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Abstract

Multi-filter Rotating Shadowband Radiometers (MFRSRs) provide routine measure-

ments of the aerosol optical depth (τ) at six wavelengths (0.415, 0.5, 0.615, 0.673,

0.870 and 0.94µm). The single-scattering albedo (̟0) is typically estimated from the

MFRSR measurements by assuming the asymmetry parameter (g). In most instances,5

however, it is not easy to set an appropriate value of g due to its strong temporal and

spatial variability. Here, we introduce and validate an updated version of our retrieval

technique that allows one to estimate simultaneously ̟0 and g for different types of

aerosol. We use the aerosol and radiative properties obtained during the Atmospheric

Radiation Measurement (ARM) Aerosol Intensive Operational Period (IOP) to validate10

our retrieval in two ways. First, the MFRSR-retrieved optical properties are compared

with those obtained from independent surface, Aerosol Robotic Network (AERONET)

and aircraft measurements. The MFRSR-retrieved optical properties are in reason-

able agreement with these independent measurements. Second, we perform radiative

closure experiments using the MFRSR-retrieved optical properties. The calculated15

broadband values of the direct and diffuse fluxes are comparable (∼5W/m2
) to those

obtained from measurements.

1 Introduction

One of the key uncertainties in the Earth’s radiation balance is the effect of aerosols

on radiative fluxes, which in turn affects climatic processes on both planetary and lo-20

cal scales (e.g., Hansen et al., 1997; Zhang and Christopher, 2005). Determination

of the aerosol-induced radiative flux changes requires information of the aerosol op-

tical properties, such as the aerosol optical depth (τ), single-scattering albedo (̟0)

and asymmetry parameter (g) (e.g., Haywood and Shine, 1995; Russell et al., 1997;

Andrews et al., 2006). The variation of ̟0 can modify not only the magnitude of the25

aerosol-induced change in top-of-atmosphere upwelling flux, but its sign as well (from
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a cooling to a heating aerosol effect). The critical value of ̟0, where cooling shifts to

heating, depends on the surface albedo, τ, and g.

Aerosol properties can be derived through in situ measurements (e.g., Sheridan

et al., 2001; Andrews et al., 2004). Commonly, ̟0 is estimated from scattering and

absorption coefficients measured by an integrating nephelometer and a particle soot5

absorbance photometer (PSAP), respectively. The asymmetry parameter can be ob-

tained by using measured backscatter fraction (ratio of light scattered into the back-

ward hemisphere to total light scattering) and an appropriate parameterization (e.g.,

Wiscombe and Grams, 1976). An alternative approach for determining aerosol optical

properties is to use combined sun and sky irradiance measurements (e.g., Dubovik10

et al., 2002; Ricchiazzi et al., 2006). Such measurements are provided by a sun-

photometer at four specific wavelengths (0.44, 0.67, 0.87, and 1.02µm) supported by

the Aerosol Robotic Network (AERONET) program (http://aeronet.gsfc.nasa.gov; Hol-

ben et al., 1998). This approach allows one to derive aerosol optical properties from

size distributions and complex refractive indexes retrieved as part of the AERONET15

inversion algorithm. Gonzalez-Jorge and Ogren (1996) discussed the uncertainties

of aerosol optical properties calculated using aerosol size distributions derived from

multiwavelength optical depths.

Widely deployed Multi-filter Rotating Shadowband Radiometers (MFRSRs) measure

values of the total and diffuse solar irradiances at six narrowband wavelength channels20

centered at 0.415, 0.5, 0.615, 0.673, 0.870 and 0.94µm. These values are used to

obtain the direct solar irradiances, which in turn are applied to derive τ (Harrison and

Michalsky, 1994; Alexandrov et al., 2002). To estimate ̟0, the diffuse to direct ratio

(DDR) is commonly used (e.g., Petters et al., 2003; Halthore et al., 2004; Meloni et

al., 2005). An iterative process combining measurements of DDR with τ, assumed25

surface albedo and g is used to retrieve ̟0 at a given wavelength. The DDR-derived

̟0 values are sensitive to uncertainties/changes of g. For example, Meloni et al. (2005)

demonstrated that ±0.06 variations of g can produce 0.03–0.04 changes of the DDR-

derived ̟0 at 0.415µm. Since g is highly variable (Andrews et al., 2006), it is desirable
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to derive g in addition to τ and ̟0 from MFRSR observations.

Previously, we proposed a simple retrieval technique that extends the capability of

the MFRSR to study atmospheric aerosols (Kassianov et al., 2005). The technique

allows one to estimate the microphysical (e.g., effective radius) and optical (̟0 and

g) properties of aerosols. The retrieval is based on measurements of the direct ir-5

radiances at two wavelengths (0.415µm and 0.870µm) and the diffuse irradiance at

0.415µm and requires assumptions regarding the shape of the aerosol size distribu-

tion (e.g., a combination of three lognormal distributions), the real part of the refractive

index, and an estimate of the surface albedo at 0.415µm. This version works poorly

for cases with weak spectral dependence of τ.10

In the next section we describe an updated version of this technique, which allows

one to perform aerosol retrievals for key types of aerosols (e.g., different loading and

spectral dependence of τ) and its further validation using available ground-based and

aircraft measurements during the Atmospheric Radiation Measurement (ARM) Pro-

gram Aerosol Intensive Operational Period (IOP). In Sect. 2 of this paper we review the15

ARM Aerosol IOP, describe different retrieval techniques, and highlight selected cases.

Our MFRSR retrievals of aerosol optical properties are compared with independent

retrievals in Sect. 3. Section 4 contains the radiative closure results. In Sect. 5 we

present a summary.

2 Approach20

The Aerosol IOP ran from 5 May through 31 May 2003, over the ARM Southern Great

Plains (SGP) site and yielded numerous case studies spanning a wide range of aerosol

situations including well mixed boundary layer cases, as well as cases with distinct

elevated aerosol layers (Fig. 1), varying composition, loading and spectral dependence

of τ. For example, there are a few elevated aerosol layers for 9 May; according to the25

aircraft report, one of these layers has high absorption (maybe smoke), another has

low absorption (maybe dust). Also, the selected cases are characterized by different
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aerosol loading. The measured τ for 27 May is close to 0.3 (0.5µm), nearly three

times larger than the corresponding τ for 12 May. Also, the Angstrom exponent, which

commonly expresses the τ wavelength behavior, changes from 0.69 (9 May) to 1.59

(28 May) (Michalsky et al., 2006). During the Aerosol IOP, the MFRSR observations

were accompanied by independent in situ surface and aircraft observations.5

Surface measurements of aerosol scattering and absorption coefficients, measured

by a three-wavelength nephelometer (0.45, 0.55 and 0.7µm) and one-wavelength

PSAP (0.55µm), are used to derive ̟0. These instruments are part of the Aerosol

Observing System (AOS) (Sheridan et al., 2001). Commonly, g is derived by using the

hemispheric backscatter fraction and an often used parameterization (Wiscombe and10

Grams, 1976). Andrews et al. (2006) provide a comprehensive overview of available

methods for deriving g and their detailed comparisons. To account for the hygroscopic

growth of aerosol under ambient humidity conditions, the dry scattering coefficient (at

instrumental relative humidity) is adjusted. The CIRPAS Twin Otter aircraft collected

data during 15 days, mostly under clear or partly cloudy conditions. As with the sur-15

face observations, aircraft measurements of the aerosol scattering and absorption co-

efficients are measured by nephelometer (0.45, 0.55 and 0.7µm) and PSAP (0.55µm)

at different altitudes (z). Similar to Andrews et al. (2006), we determine the column-

integrated values of g by weighting the individual values of g (z) with measured pro-

files of the scattering coefficient. We determine the column-integrated values of ̟020

by weighting the individual values of ̟0(z) with measured profiles of the extinction

coefficient.

In order to find comparable datasets (in situ, AERONET and MFRSR) the following

two criteria are applied. First, both the aircraft and surface measurements must oc-

cur within the same 4-h time period. Since this still allows for a temporal difference25

between measurements, they may not be coincident in the strict sense. Second, the

selected periods must be mostly hemispherically cloud free (hemispherical fractional

sky cover ≤0.01). For this selection, we define a “hemispherically cloud free period” as

determined by the algorithm of Long and Ackerman (2000). Eight cases are identified
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(Table 1). A ground-based CIMEL sun-sky scanning radiometer (part of AERONET)

estimates aerosol microphysical and optical properties (e.g., Dubovik et al., 2002).

For our comparison we use available cloud-screened data (level 1.5). The CIMEL ra-

diometer was collocated with the AOS, the MFRSR and a normal incidence multifilter

radiometer (NIMFR) to within a few hundred meters. Uncertainty of τ can affect sub-5

stantially the model DDR (e.g., Ricchiazzi et al., 2006) and, thus, the retrieved values

of ̟0 and g. Michalsky et al. (2006) have shown that bias between the CIMEL-derived

and the NIMFR-derived τ values was negligible. To ensure consistency between the

CIMEL and MFRSR retrievals of ̟0 and g, we simply used τ values obtained from the

NIMFR.10

The aerosol ̟0 and g are derived from MFRSR observations by using an updated

version of our retrieval (Kassianov et al., 2005). We create look-up tables to determine

parameters of an assumed two-mode size distribution consisting of fine and coarse

modes (e.g., Dubovik et al., 2002). In the previous version, the iterative matching

procedure varied two parameters of a three-mode size distribution, the total number15

of particles N and the mean radius R. For each iteration we had to calculate two-

dimensional arrays (∼50×50 elements) of model aerosol optical depth τ mod ,λ (N,R).

The new scheme applies look-up tables created for a given two-mode size distribution.

Each of the two modes is describing by three parameters for a total of six unknown

parameters. The new scheme assumes two parameters (variances of each mode) and20

estimates the remaining four parameters that represent the integral and the mean par-

ticles radius of the fine (Nf ,Rf ) and coarse (Nc,Rc) modes. Look-up tables substantially

speed-up (by a factor of 10) the aerosol retrieval. Replacing two fitting parameters (N
and R) by four fitting parameters (Nf , Rf , Nc, Rc) increases the flexibility of the retrieval

and its applications. The updated version has been successfully applied to derive op-25

tical properties of dust during the major Saharan dust storm of March 2006 (Slingo et

al., 2006).

We have also developed a new criterion for matching τ mod ,λ and τobs, λ. In the

previous version, the iterative matching procedure varied two parameters (N and
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R) until modeled (τ mod ,λ) and observed (τobs, λ) aerosol optical depths are equal at

two wavelengths (0.415 and 0.870µm). In the updated version, the four parameters

(Nf ,Rf ,Nc,Rc) that produce a minimum of the root-mean square error between τ mod ,λ

and τobs, λ at five wavelengths (0.415, 0.5, 0.615, 0.673, 0.870µm) are considered the

best estimate of their true values. This error is defined as a square root of the sum5

1
k

k
∑

i=1

(

τ mod ,i − τobs,i

)2
, where k is the number of considered wavelengths, equal to 5

here. The determination of four parameters (Nf ,Rf ,Nc,Rc) is found using an minimiza-

tion scheme. We expect that the size distribution derived in this manner, while not

perfect, will at least be plausible.

Finally, we improve the determination of the imaginary refractive index. Previously, it10

was estimated from the diffuse irradiance, which depends on the instrument calibration

constant, extraterrestrial solar spectrum, stratospheric ozone and nitrogen dioxide. In

contrast, the DDR is independent of these factors because the direct and diffuse com-

ponents are measured by the same sensor and, therefore, these factors are the same

for each wavelength irradiance pair, they cancel in the ratio. In our modified version15

of the retrieval, the imaginary refractive index is estimated from the DDR instead of

the diffuse irradiance. Also, the improved version incorporates a circumsolar correction

for radiation scattered within the field of view (∼3.3 degrees) of the MFRSR. Such a

correction can be important for low sun elevation angles, large aerosol loadings and/or

large particles sizes.20

3 Optical properties

For all MFRSR retrievals we assume that the shape of the aerosol volume size distribu-

tion is described by a combination of two lognormal distributions (e.g., Dubovik et al.,

2002). This combined distribution has six parameters. We assume that the variances

(widths) of fine and coarse modes are equal to 0.5 and 0.7, respectively. Note that25

the retrieved variances ranged from 0.4 to 0.6 (fine mode) and from 0.6 to 0.8 (coarse

13373

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/13367/2006/acpd-6-13367-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/13367/2006/acpd-6-13367-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 13367–13386, 2006

Aerosol

single-scattering

albedo and

asymmetry

parameter

E. I. Kassianov et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

mode) for typical aerosols (Dubovik et al., 2002). Other parameters (Nf ,Rf ,Nc,Rc) are

determined during retrieval. To calculate DDR, we apply available spectral values of

the surface albedo at five wavelengths (0.415, 0.5, 0.615, 0.673, 0.870µm) (Michal-

sky et al., 2006). Also we assume that the real refractive index is equal to 1.5. The

MFRSR-retrieved size distribution function and the complex refractive index are used5

to calculate optical properties of aerosol using Mie theory for each wavelength.

The model and retrieved τ values are in a good agreement (Fig. 2). The good agree-

ment (∼1%) is obtained even for the cases with strong vertical variability (9 May and

27 May), low τ (12 May), and relatively weak spectral dependence of τ (9 May). Since

in situ measurements provide ̟0 and g values at only a single wavelength (0.55µm),10

we estimate the AERONET values for this wavelength by using available retrievals

at 0.44µm and 0.673µm and linear interpolation. To estimate the MFRSR-derived

values of ̟0 and g at 0.55µm, a similar interpolation is performed for the MFRSR re-

trievals at 0.415µm and 0.67µm. The MFRSR-retrieved values of ̟0 are consistent

with independent retrievals (Fig. 3). For example, the relative difference between in15

situ and MFRSR values is about 3%. Very close agreement between in situ surface

and aircraft retrievals may appear surprising especially for cases with strong vertical

variability (e.g., 27 May). This variability is most likely associated with the bulk vari-

ability in extensive properties such as the extinction coefficient, while intensive aerosol

properties (̟0, g) show less variability with altitude.20

Figure 4 shows the comparison for the retrieved g values. Similar to ̟0, there is

good agreement between g values obtained from the in situ surface and aircraft mea-

surements. These values are in the range from 0.55 to 0.65 and represent typical

values for dry aerosol (Andrews et al., 2006). The MFRSR-retrieved values of g are

larger (0.67±0.03) than those obtained from the in situ retrievals (0.6±0.05). Such25

differences can reach 12% for a case with low τ (12 May). However, the MFRSR-

retrieved g values agree reasonably well with the AERONET retrievals for the majority

of cases (Fig. 4) and comparable with the AOS-derived g values (0.65±0.05) obtained

at ambient conditions (Andrews et al., 2006).
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Sampling issues, temporal difference between measurements (Table 1), and the ver-

tical stratification of aerosol may be responsible for some of the differences between

various methods of determining g. It should be mentioned, that none of these meth-

ods provide actual determination of the asymmetry parameter. For example, in situ

derived values of g (both surface and aircraft) are obtained using measured backscat-5

tering fraction and well-known parameterization (Wiscombe and Grams, 1976), while

AERONET and MFRSR derived values of g are obtained using the remote sensing

instruments (CIMEL and MFRSR), different data inversion techniques, and different

samplings. For example, the MFRSR retrieval uses the diffuse irradiance (from hemi-

spherical observations), whereas the AERONET retrieval applies the sky-radiances10

(from solar almucantar scans during lower sun elevation angles and from the princi-

pal plane scans during higher sun elevation angles). In contrast to the AERONET

sampling of diffuse radiation (sky scanning), the MFRSR sampling (hemispherical) is

independent of the solar zenith angle. Kassianov et al. (2005) discussed differences

between the AERONET and MFRSR retrievals. Also, Kassianov et al. (2005) demon-15

strated that uncertainties in input data (e.g., real refractive index) affect only slightly the

MFRSR-retrieved intensive aerosol properties (≤10%) and the diffuse surface irradi-

ances (∼1%). The latter is due to compensation effects of ̟0 and g (e.g., overestima-

tion of ̟0 is compensated by underestimation of g).

4 Radiative closure20

To further validate the MFRSR retrieval, we consider a quantitative comparison that

called a closure experiment(e.g., Michalsky et al., 2006; Ricchiazzi et al., 2006). In

such an experiment, the measured value of a dependent variable (e.g., the diffuse irra-

diance) is compared with the value that is calculated from measured/retrieved values

of the independent variables (e.g., aerosol optical properties, surface albedo). The out-25

come of a closure experiment provides a direct evaluation of the combined uncertainty

of the radiative transfer (RT) model and measurements/retrievals. Close agreement
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between measured and calculated results demonstrates that the RT model and mea-

surements/retrievals may be a suitable representation of the observed system.

Closure experiments have been successfully conducted at the ARM Program’s North

Slope of Alaska site (Barnard and Powell, 2002) and more recently at the Southern

Great Plains (SGP) site (Michalsky et al., 2006). However, prior to these successes5

obtaining reasonable agreement between model and measured diffuse irradiances at

the surface was a long-standing problem; in particular, the model results substantially

overestimated the diffuse measurements (e.g., Kato et al., 1997; Halthore et al., 1998).

The success of the recent closure experiments (Barnard and Powell, 2002; Michalsky

et al., 2006) over a wide range of aerosol cases is attributed to (i) better specification10

of input parameters (τ, ̟0, g, surface albedo) and (ii) more accurate observations of

the diffuse irradiance than in previous studies.

Similar to Michalsky et al., (2006), we perform the radiative closure for the direct and

diffuse irradiances by using the MFRSR-derived aerosol optical properties and the re-

maining input parameters (e.g., surface albedo, water vapor). The latter are taken from15

(Michalsky et al., 2006). Figure 5 shows results of the radiative closure. For both direct

and diffuse components, the difference between model calculations and observations

is within 5W/m2
for the most of the cases. This difference is comparable with mea-

surement uncertainties (Michalsky et al., 2006). The largest difference (∼12W/m2
) is

obtained for 27 May (case 5), and a similarly large difference was obtained by Michal-20

sky et al. (2006) for this case. The most likely cause is a small error in the determination

of τ. Michalsky et al. (2006) shown that the agreement between the model and mea-

sured irradiances can be brought into very good agreement by changing τ by 0.01.

This magnitude is the estimated uncertainty of τ derived from well-calibrated measure-

ments (Michalsky et al., 2001). Figure 5 also reveals that, in general, for each case the25

differences between the model and measured irradiances have similar absolute values

for both the direct and diffuse irradiances. The total (direct plus diffuse) fluxes obtained

from model calculations and measurements are in very good agreement (∼5W/m2
) in

all cases, including case #5.
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5 Summary

We have introduced an updated version of our retrieval technique (Kassianov et al.,

2005) that uses the MFRSR measurements and makes possible a simultaneous re-

trieval of the single-scattering albedo (̟0) and the asymmetry parameter (g) from

spectral measurements of the direct irradiance and the diffuse to direct ratio (DDR).5

In comparison with the previous version, the updated version is much faster (by a fac-

tor of 10) and more flexible.

Our technique requires assumptions regarding the shape of the aerosol size distri-

bution (two-mode lognormal distributions), the variances (widths) of fine and coarse

modes, the real part of the refractive index, as well as the spectral values of surface10

albedo. The latter can be estimated from satellite or surface measurements. Our tech-

nique includes two steps. The first step provides the aerosol size distribution. To do

that, we iterate four parameters of two lognormal distributions (integral and mean parti-

cles radius of fine and coarse modes) to match the spectral dependence of the aerosol

optical depth. The second step estimates the imaginary part of the refractive index for15

each wavelength. To do that, we iterate values of the imaginary refractive index (for a

given size distribution) to match the spectral dependence of the DDR.

We validate our retrieval in two ways. The aerosol and radiative properties obtained

during the ARM Aerosol IOP form the basis for this validation. First, the MFRSR-

retrieved optical properties are compared with those obtained from independent sur-20

face, AERONET, and aircraft measurements. The MFRSR-retrieved values of ̟0 are

consistent with the other independent retrievals. For example, the relative difference

between ̟0 obtained from in situ surface measurements and MFRSR values is ∼ 5%.

For g this difference is within 12% for the case with low τ (12 May). Second, a closure

experiment is used to further validate the MFRSR retrieval. Similar to Michalsky et25

al., (2006), we perform the radiative closure for the direct and diffuse irradiances by

using the MFRSR-derived aerosol optical properties and the remaining input param-

eters (e.g., surface albedo, water vapor) from Michalsky et al. (2006). The calculated
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broadband values of the direct and diffuse fluxes are comparable (∼5W/m2
) to those

obtained from measurements.

The favorable agreement we find between the three types of aerosol retrievals (in

situ, AERONET and MFRSR) under a variety of conditions is encouraging and sug-

gests that the updated version of the MFRSR retrieval has the potential for remote5

sensing of key aerosol types in different locations. Recent successful application of

this retrieval to study the dust properties during the major Saharan dust storm of March

2006 (Slingo et al., 2006) supports this expectation.
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Table 1. Day and time (UTC) for surface, AERONET, and aircraft measurements for eight

selected cases.

Time

Case Day Surface AERONET Aircraft

1 09 May 17:30 17:28:30 15:28–20:10

2 12 May 15:50 17:28:27 14:48–19:09

3 20 May 20:00 20:28:31 14:49–18:27

4 22 May 14:00 17:28:45 08:25–13:13

5 27 May 19:00 19:29:16 14:20–19:29

6 28 May 24:00 20:29:20 18:24–22:05

7 29 May 14:30 16:29:30 14:11–17:51

8 29 May 18:30 17:29:33 14:11–17:51
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 21

Fig. 1. Two-dimensional images of micropulse lidar backscatter for 9 May (a), 12 May (b), 27

May (c), and 29 May (d); horizontal axis – time (UT), vertical axis – altitude (km). Increasing

color wavelength (blue to yellow to red) represents increasing backscatter.
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Fig. 2. The spectral dependence of the aerosol optical depth τ for selected cases: τ derived

from the MFRSR data (square) and τ obtained from Lorenz-Mie calculations (circle) by using

the derived aerosol size distribution and refractive index.
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Fig. 3. Single-scattering albedo (̟0) derived from the in situ surface (brown), aircraft (blue),

AERONET (green) and MFRSR (red) data at 0.55µm wavelength.
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Fig. 4. The asymmetry parameter (g) derived from the in situ surface (brown), aircraft (blue),

AERONET (green) and MFRSR (red) data at 0.55µm wavelength.
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Fig. 5. (a) Measured direct and diffuse irradiances and (b) the corresponding differences

(model-measurements) of direct and diffuse irradiances as function of case number.
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