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Abstract. In this paper, we present a detailed evaluation of
cross wavelet analysis of bivariate time series. We develop
a statistical test for zero wavelet coherency based on Monte
Carlo simulations. If at least one of the two processes con-
sidered is Gaussian white noise, an approximative formula
for the critical value can be utilized. In a second part, typi-
cal pitfalls of wavelet cross spectra and wavelet coherency
are discussed. The wavelet cross spectrum appears to be
not suitable for significance testing the interrelation between
two processes. Instead, one should rather apply wavelet co-
herency. Furthermore we investigate problems due to multi-
ple testing. Based on these results, we show that coherency
between ENSO and NAO is an artefact for most of the time
from 1900 to 1995. However, during a distinct period from
around 1920 to 1940, significant coherency between the two
phenomena occurs.

1 Introduction

Time series analysis is a fundamental issue in climatology
as in many other fields of empirical research (von Storch
and Zwiers, 1999; Ghil et al., 2002). Considering climate
records one almost always faces a composition of numerous
scales ranging from days to decades or even longer periods.
The classical method to investigate such data by frequency
decomposition is Fourier analysis (Priestley, 1992; Brock-
well and Davis, 1987). On the considered time scales cli-
mate processes are often non-stationary and time resolved
methods become necessary. The straightforward time re-
solved extension of Fourier analysis is a windowed or slid-
ing Fourier Transformation (Kaiser, 1994). A disadvantage
of this method is, that the window width and thus the time
resolution is constant for all investigated frequencies. Here,
continuous wavelet analysis (Daubechies, 1992) has proven
to be superior: The time resolution is intrinsically adjusted
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to the scales. Thus optimal time resolution for every scale is
given. Another advantage of wavelet analysis is the flexible
choice of the mother wavelet according to the characteristics
of the investigated time series (in the following, we always
omit the term “continuous”). For an introduction to discrete
wavelet transformation and its applications seeKaiser(1994)
andPercival and Walden(2000).

During the last decade, wavelet analysis has been success-
fully applied in climate science, e.g. to El Niño/Southern Os-
cillation (ENSO) data (Gu and Philander, 1995; Kestin et al.,
1998; Torrence and Webster, 1998), NAO proxy data (Ap-
penzeller et al., 1998) or output of globally coupled ocean at-
mosphere models (Timmermann et al., 1999). A good intro-
duction to the basic theory and application of wavelet anal-
ysis is given byTorrence and Compo(1998). The most im-
portant contribution of the latter paper is developing detailed
significance tests for the wavelet power spectrum to address
the critics, that wavelet analysis is rather producing colorful
images than reliable results.

An important field in time series analysis, especially in
climate sciences, is multivariate analysis. When compar-
ing two different variables like temperature or pressure, or
when analyzing teleconnections, one needs the bivariate ex-
tension of wavelet analysis. This cross wavelet analysis,
which was introduced byHudgins et al.(1993) and oth-
ers, is briefly discussed byTorrence and Compo(1998). It
has already been applied to various problems in climatol-
ogy like the ENSO-Monsoon system (Torrence and Webster,
1999), ENSO-North Atlantic Oscillation (NAO) teleconnec-
tions (Huang et al., 1998), a rainfall-runoff cross analysis
(Labat et al., 2000) or the influence of NAO on European
surface temperatures (Pozo-Vazquez et al., 2001).

However, important questions concerning this technique
remain open. We try to contribute to this discussion by in-
vestigating the wavelet cross spectrum (WCS) and the nor-
malized wavelet coherency (WCO). For WCO, we develop a
statistical test for zero coherency. Since test statistics cannot
easily be calculated analytically, we apply Monte Carlo sim-
ulations. For the case that at least one of the processes can be
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Fig. 1. Real (solid line) and imaginary (dashed line) part of the
Morlet wavelet withω0=6.

modeled by Gaussian white noise, we present an approxima-
tive formula to easily calculate the critical value for signifi-
cance on the 95% level. A second focus of the paper are typi-
cal pitfalls of cross wavelet analysis. We show, that not every
structure in a wavelet plot has got a physical meaning but
might be an artefact of WCS or multiple testing. To illustrate
our discussion, we show that the coherency between ENSO
and NAO for most of the moderate and strong El Niños be-
tween 1900 and 1995 as suggested byHuang et al.(1998) is
an artefact of WCS. However, during a distinct period from
around 1920 to 1940 significant coherency between the two
phenomena occurs and invites to further investigation.

The paper is organized as follows: In Sect.2 we intro-
duce the most important measures for wavelet analysis. The
problem of normalizing wavelet spectra is briefly explained
in Sect.3. In Sect.4, we interpret wavelet analysis as an in-
verse problem of parameter estimation and discuss the con-
sequences arising. Sect.5 provides a numerical significance
test for time- and scale-dependent coherency. Important pit-
falls related to cross wavelet analysis are studied in Sect.6.
We review the cross wavelet analysis of ENSO and NAO in
Sect.7.

2 Definitions

2.1 Continuous wavelet transformation

The wavelet transformationWi(s) at timeti=i1t on a scale
s of a discrete time seriesxj=x(tj ) of length N with a
sampling interval1t can be interpreted as an extension of
the discrete Fourier transformationF(ω)=

∑
j xj exp(iωtj )

(Kaiser, 1994). The latter one extracts contributions on fre-
quencyω. Wavelet transformation replaces the periodic ex-
ponential exp(iωtj ) with a localized wavelet9(tj−ti, s),
which is located around the timeti and stretched according

to the investigated scales: Thus the time series can be de-
composed scale- and time-dependent:

Wi(s) =

N−1∑
j=0

xj 9((j − i)1t, s). (1)

If one considers arbitrary scales between the sampling inter-
val and the length of the time series, one speaks of continuous
wavelet transformation (CWT). In this case, the wavelets do
not span an orthogonal set of basis functions. Hence neigh-
boring scales and times contain redundant information and
are correlated.

The wavelet9(tj−ti, s) is a stretched and translated ver-
sion of a chosen mother wavelet, normalized with a factor
c(s) (see Sect.3):

9(tj − ti, s) = c(s)90

(
tj − ti

s

)
. (2)

2.2 Morlet wavelet

In the following, we always consider the Morlet mother
wavelet (see Fig.1)

90(θ) = π−1/4eiω0θe−θ2/2, (3)

where θ and ω0 are unit-less. The Gaussian envelope
exp(−θ2/2) localizes the wavelet in time. The time/scale
resolution is adjusted byω0. For high values ofω0, the scale
resolution increases, whereas time resolution decreases and
vice versa. Fourier frequencyf and wavelet scales are not
direct reciprocals of each other. Instead, one has to rescale
the result of wavelet analysis with a factor depending on the
mother wavelet (Meyers et al., 1993; Torrence and Compo,
1998). For the Morlet wavelet, the conversion reads

1

f
=

4πs

ω0 +

√
2 + ω2

0

. (4)

For ω0=6, s·f is approximately one. For other mother
wavelets refer toKaiser (1994) and Torrence and Compo
(1998).

2.3 Wavelet power spectrum

Transferring a concept of Fourier analysis, a wavelet power
spectrum (WPS) can be defined as the wavelet transforma-
tion of the autocorrelation function. Following the Wiener-
Khinchin theorem, this can be implemented as follows:

WPSi(s) = 〈Wi(s)Wi(s)
∗
〉. (5)

The brackets denote expectation values.WPSi(s) describes
the power of the signalx(t) at a certain timeti on a scales.
The relevance of considering expectation values and how to
estimate them is discussed in Sect.4.
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2.4 Cross wavelet analysis

As in Fourier analysis, the univariate WPS can be extended
to compare two time seriesx(ti) andy(ti): One can define
the wavelet cross spectrumWCSi(s) as the expectation value
of the product of the correspondingW x

i (s) andW
y
i (s):

WCSi(s) = 〈W x
i (s)W

y
i (s)∗〉. (6)

In Sect.6 we show, that WCS-peaks can even appear when
x(ti) andy(ti) are independent, because WCS is not normal-
ized. In contrast to the WPS, the WCS is complex valued
(analogous to Fourier cross spectra) and can be decomposed
into amplitude|WCSi(s)| and phase8i(s):

WCSi(s) = |WCSi(s)| e
i8i (s). (7)

The phase8i(s) describes the delay between the two signals
at timeti on a scales.

A normalized time and scale resolved measure for the
relationship between two time seriesx(ti) and y(ti) is the
wavelet coherency (WCO), which is defined as the amplitude
of the WCS normalized to the two single WPS:

WCOi(s) =
|WCSi(s)|(

WPSxi (s)WPSyi (s)
)1/2

. (8)

A value of 1 means a linear relationship betweenx(ti) and
y(ti) around timeti on a scales. A value of zero is obtained
for vanishing correlation. Because of the normalization, spu-
rious peaks can occur for areas of low wavelet power. Note
the importance of estimating the expectation values of the
single terms in Eq. (8): If they are not considered separately,
nominator and denominator equal each other and the result
will be identical to 1 no matter what the real WCO is. Thus
computing WCO from observational data, one has to smooth
nominator and denominator separately (see also Sect.4.2).

3 Normalizations

In Fourier analysis, any normalization automatically pro-
vides the following two features:

– The Gaussian white noise spectrum is (by definition)
flat.

– Sines of the same amplitude have the same integrated
power in the frequency domain.

In wavelet analysis, we meet difficulties to obtain both. For
the factorc(s) in Eq. (1), Torrence and Compo(1998) and
Kaiser (1994) suggest different normalizations, which only
preserve one of the mentioned features. Torrence suggests

c(s) =

(
1t

s

)1/2

, (9)

which preserves a flat white noise spectrum, but sines of
equal amplitude exhibit different integrated power propor-
tional to their oscillation scale. This choice equals Kaiser’s
normalization withp = 1/2 (Eq. 3.5 in Kaiser, 1994, p. 62).
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Fig. 2. Wavelet power spectrum of Gaussian white noise and two
sines of frequency 1/2 and 1/4 and equal amplitude. Solid line: Nor-
malization according toTorrence and Compo(1998) does not pre-
serve the integrated power, but a flat white noise spectrum. Dashed
line: Normalization according toKaiser(1994) preserves the inte-
grated power, but the white noise spectrum is∼1/scale.

Using the normalization of Kaiser withp = 0,

c(s) = 1t1/2, (10)

sines of equal amplitude also exhibit equal integrated power
(when scale is plotted logarithmically). On the other hand,
the white noise spectrum is no longer flat but decreases pro-
portional to 1/scale. Figure2 illustrates this dilemma of dif-
ferent normalizations for time series of Gaussian white noise
and a sine function.

Fortunately, the normalization is only relevant for a first
inspection by eye. A normalization following Eq. (9) em-
phasizes power on high scales and could lead to misinterpre-
tations. However, when performing a significance test, the
significance level already includes the chosen normalization.

4 Wavelet analysis of observational records

4.1 The inverse problem

In time series analysis, one aims to reveal properties of an un-
derlying process from a given observation. This is referred to
as an inverse problem (Honerkamp, 1998), having two conse-
quences: First, since most processes in geosciences are mix-
ing (i.e. loosely spoken processes that lose the knowledge
about their actual state fort→∞, see e.g.Karlin and Tylor,
1975) and additionally all measured time series are of finite
size, one will never be able to obtain the exact values of the
“true” properties. Instead one has to define a meaningful esti-
mator, which is a function of the observation and (if possible)
would yield the exact desired property if the time series was
of infinite lengths. Secondly, in general it is not a priori clear
if the inference of a process property from observational data
is unambiguous (Moritz, 1993; Anger, 1993).
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4.2 Estimator for wavelet power

The observed WPS of a measured time series is an estimator
for the “true” WPS of the underlying process. A comparison
with Fourier analysis illustrates the involved consequences:

For the Fourier spectrum, the first guess estimator is
the periodogram, which is the squared absolute value of
the Fourier transformation of a given time series (Priestley,
1992; Brockwell and Davis, 1987). If this time series is a re-
alization of a mixing process, every value of the periodogram
is χ2 distributed with two degrees of freedom. The variance
of this estimator will not converge to zero for an infinite time
series, i.e. the periodogram is not a consistent estimator. To
construct a consistent estimator for the true spectrum, one
has to estimate the expectation value of the periodogram. In
many practical cases, when only one realization is given, this
has to be done by smoothing neighboring frequencies.

This line of argumentation can be transferred to wavelet
analysis: Commonly, as an estimator for the true WPS, the
squared absolute value of the CWT is calculated (i.e. Eq.5
without taking the expectation value). This measure is called
wavelet periodogram (Nason et al., 2000) to emphasize that it
is like the Fourier periodogramχ2-distributed with 2 degrees
of freedom and thus not a consistent estimator. This does not
contradict the finding ofPercival and Walden(2000), who
state that the global wavelet spectrum is a consistent estima-
tor of the time independent spectrum. There the expectation
value is estimated by averaging over all times.

In wavelet analysis, the situation is quite subtle: Since
neighboring points in time and scale are correlated (see Ap-
pendixA), the wavelet periodogram looks smooth. However,
fluctuations around the true WPS are not smaller as in Fourier
analysis, but vary jointly. Hence, the appearance of smooth
patterns can suggest structures which are just coincidence.
This has to be kept in mind, when interpreting wavelet plots.
Ideally, the expectation value should be estimated. When,
as usually in climatology, only one realization is measured,
one either has to assume stationarity over a certain time in-
terval and smooth in time direction, or one has to assume that
neighboring scales exhibit similar power and thus smooth in
scale direction (Sect.5). For WCO the smoothing is essen-
tial, as shown in Sect.2.4.

4.3 Edge effects

The wavelet transformation at a point in timet0 always con-
tains information of neighboring data points. The number
of these points depends on the chosen wavelet and the scale
considered. Thus, if the wavelet is centered close to the be-
ginning or the end of the time series, edge effects occur. The
area, where such effects are relevant, is called the cone of
influence. Here, the results should be interpreted carefully.
In the figures of this paper, the cone of influence is chosen
as thee-folding time of the Morlet wavelet

√
2s and marked

as a shadow in the wavelet plot. For a discussion, refer to
Torrence and Compo(1998).

5 Significance testing of wavelet coherency

The wavelet transform of the realization of a mixing process
is a random number. Thus, even for independent processes,
nonzero values of the coherency will result and the question
arises, when a value has to be considered as being different
from zero. The idea is to formulate a null hypothesis H0 “the
processes are not coherent” and to derive a significance test
for H0. Therefore, one has to estimate the probability dis-
tribution of the coherency under H0. If the coherency lays
outside a chosenα-quantile, the so-called critical value of
this distribution, one rejects H0 and the coherency is con-
sidered to be significantly different from zero on the(1−α)-
level. For an introduction to significance testing refer toHon-
erkamp(1994), Lehmann(1986) or Cox and Hinkley(1994).

In the case of Fourier analysis, a test for significant co-
herency can be calculated straightforwardly (Brockwell and
Davis, 1987): Irrespective of the two processes to be ana-
lyzed, the Fourier transform is asymptotically Gaussian dis-
tributed and thus the cross periodogram isχ2 distributed.
Since vicinal frequencies are asymptotically uncorrelated,
the coherency thus follows a F distribution.

However, this is not the case for different wavelet scales
and times. Firstly, for small scales the asymptotic – process
independent – distribution is not reached. Thus, consider-
ing small scales, one has to find suitable models for the two
processes to be analyzed. Secondly, vicinal wavelet times
and scales are not uncorrelated (AppendixA) and we show
in AppendixB, that the WCS is notχ2 distributed. Thus an
analytical test statistic is highly non trivial if not impossible.

To overcome the second problem, we performed Monte
Carlo simulations to estimate the distribution under H0 nu-
merically. We first considered the most basic case: We simu-
lated 10 000 realizations of two independent Gaussian white
noise processes and estimated the 95% critical values for dif-
ferent smoothing windows in time and scale and for vari-
ous time/scale resolutions defined byω0. Since WCO is a
local and normalized measure, instationarity of the investi-
gated process does not require instationary models to derive
the test statistics.

Given a choice of the smoothing window in time and scale,
a scale independent critical value is desirable to ease the anal-
ysis (since white noise is stationary in time, the critical value
will automatically be time independent). We found that this
is obtained for the following smoothing procedures:

– When smoothing in time direction, one has to take into
account the wavelet length of essential support, which is
proportional to the scales considered (see Eq.3). Thus,
a scale independent critical value is obtained, when the
smoothing length is related to the actual scales by a
constant factorm.

– Given a wavelet transform calculated for scales which
are equidistant in logarithmic scale (i.e. more values for
smaller scales), one has to smooth a constant number
w of neighboring scales to obtain a scale independent
critical value.
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Fig. 3. Empirical 95% critical values for 10 000 realizations of
wavelet coherency of two white noise time series forω0 = 6 and
for smoothing with different smoothing window lengths(a) in time
direction and(b) in scale direction.m denotes the ratio between
window length and scale. 2w+1 denotes the window lengths in
relation to the 200 scales, chosen equidistant in logarithmic scale
between 61t and 3841t , i.e. 0.5 and 32 years for the common case
of 1t=1 month. For everym andw, the estimated value fluctuates
around a time independent constant.

Figure 3 presents the 95% critical valuesWCO95 obtained
from the Monte Carlo simulations of two Gaussian white
noise models. We use the Morlet wavelet and a fixedω0=6
for different smoothing windows in (a) time direction and
(b) scale direction respectively. The efficiency of smoothing
is rather weak due to the strong correlation between neigh-
boring times and scales (see AppendixA). Furthermore,
smoothing in time direction appears to be much less effective
than smoothing in scale direction (compare the values at the
ordinates). This finding becomes intuitively clear, when we
recall that wavelets already intrinsically smooth in time di-
rection. As expected, we found the normalization discussed
in Sect.3 having no influence on the significance test, since
different normalizations cancel down in WCO.

The dependency ofWCO95 for the two Gaussian white
noise models on the relevant parametersω0 and the smooth-
ing length in scale directionw is shown in Fig.4. The plotted
values forWCO95 are the mean values over all scales of the

3
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1.00

95%−Quantile

Fig. 4. Empirical 95% critical values for 10 000 realizations
of wavelet coherency of two Gaussian white noise time series
for smoothing in scale direction with different smoothing window
lengthsw and differentω0. The plotted quantilesWCO95 are the
mean values over all scales plotted in Fig.3b, but for variousω0.

Monte Carlo simulations for a fixed pair of parametersω0
andw as depicted forω0=6 in Fig. 3b. For practical pur-
poses, we fitted a polynomial to these results and obtained
the following approximation for significance testing WCO
using the Morlet wavelet and smoothing in scale direction:

WCO95 = 8.23×10−5 ω3
0 + 4.24×10−5 ω2

0w

+ 1.13×10−5 ω0w
2

+ 1.54×10−5 w3

− 2.30×10−3 ω2
0 − 2.19×10−3 ω0w

− 7.51×10−4 w2
+ 2.05×10−2 ω0

+ 1.27×10−2 w + 0.95,

(11)

where 2w+1 denotes the width of the smoothing window
andω0 defines the time/scale resolution. This approximation
is only valid in the interval shown in Fig.4. Since smoothing
in time direction appears to be too ineffective, we did not
consider it in detail.

The Gaussian white noise model is a simple and often un-
realistic assumption. As mentioned above, for Fourier analy-
sis critical coherency values are asymptotically independent
of the model. This holds also for wavelet analysis in the limit
of large scaless. However, since wavelet analysis is local-
ized in time, for small scaless the asymptotic behavior is
not reached and a proper model has to be chosen to estimate
critical values. We simulated different stochastic models and
found that the result from the Gaussian white noise model
as given in Eq. (11) holds already when at least one of the
two processes considered can be modeled by Gaussian white
noise. However, when none of the processes can be modeled
by Gaussian white noise, one has to find suitable models and
perform Monte Carlo simulations. Further research is needed
to understand the dependency of the critical value on the cho-
sen model.
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Fig. 5. Contour plot of the amplitude of(a) WCS and(b) WCO
(2w+1=31) between NINO3 time series and a Gaussian white
noise time series.ω0=6. (a) Contours with arbitrary units in log-
arithmic scale. Even though the processes are independent, mis-
leading peaks appear for high NINO3 values. (b) Linear grey scale
from black (WCO=0) to white (WCO=1). The black contour line
denotesWCO95. The structure suggested in the wavelet cross spec-
trum disappears and thus turns out to be an artefact. Only spurious
peaks due to multiple testing (see Sect.6.2) remain. The shadow
marks the cone of influence (see Sect.4.3).

6 Pitfalls

6.1 Peaks in wavelet cross spectra

WCS describes the common power of two processes without
a normalization to the single WPS. This can produce mis-
leading results, because one essentially multiplies the CWTs
of two time series. E.g. if one of the spectra is locally flat
and the other exhibits strong peaks, this can produce peaks in
the cross spectrum, which may have nothing to do with any
relation of the two time series. Thus, WCS is not suitable
for significance testing the relation between two time series.
Figure5 exemplifies the problem showing the WCS between
the NINO3 time series (see Sect.7) and a realization of a
first order auto regressive (AR[1]) process. Although both
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Fig. 6. 95% critical value contour plot for wavelet coherency of
two independent white noise time series. The solid line denotes
smoothing with 2w+1=11 points, the dashed line with 2w+1=41
points in scale direction. Even though the two processes are in-
dependent, peaks covering around 5% of the time/scale area will
appear by definition due to multiple testing

processes are independent by definition, a structure related to
the peaks in the NINO3 WPS (i.e. El Niños) occurs (Fig.5a).
WCO avoids this problem by normalizing to the single WPS
(Fig. 5b). However, if one has detected a significant interre-
lation using WCO, one can apply WCS to estimate the phase
spectrum.

6.2 Multiple testing

When performing a test on the(1−α)-level, by definition one
rejects H0 with a probability ofα% even when it is true.
Hence when repeating a test for many independent realiza-
tions, aroundα% of the results should spuriously appear to
be significant. This effect is referred to as multiple testing
(Lehmann, 1986). Significance testing for WCO can also be
seen as an example for multiple testing, since one investi-
gates every point in the space/time domain separately. The
important difference to a setting with independent realiza-
tions is the fact, that neighboring realizations are correlated
according to AppendixA and due to smoothing.

Figure 6 shows the effect of multiple testing: The 95%
level contour line for wavelet coherency between two in-
dependent white noise time series is plotted for different
smoothing windows. Even though the two processes are in-
dependent, peaks covering around 5% of the time/scale area
appear. If it is not a priori known if two processes are co-
herent, the nontrivial issue is now to decide, which of these
peaks can be interpreted as significant. A conservative solu-
tion is the Bonferroni correction (Lehmann, 1986) dividing
the significance levelα by the number of tested realizations
(i.e. here the number of points in scale and time of the WCO
analysis). However, this correction is too strict for correlated
realizations. Also, a result based on the Bonferroni correc-
tion only states if any coherency exists at all between the two
processes without specifying at what scale and time. Thus,
deciding if a single peak is significant is not possible based
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on the Bonferroni correction. If a single peak covers more
than 5% of the total area, the question is answered easily. For
peaks with smaller area, a valuable hint is given in Fig.6: For
different smoothing lengths, spurious peaks do not always
overlap. Thus one should always compare different smooth-
ing windows and sort out peaks that appear only in one of
the corresponding plots. Additionally, it seems that the size
of the considered patches plays an important role, as small
structures appear much more often than larger ones. One
could investigate the distribution of the peak areas under H0
to draw more distinct conclusions about single peaks. This
issue is beyond the scope of this paper.

7 Cross wavelet analysis of ENSO/NAO teleconnections

A prominent example of a bivariate time and scale resolved
study is the WCS analysis of the ENSO-NAO teleconnec-
tions byHuang et al.(1998), stating that ENSO and NAO are
coherent for most of the moderate and strong El Niños be-
tween 1900 and 1995. Keeping in mind the discussion in the
previous section, we review the WCS results and compare
them with those of WCO. We used the extended NINO3-
index updated fromKaplan et al.(1998) and the NAO-index
defined inJones et al.(1997). We consideredN=1738 data
points in the range from January 1856 to October 2000 in a
monthly resolution.

Figure7a shows the results of the WCS analysis (ω0=6).
As in the analysis ofHuang et al.(1998), several peaks ap-
pear at a period of about six years around 1877, 1918 and
1940, and at a period between 2 to 4 years around 1888, 1969
to 1982. All these peaks are associated with El Niño Events.

However, a significant peak in the WCS might simply arise
due to a peak in the univariate WPS of one of the time series
as shown in Sect.6.1. Thus we additionally calculated the
normalized WCO (see Fig.7b, ω0=6, 2w+1=31) and com-
pared it to the WCS. For the calculation of the critical value,
we chose Eq. (11). This critical value matches the result of
additional Monte Carlo simulations, using an AR[1] process
with an e-folding time of 12 months to model NINO3 and
Gaussian white noise to model NAO. For WCO, most peaks
from the WCS analysis vanish. However, this analysis shows
significant peaks around 1920 at a scale of 4 to 8 years and
around 1940 at a scale of about 4 to 14 years. The other
small peaks cannot be distinguished from coincidence due to
multiple testing.

These results cast doubt on the finding that ENSO and
NAO are coherent for most of the moderate and strong El
Niños between 1900 and 1995. However, the period between
around 1920 and 1940 seems to be distinct from other times,
as a significance coherency occurs. The physical interpreta-
tion of this time-dependent interrelation requires further de-
tailed investigation of possible instationary coupling mecha-
nisms.
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Fig. 7. Contour plot of the amplitude of(a) WCS and(b) WCO
(2w+1=31) between NINO3 and NAO index time series.ω0=6.
(a) Contours with arbitrary units in logarithmic scale. The WCS
(not smoothed) shows peaks around 1877, 1888, 1918, 1940, 1969
and 1982. (b) Linear grey scale from black (WCO=0) to white
(WCO=1). The black contour line denotesWCO95. WCO analysis
reveals that only a peak around 1920 at a scale of 4 to 8 years and
one around 1940 at a scale of about 4 to 14 years are significant.

8 Conclusions

In this paper we present a detailed evaluation of cross wavelet
analysis. We investigate two wavelet measures for the linear
scale and time dependent interrelation between two time se-
ries, the wavelet cross spectrum (WCS) and the normalized
wavelet coherency (WCO). The latter one exhibits values be-
tween zero and one, characterizing a vanishing or perfect lin-
ear relationship respectively. Based on an inverse problem
point of view, we recall that the wavelet periodogram is not
a consistent estimator of the local wavelet power spectrum
(WPS) and that the inference of peaks from wavelet analysis
is not unambiguous. Particularly with regard to WCO, one
has to estimate expectation values to get any reliable results.
In practical cases, this has to be done by smoothing.

Even for independent mixing processes, realizations will
show nonzero WCO-values. Thus, a significance test is re-
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quired to decide, whether a WCO-value has to be consid-
ered as being significantly different from zero. In contrast to
Fourier analysis, this test is not independent of the structure
of the two processes considered and not easily calculated an-
alytically. Instead, appropriate models have to be chosen and
Monte Carlo simulations have to be performed to estimate
critical values for a chosen significance level. We exempli-
fied this discussion for the basic case of two processes which
can be modeled by Gaussian white noise. The critical value
WCO95 is essentially a function of the smoothing parameters
and the time/scale resolution defined byω0. An interesting
result is that due to correlations of neighboring scales and
times, smoothing has only a weak effect. Especially smooth-
ing in time direction is not feasible. For practical purposes,
we fitted a polynomial to our numerical results. The critical
values derived for the two Gaussian white noise models and
thus the approximation Eq. (11) are valid, if at least one of
the processes considered can be modeled by Gaussian white
noise. For other cases, appropriate models have to be chosen
to perform Monte Carlo simulations.

A second focus of the paper are pitfalls of cross wavelet
analysis. We show that the WCS can show misleading peaks
even for realizations of independent processes, just because
the WPS of one of the time series exhibits strong peaks.
Thus, WCS is not suitable for significance testing the inter-
relation between two processes and one should rather utilize
WCO. Furthermore, due to multiple testing spuriously sig-
nificant peaks have to appear by definition. A straightfor-
ward identification of a single peak is only possible, when
this peak covers a percentage of the investigated time/scale
area higher than the significance level. For the decision, if a
small single peak is significant, no straightforward solution
exists so far. However, a valuable hint is given by comparing
the peak for different WCO parameters as smoothing length
and time/scale resolution.

On the basis of these results, we could show that the sug-
gested coherency between ENSO and NAO for most of the
moderate and strong El Niños between 1856 and 2000 is an
artefact. The peaks visible in the WCS rather stem from high
power in the single WPS of the NINO3 time series than from
any coherency of the two time series. The WCO analysis
shows significant peaks only around 1920 at a scale of 4 to 8
years and between 1920 and 1940 at a scale of about 4 to 14
years.

Summarizing the discussion in this manuscript, we recom-
mend the following steps for cross wavelet analysis:

– Choose suitable models for the significance test of
WCO. If at least one of the models is Gaussian white
noise, the approximation Eq. (11) can be used to calcu-
late critical values for a chosen significance level. Oth-
erwise, Monte Carlo simulations have to be performed.

– Choose the time/scale resolutionω0 (better compare
different values).

– Calculate WCO and plot a contour line at the critical
value.

– Check the result of different smoothing lengths. If peaks
appear only for single smoothing lengths, they are prob-
ably artefacts due to multiple testing.

However, further research is required. Understanding
how the critical value for significant WCO depends on the
stochastic models used to describe the investigated processes,
could help to avoid time intensive Monte Carlo simulations.
An important issue is the treatment of multiple testing ef-
fects. To our knowledge, there is no standard procedure for a
test, that is not too conservative, but does not produce many
false positive results. It seems that the area of the investi-
gated peaks in the time/scale domain plays an important role,
as small structures appear much more often than larger ones.
Thus one could try to estimate the size distribution of spu-
riously significant patches to draw more distinct conclusions
about single peaks.

Appendix A Correlation of wavelet scales and times

In Fourier analysis, for a white noise time series neighbor-
ing frequencies are uncorrelated. Here we show that this is
no longer the case for wavelet analysis. Given a continuous
white noise time seriesx(t), the continuous formulation of
Eq. (1) reads

W(s, t) =

∫
∞

−∞

dτ 90(τ − t)x(τ ), (A1)

where two different points in time are uncorrelated:

〈x(t1) x(t2)〉 = δ(t1 − t2). (A2)

The correlation between the CWT of two different scaless1
ands2 at different timest1 andt2 is defined as

C(s1, s2, t1, t2) = 〈W(s1, t1) W(s2, t2)
∗
〉. (A3)

Inserting Eq. (A1) into Eq. (A3), we obtain

C(s1, s2, t1, t2) =

〈 ∫∫
dτ1dτ290(τ1 − t1)

90(τ2 − t2)x(τ1) x(τ2)

〉
. (A4)

Since integrals and expectation values are linear operators,
this can be simplified to

C(s1, s2, t1, t2) =

∫∫
dτ1dτ290(τ1 − t1)

90(τ2 − t2)
〈
x(τ1) x(τ2)

〉
. (A5)

Using Eq. (A2) and some algebra lead to

C(s1, s2, t1, t2) =

√
2s1s2
s2
1+s2

2
exp

{
iω0

s1+s2
s2
1+s2

2
(t2 − t1)

}
× exp

{
−

1
2

(t2−t1)
2
+ω2

0(s2−s1)
2

s2
1+s2

2

}
. (A6)

Thus, in contrast to Fourier analysis, neighboring points in
time and scale are not uncorrelated.
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Appendix B Distribution of the cross wavelet spectrum

A condition for a simple analytical test statistic for Fourier
coherency is based on the fact, that the cross spectrum ex-
hibits aχ2 distribution (Brockwell and Davis, 1987). Since
we have shown that wavelet times and scales are not uncor-
related, this condition is no longer trivially fulfilled.

The theorem of Ogasawara and Takahashi (c.f.Rao
(1965)) states, when a sum of squares of correlated Gaus-
sian distributed random variables isχ2 distributed. Given a
vectorY of Gaussian random variables

Y ∼ Nn(0, 6) (B1)

with a covariance matrix6, the productYT AY is χ2 dis-
tributed, when

6A6A6 = 6A6 (B2)

holds.
In the case of smoothing neighboring values of the WCS,

we are interested in the sum of squares (in this example
smoothing over three neighboring scales is considered. Gen-
eralization follows straight forward)

YT AY = W1(s1)W2(s1)
∗

+ W1(s2)W2(s2)
∗

+ W1(s3)W2(s3)
∗. (B3)

This relation is obtained by defining

Y =


W1(s1)

W2(s1)
∗

W1(s2)

W2(s2)
∗

W1(s3)

W2(s3)
∗

 (B4)

and

A =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 . (B5)

The covariance matrix then reads

6 =


σ 0 σ12 0 σ13 0
0 σ 0 σ12 0 σ13

σ12 0 σ 0 σ23 0
0 σ12 0 σ 0 σ23

σ13 0 σ23 0 σ 0
0 σ13 0 σ23 0 σ

 (B6)

where the single entries can be calculated according to
Eq. (A6). For these conditions, Eq. (B2) reads

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 =


0 s1213 0 s1213230 s131223
0 0 0 0 0 0
0 s1213230 s1223 0 s231213
0 0 0 0 0 0
0 s1312230 s2312130 s1323
0 0 0 0 0 0

 (B7)

with sijkl=σ 2
+σ 2

ij+σ 2
kl and sijklmn=2σσij+σklσmn and is

never fulfilled. Thus the smoothed WCS is notχ2 dis-
tributed.
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