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Abstract

It is shown that a high-resolution short-wave (SW) heating rate parameterization is nec-

essary to simulate solar cycle variations in atmospheric models. The improved Freie

Universität Berlin (FUB) high-resolution radiation scheme (FUBRad) is introduced and

compared to the 4-band ECHAM5 SW radiation scheme of Fouquart and Bonnel (FB).5

Both schemes are validated against the detailed radiative transfer model libRadtran.

FUBRad produces realistic heating rate variations during the solar cycle and a tem-

perature response that is in good agreement with observations. The SW heating rate

response with the FB scheme is about 20 times smaller than with FUBRad and cannot

produce the observed temperature signal.10

Comparison of the total short-wave heating rates under moderate solar conditions

shows good agreement between FUBRad, FB and libRadtran up to 80 km indicating

that both parameterizations are well suited for climate integrations that do not take solar

variability into account.

The FUBRad scheme has been implemented as a sub-submodel of the Modular15

Earth Submodel System (MESSy).

1 Introduction

Understanding solar variability effects on climate is an important topic in current studies

with state-of-the-art chemistry-climate models (CCMs). If it is possible to understand

the influence of solar variability on climate, the contribution of anthropogenic effects to20

climate change can be better estimated. Variations in the total solar irradiance (TSI)

over the 11-year solar cycle are small (0.08%) (e.g. Fröhlich, 2000) and therefore can-

not be the cause for the observed changes in Earth’s surface temperature. However,

variations in the ultraviolet (UV) part of the solar spectrum, which is important for ozone

production and middle atmosphere heating, range from 8% at 200 nm to about 5%25

from 220 nm to 260 nm, 0.5% around 300 nm, and 0.1% above 400 nm (e.g. Lean et
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al., 1997; Woods and Rottman, 2002). Much larger variations are observed at shorter

wavelengths (over 50% at 120 nm, 10–15% from 140–200 nm), which are mainly ab-

sorbed in the higher atmosphere (mesosphere and thermosphere).

As has been shown in past modeling studies (e.g. Brasseur, 1993; Haigh, 1994;

Fleming et al., 1995), 11-year solar UV irradiance variations have a direct impact on5

the radiation and ozone budget of the middle atmosphere. In order to account for

these changes a model needs to include spectrally resolved solar irradiance changes

as well as ozone changes due to enhanced photo-chemical production (e.g. Larkin et

al., 2000). According to a recent study by Shibata and Kodera (2005) the solar forcing

is linearly composed of UV and ozone changes. In the annual mean the UV forcing10

is dominant and over twice as large as the ozone forcing around the stratopause and

above, while the ozone forcing is dominant below 5 hPa where the UV forcing is neg-

ligible. At summer solstice however, the ozone forcing in the polar upper stratosphere

reaches the same magnitude as the UV forcing (Langematz and Matthes, in prepara-

tion). Matthes et al. (2003) showed that general circulation models (GCMs) considering15

spectral variations between different phases of the 11-year solar cycle show a clear di-

rect solar signal in the temperature and circulation of the upper stratosphere. These

studies clearly demonstrate that the wavelengths important for ozone absorption need

to be taken properly into account for solar variability studies.

During solar maximum (hereafter: solar max) years the solar UV irradiance is en-20

hanced, which leads to additional ozone production and heating in the stratosphere

and above. By modifying the meridional temperature gradient the heating can alter

the propagation properties for planetary and smaller-scale waves that drive the global

circulation. Thus the relatively weak, direct radiative forcing of the solar cycle in the

upper stratosphere could lead to a larger indirect dynamical response in the lower25

atmosphere through a modulation of the polar night jet and the Brewer-Dobson circu-

lation (Kodera and Kuroda, 2002). This has recently been confirmed in a GCM study

by Matthes et al. (2004) who ascribed the successful simulation of solar variability ef-

fects in their GCM partly to the high-resolution short-wave (SW) radiation scheme and
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partly to the prescription of realistic equatorial winds throughout the stratosphere. The

transfer of the solar signal from the stratosphere to the troposphere is subject of cur-

rent model and observational studies and includes a modulation of the Arctic oscillation

(AO) at middle to high latitudes (Kodera, 2002; Matthes et al., 2006) and changes in

vertical motion and precipitation in the tropics (e.g. Kodera, 2004; Haigh et al., 2005,5

Matthes et al., 2006). Such dynamical changes can feedback on the chemical budget

of the atmosphere because of the temperature dependence of the chemical reaction

rates and transport of chemical species.

In order to simulate the dynamical and chemical feedback mechanisms associated

with solar irradiance variations it is essential to calculate the direct, relatively weak10

radiative forcing in the upper stratosphere as accurate as possible. This requires radi-

ation codes with sufficient spectral resolution in the SW bands. However, for compu-

tational efficiency most GCMs use radiation schemes with only a few spectral intervals

to calculate SW heating rates.

The aim of this paper is to demonstrate that a high-resolution SW radiation param-15

eterization is needed for studying solar variability effects on climate. We first intro-

duce in Sect. 2 such a high-resolution scheme, the FUBRad SW radiation parame-

terization for the middle atmosphere (MA). The code has been implemented into the

ECHAM5/MESSy climate model (Roeckner et al., 2003; Jöckel et al., 2005) as a sub-

submodel, more specifically as a submodel of the MESSy submodel RAD4ALL, which20

represents the standard ECHAM5 radiation scheme in a MESSy conform implemen-

tation. In Sect. 3 we validate the FUBRad scheme against the original ECHAM5 SW

radiation scheme and a detailed radiative transfer model. In Sect. 4 the impact of 11-

year variations in solar UV irradiance on the SW radiation balance is studied for the

FUBRad and ECHAM5 schemes while Sect. 5 shows the corresponding temperature25

responses. In Sect. 6 the results are discussed and summarized.
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2 The FUBRad scheme

The FUBRad scheme has been designed for use in a middle atmosphere (MA) GCM.

It operates in the stratosphere and mesosphere between 70 and 0.01 hPa (18 and

80 km) and takes the relevant radiative processes in this altitude range into account.

FUBRad has been updated from the version described in Matthes et al. (2004). It uses5

49 spectral intervals in the UV and visible (VIS) part of the spectrum (121.56–680 nm).

Absorption by ozone (O3) is calculated using spectral irradiances and absorption cross

sections suggested by WMO (1986) and Sander et al. (2003). Heating by molecular

oxygen (O2) in the Schumann-Runge bands and continuum is calculated using the ap-

proach of Strobel (1978). The contribution of the Lyman-α line is parameterized using10

effective cross sections depending on the O2 slant column as suggested by Chabrillat

and Kockarts (1997). The energy of absorbed photons is not completely converted

to thermal energy, but can also be stored as chemical energy, or be emitted as air-

glow. Energy losses due to airglow are accounted for by using the efficiency factors

of Mlynczak and Solomon (1993) for the Lyman-α line, the Hartley bands and the15

Schumann-Runge continuum. Conversion into chemical energy is considered in the

Schumann-Runge bands and continuum as suggested by Strobel (1978). As FUBRad

operates in the MA (well above the cloud level), backscattering of solar radiation is con-

sidered only for O3 in the Chappuis and Huggins bands by Strobel (1978). FUBRad

can be run both as offline model and as interactive submodel of the ECHAM5/MESSy20

climate model system (Jöckel et al., 2005).

To obtain UV/VIS heating rates for the full vertical domain of the GCM (including the

troposphere), FUBRad has been coupled at 70 hPa to the SW radiation parameteriza-

tion of Fouquart and Bonnel (1980) (FB) which is the standard SW radiation scheme

in the ECHAM5 GCM (Roeckner et al., 2003). The FB scheme resolves only one25

spectral interval in the UV/VIS part of the spectrum (250–680 nm) but takes scattering

processes on clouds into account which are important in the troposphere.

To obtain solar heating rates for the full solar spectrum (including the near-infrared,
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NIR) FUBRad uses NIR-heating rates derived from the FB parameterization in 3 spec-

tral intervals between 680 and 4000 nm at all levels. In the NIR O3, H2O, CO2, CH4,

N2O, CO and O2 are taken into account. Aerosols and cloud particles are considered

at all intervals.

FUBRad calculates SW heating rates every time step.The code has been optimized5

for the implementation into the ECHAM5/MESSy model and uses about 7% of the total

computing time of the basic model system.

3 Validation

To validate the FUBRad radiation scheme we compare SW heating rates calculated

by FUBRad with those from the standard ECHAM5 SW radiation code and from a10

detailed radiative transfer code, libRadtran (Mayer and Kylling, 2005). The ECHAM5

SW radiation code is based on the FB parameterization for the UV/VIS and NIR parts of

the solar spectrum. The major difference to FUBRad is the UV/VIS spectral resolution,

with 49 intervals in FUBRad compared to only one broad interval in ECHAM5.

libRadtran is operated in line-by-line mode for this application. O3 and O2 absorp-15

tion cross sections had to be extended down to 120 nm. This was done following the

recommendations by the International Union of Pure and Applied Chemistry (IUPAC)

(Atkinson et al., 2004). O2 absorption for the additional spectral regions was compiled

from a variety of sources: The Schumann-Runge continuum follows Ogawa and Ogawa

(1975) between 108 and 160 nm and Yoshino et al. (2005) between 160 and 175 nm. In20

the Lyman-α region, 121.4–121.9 nm, high-resolution data from Lewis (1983) is used.

Temperature-dependent cross sections in the Schumann-Runge bands (175–205 nm)

are taken from Minschwaner et al. (1992). The recommended Herzberg continuum

from Yoshino et al. (1988) is added to the Schumann-Runge spectral lines. The same

source provides the Herzberg continuum in the wavelength range 205–240 nm. O3 ab-25

sorption cross sections are temperature-dependent above 185 nm (Molina and Molina,

1986). Below 185 nm, temperature-independent data from Ackerman (1971) is used.
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To completely resolve all relevant spectral features, more than 10 000 wavelengths are

included between 121.4 nm and 680 nm, with a step of 0.001 nm in the Lyman-α region,

0.003 nm in the Schumann-Runge bands, and otherwise 0.1 nm below 400 nm and

1 nm above 400 nm. The spectral shape of the extraterrestrial irradiance in the Lyman-

α region (121.4–121.9 nm) has been adopted from Chabrillat and Kockarts (1997). The5

radiative transfer is solved with the accurate disort method by Stamnes et al. (1988).

Calculations for all models were performed with profiles of pressure, temperature,

oxygen, and ozone concentrations taken from the Midlatitude Summer atmosphere by

(Anderson et al., 1986).

Figure 1 shows an example for the SW heating rates, integrated over the spectral10

interval 121–680 nm, for January 15th at the equator. The NIR is omitted as FUBRad

and ECHAM5 use identical parameterizations for this interval and its contribution to

the total SW heating rate in the MA is relatively small. The figure contains two profiles

for the FUBRad scheme. The curve denoted FUBRad-TOTAL shows the heating rates

obtained by converting the energy of each absorbed photon into thermal energy. This15

version is consistent with the treatment of absorbed energy in libRadtran and in the FB

scheme. The profile marked FUBRad-NET shows the net SW heating rates that take

into account that in the real upper atmosphere part of the energy is stored as chemical

energy or emitted as airglow. This is the configuration of the code we use for our solar

cycle studies. Up to 1 hPa there is close agreement between all codes. Maximum SW20

heating occurs at the stratopause and reaches about 10 K/day at the equator in Jan-

uary. Above 0.1 hPa libRadtran and FUBRad show considerably larger heating rates

than the ECHAM5 code. This is due to the fact, that in contrast to FUBRad and libRad-

tran, the ECHAM5 scheme does not consider absorption by O2, which dominates in

the upper mesosphere. Nevertheless, the comparison with the line-by-line radiation25

model shows that both parameterizations (FB and FUBRad) capture SW heating rates

well enough to allow realistic climate simulations up to 0.01 hPa, which is the model

top of the MA version of the ECHAM5 model.
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4 Solar cycle effect on SW heating rates

To study the influence of variations in UV irradiance during the 11-year solar cycle,

we have calculated zonal-mean, daily-mean short-wave heating rates with the offline

versions of the FUB and ECHAM5 radiation codes. Standard input data recommended

by the CCMVal project (http://www.pa.op.dlr.de/CCMVal/index.html) were used includ-5

ing zonal-mean temperature, O3 (Fortuin and Langematz, 1994) and H2O distributions.

CO2, CH4, N2O and CFCs are uniformly mixed. Clouds and aerosols are not included.

The computation was performed under 15th January conditions. Two calculations were

carried out with prescribed UV irradiances at the top of the atmosphere for either solar

max or solar min conditions according to Lean (2000). As we are only interested in the10

effect of the different radiation schemes on the resulting heating rates, we only impose

UV changes and no solar-induced O3 variations over the solar cycle. This means that

the resulting SW heating rate differences are somewhat smaller than would be the case

if SW heating due to solar induced O3 had been considered as well.

Figure 2 shows SW heating rate differences between solar min and solar max cal-15

culated with the FUBRad (top) and the ECHAM5 (bottom) schemes. In FUBRad two

peaks occur, one centered at the stratopause summer pole reaching 0.21 K/day, and

a second extending over the whole upper summer mesosphere reaching 0.6 K/day.

In contrast, the ECHAM5 scheme produces only one peak at the stratopause. With

a maximum SW heating rate difference of 0.01 K/day the solar signal in ECHAM5 is20

about 20 times weaker than in FUBRad. In Fig. 3 we compare the SW heating rate dif-

ferences of FUBRad and ECHAM5 with those derived from libRadtran for an equatorial

profile. Over the full vertical domain of the GCM (up to 0.01 hPa), we find excellent

agreement between FUBRad(-TOTAL) and libRadtran, both assuming total conversion

of radiative energy to thermal energy. The heating rate differences reach maxima of25

0.15 K/day at the stratopause and up to 1 K/day at the mesopause (90 km). Largest

differences occur in the upper mesosphere, where FUBRad slightly underestimates

solar cycle variability. Heating rate differences between FUB-TOTAL and FUB-NET are
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due to the partial conversion of radiative energy to chemical energy and airglow in the

upper mesosphere leading to the lower thermal heating in FUBRad-NET. In contrast,

ECHAM5 is not able to capture solar cycle variations.

Figure 4 shows the total SW heating rate difference over a solar cycle at 90
◦

S as

well as the contributions of the different O3 and O2 absorption bands. In the upper5

mesosphere above about 0.03 hPa the solar signal is dominated by absorption at the

Lyman-α wavelength leading to the maximum in SW heating rate differences at the

model top of FUBRad (Figs. 3 and 2). As the ECHAM5 scheme does not consider

absorption at wavelengths shorter than 250 nm, it does not reproduce the mesospheric

maximum. Comparison with libRadtran (not shown) suggests that the contribution from10

the Schumann-Runge bands and continuum is underestimated in FUBRad by a factor

of 2. This explains the deviations in the upper mesosphere in Fig. 3. The maximum of

the SW heating rate differences around the stratopause is due to the combined effect

in the Herzberg, Hartley, and Huggins absorption bands. While the Hartley bands

dominate the SW heating at the stratopause reaching 0.1 K/day, the contribution from15

the Huggins bands is only half that size and is responsible for the SW heating rate

difference at lower altitudes in the stratosphere as also shown by Larkin et al. (2000).

The contribution of the Chappuis band is negligible.

5 Temperature response to solar cycle variations

To determine the temperature response caused by the changes in SW heating rates,20

we have performed two 25-year perpetual January experiments using the FUBRad

and ECHAM5 radiation schemes online as submodels of the ECHAM5/MESSy model.

We have prescribed the same O3 climatology and concentrations of uniformly mixed

species as in the offline experiments. H2O and clouds are determined interactively. The

model was run at a horizontal resolution of T42 corresponding to a quadratic Gaussian25

grid of 2.8
◦

× 2.8
◦

, with 39 vertical levels reaching from the ground up to 0.01 hPa

(80 km). Note that this version of the model does not produce a self-consistent Quasi-
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Biennial Oscillation (QBO) in the equatorial stratosphere. Solar irradiance at the model

top was prescribed using constant solar max and solar min values as described for the

offline experiments in Sect. 4.

The differences in zonal mean temperature between the solar max and min exper-

iments are shown in Fig. 5 for January. Consistent with the SW heating rate differ-5

ences in Fig. 2 temperatures are higher during solar max throughout the atmosphere

except for small regions in the troposphere and high NH latitudes for the FUBRad

scheme. Statistically significant temperature differences reach 0.5–1 K around the

tropical stratopause and throughout the upper stratosphere and lower mesosphere in

the Southern (= summer) Hemisphere (SH). The temperature signal at the tropical10

stratopause is by a few tenths of a degree smaller than in previous simulations with the

FUB-Climate Middle Atmosphere Model (FUB-CMAM) (Matthes et al., 2004). This is

due to the missing SW heating by enhanced O3 concentrations during solar max that

was ignored in the model setup here. Compared to the FUB-CMAM solar cycle experi-

ments which used the old version of the FUBRad scheme (Matthes et al., 2004), there15

are two improvements: a stronger and significant warming of the upper mesosphere

in summer, replacing the unrealistic cooling of the old model, and a significant warm-

ing of the tropical mesopause of 1 K. Both signals can be attributed to the extension

of the radiation code by UV absorption in the Lyman-α line. A statistically significant

secondary temperature maximum of 0.5 K is located in the tropical lower stratosphere20

around 20 km. On the winter hemisphere a dipole with positive temperature differences

in the upper stratosphere and lower mesosphere and negative temperature differences

below is present that is only marginally significant and can be attributed to large inter-

annual variability in the model.

The temperature differences, especially the two tropical maxima are in very good25

agreement with NCEP-CPC observations (Kodera and Kuroda, 2002) and other model

studies with the earlier version of FUB-CMAM (Matthes et al., 2004; their Fig. 4). It

must be noted however that due to the different data sources and analysis methods,

uncertainties exist in observational estimates of the solar signal which complicate the
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validation of the simulated response. E.g. the annual mean solar temperature signal

in the upper tropical stratosphere ranges between 0.8 K and 1.75 K in different oberva-

tional studies (W. Randel, pers. comm; Crooks and Gray, 2005). Over the thermal wind

relationship the simulated temperature differences (Fig. 5) in the upper stratosphere are

consistent with a stronger polar night jet during solar max (not shown) apparent also in5

ERA40-data (Gray et al., 2004).

Again, consistent with the SW heating rate differences in Fig. 2 no statistically signif-

icant warming during solar max that is comparable to the simulations with FUBRad

and observations can be detected for the ECHAM5 scheme. In contrast to the

FUBRad scheme, the simulation with the ECHAM5 scheme shows statistically sig-10

nificant anomalies only in the NH. Especially prominent is the dipole at polar latitudes

that seems to be an internal model feature but not related to solar cycle influences.

6 Conclusions

We have shown that within the vertical domain of the ECHAM5 model, both the 4-band

ECHAM5 and the high-resolution FUBRad short wave schemes give heating rates15

close to those of a detailed radiative transfer code, libRadtran, and should produce

realistic results in climate integrations.

For solar cycle simulations, however, a high-resolution radiation scheme is needed.

This study demonstrates that the SW part of the solar spectrum needs to be adequately

resolved in order to perform realistic solar cycle experiments. The variability in irradi-20

ance is unequally distributed over the wavelength range with much higher variability at

shorter wavelengths. For low-resolution schemes the irradiance changes need to be

integrated over a wide spectral range which leads to an underestimation of the variabil-

ity in SW heating rates. In our example profile we found 20 times stronger variability in

heating rates with the high-resolution parameterization at the stratopause, in very good25

agreement with a line-by-line calculation. In addition to this, it is essential to include the

absorption by O2 in the Lyman-α band in order to simulate the effect of solar variability
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on climate. We have shown that the updated FUBRad parameterization, introduced in

this paper, is suitable for realistic solar cycle studies, as the temperature response to

solar cycle variations is in good agreement to observations and earlier model studies

with the FUB-CMAM model.

The FUBRad scheme is available as a submodel to be used by MA GCMs or CCMs5

and has been implemented into the ECHAM5/MESSy model for solar cycle studies.
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Fig. 1. Daily-mean, short-wave heating rates in K/day for January 15th at the equator. Shown
for the spectral interval 121–680 nm for moderate solar irradiance. See text for details.
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Fig. 2. Daily-mean, zonal-mean short-wave heating rate differences between solar maximum
and minimum in K/day for 15 January. Top: FUB radiation scheme, contour interval 0.03 K/day.
Bottom: Fouquart and Bonnel radiation scheme, contour interval 0.005 K/day.

61

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/45/2007/acpd-7-45-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/45/2007/acpd-7-45-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 45–64, 2007

Better solar cycle

representation in

GCMs

K. M. Nissen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 3. Difference in daily-mean, short-wave heating rates between solar maximum and solar
minimum in K/day. Displayed for 15 January at the equator for the spectral interval 121–680 nm.
See text for details.
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Fig. 4. Differences of short-wave heating rates between solar maximum and solar minimum
irradiance in K/day. Daily mean for 15 January at 90

◦

S. Total and contribution of the spectral
intervals.
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Fig. 5. Longterm-mean temperature difference between solar maximum and solar minimum
integration in K. Calculated from perpetual January experiments with the FUBRad (top) and
Fouquart and Bonnel (bottom) radiation schemes. Contour interval 0.5 K. Shading: 95% and
99% significance levels, calculated with Student’s t-test.
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