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Abstract

Recent advances in secondary organic aerosol (SOA) research are reviewed and the

status of current understanding is investigated using a model of SOA formation. Ben-

zene and isoprene are newly identified precursors that are included in this SOA model;

these precursors form SOA via secondary products. The model is also extended to5

include some representation of aqueous partitioning and the formation of high molecu-

lar weight products via oligomerization. Experimental data and empirical relationships

are used where possible, because a detailed representation of SOA formation is not

supported by the current state of information. Sensitivity studies are conducted with

the SOA model and SOA predictions are found to be very sensitive to the treatment of10

the interactions between particulate water and organic compounds. While uncertain-

ties due to model formulation are significant, influential model parameters include the

aerosol partitioning ratios for several small products of isoprene and the partitioning

constants for unidentified products (currently, the partitioning constants are derived by

fitting experimental data). The pH value used as the reference for the activation of15

oligomerization is also a critical parameter. Recommendations for future work needed

to improve SOA models include the elucidation of the water-organic relationship, the

extent of phase separation, and laboratory experiments conducted under conditions

more relevant to ambient studies (e.g. lower concentrations, higher relative humidity).

1 Introduction20

Most three-dimensional air quality models use aerosol modules that are based on the

state-of-the-science from the late 1990s, including the partition of anthropogenic and

biogenic secondary organic aerosols (SOA) based on empirical data from smog cham-

bers (e.g. Odum et al., 1997; Griffin et al., 1999), with a correction factor applied to the

equilibrium constant based on temperature (Strader et al., 1999; Pun et al., 2003). A25

few models have limited treatment of aqueous dissolution (e.g. Jacobson, 1997; Au-
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mont et al., 2000; Pun et al., 2002; Griffin et al., 2003) or simple parameterizations

of other processes (e.g. Morris et al., 2006). The early 2000s have seen several ma-

jor advances in SOA research. Precursors have been identified that were previously

believed not to lead to SOA formation, including benzene (Martin-Reviejo and Wirtz,

2005) and isoprene (Jang et al., 2002; Czoschke et al., 2003; Claeys et al., 2004a, b;5

Matsunaga et al., 2005). New processes have been identified that may lead to signif-

icant SOA formation, including oligomerization (Jang and Kamens, 2001; Jang et al.,

2002; Czoschke et al., 2003; Limbeck et al., 2003; Gao et al., 2004b; Iinuma et al.,

2004; Jang et al., 2005, 2006) and cloud processes (Warneck, 2003; Ervens et al.,

2004a, b; Lim et al., 2005). In light of the poor model performance typical of PM mod-10

els for organic aerosols (e.g. Seigneur and Moran, 2004), it is desirable to incorporate

recent advances in SOA research into models to obtain an understanding of the im-

pact of new pathways even though our theoretical understanding of many SOA forming

processes is still incomplete. Such investigative modeling will allow us to identify the

most uncertain parameters and processes and to recommend experiments needed to15

develop improved models of SOA formation.

In the current study, we focus on gas-phase, gas/particle partitioning and particulate-

phase processes. Aqueous-phase reactions in clouds are not considered. An inves-

tigative SOA box model is formulated based on a synthesis of published information.

Sensitivity tests are then conducted to understand the parameters and conditions that20

influence SOA prediction. Based on these results, recommendations are made for

additional information that will be the most useful to improve the formulation of more

accurate SOA models.

2 Benzene

The yields of SOA from benzene range from 8 to 25% based on recent chamber data25

from Martin-Reviejo and Wirtz (2005). They found that the formation of SOA from

benzene occurs only after the consumption of a threshold amount of benzene. Both
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the threshold and final SOA yield depend on NOx concentrations. The presence of NOx

delayed SOA formation but enhanced the total amount formed. They also concluded

that the formation of SOA does not occur as a first oxidation step, but as a result of the

oxidation of secondary compounds, including ring-retaining products and ring-opening

products. Because many uncertainties still exist in the reaction mechanism of benzene5

degradation, a semi-empirical approach is, therefore, used here to incorporate the

formation of SOA from benzene into models.

While there have been several attempts to develop detailed mechanisms for benzene

degradation, condensed mechanisms are typically used in three-dimensional models

of air quality. Such condensed mechanisms typically represent first reaction steps,10

generic secondary radicals, and lumped products. Here, we choose to start with a

benzene reaction used in the Statewide Air Pollution Research Center (SAPRC) mech-

anism (Carter, 1990, 1996), as shown in Table 1. The three first-step oxidation prod-

ucts (besides peroxyl radicals) are phenol, glyoxal and a lumped species representing

ring-opening products. The stoichiometric coefficients of the reaction were determined15

based on model fits to environmental chamber data.

Phenol is an intermediate reactant that can lead to the formation of aromatic com-

pounds with multiple substituents (e.g. nitrophenol, catechol) that may become SOA

precursors. The reaction PHENOL + OH may be added to a mechanism that does not

track PHENOL (OH may then be added as a product to retain the original chemical20

dynamics) or condensable products may be added to an already existing reaction. We

assume that the yield of SOA from phenol is analogous to the yield of SOA from toluene

and other monosubstituted aromatic compounds based on Odum et al. (1997). There-

fore, the reaction of PHENOL with OH forms the condensable compounds PHENAER1

and PHENAER2 (see Table 1 for stoichiometric coefficients). The partitioning coef-25

ficients of PHENAER1 and PHENAER2 are 0.053 and 0.0019 m
3
/µg, respectively at

310 K. Because the partitioning characteristics of PHENAER1 and PHENAER2 are the

same as those of TOLAER1 and TOLAER2, the condensable products may be lumped

in SOA modules based on Odum et al. (1997) with suitable corrections for the differ-
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ences in molecular weight (MW).

Anhydrous glyoxal is a liquid at ambient temperature. It has a vapor pressure of ap-

proximately 18 torr (0.02 atm) at 20
◦
C (Hastings et al., 2005), and is, therefore, not very

condensable. However, in chamber experiments, glyoxal condenses at concentrations

as low as 5 pbb (Liggio et al., 2005) and 0.1 torr (∼100 ppm) when relative humid-5

ity (RH) is greater than 26% (Hastings et al., 2005). The partitioning into an aque-

ous phase is enhanced by the formation of ethan-tetrol (glyoxal monomer dihydrate)

and oligomers of the hydrate molecules. The effective Henry’s law constant (Heff), i.e.

the ratio of aqueous monomer and dihydrate concentrations to the gas-phase glyoxal

concentration, is 3.6×10
5

M/atm. The equilibrium constant for the formation of dimer10

(concentration of dimer over the square of the concentration of hydrate) is 0.56 M
−1

at 25
◦
C. Thus, in the ambient atmosphere, where glyoxal concentrations range from

0.1 to 3 ppb, the monomer dihydrate form is favored. For the partitioning of glyoxal, a

formulation that represents the effective partitioning due to the hydrated form is used

(see Table 1). This formulation, therefore, requires the inputs of liquid water content15

(LWC) and RH.

The formation of oligomers from glyoxal and glyoxal hydrate is likely to be the rate-

limiting step to aerosol growth, whereas the hydration reaction is fast. There are likely

other factors that affect the rate of oligomer formation, e.g. pH, aerosol composition.

Oligomerization may further modify the effective partition behavior, and is discussed20

below.

Koehler et al. (2004) suggested that furandione (a product of benzene oxidation with

a gas-phase yield ∼4%) can react with water to form dicarboxylic acid in the particulate

phase. Acidity can subsequently increase the partitioning of aldehydes into the par-

ticulate phase, presumably due to enhanced oligomerization in the presence of acids.25

These processes are not represented here because of a lack of quantitative informa-

tion.

Glyoxal is also expected to participate in cloud processes (Lim et al., 2005) to give

rise to oxalic acid, which can result in SOA formation if the cloud droplet evaporates
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to form a particle. This process needs to be incorporated in a cloud module and,

therefore, is not represented here in the aerosol module.

As a group, ROP (ring-opening products) include many yet unidentified, multifunc-

tional compounds. Some members of this group are aerosol precursors (e.g. mu-

conaldehyde) and there is no a priori basis to define their partitioning characteristics5

or those of their products. To form second-generation products, ROP are expected to

react with OH (Carter et al., 1996). Partitioning characteristics of ROP are determined

as described next so that 8–25% of the reacted benzene forms aerosols under dry

conditions (Martin-Reviejo and Wirtz, 2005).

Four condensable products are assumed to be formed in the reactions of benzene10

(see Table 1): two second-generation products originating from the reactions of phe-

nol, glyoxal, and a lumped second-generation product via ring-opening reactions. In

theory, a portion of the ROP products is expected to be condensable, characterized

by some partitioning coefficient. Because of the uncertainties associated with the

amount of ROP formed and subsequently reacted, a two-parameter characterization15

seems incompatible with available mechanistic data. One approach is to use a de-

fault stochiometric coefficient of 1 for a condensable product from ROP, and to derive

a partitioning coefficient for this condensable product. The partitioning coefficient is

treated as an adjustable parameter to achieve the experimental yields of 8–25%. In

this case, the experimental conditions of Martin-Reviejo and Wirtz (2005) were used.20

Glyoxal formation was considered to be negligible due to the use of low RH experi-

mental conditions and the SOA mass was, therefore, assumed to consist of AROPA,

APHENA1, and APHENA2. The yields of APHENA1 and APHENA2 were estimated for

those experiments, assuming the reactions were complete when the maximum mass

of particles was formed. First, the total amount of each condensable phenol product25

was estimated based on the amount of reacted benzene and the stoichiometry of phe-

nol and PHENAER species, corrected for the difference in MW. Then, the amounts of

particulate phase APHENA1 and APHENA2 were estimated based on the partitioning

constant and the total amount of particulate matter (PM) present in the environmen-
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tal chamber. The amount of AROPA was then estimated from the difference between

the experimental SOA yield and the estimated yields of APHENA1 and APHENA2.

The gas-phase concentration of ROPAER was calculated from the stoichiometry of the

reaction and the amount of reacted benzene. For each experiment, the partitioning

coefficient of ROPAER was then calculated using the ratio of mass fraction in the par-5

ticulate phase to the gas-phase concentration. The average partitioning coefficient for

ROPAER was calculated to be 0.0013 m
3
/µg, with a range of 0.0008 to 0.0022 m

3
/µg.

3 Isoprene

The formation of SOA from isoprene is supported by both ambient observations as well

as smog chamber and laboratory studies (Claeys et al., 2004a, b; Edney et al., 2005;10

Kroll et al., 2005, 2006; Limbeck et al., 2003; Matsunaga et al., 2005). Several theo-

ries are available. The first one is the gas-phase formation of condensable compounds.

Kroll et al. (2005) reported 0.9 to 3.0% (by mass) yield of SOA from gas-phase reac-

tions. Under their high-NOx experimental conditions, the OH + isoprene reaction was

expected to dominate over the O3 + isoprene reaction. Oxidation reactions of isoprene15

products such as methacrolein, 3-methylfuran and other minor products are postulated

to lead to SOA formation. With ammonium sulfate seeds, Kroll et al. (2005) found

no evidence of high molecular weight products. Kroll et al. (2006) characterized SOA

formation from isoprene under both high and low NOx conditions. The dependence

of SOA on NOx concentrations implied different chemical mechanisms and products20

under different conditions. Low NOx experiements are expected to be more represen-

tative of the ambient atmosphere than high NOx experiments. Henze and Seinfeld

(2006) parameterized the SOA yield from low NOx experiments using a two-product

approach and applied the formulation in a global model. A recent product study by

Surratt et al. (2006) confirmed that organic peroxides are key SOA species under low25

NOx conditions but other products are formed under high NOx conditions.

Edney et al. (2005) found evidence for an SO2-assisted mechanism for SOA for-
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mation. Among SOA products, they found 2-methylglyceric acid and 2-methyl-butyl-

1,2,3,4-tetrols, and attributed the remaining SOA mass to oligomers. Claeys et

al. (2004a, b) proposed mechanisms to form 2-methylglyceric acid and 2-methyl-butyl-

1,2,3,4-tetrols from the reaction of isoprene. In their subsequent paper, they disputed

the mechanism proposed in the original paper, which required gas-phase reactions5

under low NOx conditions. Their current theory involves the reaction of isoprene and

methacrolein (a first-generation isoprene product) with H2O2 in acidic particles. (The

authors contended that the lifetime of the reaction is inconsistent with the lifetimes of

clouds.) The proposed reaction is analogous to the oxidation of SO2. Previous work

has concluded that SO2 oxidation occurs mostly in cloud droplets because the same10

reactions in aqueous particles cannot be significant due to the very low liquid water

volume available for reaction (Saxena and Seigneur, 1987; Meng and Seinfeld, 1994).

Since isoprene is less soluble than SO2, the reaction in aqueous particles cannot ac-

count for the di- and tetra-hydroxy products and such reactions are more likely to occur

in clouds. As mentioned above, we do not attempt here to represent cloud reactions.15

The second mechanism is the formation of high MW products or oligomers in the

presence of acid catalysts (Czoschke et al., 2003; Limbeck et al., 2003), which will be

discussed below.

Matsunaga et al. (2005) found that in the ambient atmosphere, small multifunc-

tional compounds, such as glycolaldehyde (GLYALD), hydroxyacetone (HYACET), and20

methylglyoxal (MGLY), show much higher affinity towards the particle phase than pre-

dicted based on their Henry’s law constants. The observed aerosol partition ratio (APR;

the dimensionless ratio of the particulate-phase concentration over the total [gas + par-

ticulate] concentration) correlates linearly with RH, and the authors proposed oligomer-

ization as a possible reason. A process similar to the one for glyoxal, discussed above,25

may be one mechanism responsible for enhanced particulate-phase concentrations.

Another mechanism that has been explored involves aqueous reactions in clouds

(e.g. Lim et al., 2005; Ervens et al., 2004a, b; Warneck, 2003). As mentioned above,

our focus here is to investigate aerosol processes; cloud processes are discussed
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extensively in the publications referenced above.

The exact mechanism for SOA formation from isoprene has not been elucidated, and

factors affecting each potential process, e.g. competing oxidants, NO, RH, to name a

few, are still being studied. At this time, we use two different algorithms for modeling

isoprene SOA to represent different SOA species implicated in an ambient experiment5

(Matsunaga et al., 2005) and laboratory experiments (Henze and Seinfeld, 2006; Kroll

et al., 2006). The first approach uses specific organic compounds for SOA formation

whereas the second approach uses two surrogate compounds to fit the smog chamber

experimental results. Both approaches are represented in Table 2. Differences in SOA

predictions from these two algorithms represent uncertainties due to different model10

formulation approaches.

To formulate a modeling approach based on the ambient data of Matsunaga et

al., we start with the gas-phase reactions for isoprene from the SAPRC mechanism

(Carter and Atkinson, 1996), although similar gas-phase reactions are available in

many common mechanisms. The main gas-phase products, methacrolein (MACR)15

and methylvinylketone (MVK), are tracked specifically, but other products are lumped

into unidentified isoprene products (ISOPRD). The SAPRC mechanism accounts for

the fate of the isoprene products relating to O3 production. Here, we focus only on

second-generation products leading to the formation of SOA.

Matsunaga et al. (2005) expected the partitioning of GLYALD, HYACET, and MGLY20

to be a function of RH. Based on ambient observations, they reported a linear fit of

the APR as a function of RH, but the coefficients of determination were low (r2
=0.4,

0.2, and 0.2 for three compounds) due to significant scatter of the data. GLYALD, HY-

ACET, and MGLY are small compounds with two hydrophilic functional groups, some of

which interact with protons. At any given RH, ambient particles can be associated with25

different amounts of water and proton concentrations due to differences in inorganic

and organic PM composition. Such differences can account for the range of partition-

ing characteristics. An inspection of the raw data reveals that the RH effect may be

modeled more appropriately in terms of ranges of separate values of APR for specific
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ranges of RH, as shown in Table 2, rather than with a weak linear correlation between

APR and RH.

Although MACR is fairly volatile, its partitioning is considered here because this com-

pound is structurally similar to many that are considered to be active towards oligomer-

ization.5

Henze and Seinfeld (2006), based on data from Kroll et al. (2006), proposed an

absorption model involving two surrogate products to represent the formation of SOA

from isoprene under low NOx conditions. The two product model for the overall SOA

yield is implemented as the first-generation of a semivolatile product followed by a

condensation step. Kroll et al. (2006) postulated that organic peroxides constitute10

key components of isoprene SOA. This is supported by the product study of Surratt

et al. (2006), which also identified other multifunctional products, including those in

Claeys et al. (2005) and oligomeric products. Second-generation products, and further

reactions in the particulate phase are implicitly represented by the parameter fits (Kroll

and Seinfeld, 2005). Therefore, this approach represents an alternative formulation of15

SOA from isoprene to that based on GLYALD, HYACET, and MGLY (Matsunaga et al.,

2005).

4 Oligomerization

4.1 Partitioning module formulation

The term oligomerization is used here to describe a range of processes that form high20

MW compounds. To date, several reactions have been postulated to contribute to

the formation of high MW species in SOA, including hemiacetal and acetal formation,

trioxane formation, polymerization, aldol condensation (Jang et al., 2003, 2005), and

peroxyhemiacetals (Johnson et al., 2005; Docherty et al., 2005). However, the pre-

cursors and oxidants involved, condensing species that are subject to oligomerization,25

and the environmental conditions favorable for such reactions remain poorly charac-
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terized. It is possible that multiple processes, including ones not yet identified, are

involved in the formation of high MW compounds in the ambient atmosphere. A few

studies have attempted to account for association reactions by assuming stable, non-

volatile products that increase SOA mass via irreversible reactions (e.g. Johnson et

al., 2005). This assumption may be an oversimplication because (1) current labora-5

tory data support a hypothesis that such products may decompose back to precursor

species (e.g. Hastings et al., 2005; Ziemann, 2005) (hence they may not be detectable

in routine experiments) and (2) some theoretical calculations show that the high MW
products formed are not always thermodynamically favored over the lower MW reac-

tants (Barsanti and Pankow, 2004, 2005). Kroll and Seinfeld (2005) show that if a10

partitioning compound reacts further in the particulate phase, then as long as the final

product is less volatile than the partitioning species, an apparent partitioning constant

can be used to describe the system to account for the abundance of SOA due to the

particulate phase reaction. Such a formulation seems appropriate to represent SOA

oligomerization.15

One school of thought involves acid-catalyzed association or oligomerization reac-

tions (Gao et al., 2004; Jang et al., 2005). Aldehyde moieties have been found to

be more reactive than ketones (Jang et al., 2003, 2005) in acid-catalyzed association

reactions. (Double bonds are also postulated to be a candidate reactantfor oligomer-

ization; Limbeck et al., 2003.) Jang et al. (2005) derived a semi-empirical yield expres-20

sion for oligomeric products based on an aldehyde hydrate undergoing polymerization,

and generalized it to a variety of reactions. In that formulation (M. Jang, personal

communication, 2006), the so-called “second-order relative organic aerosol yield” (Y )

(proportional to a mass fraction equilibrium relationship) is defined as

Y =
10

−3MWi · OM

Mseed(KpCinit)
2

(1)25

where MWi is the MW of the monomer compound i, OM represents the mass (mg/m
3

air) of the higher MW compounds, Mseed (mg/m
3

air) is the concentration of initial par-
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ticulate matter (seed) in the experiment, Kp is the equilibrium partitioning coefficient

of the monomer between the gas and particulate phases and Cinit is the initial con-

centration of the monomer in the gas phase (mg/m
3

air). The term K ∗
p Cinit represents

the monomer mass fraction in the particulate phase that is in equilibrium with the gas

phase under experimental conditions. This yield is proportional to the second-order5

partitioning coefficient assuming the self reaction of i in the particulate phase:

Monomer + Monomer ↔ High MW Product (oligomer)

Keq =
[oligomeri ]

[monomeri ]
2

(2)

where [x] represents the particulate phase concentration (mole/L) of x. To account for

ambient conditions rather than experimental conditions, we calculate the “second-order10

relative organic aerosol yield” Y where MAOM replaces Mseed as the absorbing medium,

and Cg,i (gas-phase concentrations) replaces Cinit (initial concentrations). Note that for

ambient concentrations, µg/m
3

is the more appropriate concentration units compared

to mg/m
3
. The yield in the ambient atmosphere, Ya, is then expressed as follows:

Ya =
10

−3MWi · OM

MAOM(KpCg,i )
2

(3)15

The monomer mass fraction in the particulate phase is equal to Kp Cg,i . In the ambient

atmosphere, self reactions are less likely because a mixture of condensable species

is present. Therefore, we define an analogous equilibrium relationship for a monomer

reacting with a pool of other monomers (assumed to be constant), such that a first

order “effective” equilibrium coefficient can be defined to be proportional to Ya.20

Ko,i =
[oligomeri ]

[monomeri ]·
∑

j
[monomerj ]

[oligomeri ]

[monomeri ]
= Ko,i

∑

j

[

monomerj
]

= Ko,eff,i

(4)
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where Ko,i is the equilibrium constant for the formation of higher MW product from

monomer i , Cmonomer,i is the concentration of monomer i in the particulate phase,
∑

j

monomerj is the total concentration of all monomer species that can participate in

the oligomerization reaction (e.g. all compounds containing the aldehyde functional

group) and Ko,eff,i is a first-order effective equilibrium constant for the formation of5

higher MW products from monomer i . We assume that, since Ko,i is proportional

to Y , it has the same parametric dependence as Y in Jang et al. (2005).

Y was found to depend on several parameters, including the excess acidity (X ),

pH, the basicity constant of the monomer species (i.e. the equilibrium constant for

the protonated form of the isomer, KBH+), and the hydration constant (i.e. the equi-10

librium constant for the hydrated form of the monomer). Of these parameters, the

hydration constant depends on the structure of the reacting compounds and is as-

sumed to be constant for a given class of compounds. For the compounds tested in

Jang et al. (2005), aldehydes were about two orders of magnitude more reactive to-

wards oligomerization than ketones. Therefore, as a first approximation, only aldehyde15

groups are assumed to participate in oligomerization reactions. The empirical model

of Jang et al. (2005) is simplified to:

log Y = xX + zZ + r log(KBH+) + 11.79 (5)

where Z is the pH function (Z=log(CH+aw ), where CH+ is the proton concentration

(mole/L) and aw is the water activity (=RH)). X is a function of proton concentrations20

and activity coefficients of the species involved in the protonation reaction of carbonyl

functional group; X was also found to be strongly correlated to RH. The hydration

constant for aldehyde species is already taken into account in the intercept term. For

example, conjugation with a double bond was found to increase the stability of the pro-

tonated form. At this point, detailed molecular structure information is not available to25

support the model representation of SOA species beyond surrogate structures. There-

fore, a constant value was assumed for KBH+ for all aldehyde-containing species. Jang

et al. (2005) also found that two of the parameters, X and Z , are strongly negatively cor-
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related. Since X is supposed to increase linearly with RH (X=0.0372 (%RH) −3.716)

(Jang et al., 2003) and aw is by definition equal to RH, the negative correlation indicates

the overwhelming driving force associated with the concentration of protons. Although

the presence of some water is necessary for the presence of protons, water dilutes

the concentration of SOA and may slow down oligomerization when present in high5

concentration. There is, at present, no information on how much water is necessary

to trigger oligomerization reactions. Using a theoretical approach, Pun et al. (2005)

showed that SOA formed from common anthropogenic and biogenic precursors may

be associated with up to 5µg/m
3

of water, depending on RH and the characteristics of

SOA. A relative oligomerization yield can be defined using a simple relationship with10

the concentration of protons.

log(Y/Yref) = z log(CH+/CH+,ref) (6)

where z=1.91 based on Jang et al. (2005). We further assume that the ratio of the

effective first-order equilibrium constants (monomer + all aldehydes) is the same as

the ratio of the second-order equilibrium constants. Therefore, for species i ,15

log

(

Ko,i

Ko,i ,ref

)

= log

(

Yi
Yi ,ref

)

= z log

(

CH+

CH+,ref

)

(7)

If we assume that the equilibrium aldehyde monomer concentration does not change

with pH (i.e. only the concentration of the protonated monomer does), then the ratio of

Ko,eff,i will be the same as the ratio of Ko,i .

log

(

Ko,eff,i

Ko,eff,i ,ref

)

= log







Ko,i ·
∑

j

[

monomerj
]

Ko,i ,ref ·
∑

j

[

monomerj
]

ref






= log

(

Ko,i

Ko,i ,ref

)

(8)20

The definition of Ko,eff,i ,ref and CH+,ref is problematic, because the experiments carried

out to date have typically been designed to maximize the formation of oligomers via the
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use of acidic seeds, high concentrations of reactants, or the addition of co-reactants

that enhance the formation of oligomers. Gao et al. (2004) used several experimental

conditions involving acidic and non-acidic seed particles. They estimated the mass

fraction of oligomers to be at least 10%, with the lower end value associated with a

concentration of H
+

due to the intrinsic production of organic acids from the reaction5

system producing SOA. Therefore, we use a reference value of 0.1 for Ko,eff,ref at a

moderate pH of 6.

A module for simulating SOA needs to be computationally efficient if it is to be used

for three-dimensional applications. Accordingly, most SOA models employ a surrogate

representation or a hybrid one with surrogates and explicit species. For organic pre-10

cursors, hundreds of SOA products can be formed and a surrogate representation is

almost necessary for a majority of the products. As a starting point, the aerosol yield

data from Odum et al. (1997) and Griffin et al. (1999) are used (e.g. Zhang et al., 2004).

In that formulation, each precursor compound is associated with one or two surrogate

products. The SOA yield of each surrogate product depends on two parameters, one15

representing the mass-based stoichiometric coefficient (α) and one representing a par-

titioning coefficient (Kp). Kp is corrected for temperature using the Clausius-Clapeyron

equation assuming an enthalpy of vaporization of 72.7 kJ/mol. Because oligomeriza-

tion is typically catalyzed by protons, interaction with water is implicitly assumed. The

inclusion of water in the absorbing medium necessitates another correction of Kp based20

on the MW (Pankow, 1994). In the dry chamber experiments, the empirical Kp reflects

the absorption into an SOA phase. With water interaction, the MW of the absorbing

medium will typically decrease, hence increasing the value of Kp.

Smog chamber experiments described in Odum et al. (1997) and Griffin et al. (1999)

were conducted in relatively dry conditions that are not conducive to oligomerization.25

We assume that the experimental “effective” Kp values represent a situation where

the condensed mixture contains mostly monomers, with a minimal amount (10%) of

oligomers. When polymerization takes place, α does not change, but the effective Kp
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increases. From Kroll and Seinfeld (2005):

Kp,eff = Kp(1 + Ko,eff) (9)

At experimental conditions, we assume Kp,i ,eff=Ci /(M
∗Cg,i ), where Ci is the particulate-

phase concentration of species i , M is the mass of all absorbing compounds, and Cg,i

is the gas-phase concentration of i , all of which are in µg/m
3

air.5

Kp,eff = Cmonomer,i/(MastCg,i ) + ChighMWspecies/(M∗Cg,i ) (10)

where ChighMWspecies,i is the concentration of higher MW species. At the reference con-

ditions of the “dry” experiments: ChighMWspecies,i=0.1 Cmonomer,i . Therefore, Kp,eff=1.1

Cmonomer,i/M/Cg,i = 1.1Kp. Therefore,

Ko,ref,i = ChighMWspecies/(M∗Cg,i )|at reference conditions = 0.1Kp (11)10

Under conditions that promote the formation of oligomers, Ko,eff will change with pH

and thus, Kp,eff will change.

4.2 Oligomer-forming species

Among the SOA mixture, we assume that species containing aldehyde groups are

the main candidates for oligomer reactions. Therefore, for each surrogate condens-15

ing species, the fraction of compounds containing aldehyde groups, hence subject to

oligomerization, is determined. Identified SOA and condensable products for all pre-

cursor species were compiled from the literature, including experimental and modeling

studies (Pun and Seigneur, 2005; Pun et al., 2006, and references therein, including Yu

et al., 1999; Glasius et al., 2000; Larsen et al., 2001; Jaoui and Kamens, 2001, 2003;20

Griffin et al., 2002). The condensable products were grouped into species that con-

tain aldehyde groups (subject to oligomerization) and monomer species that contain

no aldehyde groups. Based on the total (gas and particle yields) of each identified con-

densable product documented in the literature, a fraction of the condensable surrogate

218

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/203/2007/acpd-7-203-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/203/2007/acpd-7-203-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 203–245, 2007

Investigative

modeling of new

pathways for SAO

formation

B. K. Pun and

C. Seigneur

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

species (Odum et al., 1997; Griffin et al., 1999), those containing the aldehyde func-

tionality, was determined to be subject to oligomerization for each precursor species

(see Table 3).

When oligomerization is activated, the Kp value for the aldehyde fraction would in-

crease, whereas the Kp value for the fraction not subject to oligomerization would re-5

main the same. The net effect of oligomerization is to increase the partitioning of

relatively volatile SOA into the particulate phase. Table 3 lists the precursors and re-

actions forming SOA species. The list of precursor species was selected based on

available partitioning data from environmental chambers (Odum et al., 1997; Griffin et

al., 1999) and pruned based on similarity in chemical structure and reaction character-10

istics and the abundance of biogenic emissions of specific terpene compounds (Pun et

al., 2004). MWs of actual SOA were used to convert the mass-based α (Odum et al.,

1997; Griffin et al., 1999) to mole-based stoichiometric coefficients. Species subject

to oligomerization are notated with an AERO suffix instead of an AER suffix. Table 4

lists the subsequent equilibria of surrogate SOA species that lead to additional SOA15

formation via partitioning of first oxidation products toward more soluble or less volatile

compounds.

5 Sensitivity tests

The sensitivity tests are designed to understand the effects of changes in environ-

mental variables on SOA formation as well as to elucidate the effects of uncertainties20

in model formulation and parameters on the model predictions. Test cases focus on

the new precursors and processes (see Table 5), although conclusions regarding en-

vironmental conditions can be generalized to other condensing species with similar

characteristics. We consider three SOA precursors in these sensitivity tests: benzene,

isoprene and α-pinene.25
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5.1 Benzene

According to our model, four products of benzene oxidation are available for partition-

ing. Their total concentrations are listed in Table 5 for the reaction of 10 ppb of benzene.

The sensitivity to environmental conditions is tested first; we investigate the yields of

particulate-phase organic compounds as a function of LWC, pH, and primary organic5

compound (POC) concentration. Second, we investigate the sensitivity of SOA yields

to some model parameters.

Figure 1 shows the yield of SOA as a function of LWC, pH, and POC. The top panel

of Fig. 1 shows that the SOA yield is very sensitive to the LWC, with a very low yield of

2.5% when particles are quite dry to 43% when the LWC is 100µg/m
3

at pH of 4. The10

enhancement of SOA yield is due to several effects. First, when LWC increases, the

absorbing mass (M) increases for species partitioning by Raoult’s law and the solvent

mass increases for compounds partitioning according to Henry’s law. For the Raoult’s

law species, since Ci

/

Cg,i=Kp·M, more of the available condensable compound mass

enters the particulate phase. For species partitioning according to Henry’s law, the15

dependence is also straightforward, since Ci

/

Cg,i=H ·LWC. Second, because the ref-

erence Kp values from Odum et al. (1997) and Griffin et al. (1999) were measured

at dry conditions, they were corrected for the average MW for wet conditions based

on Pankow (1994). Water lowers the MW of an organic mixture, thereby increasing

the Kp values. Third, oligomerization can take place in an aqueous medium, further20

increasing the Kp values based on Eq. (9).

A comparison of the results from pH=4 and pH=6 illustrates several effects of water

on the partitioning properties of SOA. At pH=6, oligomerization of glyoxal is assumed

to be at a minimum value of 10%, as discussed above. The SOA yield at low LWC

is similar at pH=6 (2.4%) and pH=4 (2.5%) because there is not sufficient monomer25

mass in the particulate phase available for oligomerization. At 100µg/m
3

LWC, the

enhancement of SOA production is smaller at pH=6, 38%, compared to 43% at pH 4.

The case with pH=6 represents the effects of water on the partition of monomers. At
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LWC=1µg/m
3
, the composition of benzene SOA is 27% AROPA, 62% APHENA1, and

11% APHENA2. The partitioning at low LWC can be explained in terms of the partition-

ing coefficients and the total concentrations of the species, with PHENAER1 having the

highest Kp and the largest ratio of Ci /Cg, followed by PHENAER2 and ROPAER. With

an aerosol containing 0.76µg/m
3

SOA, 5µg/m
3

POC, and 1µg/m
3

LWC, the average5

MW was 84. Therefore, the Kp values (which are 0.16, 0.0057 and 0.0013 m
3/µg for

pure organic aerosols) are 0.37, 0.01, and 0.0009 m
3/µg, respectively, for PHENAER1,

PHENAER2, and ROPAER after correcting for MW of the absorbing medium. Despite

the low Kp value of ROPAER, AROPA accounts for a larger percentage of the SOA

than APHENA2 due to its total (gas + particulate) concentration, which is higher by a10

factor of 30 (see Table 5).

In comparison, when LWC=100µg/m
3

(and pH=6) the composition of the benzene

SOA is 86% AROPA, 5% APHENA1, and 9% APHENA2. At high LWC, a large percent-

age of the available condensables enters the particulate phase for all three partitioning

compounds; therefore, the relative abundance is related to the total amount available15

for partitioning. With a particle that is mostly water, the average MW is 21.3. There-

fore, Kp values corrected for MW are much larger than in the LWC=1µg/m
3

case (1.6,

0.04, and 0.004 m
3/µg, respectively, for PHENAER1, PHENAER2, and ROPAER).

The mass of the particulate phase is 117µg/m
3

(including an SOA concentration of

12µg/m
3
).20

The partitioning of glyoxal is not significant when pH=6, even though the partition-

ing of glyoxal increased by 2 orders of magnitude (to 0.004µg/m
3
, or 0.1% of the

total available glyoxal) when LWC increases from 1 to 100µg/m
3
. This is because

the Henry’s law constant is 3.6×10
5

M/atm, which converts to 9×10
−6

m
3/µg. Even at

100µg/m
3
LWC, particle concentrations are low because Ci/Ci ,g=9×10

−4
. However, at25

pH=4, the partition is enhanced due to the formation of high MW products from glyoxal.

As shown in the middle panel of Fig. 1, at a constant LWC content of 50µg/m
3
, SOA

yields increase from 0.24 to 0.39 with decreasing pH, because particulate phase gly-
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oxal increases from 0.002µg/m
3

at pH=6 or above (no oligomerization) to 4.8µg/m
3

at

pH=3. The sensitivity of the SOA predictions to the formulation of the oligomerization

module is discussed further under the α-pinene case.

Because of the overwhelming proportion of water, changing the POC concentration

has a limited effect on the partition of SOA. The bottom panel of Fig. 1 shows cases5

with relatively low amount of LWC (1 and 10µg/m
3
). Varying POC from 1 to 20µg/m

3

increases the SOA yield in both cases. The effect is much more pronounced when

LWC=1µg/m
3
. The SOA yield changes from 0.021 to 0.032 due to increased partition-

ing of PHENAER1, PHENAER2 and ROPAER. When LWC=10µg/m
3
, increasing POC

mass from 1 to 20µg/m
3

leads to a corresponding change in SOA yield from 0.079 to10

0.085. At lower LWC, POC constitutes a larger fraction of the absorbing medium and

increasing POC increases the total mass available by a greater percentage than when

water constitutes more of the absorbing medium.

Due to incomplete information regarding the reaction of benzene, a parameteriza-

tion is used to model SOA formation processes. We investigate now the effect on SOA15

yields of the parametric uncertainties of the partitioning constant Kp of ROPAER and

of the stoichiometric coefficient for ROP. Uncertainties in Kp were determined based

on the range of Kp values (0.0008–0.0022 m
3
/µg) deduced from different smog cham-

ber experiments reported by Martin-Reviejo and Wirtz (2005). In a previous version of

SAPRC (Carter, 1990), the stoichiometric coefficient was 0.49 instead of 1.44. There-20

fore, for the stoichiometric coefficient, we used this change as an uncertainty range for

the lower-bound estimate and tested a full range of values from 0.49 to 2.39 centering

around 1.44. The results are shown in Fig. 2.

The top panel shows that at moderate LWC of 50µg/m
3
, the total aerosol yield

increases linearly with Kp, because the particle-phase concentration of ARPOA in-25

creases linearly with Kp. The partitioning of AROPA is linear with Kp in this Kp range

because there is sufficient material in the gas phase. If the Kp values were high, fur-

ther increasing the Kp value would result in an asymptotic increase of the AROPA

yield, limited by the total mass available. Uncertainties in the Kp value may cause
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the overall yield value to be uncertain by 40%. The absolute uncertainty depends on

the mass of SOA formed. In the 50µg/m
3

LWC case, SOA changes by 2.2µg/m
3

(out of 7.7µg/m
3
); the same uncertainty in Kp changes SOA by only 1µg/m

3
(out of

2.6µg/m
3
) when LWC=10µg/m

3
(not shown). Most of the mass change corresponds

to a change in the AROPA mass, although small changes in APHENA1 and APHENA25

occur. Changes in APHENA1 and APHENA2 would be more pronounced if AROPA

constituted a larger fraction of the absorbing medium.

The bottom panel of Fig. 2 shows the effects of changes in the stoichiometric coef-

ficient of ROP, which affects the total condensable mass available for SOA formation.

The relatively large uncertainty range (factor of about five) causes the SOA yield to10

cover a total range of about a factor of three (base case yield is 0.24), corresponding

to about 4.2µg/m
3

SOA for a stoichiometric coefficient of 2.39.

5.2 Isoprene

Four condensable products (MACR, MGLY, HYACET, and GLYALD) are included in the

model formulation based on ambient data. The partitioning of MACR is negligible even15

under conditions conducive to aqueous partition and/or oligomerization. For example,

with LWC=100µg/m
3

and pH=3 (i.e. conditions previously found to generate signif-

icant levels of glyoxal SOA), only 0.1% of the MACR mass is calculated to enter the

particulate phase due to a Henry’s law constant that is five orders of magnitude smaller

than that of glyoxal. Therefore, MACR is not considered in the following test cases. HY-20

ACET, GLYALD, and MGLY partition based on ambient APR. Uncertainties in APR and

the formulation of the absorption module are investigated.

The data of Matsunaga et al. (2005) that relate APR and RH show significant scatter.

Therefore, we define a range of uncertainty for the APR of each species and for each

RH range (<60%; >60%) using the 10th and 90th percentile of the raw APR data25

(Matsunaga, private communication, 2006). At RH above 60%, the ranges of APR

are 0.13 to 0.58, 0.11 to 0.60, and 0.17 to 0.56, respectively, for HYACET, GLYALD,
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and MGLY. At RH below 60%, the ranges of APR are 0.12 to 0.36, 0.06 to 0.23, and

0.06 to 0.37, respectively, for HYACET, GLYALD, and MGLY. Results of the partition

simulations using the lower and upper limit of those ranges are shown in Fig. 3. Total

aerosol formed can increase from the base case by approximately 80% when higher

APR values are used in two different RH regimes. Therefore, parametric uncertainties5

in APR values can cause the aerosol yield to be uncertain, with ranges of 0.03–0.13

(nominal 0.07) at low RH and 0.06–0.25 (nominal 0.14) at RH above 60%.

The smog chamber experiments from which the partition parameters were deduced

were conducted at low RH; therefore, the LWC content of the laboratory aerosols was

low (Kroll et al., 2006). However, many of the identified products, including polyols and10

peroxides (Claeys et al., 2004a, b; Edney et al., 2005; Surratt et al., 2006) are very

water soluble; thus the role of water as part of the absorbing medium is inferred. In the

formulation of the isoprene module based on environmental chamber data, SOA is as-

sumed to partition into an organic phase that contains water. Doubling LWC from 50 to

100µg/m
3

increased SOA yield from 0.17 to 0.21 (Fig. 4). We attempted to investigate15

model formulation uncertainties by comparing with an alternative Raoult’s law module

in which water does not interact with organics (external mixture of organic liquid and

aqueous phases). The results are shown in Fig. 4. When water is excluded from the

organic absorbing medium, SOA yields drop significantly from 4.8 to 0.7µg/m
3
, indicat-

ing (as suggested in the benzene test case) the sensitivity of the Raoult’s law module20

to the mass and average MW of the absorbing medium. Even when a larger primary

organic compound concentration value is used, only limited enhancement in SOA par-

titioning was found. Therefore, the role of water within a partitioning system can have

significant effects on the aerosol yields in the ambient atmosphere.

Formulating SOA modules based on ambient vs. smog chamber data results in dif-25

ferent predictions and sensitivities. Although the uncertainty investigation is not ex-

haustive, both models show overlap in the range of SOA predictions. Using nominal

parameters, the absorption formulation based on Henze and Seinfeld (2006) results in

higher SOA yield, but the yield is highly sensitive to the LWC.
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The ambient formulation can predict similar or higher SOA than the absorption model

if alternative APR values are used that are within the range of observed variability.

Although Matsunaga et al. (2005) observed the APR to vary with RH, it is possible that

other factors contribute to the variability. The variability of parameters derived from

environmental chambers cannot be fully investigated due to more a limited number of5

experiments.

5.3 α-Pinene

The partition of α-pinene products (see total concentrations in Table 5) is shown in

Fig. 5 as a function of pH. The amount of SOA formed is insensitive to pH when pH

is above 6 because we use this pH value as our reference below which oligomer-10

ization is activated. The oligomerization correction term to the partitioning constant

increases with decreasing pH, resulting in more of the product subject to oligomeriza-

tion (APINAERO2) entering the particulate phase. As shown in Fig. 5, the effects of

oligomerization are most pronounced at a specific pH range between 5 and 6 for this

case study. At pH below 4, virtually all available APINAERO2 mass resides in the par-15

ticulate phase and reducing pH further results in no further increase in the SOA mass

and yield. Around pH=6, when oligomerization is activated, the mass of oligomers

increases by 6µg/m
3
, while the total SOA mass increases only by 2.5µg/m

3
. This is

because some of the material (3.9µg/m
3
) undergoing oligomerization is present in the

particle as monomers at higher pH. At pH=5, APINAERO2 is already mostly present in20

the particulate phase as oligomers; with the effective partitioning constant increasing

nine times over the monomer value.

The fraction of each SOA that is considered to be subject to oligomerization involved

assuming that aldehyde is the key functional group involved. This assumption is tested

by increasing that fraction to include all carbonyl species (fraction = 1), thereby increas-25

ing the amount of oligomerizable compounds. The results are represented using open

symbols in Fig. 5. At high pH, when only monomers are involved in the partitioning pro-

cess, the fraction of oligomerizable material is irrelevant. Increasing the oligomerizable
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fraction increases the potential amount of SOA and potential yield of SOA at low pH.

By increasing the fraction of oligomerizable material from 0.77 to 1.0 for APINAERO2,

the mass concentration of AAPINA2 increases from 8.1 to 9.1µg/m
3

(100% of the con-

densable material) at pH=3. The overall SOA yield increases accordingly from 0.33 to

0.37.5

Parameters used in the formulation of the SOA module are tested to understand

where key uncertainties lie. Parameters are changed in the direction that leads to less

oligomerization. We tested the sensitivity to Ko,eff,ref, z, and the reference pH. For

Ko,eff,ref and z, the only differences these parameters make in the partitioning of the

oligomer species are simulated when the effect of oligomerization is largest (pH=5–6).10

At pH=5, lowering Ko,eff,ref from 0.1 to 0.05 lowers the enhancement factor applied to

Kp due to oligomerization from about 9 to about 5. However, the effect on the formation

of SOA is small because the equilibrium is strongly displaced toward oligomers as the

pH decreases by only one unit. Similarly, lowering z from 1.91 to 1.5 would result in

an enhancement factor of 4 to the monomer value of Kp. The maximum effects on15

oligomer concentrations is only a decrease of 0.6µg/m
3

(see Fig. 6).

A more important parameter seems to be the proton concentration needed to cat-

alyze oligomerization reactions. If we assume that a lower pH (5 instead of 6) is needed

before oligomerization can take place, the yield curve for oligomers is essentially shifted

down one pH unit. Therefore, the reference pH value below which oligomerization be-20

comes significant appears to be a critical parameter for an SOA model.

For this test case, once oligomerization is activated, SOA yields are not very sensitive

to the parameters used in the oligomerization formulation. There is a small range of

pH where the aerosol yield is sensitive to parameters used in oligomerization; at lower

pH, nearly 100% of the mass enters the particulate phase. For more volatile species,25

the uncertainty in the formulation may be more important.
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6 Conclusions and recommendations

The partitioning of many organic compounds is extremely sensitive to LWC because

water is an abundant absorbing medium in the ambient atmosphere. Water also fa-

cilitates the partition because it has a lower MW than most partitioning compounds,

effectively diluting the particle phase concentrations on a molar basis. Known oligomer-5

ization reactions take place in an organic phase that contains water and protons. How-

ever, the sensitivity to water may be overestimated if not all liquid water present in

aerosols is available to interact with organic compounds. Our sensitivity study with the

isoprene products shows that models including and excluding water from the partition

calculation of organic species can give very different results. Furthermore, other phys-10

ical processes can also affect the interaction between water and organic compounds,

including phase separation (Erdakos and Pankow, 2004) or the formation of micelles

(Tabazadeh, 2005) or inverted micelles (Cai and Griffin, 2003). Physical (phase) and

chemical (activity coefficients) interactions between water and organics need to be fur-

ther investigated to support accurate modeling, especially if multiple liquid phases are15

present in the ambient atmosphere. Laboratory experiments conducted at higher RH

will help elucidate the role of water in partitioning. For example, SOA yield of 8–25%

were reported based on dry chamber experiments (Martin-Reviejo and Wirtz, 2005).

However, when water is considered as part of the organic-containing aerosol, SOA

yield in the modeled atmosphere can be significantly larger. Such behavior remains20

to be verified. At present, measurement methods employed in the routine monitoring

networks exclude the majority of the particulate water due to sample heating, further

limiting the ability to analyze aqueous-organic interactions.

Due to incomplete information, uncertainties in SOA yields due to the formulation of

the model and the selection of model parameters can be significant. The uncertain-25

ties in the predicted yield due to parameterization can be as much as those due to

variabilities in the most influential ambient conditions. Therefore, further experimental

work is needed to characterize the gas-phase and particulate-phase products of po-
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tentially significant SOA precursors such as benzene and isoprene. Such molecular

identification is available for isoprene SOA in environmental chambers (Surratt et al.,

2006). However, there seems to be a discrepancy between the multitude of complex

SOA species found in environmental chambers and several small molecules found in

abundance in ambient measurements (Matsunaga et al., 2005). The importance of5

laboratory-identified SOA species in the ambient atmosphere remains to be quantified.

The dependence of SOA formation on co-pollutants, such as NOx and SO2, should

also be accounted for to the extent possible. Quantitative yield information will be quite

necessary for the development of models that can be used with more confidence.

Processes that can enhance the partition of aerosols by decreasing the volatility of10

end products need to be investigated further. Our sensitivity study shows that the ef-

fects of oligomerization can increase SOA formation by orders of magnitude at low pH.

However, many parameters are uncertain, and laboratory studies tend to be conducted

under conditions that favor these processes. More experiments that use conditions

relevant to the ambient atmosphere would provide valuable data to evaluate the im-15

portance of such processes. When such data become available, further theoretical

development can be accomplished to support the development of more robust models.
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Table 1. SOA-forming process for benzene.

Type
(a)

Reaction or equilibrium Rate constant
(b)

or equilib-

rium constant
(c)

G BENZENE + OH → 0.24 PHENOL +

0.21 GLYOXAL + 1.44 ROP + 0.24 HO2 +

0.76 RO2
(d)

2.5×10
−12

exp (−0.397 / RT)

cm
3
/molecule/s

G PHENOL + OH → 0.071 PHENAER1 +

0.138 PHENAER2 + OH
(e)

2.63×10
−11

K PHENAER1 ↔ APHENA1 0.053
(f)

K PHENAER2 ↔ APHENA2 0.0019
(f)

H GLYOXAL ↔ AGLYO
(g)

0 if RH < 26%

3.6×10
5

if RH ≥ 26%
(h)

G ROP + OH → ROPAER 1.14×10
−11

K ROPAER ↔ AROPA 0.0013
(i)

(a) Type is either G, K, or H. G is used for gas-phase reactions, K is used for gas/particle equilibrium reactions, H is used for gas/particle equilibrium reactions

where the particulate phase is aqueous.

(b) Reaction rate constants are given in cm
3
/molecule/s. If the Arrehenius form is used, R is 0.0019872 kcal/deg K/mole.

(c) Gas/particle equilibrium constants (K) are given in m
3
/µg. Henry’s law constants (or effective Henry’s law constants) are given in M/atm.

(d) ROP stands for ring-opening products. RO2 represents a generic peroxyl radical that reacts with NO to give NO2.

(e) The experimental mass-based stoichiometric factors are used as the molar stoichiometric coefficients, implicitly assuming that the PHENOL, PHENAER1,

and PHENAER2 share the same molecular weight. The molar yield can be adjusted if the MW of the condensable products are assumed to be different from

the MW of PHENOL.

(f) At 310 K.

(g) AGLYO stands for the aqueous forms of glyoxal including the glyoxal monomer dehydrate (ethan-tetrol).

(h) Effective H due to hydration; Heff can be adjusted to account for oligomerization (e.g. as a function of pH).

(i) Determined based on experimental data and SOA model formulation, see text.
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Table 2. (a) SOA-forming process for isoprene using the data from Matsunaga et al. (2005).

Type
(a)

Reaction or equilibrium Rate constant
(b)

, equilibrium

constant
(c)

or aerosol partition-

ing ratio
(d)

G ISOPRENE + OH → 0.91 RO2 + 0.09 RNO3 +

0.62 HCHO + 0.23 MACR + 0.32 MVK +

0.36 ISOPRD
(e)

2.5×10
−11

exp (408 / T)

G ISOPRENE + O3 → 0.27 OH + 0.066 RO2 +

0.008 RNO3 + 0.59 HCHO + 0.1 ISOPRD + 0.39

MACR + 0.16 MVK + 0.2 HCOOH +

0.15 RCOOH
(e)

7.86×10
−15

exp (−1912 / T)

G ISOPRENE + NO3 → 0.19 NO2 + 0.75 RO2 +

0.064 RNO3 + 0.94 ISOPRD
(e)

3.03×10
−12

exp (−448 / T)

G MVK + OH → 0.7 GLYALD + 0.3 MGLY
(e)

4.14×10
−12

exp (453 / T)

G MACR + OH → 0.42 HYACET +

0.08 MGLY
(e)

1.86×10
−11

exp (176/T)

H MGLY ↔ AMGLY 0.21 if RH < 60%

0.25 if RH ≥ 60%
(d)

H HYACET ↔ AHYACET 0.24 if RH < 60%

0.36 if RH ≥ 60%
(d)

H GLYALD ↔ AGLYALD 0.10 if RH < 60%

0.36 if RH ≥ 60%
(d)

H MACR↔ AMACR 6.5
(g)
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Table 2. (b) SOA-forming process for isoprene using the smog chamber data of Kroll et

al. (2006) as analyzed by Henze and Seinfeld (2006).

Type
(a)

Reaction or equilibrium Rate constant
(b)

,

equilibrium constant
(c)

or aerosol partitioning

ratio
(d)

G ISOPRENE + OH → 0.91 RO2 + 0.09 RNO3 +

0.62 HCHO + 0.23 MACR + 0.32 MVK + 0.36

ISOPRD + 0.232
(f)

ISOAER1 + 0.0288
(f)

ISOAER2
(e)

2.5 x 10
−11

exp (408 /

T)

K ISOAER1 ↔ AISOA1 0.00862
(f)

K ISOAER2 ↔ AISOA2 1.62
(f)

(a)–(c) see notes for Table 1.
(d) aerosol partitioning ratio (P/(G+P) – observation based, representing effective partitioning (including effects of oligomerization); values represent the
median observed value at each RH range (raw APR data from Matsunaga, private communication, 2006);
(e) RNO3 stands for alkyl nitrates; HCHO is formaldehyde; MACR is methacrolein; MVK is methyl vinyl ketone; ISOPRD is other isoprene products, ISOAER1
and ISOAER2 are condensable isoprene products (Henze and Seinfeld, 2006 formulation); HCOOH is formic acid; RCOOH is acetic acid; GLYALD is
glycolaldehyde; HYACET is hydroxyacetone; MGLY is methylglyoxal;
(f) Henze and Seinfeld (2006).
(g) Henry’s law constant for MACR may be modified based on oligomerization (see below).
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Table 3. Aerosol-forming reactions for surrogate precursor compounds (only SOA products are

listed).

Precursor compound

(molecular weight)

Gas-Phase Reactions Rate constants

(cm
3

molec
−1

s
−1

)
(a)

Toluene and other

high SOA yield

aromatics (92)

TOL + OH → 0.118 GLYOXAL + 0.131 MGLY +

0.033 TOLAER1 + 0.830 TOLAER2
(b,c)

1.81×10
−12

exp

(−0.397/RT)

Xylene and other low

SOA yield aromatics

(106)

XYL + OH → 0.108 GLYOXAL + 0.370 MGLY +

0.023 XYLAER1 + 0.046 XYLAER2 + 0.070 XY-

LAERO2
(b,c)

1.73×10
−12

exp

(0.705/RT)

Humulene (206) HUM + OH → 0.847 HUMAERO 2.93×10
−10

Limonene (136) LIM + OH → 0.168 LIMAER1 + 0.039 LIMAER2 +

0.251 LIMAERO2

1.71×10
−10

α−Pinene (136) APIN + OH → 0.028 APINAER1 + 0.061 APINAER2

+ 0.199 APINAERO2

APIN + O3 → 0.089 APINAER3 + 0.033 APINAER4

+

0.046 APINAERO4

5.37×10
−11

8.66×10
−17

β−Pinene (136) BPIN + OH → 0.092 BPINAER1 + 0.038 BPINAER2

BPIN + O3 → 0.019 BPINAER3 + 0.423 BPINAER4

+ 0.032 BPINAERO4

BPIN + NO3 → 0.739 BPINAER5

7.89×10
−11

1.36×10
−17

2.31×10
−12

Terpinene (136) TER + OH → 0.058 TERAER1 + 0.397 TERAERO2 2.7×10
−10

Terpinenol (154) TPO + OH → 0.035 TPOAER1 + 0.052 TPOAERO2 1.59×10
−10

(a) R is 0.0019872 kcal/deg K/mol; k from Carter (1990) for toluene and xylene and from Pun et al. (2003) and references therein for biogenic compounds.
(b) yields of GLYOXAL and MGLY are from Carter (1990).
(c) although cresol, a gas-phase product can probably lead to the formation of SOA, in a manner analogous to phenol (see Table 1), cresol products are
probably already accounted for in TOLAER1 and TOLAER2.
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Table 4. Aerosol-forming equilibria for SOA compounds produced precursors.

SOA Equilibrum Type
(a)

Equilibrium Equilibrum constant

(molecular weight) @ 298 K

GLYOXAL (58) H GLYOXAL ↔ AGLYO see Table 1

MGLY (72) H MGLY ↔ AMGLY see Table 2

TOLAER1 (198) K TOLAER1 ↔ ATOLA1 0.16

TOLAER2 (153) K TOLAER2 ↔ ATOLA2 0.0057

XYLAER1 (175) K XYLAER1 ↔ AXYLA1 0.13

XYLAER2 (152) K XYLAER2 ↔ AXYLA2 0.0042

XYLAERO2 (152) K XYLAERO2 ↔ AXYLAO2 0.0042 or f(pH)

HUMAERO (243) K HUMAERO ↔ AHUMAO 0.15 or f(pH)

LIMAER1 (198) K LIMAER1 ↔ ALIMA1 0.16

LIMAER2 (171) K LIMAER2 ↔ALIMA2 0.016

LIMAERO2 (171) K LIMAERO2 ↔ ALIMAO2 0.016 or f(pH)

APINAER1 (186) K APINAER1 ↔ AAPINA1 0.51

APINAER2 (171) K APINAER2 ↔AAPINA2 0.012

APINAERO2 (171) K APINAERO2 ↔ AAPINAO2 0.012 or f(pH)

APINAER3 (191) K APINAER3 ↔ AAPINA3 0.26

APINAER4 (174) K APINAER4 ↔ AAPINA4 0.24

APINAERO4 (174) K APINAERO4 ↔ AAPINAO4 0.24 or f(pH)

BPINAER1 (192) K BPINAER1 ↔ ABPINA1 0.13

BPINAER2 (147) K BPINAER2 ↔ ABPINA2 0.015

BPINAER3 (193) K BPINAER3 ↔ ABPINA3 0.58

BPINAER4 (152) K BPINAER4 ↔ ABPINA4 0.0090

BPINAERO4 (152) K BPINAERO4 ↔ ABPINAO4 0.0090 or f(pH)

BPINAER5 (184) K BPINAER5 ↔ ABPINA5 0.049

TPOAER1 (215) K TPOAER1 ↔ ATPOA1 0.48

TPOAERO2 (168) K TPOAER2 ↔ ATPOA2 0.013 or f(pH)

TERAER1 (217) K TERAERO1 ↔ ATERA1 0.24

TERAERO2 (186) K TERAERO2 ↔ ATERAO2 0.014 or f(pH)

(a) H: Henry’s law equilibrium between the gas phase and an aqueous phase; K: aerosol-phase equilibrium.

238

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/203/2007/acpd-7-203-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/203/2007/acpd-7-203-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 203–245, 2007

Investigative

modeling of new

pathways for SAO

formation

B. K. Pun and

C. Seigneur

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 5. Test cases. Nominal environmental conditions are: T=298 K; RH=0.5, POC=5µg/m
3
.

Case Benzene Isoprene α−pinene

LWC 50µg/m
3

50µg/m
3

10µg/m
3

Amount of precursor

reacted

10 ppb (31.9µg/m
3
) 10 ppb (27.8µg/m

3
) 5 ppb (27.8µg/m

3
)

Condensable prod-

uct = amount

(µg/m
3
)

glyoxal = 4.98

ROPAER = 34.2

PHENAER1 = 0.66

PHENAER2 = 1.23

ISOAER1 = 6.59

ISOAER2 = 0.8

HYACET = 2.92

GLYALD = 5.50

MGLY = 3.37

APINAER1 = 1.07

APINAER2 = 2.13

APINAERO2 = 6.96

Sensitivities investi-

gated – LWC

– pH

– POC

– Kp (ROPAER)

– stoichiometric

coefficient of

ROP

– RH

– APR

– LWC

– POC

– alternative

Raoult’s law

formulation that

excludes water

– pH

– fraction of

SOA subject to

oligomerization

– Ko,eff,ref

– pH at which

Ko,eff,ref applies

– z
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Fig. 1. Benzene SOA yield (Y) as a function of liquid water content (LWC) at pH = 4 and 6 and

POC = 5 µg/m
3

(top), as a function of pH at LWC = 50 µg/m
3

and POC = 5 µg/m
3

(middle),

and as a function of POC at LWC = 1 and 10 µg/m
3
, pH = 6 (bottom).
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3

and pH = 6.
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and aerosol partition ratio (APR) base case values and lower and upper end values derived

from experimental data.
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Fig. 4. Mass and yield of isoprene SOA under two scenarios where water is included or ex-

cluded as part of the absorbing medium; parameters that affect the partition of ISPRAER (LWC

and POC) are varied.
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Fig. 5. Yield and concentrations of total SOA and oligomers under the base case (solid

symbols) and in the sensitivity case where all APINAER2 products are assumed to undergo

oligomerization (“sensitivy: fraction” denotes cases where the fraction of condensable products

that is subject to oligomerization = 1; open symbols).
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Fig. 6. Concentrations of oligomers as a function of pH in sensitivity cases where parameters in

the calculation of the effective partition constant due to oligomerization is changed. (Ko denotes

the case where Ko,eff, is reduced; Z denotes the case where z is reduced and H
+

denotes the

case where the pH value required to activate oligomerization is reduced.)
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