are suppressed by the growing magnetic field.
The kinetic energy spectrum deviates from the Kolmogorov’s
law, and its slope is steeper than−5/3 (see Fig.9b).

This effect can be seen more clearly as the Reynolds
number and the scale separation between the energy injec-
tion band and the small scales are increased (Mininni et al.,
2004). Figure10 shows the compensated energy spectrum
E(k)k5/3ε−2/3 in a simulation withkf orce=3 andR=560,
whereε is the energy injection rate. If the energy spectrum
E(k) follows a Kolmogorov’s law in the inertial range

E(k) = CKε2/3k−5/3 , (12)

then the compensated spectrum should be flat in this range,
and its amplitude corresponds to the Kolmogorov’s constant
CK .
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magnetic energy at each } . Note the peak and the change in sign
close to }V~��i�k��� . Large scales are dominated by negative magnetic
helicity, while the kinetic helicity of the flow is positive at all scales
(see e.g. Figure 1.b).

power law [O��� | a , and during the kinematic regime all the
magnetic modes grow with the same rate peaking at small
scales (Figures 5 and 6), saturation takes place first at the
small scales. This was predicted by Pouquet, Frisch, and
Léorat (1976) using the EDQNM closure. Indeed, equation
(9) shows that the � -effect is quenched by the term ¸�P ·

,
proportional to the current helicity at small scales.

During and after the saturation, the magnetic field is
stronger than the velocity field at small scales (Figure 9).
Note that the kinetic energy spectrum at small scales is
quenched by the Lorentz force, and therefore velocity fluc-
tuations at small scales are suppressed by the growing mag-
netic field. The kinetic energy spectrum deviates from the
Kolmogorov’s law, and its slope is steeper than � c SJZ (see
Figure 9.b).

This effect can be seen more clearly as the Reynolds num-
ber and the scale separation between the energy injection
band and the small scales are increased (Mininni, Gómez,

Fig. 9. Spectrum of kinetic (solid lines) and magnetic energy
(dashed lines) during saturation at small scales, in a simulation with}V~��i�k���¢��� and �����T��� : (a) ¬��
� , (b) ¬���¿ , and (c) ¬���À .

and Mahajan, 2004). Figure 10 shows the compensated en-
ergy spectrum

6 � [ � [#� | aTÁN� � | a in a simulation with [nf/gih Hkj �Z and � � cVe 1 , where Á is the energy injection rate. If the
energy spectrum

6 � [ � follows a Kolmogorov’s law in the in-
ertial range

6 � [ � �	m©Â Á � | a [ ��� | a , (12)

then the compensated spectrum should be flat in this range,
and its amplitude corresponds to the Kolmogorov’s constantmÃÂ .

As can be seen from Figure 10, small scales are dominated
by the magnetic energy, and the kinetic energy spectrum is
steeper than � c SVZ during the saturation. However, the total
energy spectrum follows a Kolmogorov’s law. This power
law is satisfied by the total energy during the complete evo-
lution of the dynamo (kinematic regime, saturation, and final
state).

Fig. 9. Spectrum of kinetic (solid lines) and magnetic energy
(dashed lines) during saturation at small scales, in a simulation with
kf orce=3 andR=300: (a) t=5, (b) t=7, and(c) t=9.

As can be seen from Fig.10, small scales are dominated
by the magnetic energy, and the kinetic energy spectrum is
steeper than−5/3 during the saturation. However, the total
energy spectrum follows a Kolmogorov’s law. This power
law is satisfied by the total energy during the complete evo-
lution of the dynamo (kinematic regime, saturation, and final
state).

3.4 Large scale magnetic field

Note that the saturation of the magnetic energy spectrum is
only partial (Fig.9). The magnetic field at small scales stops
to grow. But if there is enough scale separation between
kf orce and the largest scale in the box (k=1), the magnetic
energy at large scales keeps growing slowly (not exponen-
tially), as shown in Fig.11. While no changes can be ob-
served in the magnetic spectrum at wavenumbers larger than
kf orce, the amplitude of the magnetic field in the shellk=1
increases with time. The effect is more clear askf orce is
increased, and gives rise to a slow saturation (Brandenburg,
2001; Brandenburg and Dobler, 2002) of the total magnetic
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Fig. 10. Compensated spectrum of kinetic, magnetic and total en-
ergy after saturation ( ¬©�5� ), in a simulation with }d~��o�����]�5� and���
�N�T� .

3.4 Large scale magnetic field

Note that the saturation of the magnetic energy spectrum is
only partial (Figure 9). The magnetic field at small scales
stops to grow. But if there is enough scale separation be-
tween [ fTgih Hkj and the largest scale in the box ( [ � 7 ), the
magnetic energy at large scales keeps growing slowly (not
exponentially), as shown in Figure 11. While no changes
can be observed in the magnetic spectrum at wavenumbers
larger than [nf/goh Hkj , the amplitude of the magnetic field in the
shell [ � 7 increases with time. The effect is more clear as[nf/goh Hkj is increased, and gives rise to a slow saturation (Bran-
denburg, 2001; Brandenburg and Dobler, 2002) of the total
magnetic energy (see Figure 4). The increase of magnetic en-
ergy at large scales can also be observed in real space (Figure
12).

The large scale magnetic field ( [ � 7 ) is an approximately
force-free field. Neglecting the mean flow � , assuming a
solution of the form� � � 3�Ä/ÅÇÆÉÈ_Ê Ë4Ì�Í/Î , (13)

and replacing in the mean field equation (8), we finally obtainÏ � Æ 3 P � 3 � ¦�Ð ��� j f�fn[ � § � 3 L (14)

This equation is satisfied if
� 3 is an eigenvector of the curl

operator, �WP � 3 �MÑ [d3 � 3 . Note that in this case the
Lorentz force � P �

at large scales is zero, and the hypoth-
esis of negligible mean flow is consistent with the solution.
Equation (14) only holds during the kinematic regime. How-
ever figure 11.b shows that in the saturated state the spectrum
at large scales is dominated by magnetic energy as [=f/gih Hkj is
increased, and Meneguzzi, Frisch, and Pouquet (1981) and
Brandenburg (2001) verified in DNS of helical dynamo ac-
tion that the magnetic field at [ � 7 is a force-free field.

Using this result, and the asymptotic conservation of
magnetic helicity from equation (10), Brandenburg (2001)
showed that the saturation of the amplitude of the large scale
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Fig. 11. Magnetic energy spectrum (thin lines) as a function of
time (from ¬q�X¿ up to ¬q�X�N� , time as in Figure 4), and kinetic
energy spectrum at late times (thick line), during the last stage of
the saturation of the dynamo: (a) }d~��o�k���Û�U� and �U�U�T��� , (b)}V~��i�k���Û�¹�_� and �U������� . Note the slow increase of magnetic
energy at }9�+� .
The time evolution of the amplitude of the large scale mag-
netic field from DNS shows a good agreement with this re-
lation (Brandenburg, 2001). Equation (15) indicates that the
saturation of the large scale field takes place in a resistive
time scale, and is dominated by the evolution of magnetic
helicity.

Due to this build up of a coherent magnetic field with
a correlation length of the size of the box, helical dy-
namos (considered as dynamos produced by flows mostly
dominated by one sign of kinetic helicity, as discussed
at the beginning of this section) are often called “large
scale dynamos”. This name is used in the literature in
opposition to “small scale dynamos” where a non-helical
flow is studied (Kazantsev, 1968; Zeldovich, Ruzmaikin,

Fig. 10. Compensated spectrum of kinetic, magnetic and total
energy after saturation (t=6), in a simulation withkf orce=3 and
R=560.

energy (see Fig.4). The increase of magnetic energy at large
scales can also be observed in real space (Fig.12).

The large scale magnetic field (k=1) is an approximately
force-free field. Neglecting the mean flowU , assuming a
solution of the form

B = B0 eik0·x+σ t , (13)

and replacing in the mean field Eq. (8), we finally obtain

iαk0 × B0 =

(
σ + ηeff k2

)
B0 . (14)

This equation is satisfied ifB0 is an eigenvector of the curl
operator,∇×B0=±k0B0. Note that in this case the Lorentz
force J×B at large scales is zero, and the hypothesis of
negligible mean flow is consistent with the solution. Equa-
tion (14) only holds during the kinematic regime. How-
ever Fig.11b shows that in the saturated state the spectrum
at large scales is dominated by magnetic energy askf orce

is increased, andMeneguzzi et al.(1981) andBrandenburg
(2001) verified in DNS of helical dynamo action that the
magnetic field atk=1 is a force-free field.

Using this result, and the asymptotic conservation of mag-
netic helicity from Eq. (10), Brandenburg(2001) showed that
the saturation of the amplitude of the large scale magnetic
field is achieved as

B(t) = B0

[
1 − e−2ηk2

0(t−tsat )
]

. (15)

The time evolution of the amplitude of the large scale mag-
netic field from DNS shows a good agreement with this re-
lation (Brandenburg, 2001). Equation (15) indicates that the
saturation of the large scale field takes place in a resistive
time scale, and is dominated by the evolution of magnetic
helicity.

Due to this build up of a coherent magnetic field with a cor-
relation length of the size of the box, helical dynamos (con-
sidered as dynamos produced by flows mostly dominated by
one sign of kinetic helicity, as discussed at the beginning of
this section) are often called “large scale dynamos”. This
name is used in the literature in opposition to “small scale
dynamos” where a non-helical flow is studied (Kazantsev,
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Fig. 10. Compensated spectrum of kinetic, magnetic and total en-
ergy after saturation ( ¬©�5� ), in a simulation with }d~��o�����]�5� and���
�N�T� .
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magnetic energy (see Figure 4). The increase of magnetic en-
ergy at large scales can also be observed in real space (Figure
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at large scales is zero, and the hypoth-
esis of negligible mean flow is consistent with the solution.
Equation (14) only holds during the kinematic regime. How-
ever figure 11.b shows that in the saturated state the spectrum
at large scales is dominated by magnetic energy as [=f/gih Hkj is
increased, and Meneguzzi, Frisch, and Pouquet (1981) and
Brandenburg (2001) verified in DNS of helical dynamo ac-
tion that the magnetic field at [ � 7 is a force-free field.

Using this result, and the asymptotic conservation of
magnetic helicity from equation (10), Brandenburg (2001)
showed that the saturation of the amplitude of the large scale
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Fig. 11. Magnetic energy spectrum (thin lines) as a function of
time (from ¬q�X¿ up to ¬q�X�N� , time as in Figure 4), and kinetic
energy spectrum at late times (thick line), during the last stage of
the saturation of the dynamo: (a) }d~��o�k���Û�U� and �U�U�T��� , (b)}V~��i�k���Û�¹�_� and �U������� . Note the slow increase of magnetic
energy at }9�+� .
The time evolution of the amplitude of the large scale mag-
netic field from DNS shows a good agreement with this re-
lation (Brandenburg, 2001). Equation (15) indicates that the
saturation of the large scale field takes place in a resistive
time scale, and is dominated by the evolution of magnetic
helicity.

Due to this build up of a coherent magnetic field with
a correlation length of the size of the box, helical dy-
namos (considered as dynamos produced by flows mostly
dominated by one sign of kinetic helicity, as discussed
at the beginning of this section) are often called “large
scale dynamos”. This name is used in the literature in
opposition to “small scale dynamos” where a non-helical
flow is studied (Kazantsev, 1968; Zeldovich, Ruzmaikin,

Fig. 11.Magnetic energy spectrum (thin lines) as a function of time
(from t=7 up tot=20, time as in Fig.4), and kinetic energy spectrum
at late times (thick line), during the last stage of the saturation of the
dynamo:(a) kf orce=3 andR=300,(b) kf orce=10 andR=220. Note
the slow increase of magnetic energy atk=1.

1968; Zeldovichet al., 1983; Schekochihin et al., 2001, 2004;
Haugen et al., 2003), and the magnetic field generated is cor-
related on scales much smaller than the energy containing
scales of the turbulence. However, we want to point out that
a large scale magnetic field can in some cases be generated
without fully helical turbulence or a netα-effect. Anisotropic
flows can generate large scale magnetic fields (Nore et al.,
1997). As another example, in mean field theory there are
terms in the mean electromotive force that can build a mean
field when theα coefficient is zero (Urpin, 2002). Theω×j

term in this expansion is also known to generate large scale
magnetic fields (Geppert and Rheinhardt, 2002).
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Fig. 12. Spatial density of magnetic energy in a MHD dynamo sim-
ulation, at early times (above) and during the saturation (below).
The increase in the amplitude of the field and in the correlation
length can be observed.

and Sokoloff, 1983; Schekochihin, Cowley, Maron, and
Malyshkin, 2001; Schekochihin, Cowley, Taylor, Hammett,
Maron, and McWilliams, 2004; Haugen, Brandenburg, and
Dobler, 2003), and the magnetic field generated is correlated
on scales much smaller than the energy containing scales of
the turbulence. However, we want to point out that a large
scale magnetic field can in some cases be generated with-
out fully helical turbulence or a net � -effect. Anisotropic
flows can generate large scale magnetic fields (Nore, Bra-
chet, Politano, and Pouquet , 1997). As another example, in
mean field theory there are terms in the mean electromotive
force that can build a mean field when the � coefficient is

zero (Urpin, 2002). The stP�¸ term in this expansion is also
known to generate large scale magnetic fields (Geppert and
Rheinhardt, 2002).

4 Beyond the MHD approximation

One-fluid MHD, as presented in equations (1) and (2) and
used in the previous section, is the standard framework used
for describing dynamo action in astronomical objects. It is
a good approximation for the solar dynamo and the geody-
namo (Priest and Forbes, 2000). Also, one-fluid MHD often
turns out to be a reasonable description of the large scale bulk
dynamics of the fluid, as long as the fluid does not support a
significant electric field in its own frame of reference. In ide-
alized DNS of dynamo action, MHD is often used to obtain a
larger scale separation, since the introduction of two-fluid ef-
fects would increase the computer resources needed to carry
out the simulations.

The increase of computing power in the last years allowed
the study of some extensions to the MHD dynamo theory,
relevant in some astrophysical scenarios characterized by
low temperatures, partial ionization, or collisionless plasmas.
MHD cannot be expected to properly describe these plasmas
because it fails to distinguish the relative motions between
different species. A first step toward creating a more appro-
priate theory for these objects might be to include the dom-
inant two-fluid effects considering a generalized Ohm’s law.
The most relevant effects for astrophysical applications are
ambipolar diffusion and the Hall effect (Zweibel, 1988; War-
dle, 1999; Wardle and Ng, 1999; Balbus and Terquem, 2001;
Sano and Stone, 2002). In this section, we will discuss recent
extensions of dynamo theory to include these effects.

4.1 Ambipolar diffusion

Ambipolar diffusion is important in the evolution of mag-
netic fields in protostars, proto-planetary circumstellar disks,
as well as in the case of the galactic gas (Zweibel, 1988,
2002; Sano and Stone, 2002; Brandenburg and Subramanian,
2004). It is also relevant in the evolution of magnetic clouds
(Zeldovich, Ruzmaikin, and Sokoloff, 1983). In the interstel-
lar medium, ambipolar diffusion is believed to be the princi-
pal mechanism responsible for breaking the frozen-in condi-
tion for the magnetic field.

The ambipolar drift occurs because the magnetic field lines
are attached to the plasma ions but not to the neutrals. The
Lorentz force acting over the magnetized ions generates a
drift between the ions and the neutrals. If collisions are fre-
quent, the Lorentz force acting on the ions is balanced by
collisions with the neutrals. Under these assumptions, in a
partially ionized medium with the bulk velocity � dominated
by the neutrals, the induction equation (1) takes the form������	�¥��
(ÜÝ�k� �
Þ � P �¨� 
 �àß���� ��� � , (16)

where
Þ �á�ªâ Åªã#Ååä � � z . Here, â Å is the ion mass density,

and ã#Ååä is the collision frequency between ions and neutrals.

Fig. 12.Spatial density of magnetic energy in a MHD dynamo sim-
ulation, at early times (above) and during the saturation (below).
The increase in the amplitude of the field and in the correlation
length can be observed.

4 Beyond the MHD approximation

One-fluid MHD, as presented in Eqs. (1 and 2) and used
in the previous section, is the standard framework used for
describing dynamo action in astronomical objects. It is a
good approximation for the solar dynamo and the geody-
namo (Priest and Forbes, 2000). Also, one-fluid MHD often
turns out to be a reasonable description of the large scale bulk
dynamics of the fluid, as long as the fluid does not support a
significant electric field in its own frame of reference. In ide-
alized DNS of dynamo action, MHD is often used to obtain a
larger scale separation, since the introduction of two-fluid ef-
fects would increase the computer resources needed to carry
out the simulations.

The increase of computing power in the last years allowed
the study of some extensions to the MHD dynamo theory,
relevant in some astrophysical scenarios characterized by
low temperatures, partial ionization, or collisionless plasmas.
MHD cannot be expected to properly describe these plasmas
because it fails to distinguish the relative motions between
different species. A first step toward creating a more appro-
priate theory for these objects might be to include the dom-
inant two-fluid effects considering a generalized Ohm’s law.
The most relevant effects for astrophysical applications are
ambipolar diffusion and the Hall effect (Zweibel, 1988; War-
dle, 1999; Wardle and Ng, 1999; Balbus and Terquem, 2001;
Sano and Stone, 2002). In this section, we will discuss recent
extensions of dynamo theory to include these effects.

4.1 Ambipolar diffusion

Ambipolar diffusion is important in the evolution of mag-
netic fields in protostars, proto-planetary circumstellar disks,
as well as in the case of the galactic gas (Zweibel, 1988,
2002; Sano and Stone, 2002; Brandenburg and Subramanian,
2004). It is also relevant in the evolution of magnetic clouds
(Zeldovichet al., 1983). In the interstellar medium, ambipo-
lar diffusion is believed to be the principal mechanism re-
sponsible for breaking the frozen-in condition for the mag-
netic field.

The ambipolar drift occurs because the magnetic field lines
are attached to the plasma ions but not to the neutrals. The
Lorentz force acting over the magnetized ions generates a
drift between the ions and the neutrals. If collisions are fre-
quent, the Lorentz force acting on the ions is balanced by
collisions with the neutrals. Under these assumptions, in a
partially ionized medium with the bulk velocityU dominated
by the neutrals, the induction equation (1) takes the form

∂B

∂t
= ∇× [(U + λJ × B)×B] + η∇

2B , (16)

whereλ=(ρiυin)
−1. Here,ρi is the ion mass density, andυin

is the collision frequency between ions and neutrals. Note
that in this approximationU i=U+λJ×B is the velocity of
the ions, and Eq. (16) expresses that the magnetic field lines
in the ideal case (i.e.η=0) are frozen to the ion velocity field.

Simulations with this modified version of the induction
equation have been made within the context of reconnec-
tion in the interstellar medium (Zweibel and Brandenburg,
1997), and the generation of sharp fronts together with a
change in the reconnection rate of magnetic fields were ob-
served. The effect of ambipolar diffusion in the dynamo was
studied using a simplified model byZweibel (1988), and an
α-effect was recovered from Eq. (16). It was shown that
helical turbulence can amplify a magnetic field under these
conditions, and ambipolar diffusion can alleviate the need
of large turbulent diffusivity in some numerical models of
galactic dynamos. More recentlyBrandenburg and Subra-
manian(2000) confirmed the existence of anα-effect con-
tributed by ambipolar diffusion, using both direct simulations
in a periodic box and a closure model.
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4.2 The Hall effect

The Hall effect is relevant in dense molecular clouds (Wardle
and Ng, 1999), in accretion disks (including proto-planetary
disks) (Wardle, 1999; Balbus and Terquem, 2001; Sano and
Stone, 2002), in white dwarfs and neutron stars (Yakovlev
and Urpin, 1980; Muslimov, 1994; Geppert and Rheinhardt,
2002; Geppertet et al., 2003), and in the early universe
(Tajima et al., 1992). Recently, the impact of the Hall cur-
rent on the dynamo effect was also measured in the labora-
tory (Ding et al., 2004).

With the inclusion of the Hall effect, the induction equa-
tion (1) reads

∂B

∂t
= ∇× [(U − εJ ) ×B] + η∇

2B , (17)

The Hall termεJ×B is the manifestation of the difference
in velocity between ions and electrons. Indeed, in a two-
species quasi-neutral electron-ion plasmaU e=U−εJ is the
electron velocity. From Eq. (17), whenη=0 the magnetic
field is frozen to the velocity field, instead of the bulk veloc-
ity U as is the case in one-fluid MHD.

Assuming the characteristic velocity equal to the Alfvén
velocity, the intensity of the Hall effect is given by
ε=c/(ωpiL0). Herec is the speed of light, andωpi is the ion
plasma frequency. Note thatc/ωpi has dimensions of length
(the ion skin depth), and corresponds to the lenghtscale
where the Hall effect becomes non-negligible. General ex-
pressions forε, as well as characteristic values for astrophys-
ical objects can be found inMininni et al. (2003).

Since in Eq. (17) the magnetic field is stretched by the
electron velocity fieldU e rather than the bulk velocity field
U , and these velocities can be quite different, the Hall term
is expected to impact on dynamo mechanisms. The influence
of the Hall effect on the dynamo was studied in simplified
models byHeintzmann(1983), and byGalanti et al.(1994).

Using mean field theory,Mininni et al.(2002) showed that
a helical flow can amplify a magnetic field in the Hall-MHD
framework, and obtained a generalized expression for theα-
effect. The Hall term was found to enhance or suppress dy-
namo action depending on the value ofε. DNS of Hall-MHD
helical dynamo action confirmed this result (Mininni et al.,
2003, 2004).

The saturation amplitude of the Hall-MHD dynamo has
a nonlinear dependence with the amplitude of the Hall ef-
fect ε (Fig. 13). When the Hall lengthscale is close to or
smaller than the Kolmogorov’s magnetic dissipation scale
kη=(

〈
J 2
〉
/η2)1/4, the MHD behavior is recovered (ε�1) and

no differences in the evolution and saturation of the dynamo
can be identified (the “MHD dynamo”). On the other hand,
when the Hall effect dominates in all the relevant scales in-
cluding the energy containing scales of the turbulent flow
(ε≈1, the so called “massive Hall-MHD dynamo”), the heli-
cal dynamo is less efficient than its MHD counterpart. The
dynamo saturates at a lower level of total magnetic energy,
and the kinetic energy dominates the dynamics at almost all
scales.
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Fig. 13. Total magnetic energy in the saturated state of the Hall-
MHD dynamo, as a function of the amplitude ð of the Hall-effect.
The energy is normalized by the saturated state of an MHD sim-
ulation with the same Reynolds numbers ( �K���_��� : solid line,�(�����T� : dashed line). The horizontal dotted line is showed as the
MHD reference (corresponding to ð���� ). The red area indicates
the region where the dynamo asymptotically goes to the MHD so-
lutions, and the orange area corresponds to the region where the
dynamo effect is enhanced by the Hall current.

netic helicity seems to reach an asymptotic value. This be-
havior was also found in the evolution of the magnetic energy
by Archontis, Dorch, and Nordlund (2003).

Finally, we reviewed recent extensions made to the stan-
dard MHD dynamo theory, to include kinetic effects relevant
in several astrophysical scenarios, such as protostars, proto-
planetary disks, the interstellar medium, white dwarfs, and
neutron stars. The most important extensions to the theory in
these objects are ambipolar diffusion and the Hall effect.

The idealized conditions used in these dynamo simula-
tions are far from astrophysical or geophysical applications.
Also, the values of the Reynolds numbers considered here
are far away from realistic values for astrophysical or geo-
physical flows. This is even more relevant when extensions
to one-fluid MHD are considered. The study of new ef-
fects (as ambipolar drift or the Hall effect) introduces new
lenghtscales, making the separation between physically rel-
evant scales (e.g. the energy injection band, the Hall scale,
and the dissipation scale) even harder. However, despite the
fact that these studies are still performed under idealized con-
ditions, the results are encouraging. The inclusion of new
effects in MHD dynamo mechanisms, can help the devel-
opment of the theory under conditions more appropriate for
astrophysical plasmas.
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turbulent flows, Astron. & Astrophys., 410, 759–766, 2003.

Armstrong, J. W., Rickett, B. J., and Spangler, S. R.: Electron den-
sity power spectrum in the local interstellar medium, Astrophys.
J., 443, 209–221, 1995.

Balbus, S. A., and Terquem, C.: Linear Analysis of the Hall effect
in protostellar disks, Astrophys. J., 552, 235–247, 2001.

Balsara, D. and Pouquet, A.: The formation of large scale struc-
tures in supersonic magnetohydrodynamic flows, Phys. Plasmas,
6, 89–99, 1999.

Blandford, R.D., and Payne, D.G.: Hydromagnetic flows from ac-
cretion discs and the production of radio jets, Monthly Not. R.
Astr. Soc., 199, 883–903, 1982.

Borue, V., and Orzag, A.: Spectra in helical three-dimensional ho-
mogeneous isotropic turbulence, Phys. Rev. E, 55, 7005–7009,
1997.

Brandenburg, A.: The inverse cascade and nonlinear alpha-effect in
simulations of isotropic helical hydromagnetic turbulence, As-
trophys. J., 550, 824–840, 2001.

Brandenburg, A. and Dobler, W.: Large scale dynamos with helicity
loss through boundaries, Astron. & Astrophys., 369, 329–338,
2001.

Brandenburg, A. and Dobler, W.: Solar and stellar dynamos - latest
developments, Astron. Nachr., 323, 411–416, 2002.

Brandenburg, A. and Subramanian, K.: Astrophysical magnetic
fields and nonlinear dynamo theory, arXiv:astro-ph/0405052.

Brandenburg, A. and Subramanian, K.: Large scale dynamos with
ambipolar diffusion nonlinearity, Astron. & Astrophys., 361,
L33–L36, 2000.

Braginsky, S. I.: Magnetogidrodinamika zemnovo yadra, Geomag-
netizm i Aeronomiya, 4, 989–916, 1964.

Brandenburg, A., Saar, S.H., and Turpin, C.R.: Time evolution of
the magnetic activity cycle period, Astrophys. J. Lett., 498, L51–
L54, 1998.
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However, there is an intermediate regime in which the
dynamo effect is enhanced by the Hall term (the “Hall-
dominated microscale dynamo”). In this regime, the Hall
effect dominates the dynamics at intermediate scales up to
the diffusion. The enhancement was observed to increase as
the Reynolds numbers and the scale separation are increased
(Mininni et al., 2004), and the peak of maximum magnetic
energy moves to smaller values ofε asR is increase. Also,
in this regime the Hall effect was observed to alleviate the
slow saturation of the MHD helical dynamo, and large scale
magnetic fields grow faster than its MHD counterpart.

5 Discussion

In this work we presented direct simulations of helical MHD
flows, using periodic boundary conditions and assuming in-
compressibility. Using these simulations, we studied the am-
plification and saturation of helical MHD dynamos and re-
viewed recent results.

For a flow with net helicity, the kinetic helicity injected
at kf orce cascades down to smaller scales with its spectrum
being proportional tokf orceE(k) (Chen et al., 2003; Chenet
et al., 2003; Gómez and Mininni, 2004). We found that al-
though all scales in Fourier space are dominated by the sign
of helicity injected by the external force, in real space helicity
displays strong spatial fluctuations. Also, regions with large
relative kinetic helicity are strongly concentrated in space,
forming elongated structures.
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In simulations of helical dynamos, we reviewed the de-
tailed evolution of magnetic energy and magnetic helicity
during the amplification and saturation stages. As we in-
creased the Reynolds number, we found that the growth rate
and the saturation level of the magnetic energy and the mag-
netic helicity seems to reach an asymptotic value. This be-
havior was also found in the evolution of the magnetic energy
by Archontis et al.(2003).

Finally, we reviewed recent extensions made to the stan-
dard MHD dynamo theory, to include kinetic effects relevant
in several astrophysical scenarios, such as protostars, proto-
planetary disks, the interstellar medium, white dwarfs, and
neutron stars. The most important extensions to the theory in
these objects are ambipolar diffusion and the Hall effect.

The idealized conditions used in these dynamo simula-
tions are far from astrophysical or geophysical applications.
Also, the values of the Reynolds numbers considered here
are far away from realistic values for astrophysical or geo-
physical flows. This is even more relevant when extensions
to one-fluid MHD are considered. The study of new ef-
fects (as ambipolar drift or the Hall effect) introduces new
lenghtscales, making the separation between physically rel-
evant scales (e.g. the energy injection band, the Hall scale,
and the dissipation scale) even harder. However, despite the
fact that these studies are still performed under idealized con-
ditions, the results are encouraging. The inclusion of new
effects in MHD dynamo mechanisms, can help the devel-
opment of the theory under conditions more appropriate for
astrophysical plasmas.
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