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Abstract

The ultraviolet (λ=250–370 nm) photolysis and the OH-initiated oxidation of hexanal

and trans-2-hexenal, which are relevant atmospheric processes, have been investi-

gated at room temperature and as a function of temperature (T=263–353 K), respec-

tively. This kinetic study as a function of temperature is reported here for the first time.5

Absolute absorption cross sections (σλ) were obtained using a recently built system op-

erating in the UV region. This work represents the first reported σλ for trans-2-hexenal.

The obtained σλ allowed the estimation of the photolysis rates (J) of hexanal and trans-

2-hexenal across the troposphere. Kinetic measurements of the gas-phase reaction of

hydroxyl radicals (OH) with hexanal and trans-2-hexenal were performed by using the10

laser pulsed photolysis/laser-induced fluorescence technique. Rate coefficients kOH for

both aldehydes were determined at temperatures between 263 and 353 K at 50 Torr in

helium or argon bath gases. The temperature dependence of kOH for both aldehydes

was found to be slightly negative. The tropospheric lifetime of hexanal and trans-2-

hexenal due to the chemical removal by OH radicals has been estimated across the15

troposphere. The loss rate due to the OH chemical removal was compared with the

estimated photolysis rates. Our results show that OH-reaction and UV photolysis are

the main loss processes for these aldehydes in the troposphere. For hexanal, both

processes compete across the troposphere, however, UV photolysis can contribute up

to 70% to the overall loss of trans-2-hexenal.20

1 Introduction

Aldehydes are emitted into the atmosphere by different anthropogenic (they are the

products of an incomplete combustion of petroleum fuels, vehicles, etc.) and natural

sources (forest, pastures lawn mowing, etc.) (Grosjean et al., 2001; Kirstine et al.,

1998; Owen et al., 1997; Wildt et al., 2003). These oxygenated compounds play a25

vital role in the formation of photochemical smog and in the determination of levels
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of secondary pollutants, such as peroxyacetyl nitrate (PAN) and tropospheric ozone

(Atkinson and Arey, 2003).

Photodissociation of aldehydes may also represent an important source of free rad-

icals in the lower atmosphere, and thus may significantly influence the atmospheric

oxidation capacity (Finlayson-Pitts and Pitts, 2000). The photochemistry of saturated5

and unsaturated C6 aldehydes, such as hexanal and trans-2-hexenal, has not been

widely studied and a few data are available concerning the photolysis quantum yields

and the absorption cross sections (Plagens et al., 1998; Tadic et al., 2001; Tang and

Zhu, 2004). Models of urban photochemistry generally assume that photolysis of alde-

hydes, RCHO, yields the alkyl radical (R) and the formyl radical (HCO), enhancing10

the radical flux present in the atmosphere. Tang and Zhu (2004) reported absolute

quantum yields for HCO radical (φHCO) in the photolysis of hexanal between 305 and

320 nm in the presence of nitrogen. Tadic et al. (2001) reported total quantum yields

between 275 and 380 nm in synthetic air (100–700 Torr). From the observed prod-

ucts in the photolysis of hexanal, these groups reported that other photodissociation15

channels, apart from the Norrish type I (R1a), were also possible.

For example, the molecular elimination process (R1b) and the Norrish type II (R1c):

CH3(CH2)4CHO + hν→ n−C5H11 + HCO (R1a)

→ n−C5H12 + CO (R1b)20

→ CH2=C3H6 + CH2=CHOH (R1c)

Ultraviolet (UV) absorption cross sections (σλ) for hexanal have been reported at room

temperature by Tang and Zhu (2004) and by Plagens et al. (1998). Nevertheless, other

measurements of σλ for hexanal are reported in this paper in order to compare the

photochemistry of the saturated aldehyde with that of trans-2-hexenal. Photochemistry25

of trans-2-hexenal has been less studied:

CH3(CH2)2CH=CHCHO + hν→ Products (R2)
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As far as we know, no UV absorption cross sections have been reported for this

aldehyde. Thus, this work represents the first reported measurement for the absorp-

tion cross sections of trans-2-hexenal. However, a simultaneous study to ours on the

UV absorption cross sections of trans-2-hexenal has been performed by O’Connor et

al. (2006)
1
.5

Together with the photodissociation process, the main chemical degradation route of

these aldehydes in the troposphere is thought to be the reaction with OH radicals:

OH + CH3(CH2)4CHO→ Products (R3)

OH + CH3(CH2)2CH=CHCHO→ Products (R4)

Up to now, only room temperature measurements of the rate coefficients of the OH re-10

actions (kOH) are reported for hexanal (Albaladejo et al., 2002; D’Anna et al., 2001; Pa-

pagni et al., 2000) and trans-2-hexenal (Albaladejo et al., 2002; Grosjean and Williams,

1992; Atkinson et al., 1995).

One of the most significant meteorological impacts in modelling ozone concentra-

tions is the temperature reduction with the altitude in the troposphere, which alters15

chemical reaction rates. Thus, the use of rate coefficient expressions rather than sim-

ple rate coefficients permits simulations over a wide range of temperatures for urban,

suburban, rural and remote regions and seasons of the troposphere. Therefore, a ki-

netic study on the reactions R3 and R4 as a function of temperature is presented here

in order to give a T-expression of kOH which could be used in the evaluation of the20

impact of these aldehydes in PAN and ozone formation. Additionally, the aim of this

work is to quantify the contribution of the photolysis process and the reaction with OH

radicals to the tropospheric degradation of these C6 aldehydes.

1
O’Connor, M. P., Temime-Roussel, B., Wenger, J. C., Doussin, J. F., and Mellouki, A.:

Kinetics and mechanisms for the atmospheric oxidation of unsaturated C6 aldehydes, 19th

International Symposium on Gas Kinetics, 2006.
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2 Experimental details

2.1 UV absorption cross section determination

The experimental setup employed in the determination of absolute absorption cross

sections was the same as in our previous work (Jiménez et al., 2005a), therefore,

only a brief description is given here. The system consisted of a Pyrex cell sealed5

with quartz windows, an irradiation source and a detection system. A wide emission

(200–800 nm) deuterium lamp was employed as a photochemical source to irradiate

the sample and the transmitted radiation was focused onto a 0.5-m spectrograph and

detected by a CCD. The absorption cell was filled with pure vapours of 0.9–7.0 Torr for

hexanal and 0.6–3.5 Torr for trans-2-hexenal, and were measured by using a pressure10

transducer.

The UV absorption spectra of hexanal and trans-2-hexenal were recorded at room

temperature in the wavelength range from 210 to 370 nm with a spectral resolution

of 0.2 nm. The absorption spectrum of hexanal exhibits a weak absorption between

240 and 350 nm as a result of the symmetry-forbidden n→π* transition in the carbonyl15

group. This band appears shifted to longer wavelengths for trans-2-hexenal due to

conjugation between the double bond and the C=O group. In addition to this weak

band, trans-2-hexenal absorption spectrum shows a strong band corresponding to the

π→π* transition in the double bond. This transition has not been characterized in this

work because of its little interest from the tropospheric point of view.20

Examples of the n→π* band for hexanal recorded at three different pressures are

shown in Fig. 1a. A series of experiments was carried out (usually 5–6 independent

determinations) at each pressure, p, under static conditions. The absorption cross

section in base e at each wavelength (σλ) was obtained by applying the Beer-Lambert

law in terms of pressure:25

Aλ = ln(I0/I) = σλℓp (1)

Aλ is the absorbance, I0 and I are the transmitted light intensity measured in the ab-
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sence and the presence of aldehyde, respectively, and ℓ(±2σ) is the optical path length

((107.0±0.2) cm). Figure 1b shows several examples of the plots of Eq. (1). From the

slope of these plots, σλ was determined. As it can be seen in this figure, no deviation

of the Beer-Lambert law was observed over the studied range of pressures.

2.2 OH kinetic measurements5

Absolute rate coefficients, kOH, for hexanal and trans-2-hexenal were obtained by the

pulsed laser photolysis/laser-induced fluorescence (PLP-LIF) technique as a function

of temperature (263–353 K). The PLP-LIF setup, technique, and methodology have

been already described in previous studies (Jiménez et al., 2005a, b). However, a brief

description is given below.10

Gas-phase reaction of OH radicals with hexanal or trans-2-hexenal takes place

at the centre of a 200-cm
3

Pyrex reactor. OH(X
2
Π) radicals were generated by

the pulsed photolysis of H2O2(g) at 248 nm by using a KrF excimer laser. Gas-

phase H2O2 was introduced in the reaction cell by bubbling the carrier gas (He or

Ar) through a pre-concentrated liquid sample of hydrogen peroxide (Jiménez et al.,15

2005a). H2O2 concentrations in the reaction cell, measured optically as described

in our previous paper (Jiménez et al., 2005a) were (1.1–2.4)×10
14

molecule cm
−3

.

Therefore, OH concentration can be estimated from the known H2O2 concentra-

tion, taking into account the absorption cross section of H2O2 at 248 nm, the quan-

tum yield for OH production (Sander et al., 2002), and the photolysis laser flu-20

ence ((1.3–20.0) mJ pulse
−1

cm
−2

). OH radical concentration was varied from

3.0×10
11

molecule cm
−3

to 1.1×10
12

molecule cm
−3

. At different reaction times, OH

radicals were excited at 282 nm (OH(A
2
Σ
+

, v
′
=1)←OH(X

2
Π, v

′′
=0)) by using the

frequency-doubled output of a dye laser pumped by a Nd-YAG laser. LIF signal from

OH(A
2
Σ
+

) was detected at λ≥282 nm by a photomultiplier tube placed orthogonal to25

both light sources. LIF emissions were selected by a bandpass filter (90% transmit-

tance at 350 nm and 150 nm of FWHM) and transferred to a personal computer for

analysis.
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2.2.1 Aldehyde concentrations

Hexanal and trans-2-hexenal concentrations were measured by UV absorption spec-

troscopy at 185 nm. Firstly, the absorption cross section of both aldehydes was mea-

sured at that wavelength using a similar methodology than that described in the previ-

ous Sect. 2.1. The experimental system employed in these measurements has been5

recently setup. This setup consists in a Pyrex absorption cell (in this case, we used

the 107-cm long cell described in Sect. 2.1), a low power light source (a Hg/Ar pen

ray lamp from Oriel) and a detection system (a Hamamatsu phototube, model R5764).

The absorption cell was irradiated by the Hg/Ar pen ray lamp. The transmitted 185-nm

radiation was selected by an interference filter (Andover, centred at 182.8 nm with a10

transmittance of 19%, FWHM of 26 nm), and collected by the phototube. The transmit-

ted intensity in the absence (I0) or in the presence of aldehyde (I) was, then, monitored

by a picoamperemeter (Keithley Instruments, model 6485).

Aldehydes were diluted in 760 Torr of the bath gas and stored in a 10-L blackened

bulb. Usually, the dilution factor was set to 0.2–0.6%. A known pressure of this di-15

luted aldehyde (pT=47–70 Torr) was introduced into the absorption cell. Absorption

cross sections (in base e) at 185 nm (σ185 nm) were obtained, under static conditions,

by applying Beer-Lambert law (Eq. 1). The average of 4–5 measurements of the ab-

sorption cross sections (±2σ) were found to be (9.37±0.32)×10
−18

cm
2

for hexanal

and (1.07±0.07)×10
−17

cm
2

for trans-2-hexenal.20

Secondly, knowing σ185 nm for each aldehyde, their concentrations can be determined

by using the following equation:

[RCHO]UV cell=
ln(I0/I)

ℓ × σ185 nm

(2)

During the kinetic measurements, a flow of diluted aldehyde (faldehyde), a flow of the

carrier gas through H2O2(aq.) (fperoxide), and the main flow of bath gas (fbath) were25

introduced into the Pyrex reaction cell. The total flow rate was varied from 260 to

520 sccm (standard cubic centimetre per minute), corresponding to a linear velocity
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between 5 and 15 cm s
−1

. Under flowing conditions, aldehyde concentrations were

measured before and after entering the reaction cell. A difference of 7% for hexanal

and 14% for trans-2-hexenal between both measurements was observed, which is

within the experimental uncertainties. When aldehyde concentrations were measured

before entering the reactor, the aldehyde is introduced into the absorption cell from the5

bulb, the rest of flows are introduced directly into the reaction cell. Thus, a correction

has to be made in the measured [RCHO]UV cell in order to account for the further dilution

in the reaction cell and the differences in temperature and pressure between the UV

cell and the reactor. The expression for this correction was:

[RCHO]reactor=[RCHO]UV cell

faldehyde

fTotal

preactor

pUV cell

298 K

Treactor

(3)10

where fTotal=faldehyde+fperoxide+fbath. Only the correction in temperature was needed

when the RCHO concentrations were measured at the exit of the reactor. Aldehyde

concentrations obtained were (0.2–2.7)×10
14

molecule cm
−3

for hexanal and (0.1–

5.2)×10
14

molecule cm
−3

for trans-2-hexenal. Also, aldehyde concentrations were de-

termined from gas flow rate measurements using calibrated mass flow meters and the15

total pressure inside the reaction cell. The difference found between both methods

for hexanal was about 10% and between 8 and 24% for trans-2-hexenal. Optically

measurements of aldehyde concentration were preferred in this work.

2.2.2 Reactants

He (Carburos Metálicos, 99.999%) and Ar (Praxair, 99.999%) were used as a bath gas20

without additional purification. Samples of hexanal (Aldrich, 98%) and trans-2-hexenal

(Aldrich, 98%) were purified by freeze/pump/thaw cycles. Aqueous solution of H2O2

(Sharlau, 50% w/v) was treated as described earlier (Jiménez et al., 2005a).
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E. Jiménez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

3 Results and discussion

3.1 UV absorption cross sections (σλ)

The weighted average of σλ for hexanal (from 250 to 330 nm) and trans-2-hexenal

(from 290 to 370 nm) determined in this work are listed at every nm in Table 1S

of the supplementary information (http://www.atmos-chem-phys-discuss.net/6/13225/5

2006/acpd-6-13225-2006-supplement.pdf). The uncertainty in the absorption cross

sections is estimated to be ∼4% at the absorption maximum and represents twice the

standard deviation from the weighted average. These data are also shown in Fig. 2,

where the measured σλ as a function of wavelength are plotted for both aldehydes. As

it can be seen in this figure, σλ is on the order of 10
−20

cm
2

in both cases.10

The absorption maximum around 295 nm for hexanal and 329 nm for trans-2-hexenal

corresponds to the n→π* transition (C=O chromophore). Conjugation makes the max-

imum move to longer wavelengths (λ≥290 nm) in trans-2-hexenal, and the whole band

lies in the actinic region. This fact indicates that photolysis can be an important removal

pathway for this aldehyde in the troposphere.15

As far as we know, there are two previous studies on the absorption cross sec-

tions of hexanal (Plagens et al., 1998; Tang and Zhu, 2004). Plagens et al. (1998)

determined σλ between 259 and 375 nm and the unpublished data are listed in the

on-line database (Keller-Rudek and Moorgart, 2006). More recently, Tang and Zhu

(2004) measured σλ in the 280–330 nm spectral range every 5 nm (11 discrete wave-20

lengths). In Fig. 2 both measurements are compared with those from this work.

The spectral range recorded in both studies is similar to that of this work. The

wavelength of the absorption maximum (and the maximum absorption cross section)

was found to be 294 nm (σλ=6.076×10
−20

cm
2
) by Plagens et al. (1998) and 295 nm

(σλ=(6.45±0.18)×10
−20

cm
2
) by Tang and Zhu (2004). Their results are in reasonable25

agreement with our value ((5.68±0.15)×10
−20

cm
2
) at 295 nm). The maximum σλ found

in this work is less than 12% lower than that of previous studies (Plagens et al., 1998;
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Tang and Zhu, 2004). This small difference can be attributed to a systematic error in the

measurement of the pressure inside the absorption cell. An underestimation or over-

estimation of 10% especially at low pressures (0.9–7 Torr in this work and 0.5–8 Torr in

Tang and Zhu’s work) can lead to the observed difference. Another possible reason for

the difference observed was pointed out by Tang and Zhu (2004). These authors at-5

tributed to a possible drop in the dye-laser fluence the slightly higher absorption cross

sections measured respect to those of Plagens et al. (1998).

In contrast, only one measurement of the absorption cross sections for trans-2-

hexenal has been recently performed by O’Connor et al. (2006). Their value of σλ

at the absorption maximum of 6.2×10
−20

cm
2

is in good agreement with our reported10

value (σλ=(5.55±0.30)×10
−20

cm
2
).

3.2 OH kinetic measurements

In this kinetic study, the disappearance of OH radical in the reactor is mainly due to

its reaction with hexanal (R3) or trans-2-hexenal (R4). However, its reaction with H2O2

(R5) and the diffusion loss (R6) have to be considered as well:15

OH + H2O2 → HO2 + H2O kprec (R5)

OH→ Diffusion loss kdiff (R6)

Under pseudo-first order conditions, the temporal profiles of OH radical are described

by Eq. (4):

[OH]t=[OH]0 exp(−k′t) (4)20

where k′ (1138–8880 s
−1

), extracted from the analysis of the exponential curves, is the

pseudo-first order rate coefficient defined as:

k′ = kOH[RCHO] + k0 (5)
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k0 (84–1260 s
−1

) is the rate coefficient determined in the absence of aldehyde:

k0 = kprec[H2O2] + kdiff (6)

The bimolecular rate coefficient kOH was then determined by plotting k′−k0 versus the

aldehyde concentration. An example of these plots at 263 and 353 K is shown in Fig. 3

for both aldehydes. As can be seen in this figure, the slopes (and, therefore, kOH) are5

higher for trans-2-hexenal than for hexanal at all temperatures. OH rate coefficients for

trans-2-hexenal are almost twice than that found for hexanal. That could indicate that

the addition channel in Reaction (R4) is not negligible, similarly to other unsaturated

aldehydes (Magneron et al., 2002).

In Table 1, the rate coefficients kOH for both aldehydes at room temperature are10

listed and compared with those of previous studies on the same reactions. These

values are the weighted average of several measurements performed at 50 Torr. As it

can be seen, our reported kOH(298 K) for hexanal is in excellent agreement, within the

error limits given, with previous absolute measurements carried out in our laboratory

(Albaladejo et al., 2002) and other relative measurements performed at atmospheric15

pressure (Papagni et al., 2000; D’Anna et al., 2001). Regarding kOH(298 K) for trans-

2-hexenal, there are several studies (Atkinson et al., 1995; Grosjean and Williams,

1992; Albaladejo et al., 2002) which are in reasonable agreement with the one reported

here. The difference between our previously reported kOH(298 K) for trans-2-hexenal

(Albaladejo et al., 2002) and the one measured in this work is probably due to the20

different method used to measure the gas-phase concentration of trans-2-hexenal. In

that case, the aldehyde concentration was estimated by using flow measurements.

The obtained rate coefficients kOH as a function of temperature (T=263–353 K) are

presented in Table 2 for hexanal and trans-2-hexenal. kOH(T) are the weighted average

of several measurements at each temperature and the error bars account for twice the25

standard deviation that include any systematic error. In Fig. 4, Arrhenius plots are

presented for the rate coefficients listed in Table 2. Solid lines represent the fit to the

experimental data. The resulting Arrhenius expressions (±2σ) are:
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Hexanal: kOH(T)=(4.2±0.8)×10
−12

exp((565±65)/T) cm
3

molecule
−1

s
−1

trans-2-hexenal: kOH(T)=(9.8±2.4)×10
−12

exp((455±80)/T) cm
3

molecule
−1

s
−1

This study represents the first report of the temperature dependence of kOH for hex-

anal and trans-2-hexenal. However, Dr. J. B. Burkholder’s group
2

has performed a

simultaneous study on the temperature dependence of the OH+trans-2-hexenal reac-5

tion (T=244–374 K), observing a negative activation energy, which is in agreement with

our results.

Negative activation energies for both reactions were found to be in concordance with

the temperature dependence observed for other aldehydes (Atkinson and Arey, 2003).

The Ea/R values for the reactions of trans-2-hexenal and hexanal with OH are similar,10

within the uncertainties given. Despite the negative temperature dependence observed

for kOH in the reaction with hexanal, the main reaction pathway for the reaction of

saturated aldehydes with OH radicals seems to be H-atom abstraction from the CHO

group (Albaladejo et al., 2002; Atkinson and Arey, 2003). This behaviour could be

explained by the formation of an OH-addition complex, as pointed out by Smith and15

Ravishankara (2002), even though a pressure dependence of the rate coefficient was

not observed (see Table 1). On the other hand, the negative temperature dependence

observed in kOH for trans-2-hexenal could indicate that the addition channel for the

unsaturated aldehydes is not negligible, similarly to other aldehydes (Magneron et al.,

2002).20

4 Atmospheric implications

The contribution of the photolysis process in the actinic region (λ≥290 nm) and the

chemical removal by the reaction with OH radicals to the total loss rate for these alde-

hydes has been calculated in order to estimate the atmospheric fate of hexanal and

2
Private communication.
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trans-2-hexenal. For ease of presentation, the estimation of the rate loss for each

process and the total rate loss for both aldehydes has been described separately.

4.1 Photolysis rate estimation

The photolysis rate coefficient, Ji (θ,z), for a given compound in the actinic region at

a certain zenith angle (θ) and altitude (z) can be estimated by solving the integral5

(Finlayson-Pitts and Pitts, 2000):

Ji (θ, z) =

λ2∫

λ1≥290 nm

σλφλF (λ, θ, z)dλ (7)

Here F (λ, θ, z) is the solar actinic flux (in photons cm
−2

s
−1

) which are usually reported

for a given wavelength range. For that reason, the photolysis rate can be expressed as

follows:10

Ji (θ, z) ∼=

λ2∑
λ1≥290 nm

σλφλF (λ, θ,z) (8)

This summatory was extended over the wavelength range 290–330 nm and 290–

370 nm for hexanal and trans-2-hexenal, respectively. Photolysis rates for hexanal (J1)

and trans-2-hexenal (J2) have been calculated as a function of altitude (z) for Ciudad

Real, Spain (38
◦
56
′
16
′′

N, 3
◦
55
′
W) at noon (June, 2000) by using σλ from Table 1S.15

This situation corresponds to a zenith angle of 16
◦
. The actinic solar flux was calcu-

lated by using the Tropospheric Ultraviolet Visible (TUV) model (Madronich and Flocke,

1999). An overhead ozone column and surface albedo were assumed to be 300 DU

and 0.1, respectively. We also assumed that absorption cross sections were no tem-

perature dependent and quantum yields, φλ, are taken as the unity (φλ=1) in both20

cases. Thus, J values obtained here are upper limits for the photolysis rate loss for

both hexanal and trans-2-hexenal.
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J1(z) and J2(z) are listed in Table 3 and plotted in Fig. 5. As it can be seen, the pho-

tolysis loss rate ranges from 2.31×10
−5

s
−1

to 4.26×10
−5

s
−1

for hexanal, whilst the

corresponding values for trans-2-hexenal vary between 1.07×10
−4

and 1.52×10
−4

s
−1

.

That means that the tropospheric lifetimes due to UV photolysis (τhν(i)=1/Ji ) for hex-

anal and trans-2-hexenal are less than 12 h and less than 3 h, respectively. Tang and5

Zhu (2004) also estimated τhν(hexanal), assuming a quantum yield of unity, for a zenith

angle between 0 and 60
◦

to be on the order of 4.5–12.6 h. These values are in good

agreement with our results obtained at θ=16
◦
. Plagens et al. (1998) also estimated

maximum J2 from the measurements carried out in EUPHORE under natural light con-

ditions. They observed a fast photoisomerisation of trans-2-hexenal and reported that10

J2=1.45×10
−4

s
−1

, in excellent agreement with the values obtained in this work.

4.2 Estimation of the aldehyde loss rate by OH reaction

The temperature dependences of kOH derived from this work were used to estimate

the loss rate of hexanal and trans-2-hexenal by chemical removal by OH radicals

in the troposphere. At a certain temperature T (corresponding to a certain altitude15

in the troposphere), this loss rate is defined as the product of the rate coefficient

kOH(T) and the OH concentration at that altitude. A 24-h averaged OH concentra-

tion of 1×10
6

molecule cm
−3

was assumed in these estimations (Krol et al., 1998). In

addition, an average environmental lapse rate of 6.5 K/km was used to calculate the

temperature profile between 0 and 10 km (considering a temperature of 298.15 K at20

0 km). In Table 3 the temperature variation as a function of altitude is shown together

with aldehyde loss rates. Hexanal loss rate due to the reaction with OH radicals ranges

from 2.79×10
−5

s
−1

at sea level to 4.74×10
−5

s
−1

near the tropopause. In the case of

trans-2-hexenal, the loss rate is larger than that of hexanal at all altitudes, as expected

taking into account the larger rate coefficients kOH(T). In Fig. 5, these loss rates are25

also plotted as a function of the altitude (z=0–10 km).
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4.3 Tropospheric loss rate for hexanal and trans-2-hexenal

The tropospheric lifetime of these aldehydes can be defined as:

τi =
1

Ji +
∑

koxid [Oxidant]
(9)

In this definition only UV photolysis (Ji ) and homogeneous reactions with different oxi-

dants (ozone (O3), nitrate radical (NO3), OH, and Cl atoms) have been considered.5

In general, the reactivity of O3 with saturated and unsaturated aldehydes is

very slow (less than 10
−18

cm
3

molecule
−1

s
−1

) (Atkinson and Arey, 2003; Gros-

jean et al., 1996). Only the rate coefficient for the reaction of O3 with trans-

2-hexenal has been measured at room temperature by Grosjean et al. (1996)

((1.28±0.28)×10
−18

cm
3

molecule
−1

s
−1

). Assuming an average ozone concentra-10

tion of 7.4×10
11

molecule cm
−3

(30 ppb) (Logan, 1985), the tropospheric lifetimes

at room temperature for hexanal and trans-2-hexenal are expected to be more

than 10 days. The reaction of hexanal with NO3 has been studied at 298 K by

D
′

Anna et al. (2001) by a relative method. The rate coefficient obtained was

(1.54±0.19)×10
−14

cm
3

molecule
−1

s
−1

. For the corresponding reaction with trans-15

2-hexenal, the reported value for the room temperature rate coefficient by Cabañas et

al. (2001) was (5.49±0.95)×10
−14

cm
3

molecule
−1

s
−1

. Considering an average NO3

concentration of 2.0×10
7

molecule cm
−3

(8 ppt) (Finlayson-Pitts and Pitts, 2000), the

tropospheric lifetimes of hexanal and trans-2-hexenal would be more than one month

and 10 days, respectively. Regarding Cl atoms, their reaction with hexanal and trans-20

2-hexenal has been recently studied by Rodŕıguez et al. (2005) reporting atmospheric

lifetimes at 298 K of 8 and 12 days, respectively. As can be extracted from the results

in Table 3, the tropospheric lifetimes for these aldehydes due to the reaction with OH

are about 6 h for trans-2-hexenal and 10 h for hexanal. Thus, the chemical removal

by other tropospheric oxidants, such as O3, NO3 radicals, and Cl atoms is negligible25

compared to the reaction with OH radicals. Therefore, the total loss rate of hexanal

and trans-2-hexenal can be defined as the sum of the photolysis rate loss (J1 and
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J2) and the loss rate due to Reactions (R3) and (R4). Taking into account all these

values, the tropospheric lifetimes τOH are expected to be smaller than 5 and 2 h for

hexanal and trans-2-hexenal, respectively. As can also be seen in Table 3 and Fig. 5,

the major contribution to the total loss rate for trans-2-hexenal is the photolysis process

(around 70%). However, the reaction with OH is not negligible at all, since it accounts5

for ca. 30% of the total loss rate. For hexanal, both processes contribute almost equally

to the total loss rate.

5 Conclusions

As shown in Table 3, the major tropospheric transformation processes for the aliphatic

aldehydes, hexanal and trans-2-hexenal are photolysis and reaction with the OH radi-10

cal.

Photolysis is calculated to be competitive with the OH radical reaction as a tropo-

spheric loss process for hexanal, while the photochemistry of the unsaturated aldehyde

is more important than removal by homogeneous reaction with OH radicals. This is not

surprising, since the whole n→π* band is lying in the actinic region for trans-2-hexenal.15

We must remark that the photolysis loss rates estimated in this work are upper limits,

since some approximations have been made.
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Table 1. Comparison of the OH rate coefficient at 298 K obtained in this work with previous

studies.

Aldehyde pT kOH×10
11

Technique
a

Reference

(Torr) (cm
3

molecule
−1

s
−1

)

hexanal 50 2.78±0.50 PLP-LIF This work

100–400 2.60±0.21 PLP-LIF Albaladejo et al. (2002)

760 2.86±0.13 RR-FTIR D’Anna et al. (2001)

740 3.17±0.15 RR-GC Papagni et al. (2000)

trans-2-hexenal 50 4.68±0.50 PLP-LIF This work

100–400 2.95±0.45 PLP-LIF Albaladejo et al. (2002)

760 3.10 Estimated Grosjean and Williams (1992)

740 4.41±0.94 RR-GC Atkinson et al. (1995)

a
PLP-LIF, pulsed laser photolysis-laser induced fluorescence; RR, relative rate
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Table 2. Averaged rate coefficients (kOH) as a function of temperature for the gas-phase reac-

tion of OH radicals with hexanal and trans-2-hexenal.

T (K) (kOH±2σ)×10
11

(cm
3

molecule
−1

s
−1

)

hexanal trans-2-hexenal

263 3.30±0.40 5.44±0.20

268 3.19±0.44 5.40±0.32

273 3.46±0.22 5.50±0.40

278 3.22±0.44 5.17±0.20

286 3.18±0.40 4.83±0.20

298 2.78±0.50 4.68±1.00

307 2.78±0.22 4.07±1.10

321 2.55±0.22 3.91±0.41

336 2.09±0.14 3.83±0.34

353 2.10±0.07 3.50±0.44
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Table 3. Total loss rate estimated for hexanal and for trans-2-hexenal as a function of altitude

(z) in the troposphere.

z T J1 kOH(T)[OH]avg J2 kOH(T)[OH]avg

(km) (K) (10
−5

s
−1

) (10
−5

s
−1

) (10
−4

s
−1

) (10
−4

s
−1

)

hexanal trans-2-hexenal

0 298.15 2.31 2.79 1.07 0.45

1 291.65 2.98 2.91 1.19 0.47

2 285.15 3.38 3.05 1.27 0.49

3 278.65 3.68 3.19 1.34 0.50

4 272.15 3.88 3.35 1.38 0.52

5 265.65 3.99 3.52 1.42 0.55

6 259.15 4.14 3.72 1.45 0.57

7 252.65 4.21 3.93 1.48 0.60

8 246.15 4.26 4.17 1.50 0.63

9 239.65 4.29 4.44 1.51 0.66

10 233.15 4.26 4.74 1.52 0.70
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Fig. 1. (a) Absorption spectra for hexanal recorded at 1.07 (dashed line), 3.09 (thin line), and

5.01 Torr (thick line). (b) Beer-Lambert law plots at 310 nm (•); 320 nm (�), and 330 nm (N).
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Fig. 2. Absorption spectra for hexanal (•) and trans-2-hexenal (N) reported in this work. Com-

parison of the σλ determined in this work for hexanal with those found in the bibliography (solid

line from Plagens et al., 1998, and open circles from Tang and Zhu, 2004).
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Fig. 3. Pseudo-first order plots of k ′−k0 versus aldehyde concentration hexanal (filled symbols)

and trans-2-hexenal (open symbols) at 263 K (squares) and 353 K (circles).
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Fig. 4. Arrhenius plots for the reactions of OH radicals with hexanal (�) and trans-2-hexenal

(�).
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Fig. 5. Tropospheric loss rate for hexanal and trans-2-hexenal due to UV photolysis and reac-

tion with OH radicals.
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