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Abstract

More and more profiles of atmospheric state parameters are being retrieved from re-

mote soundings in the infrared spectral domain. Classical error analysis, which was

originally applied to microwave sounding systems, distinguishes between “smoothing

errors,” “forward model errors,” “forward model parameter errors,” and “retrieval noise5

errors”. We show that for infrared soundings “interference errors”, which have not been

treated up to now, can be significant. Interference errors originate from “interfering

species” that introduce signatures into the spectral measurement which overlap with

the spectral features used for retrieval of the target species. This is a frequent situation

in infrared atmospheric spectra where the vibration-rotation bands of different species10

often overlap; it is not the case in the microwave region. This paper presents a full

theoretical formulation of interference errors. It requires a generalized state vector in-

cluding profile entries for all interfering species. This leads to a generalized averaging

kernel matrix made up of classical averaging kernels plus here defined “interference

kernels”. The latter are used together with climatological covariances for the profiles15

of the interfering species in order to quantify the interference errors. To illustrate the

methods we apply them to a real sounding and show that interference errors have

a significant impact on standard CO profile retrievals from ground-based mid-infrared

solar absorption spectra. We also demonstrate how to minimize overall error, which is

a trade-off between minimizing interference errors and the smoothing error. The ap-20

proach used in this paper can be applied to soundings of all infrared-active atmospheric

species, which includes more than two dozen different gases relevant to climate and

ozone. And this holds for all kind of infrared remote sounding systems, i.e., retrievals

from ground-based, balloon-borne, airborne, or satellite spectroradiometers.
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1 Introduction

During the last decade, more and more, infrared remote sounding measurements have

been used to obtain profiles of atmospheric composition and temperature from ground

or space. Infrared profiling techniques complement the older microwave profilers in

many ways, e.g., with respect to the altitude range attainable, and the atmospheric5

trace species under consideration. The theoretical framework for retrieval of profiles

from spectral measurements via optimal estimation (OE) was developed three decades

ago (Rodgers, 1976) and has been applied solely to microwave soundings for a long

time. In addition, a concept for error analysis was formulated (Rodgers, 1990) to distin-

guish between four different classes of errors, i.e., “smoothing errors,” “forward model10

errors,” “forward model parameter errors” and “retrieval noise errors”. In the last few

years, this classical error analysis has also been applied to infrared retrievals. However,

in infrared, a very frequently encountered problem in retrieving the “target quantity” is

due to “interfering species.” This occurs because the vibration-rotation bands of dif-

ferent species often overlap in the infrared atmospheric spectrum. Overlapping of this15

kind does not occur in the microwave region. Keeping in mind that the wings of (in-

frared) spectral lines always expand asymptotically towards plus-minus infinity in the

frequency domain, it becomes clear that individual spectral lines used for the profile

retrieval of an atmospheric target species, in principle, always overlap with neighboring

spectral lines of other interfering species. This necessitates the simultaneous retrieval20

of the interfering species in the infrared and leads to a new class of errors, called “inter-

ference errors”. Interference errors originate from the fact that the profile retrieval of an

interfering species is usually not perfect (i.e., the averaging kernel matrix is not iden-

tical to the unit matrix, as a result of any type of regularization); this causes spectral

residuals (measured minus simulated) around the spectral signature of the interfer-25

ing species. In consequence, the (simultaneous) profile retrieval of the target species

tends to compensate for this, meaning that an artifact is introduced into the retrieved

target profile. While an experienced spectroscopist might be able to “see” potential
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interference effects by visual inspection of the spectral features within a micro-window

as a result of his understanding of all retrieval settings, this intuitive approach risks

missing “hidden” interference effects and/or underestimating them quantitatively.

In addition to the described effect from the retrieval of interfering species we will

include in “interference errors” all errors in a retrieved atmospheric target profile which5

originate from the regularization of the retrieval of any additional vector-type physical

quantity. For example, temperature profiles retrieved at the same time as the target

species, which may be used in order to minimize errors from insufficient knowledge of

the true temperature profile at the time of observation.

More specifically, we want to add what our concept of interference errors does not10

currently mean. It does not have to do with any possible error in the forward modeling,

i.e., either with errors in the forward model parameters, such as errors in the spec-

troscopic parameters of interfering species (e.g., an erroneous pressure broadening

parameter), or with errors in the forward model itself like errors in line shape modeling

(e.g., a non-Voigt type line shape of an interfering water vapor line, modeled by a Voigt-15

type forward model). Both kinds of errors will also lead to residuals in the retrieval of the

interfering species, and, thereby introduce errors to the retrieval of the target species.

For this reason, these effects have also sometimes been referred to as “interference

errors”. However, these two error classes clearly can be attributed to and treated as

“forward model parameter errors” (above example of errors in spectroscopic parame-20

ters) and to “forward model errors” (above example of errors in line shape modeling).

These are two error classes which had previously been named this way and formally

been treated by Rodgers (1990, 2000). Interference errors are also different but in a

sense related to “smoothing errors” (Rodgers, 1990, 2000), since for their quantifica-

tion the regularization matrix of the retrieval as well as an estimate of true covariance25

of the interfering species has to be known (in case of smoothing errors: regularization

matrix and covariance of the target species).

Up to now, interference errors have not been treated in a rigorous and quantitative

way, although a theoretical formulation for treatment of all possible further classes of
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errors (i.e., smoothing errors, forward model parameter errors, forward model errors,

and errors from measurement noise) has previously been described in the literature

(Rodgers, 1990, 2000; Connor et al., 1995). Therefore, these classes of errors will not

be discussed in this paper. Rather, we will discuss interference errors quantitatively

for the first time, and show their significance in terms of their magnitude relative to5

smoothing errors. We dedicate this paper to the treatment of interference errors since

they can often become comparable to or sometimes even larger than smoothing errors

in quantitative terms.

This paper starts with definitions and a recap of the classical error analysis according

to Rodgers (Sect. 2). Section 3 is the central part of this paper and gives a general10

theoretical formulation to quantify interference errors. This general formulation can be

used to optimize micro-windows, retrieval settings, and regularization strategies. In

Sect. 4 our general method is illustrated by applying it to a real infrared sounding.

As an example, the retrieval of CO profiles is illustrated for a test ensemble of ground-

based solar spectra recorded with the high resolution Fourier transform spectrometer at15

the NDACC (Network for the Detection of Atmospheric Composition Change) Primary

Station Zugspitze, Germany (see, e.g., Sussmann and Schäfer, 1997; Sussmann et

al., 2005a, b). The interference errors found in the CO profiles from ozone, water vapor

and all other interfering species have been quantified in detail. Section 5 presents

two case studies showing how the error analysis can be used to test ways of reducing20

interference errors, e.g., via changing micro-window sets or optimizing regularization

constraints for the retrieval of the interfering species. Finally, Sect. 6 presents some of

the conclusions which can be drawn from this.

2 Definitions and classical error analysis

Our formulation of interference errors in Sect. 3 is an extension of Roger’s (1990) formu-25

lation of error analysis which has been supplemented by Rodgers (2000). Therefore,

we first briefly repeat the Rodgers (2000) formulation and the definitions used.
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According to Rodgers (2000, Eq. 3.16) the retrieved target profile x̂ is related to the

true target profile x via the relation

x̂ − x = (A − I)(x − xa) . . . smoothing error

+GyKb(b − b̂) . . . model parameter error

+Gy∆f(x,b, b
′
) . . . forward model error

+Gyε . . . retrieval noise

(1)

where A = ∂ x̂
/

∂x,Gy = ∂ x̂
/

∂y, Kb = ∂F
/

∂b, and xa is the a priori profile. The

forward model parameters (which are not retrieved) are b, and b̂ is our best estimate of5

the forward model parameters, as distinct from the true value b. The forward function

f describes the true physical relation between the measurement vector y and x

y = f(x,b,b′) + ε (2)

Measurement noise is described by the error term ε. The forward model F is related

to f via the relation10

∆f = f(x, b, b′) − F (x, b) (3)

where b
′

are all forward function parameters which are ignored in the construction of

F , and ∆f is the error in the forward model relative to the real physics.

We would like to illustrate the four terms in Eq. (1) via examples for ground-based

infrared solar absorption spectrometry. i ) The first term in Eq. (1), i.e., the smoothing15

error, is due to the limited vertical resolution, which ranges in the case of solar FTIR

from 1–2 km up to nearly no resolution at all, depending on the species of interest and

altitude. This results in a retrieved profile that is smoothed in comparison to the true

profile which may show significant fine structure on the sub-kilometer vertical scale in

the real atmosphere. ii) Typical model parameter errors (second term in Eq. 1). In the20

case of solar FTIR, there would be errors in the spectroscopic data used both for the

target species and interfering species. Another example would be a wrong solar zenith

angle (e.g., due to an error in instrument time) used for the ray-tracing calculations of
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the solar absorption path. Also one of the most important error contributions in case of

solar FTIR belongs to this class, namely temperature errors. Errors as large as a few

Kelvin do occasionally arise, e.g., from a mismatch in time and space between nearby

radio sondes used and the FTIR measurements. iii) A typical forward model error (third

term in Eq. 1) in case of solar FTIR is the generalized use of Voigt type line shapes for5

all species and all lines, although it is know that deviations do occur, e.g., for a variety

of water vapor or methane absorption lines in the mid-infrared atmospheric spectrum.

If such a non-Voigt line is present in the micro-windows used, either as the target or

as an interfering species, this forward model error will have an impact on the retrieved

target profile. Other forward model errors could, e.g., arise from inadequate forward10

modeling of the instrumental line shape or channeling, if these effects are present in the

spectra and cannot be retrieved. iv) The last error term in Eq. (1) is due to the spectral

measurement noise which is transfered to the retrieval. Note that statistical analysis

using a measurement noise covariance matrix takes noise correlations between neigh-

boring spectral data points (or channels) into account. Such spectral correlations are15

present in the case of solar FTIR if a zero filling of the interferograms is performed.

In the following section we will show that a new class of errors, in addition to the four

classes of Eq. (1), arises if we define a generalized state vector including not only the

target profile, but also all further retrieval parameters. The effect is a split up of the

first term of Eq. (1) into the smoothing error plus additional terms, which we will call20

interference errors. The rest of this paper is dedicated to these interference errors and

their relation to smoothing errors. The error terms 2–4 of Eq. (1) will not be discussed

further.
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3 Theoretical description of interference errors

3.1 Generalized state vector

We now re-define x to be a “generalized state vector” which takes into account all pa-

rameters to be retrieved, not only the atmospheric target profile, see Eq. (4). We will

refer to the part of x describing the atmospheric target profile to be retrieved as t with5

length n. It contains, for example, average volume mixing ratios of the target species,

e.g., carbon monoxide, on a set of n=100 layers with thickness 1 km, covering the ver-

tical range between 0–100 km altitude. The remaining sub-vector of x represents all

further parameters to be retrieved in addition to the target parameters. It comprises

vectors v1, v2, . . . with length n, describing the profiles of interfering species, i.e.,10

species different from the target species which show spectral signatures within the

micro-windows as well as additional vector-type quantities that may be retrieved, such

as retrieved temperature profiles (which can also cause an interference effect). Further-

more, it consists of scalar-type retrieval parameters s1, s2, . . . , denoted as “retrieved

auxiliary scalar parameters” hereafter. These parameters are candidates for forward15

model parameters that are retrieved, however, because they are not known accurately

enough, e.g., a frequency shift between the measured and simulated spectrum (which

can be caused by a frequency calibration error, either in the spectrometric measure-

ment or the spectroscopic line data used). Note that we introduce the additional class

“retrieved auxiliary scalar parameters” since, according to the nomenclature of Rodgers20
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(1976), “forward model parameters” are just parameters that are not being retrieved

x :=

























t

v 1

v 2
...

s1

s2
...

























=





















































t1
...

tn
v11
...

v1n

v21
...

v2n
...

s1

s2
...





















































(4)

It should be pointed out that the precondition for our later quantification of interference

errors is, that not only the target species but also the interfering species (and all other

retrieved vector-type quantities, e.g., temperature profiles) are represented within the5

state vector as full profiles with a sufficient number of grid elements n. This number

has to be chosen large enough so that the true profile variations can be modeled by the

forward model properly. For practical reasons we have to use the same vertical grid

for the target species and interfering species (with, e.g., n = 30. . . 100 layers). This

requirement is not met by the common practice, of retrieving interfering species using10

only one simple profile scaling factor. The problem is that, in this case, there is only

one scalar entry to the state vector x from this interfering species (namely the scaling

parameter), and, in consequence, there is no interface to link the true atmospheric

profile covariance of the interfering species into the error analysis.
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In order to overcome this difficulty we have to formally carry out a full profile retrieval

including the interfering species which are intended to be retrieved via simple column

scaling, but use at the same time a Tikhonov–type retrieval constraint with a very high

regularization strength (see Sect. 3.3 for details). This approach emulates the intended

effect of a simple profile scaling retrieval of the interfering species, and, at the same5

time, there is a full profile (i.e., vector-type) entry of the interfering species into the state

vector. This is the precondition to allow a mapping of the true profile covariance into the

error analysis (Sect. 3.2). We want to repeat that this somewhat laborious approach

is necessary for an adequate analysis of the interference errors, i.e., this requirement

does not originate from the (column) retrieval of the interfering species itself. However,10

we will see later, that application of a less regularized (profile) retrieval for the interfering

species makes it possible to significantly reduce the interference errors (Sect. 5.2)

3.2 Smoothing errors and interference errors

We re-arrange and simplify Eq. (1) to the following form

x̂ − xa = A(x − xa) + εx , (5)15

where εx comprises the error terms 2-4 in Eq. (1), i.e., all errors in the measurement

and the forward model (parameters). A is the averaging kernel matrix which can be

calculated analytically from the following relation (Steck, 2002)

A = (KTS
−1
ε K + R)−1KTS

−1
ε K , (6)

where K is the Jacobian of F with respect to x , Sε is the error covariance of the mea-20

surement, and R is the regularization matrix (see Sect. 3.3 for details). Alternatively,

A can be calculated numerically by the so-called perturbation method, which uses the

retrieval response to delta-function perturbations of subsequent components of x to fill

the columns of A. The appropriate magnitude of the perturbation can easily be found

as a trade off between instabilities arising from perturbations which are too small due25
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to rounding errors, and saturation effects arising from perturbations which are too large

due to non-linearity in the response.

Note that in Rodgers (1990) x is only the vector of the target species, i.e., what we

designated by t above. In this paper, however, we define x as the full state vector

comprising vectors for the target species and vectors for all interfering species and5

additional vector-type quantities retrieved, as well as the retrieved auxiliary scalar pa-

rameters, see Eq. (4). In consequence, A denotes in our case a generalized averaging

kernel matrix which includes in addition rows and columns describing the interference

of the retrieval of the target profile with the retrieval of all further parameters: inserting

Eq. (4) into Eq. (5) yields10

x̂ − xa=

























t̂ − ta
v̂ 1 − v 1a

v̂ 2 − v 2a
...

ŝ1 − s1a

ŝ2 − s2a
...

























=































Att Atv1 Atv2 · · · a
T
ts1 a

T
ts2 · · ·

Av1t Av1v1 Av1v2 · · · aT
v1s1 a

T
v1s2

. . .

Av2t Av2v1 Av2v2 · · · aT
v2s1 a

T
v2s2

. . .
...

. . .
. . .

. . .
. . .

. . .
. . .

as1t as1v1 as1v2
. . . as1s1 as1s2

. . .

as2t as2v1 as2v2
. . . as2s1 as2s2

. . .
...

. . .
. . .

. . .
. . .

. . .
. . .























































t − ta
v 1 − v 1a

v 2 − v 2a
...

s1 − s1a

s2 − s2a
...

























+

























εt

εv1

εv2
...

εs1

εs2
...

























. (7)

Our generalized averaging kernel matrix A comprises sub-matrices Ai j , (column) vec-

tors ai j , row vectors a
T
ji , as well as scalars ai i . Note that Att is what is usually called

the “averaging kernel matrix” describing the smoothing of the retrieved target profile

(Rodgers, 1990). Furthermore, if the retrieved auxiliary scalar parameters s1, s2, . . .15

describe true physical scalar-type quantities (i.e., they are not scalar approximations to

a vector-type physical quantity), and they are not correlated, then the retrieval of these

scalars can and should be performed without any regularization. In this case Eq. (7)
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simplifies to

x̂ − xa =

























t̂ − ta
v̂ 1 − v 1a

v̂ 2 − v 2a
...

ŝ1 − s1a

ŝ2 − s2a
...

























=































Att Atv1 Atv2 · · · 0 0 · · ·

Av1t Av1v1 Av1v2 · · · 0 0
. . .

Av2t Av2v1 Av2v2 · · · 0 0
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0
. . . 1 0

. . .

0 0 0
. . . 0 1

. . .
...

. . .
. . .

. . .
. . .

. . .
. . .























































t − ta
v 1 − v 1a

v 2 − v 2a
...

s1 − s1a

s2 − s2a
...
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...

εs1
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. (8)

We then obtain the following relation between t̂, ta, and t

t̂ − ta=Att(t − tα) + Atv1(v 1 − v 1a) + Atv2(v 2 − v 2a) + . . . + εt , (9)

which can be rearranged5

t̂ − t = (Att − I)(t − tα) . . . smoothing error

+Atv1(v 1 − v 1a) + Atv2(v 2 − v 2a) + . . . . . . interference error

+εt .
(10)

The first term is what has been defined by Rodgers (1990) as the “smoothing error”

since it describes the differences between the retrieved profile t̂ and the true profile t ;

these differences are due to the finite vertical resolution of the remote sounding system,

or, in other words, due the fact that Att of real remote sounders deviates from the ideal10

unit matrix I. The further terms are what we will refer to hereafter as “interference

errors”. They are caused by interference between the retrieval of the target profile

t and the retrieval of the interfering species (and retrieved auxiliary quantities, e.g.,

temperature) with profiles v1, v2, . . . . We will call Atv1, Atv2, . . . “interference kernel

matrices”.15

The statistics of the smoothing error is described by the error covariance

Stt = (Att − I) St (Att − I)T , (11)
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where St is a best estimate of the true a priori covariance of the target profiles t .

The statistics of the interference errors are described by the error covariance matri-

ces

Stv1 = Atv1 Sv1 A
T
tv1

Stv2 = Atv2 Sv2 A
T
tv2

...

, (12)

where Sv1, Sv2, . . . are best estimates of the true a priori covariances of the profiles5

v1, v2, . . . of the interfering species (and retrieved auxiliary profile-type quantities,

e.g., temperature).

3.3 Retrieval and different types of constraint

While the forward model maps from the n-dimensional state space (profiles, and further

retrieval parameters) into the m-dimensional measurement space (spectrum), we are10

interested in the inverse mapping. Since m>n holds in many cases, the inverse prob-

lem is formally over-determined, and can be formulated as a least squares problem.

Usually, due to the non-linearity of F a Newtonian iteration is applied, and a regulariza-

tion term is used that allows one to add additional information about the solution and

thereby avoid oscillating profiles (Steck, 2002)15

xi+1 = xi + (K
T
i S

−1
ε Ki + R)

−1

×
{

K
T
i S

−1
ε [y−F (xi )] − R(xi − xa)

} , (13)

where the subscript i denotes the iteration index.

In the following we briefly present two different types of regularization which we

will use simultaneously for our analysis of interference errors, i.e., optimal estimation

(Rodgers, 1976) and Tikhonov regularization (Tikhonov, 1963). We will apply optimal20

estimation to the retrieval of the target profile t (i.e., only to part part of the full state
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vector x); for the simultaneous retrieval of the interfering species v1, v2, . . . Tikhonov

regularization will be used. The reason for this will be explained below.

In the case of optimal estimation, R is set up using the relation R=S
−1
R where SR

is the a priori covariance matrix. In the ideal case SR is a climatological covariance

constructed from an ensemble of true profiles covering the full range of possible atmo-5

spheric states. The a priori profile should be the true climatological mean for optimal

estimation otherwise a bias will be introduced to the retrievals.

In the case of Tikhonov regularization, R is set up using the relation R=αL
T
L, where

α is the strength of the constraint and L is the constraint operator. For example, in case

of the discrete first derivative operator L1 (Steck, 2002)10

L1 =













−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 −1 1













(14)

the retrieved profile is constrained so that the difference between the retrieved and

the a priori profile approaches a constant profile for high values of α. Regularization

via the L1 operator constrains the shape of the retrieved profile but not the absolute

values which are determined by the measurement. For the a priori profile either the15

true climatological mean can be adopted, or, if this is not know, any reasonable profile

shape. In absence of any knowledge, it might even make sense to use a zero-a-priori

to achieve a smoothing constraint. While means to optimize the magnitude of α for var-

ious purposes have been given by Steck (2002) in detail, we will restrict our discussion

to two limiting cases: The case α→0 describes a retrieval, where no regularization is20

performed at all, and in consequence the retrieved profiles will frequently suffer from

oscillations. The other limiting case, i.e., α→∞ represents a profile scaling retrieval

which is a fitting via an iterative scaling of the a priori profile with one factor that is the

same for all altitudes, i.e., an infinitely hard constraint to the profile shape and a zero
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constraint to the absolute value of the scaling factor. We will use this kind of setting for

retrieval of columns of the interfering species during our error analysis in Sect. 4.5.

It has been shown by Steck and von Clarmann (2001) in general terms that the op-

timal estimation formalism can be used to emulate purely Tikhonov-type smoothing

constraints. We will just add one example for this equivalence which is of some rel-5

evance for our later discussion of interference errors. As explained above, a simple

profile scaling retrieval can be set up by a Tikhonov L1-type constraint with α→∞.

This can be emulated by an optimal estimation retrieval, where the diagonal elements

(variances) of SR are large numbers (relative to the true variances) and the inter-layer

correlation length (described by the off-diagonal elements of SR) is set to a high value10

(relative to the altitude range of the profile, e.g., 100 km).

3.4 Treatment of non-linearity for quantification of smoothing errors and interference

errors

To solve the inverse problem and to analyze smoothing and interference errors we use

the following linearization of the forward model15

y = F (x0,b0) +
∂F

∂x

∣

∣

∣

∣

x0,b0

(x − x0) + εy = K|x0,b0
(x − x0) + εy (15)

around a linearization point x0,b0.

In linear approximation, the error analysis could be performed via one linearization

point of the forward model. This point should be chosen to be the mean values ¯̂x and

b̄ calculated from the ensemble of i retrieved states x̂i and the corresponding input20

forward model parameters bi that have been used for each retrieval.

However, for error analysis, the forward model is often not sufficiently linear, i.e., it

does not allow for an appropriate description of the errors of the full ensemble of all

possible values of parameters x and b using one linearization. Typical examples of

causes leading to such a situation are i ) the high variability of atmospheric profiles and25

columns (e.g., water vapor, either retrieved as target species t or as interfering species
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v ), and ii) the highly variable solar zenith angle which is a forward model parameter

b in solar absorption spectrometry. In this case we will apply a statistical approach

based on an ensemble of i linearizations with its linearization points (x̂i ,bi ), i.e., the i
retrieved states x̂i and the corresponding input forward model parameters bi that have

been used for each retrieval.5

4 Quantification of interference errors of CO profiles from Zugspitze solar FTIR

4.1 Historical development of solar CO measurements

Although the first vertically resolved information on CO was obtained through in situ

aircraft measurements in the 1970s (Seiler and Warneck, 1972; Seiler and Fishman

1981), ground-based remote sounding measurements were not made until a decade10

later. A set of Fourier Transform spectrometers for rotationally resolved solar absorp-

tion spectrometry in the mid-infrared spectral domain was set up in the early 1990s

at a variety of stations around the globe within the framework of the NDACC network.

In the beginning, only one spectral micro-window around the saturated R3 line of the

fundamental (1-0) vibration-rotation absorption band was used for CO total column re-15

trievals via profile scaling and non-linear least squares spectral fitting, and utilized, e.g.,

for satellite validation (Pougatchev et al., 1998). In the pioneering work by Pougatchev

and Rinsland (1995) altitude information on CO was obtained for the first time from

four different spectral micro-windows (simultaneously) including a set of 1-0 band lines

with a variety of different opacities (i.e., R3, P7, P9, P10). This approach was var-20

ied and refined in a series of papers (Zhao et al., 1997; Rinsland et al., 1998). The

most widely used approach is now the optimal estimation formalism of Rodgers (1976)

semi-empirically modified for microwave profiling of stratospheric ozone (Connor et al.,

1995) and applied to infrared CO retrievals using a reduced set of lines (R3, P7, P10)

by Rinsland et al. (2000). A detailed error analysis of the Rinsland et al. (2000) CO25

retrieval (with slightly wider micro-windows) according to the Rodgers (1990) formal-
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ism was presented by Rodgers and Connor (2003). We will refer to this maturated CO

profile retrieval according to Rinsland et al. (2000) and Rodgers and Connor (2003)

in the following as “RRC”. A variety of applications of the RRC retrieval have been re-

ported, e.g., for investigating the impact of biomass burning on the global CO distribu-

tion (Jones et al., 2001; Yurganov et al., 2004, 2005; Velazco et al., 2005; Paton-Walsh5

et al., 2005), as well as for satellite validation (Rodgers and Connor, 2003; Sussmann

and Buchwitz, 2005).

4.2 Zugspitze FTIR CO measurement characteristics

At the NDACC Primary Station Zugspitze (47.42
◦
N, 10.98

◦
E, 2964 m a.s.l.), Germany,

a Bruker 120 HR solar FTIR instrument was set up at the beginning of 1995 (Suss-10

mann and Schäfer, 1997). Since then it has been operated continuously all year round

with typically 120 measurement days per year, and is part of the Permanent Ground-

Truthing Facility Zugspitze/Garmisch (Sussmann and Buchwitz, 2005; Sussmann et

al., 2005a, b).

4.2.1 Test ensemble of Zugspitze spectra15

Typical Zugspitze infrared spectra used for the CO profile retrievals are the average of

6 scans recorded in 14 min with an optical path difference of 250 cm
−1

. Three spec-

tral micro-windows from the 1-0 band were analyzed, i.e., 2057.785–2057.91 cm
−1

,

2069.615–2069.71 cm
−1

, and 2157.33–2159.15 cm
−1

. For this paper we randomly se-

lected a test ensemble of i=156 spectra taken after 1994. The average signal-to-rms-20

noise ratio of the spectra of this ensemble is 377:1. A significant problem in the forward

model between 2157.77–2157.92 cm
−1

was found in the final residuals of the spectral

fits (measured minus calculated). The next section explains the reason for this.
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4.2.2 Contribution plot and forward model characteristics

Figure 1 shows a contribution plot of the micro-windows used, i.e., a forward model

simulation with the absorption contributions of the different species plotted separately.

This contribution plot is based on the average SZA and the average of the retrieved

states x̂i of our test ensemble. Note that there are four terrestrial interfering species,5

i.e., O3 and CO2 in the first two micro-windows and O3, H2O, N2O, and CO2 in the third

micro-window. Furthermore, it can be seen that the residual problem found between

2157.77–2157.92 cm
−1

(as mentioned in Sect. 4.2.1) is due to a solar CO line that has

not been adequately modeled.

For the forward simulations we used the HITRAN 2000 spectroscopic line parameter10

compilation including the 2002 update (Rothmann et al., 2003). The model profiles are

based on 66 layers with a 1 km width up to an altitude of 69 km altitude and 1 additional

layer above (up to 100 km). For the pressure-temperature profile information used in

the forward model we utilized the daily Munich radio sonde launched at 12:00 universal

time about 80 km north of the Zugspitze.15

4.3 Zugspitze FTIR CO retrieval settings

We use the SFIT2 (ver. 3.90) software and follow the RRC retrieval approach as de-

scribed by Rinsland et al. (2000) and Rodgers and Connor (2003), with the modifica-

tions that follow.

4.3.1 CO a priori profile and full covariance for mid latitudes20

To extend the RRC approach, we used a full CO a priori covariance matrix for the

Zugspitze retrievals. This matrix was constructed from an ensemble of measured high

resolution profiles. Earlier RRC had used a simple empirical a priori coaviance matrix

for CO comprising diagonal elements only, with the standard deviations (stdv) for all

layers either varied smoothly from 40% below 30 km to 20% above 40 km (Rinsland et25

13044

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/13027/2006/acpd-6-13027-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/13027/2006/acpd-6-13027-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 13027–13073, 2006

Interference errors in

infrared remote

sounding

R. Sussmann and

T. Borsdorff

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

al., 2000), or all set to 100% (Rodgers and Connor, 2003). While these RRC retrieval

settings were an empirical approach to stabilize the retrieval without too much influence

from a priori information, the Zugspitze approach, for the first time, employs a strict

application of the optimal estimation concept to the retrieval of CO profiles from solar

FTIR.5

The Zugspitze a priori profile ta and a priori covariance matrix St=SCO for optimal

estimation of CO was constructed from an ensemble of globally distributed aircraft

CO measurements supplemented at above aircraft altitudes by a set of model output

profiles used for the operational MOPITT retrieval (Deeter et al., 2003). In order to

construct this prior information for the Zugspitze (47
◦
N) mid latitude site we selected10

a subset of the Deeter et al. (2003) global profile set comprising all profiles within a

full 47
◦
N±16

◦
latitudinal band (Fig. 2a). Figure 2a also shows the mean profile of this

ensemble which is used as an a priori profile ta. The resulting a priori covariance matrix

St=SCO was calculated from the statistics of the ensemble (Fig. 2b).

4.3.2 Error covariance Sε and de-weighting15

The measurement error covariance matrix Sε was assumed to be diagonal. For the

uncertainties of all spectral channels the average signal-to-noise ratio of the Zugspitze

test ensemble was used (377:1). However, by inspecting the spectra in the interval be-

tween 2157.77–2157.92 cm
−1

we were able to identify a systematic error in the solar

CO forward simulation as the dominant source of error (Sects. 4.2.1 and 4.2.2). To pre-20

vent this error from being mapped into the retrieval, we performed a total de-weighting

of the spectrum around this solar line by assuming a signal-to-noise ratio of 0:1 for this

spectral domain within the Sε matrix.

4.3.3 Retrieval of interfering species

A number of terrestrial interfering species with significant absorptions were found (O325

and CO2 in the first two micro-windows and O3, H2O, N2O, and CO2 in the third micro-
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window) in the contribution plot of Fig. 1. We first retrieved them via column scaling

retrieval. In spite of this, we had to introduce a full set of n-dimensional profile vectors

v1, v2, . . . for each of the interfering species (see Eq. 1), in order to attain a profile-

type entry into the state vector. This is required for later analysis of the interference

errors in the CO profiles which result from the true profile variability of the interfering5

species. In order to retrieve these interfering species we then used a Tikhonov L1-type

constraint operator (see Eq. 14) with the regularization strength α initially set to a very

high number (10
13

), leading to a profile scaling retrieval (hard profile shape constraint)

without any regularization/damping of the retrieved scaling factors. This setting leads

to a degree of freedom of signal of dofs ≡ 1 per interfering species. Note, that we later10

find that the interference errors can be minimized by finding a lower optimum value for

the regularization strength α for each interfering species, i.e., by actually performing

profile retrievals for the interfering species (discussion in Sect. 5.2).

4.3.4 Retrieval of auxiliary parameters

For the Zugspitze CO profiling, the following auxiliary scalar parameters were retrieved.15

There is one independent frequency shift per micro-window, or a total of 3 parameters

for all three micro-windows. One parameter is needed to fit possible zero line distor-

tions via the saturated R3 line. Three more parameters are used to fit the background

slope in each micro-window. There is also one auxiliary parameter to fit a frequency

shift for the solar CO spectrum.20

4.3.5 Retrieved test ensemble

Figure 3 shows the retrieved CO profiles from an arbitrarily chosen test ensemble of

156 Zugspitze spectra. It can be seen that the overall range of scatter of the retrieved

ensemble is consistent with the ensemble of the aircraft profiles (also shown) from

which our prior information (covariance and mean profile) was constructed.25
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4.4 Quantification of CO smoothing error

Averaging kernels of our CO profile retrieval (i .e., the rows of Att = ACO−CO, see Eq. 7)

are plotted in Fig. 4. The plotted averaging kernels are averages of the averaging ker-

nels calculated around all the retrieved states of the Zugspitze test ensemble (Fig. 3),

i.e., they describe the mean retrieved state. The kernels peak close to their nominal5

altitude and retain close to unit area up to an altitude of 15 kilometers. The degree of

freedom of signal is dofs = 3.3 on average over our test ensemble.

We calculate the smoothing error covariance Stt = SCO−CO according to Eq. (11)

using the a priori covariance St =SCO of Fig. 2b. Figure 5 shows the square roots of

the diagonal elements of SCO−CO, i.e., error standard deviations as profiles versus alti-10

tude. Note that this is not a complete description of the smoothing errors, because they

are correlated between different heights. However, it does provide an indication of the

retrieval precision. Figure 5 shows the full ensemble of smoothing error profiles calcu-

lated around each retrieved state (x̂i ,bi ) of the Zugspitze test ensemble. As described

in Sect. 3.4 the reason for the spread of the smoothing errors is the non-linearity of the15

forward model and thus the dependency of the averaging kernels on the state (x i , bi ).

Figure 5 also shows the natural CO variability as a function of altitude which has

been calculated as the square root of the diagonal elements of the a priori covariance

St =SCO (Fig. 2b). It can be seen that the magnitude of the smoothing error relative

to the natural CO variability increases with altitude. However, the smoothing error of20

our retrieval never reaches or exceeds the magnitude of the natural CO variability, as

expected for a properly set optimal estimation approach.

4.5 Quantification of interference errors

The statistics of the interference errors from the four interfering species, i.e., the in-

terference error covariances SCO−O3, SCO−H2O, SCO−N2O, and SCO−CO2 are calculated25

thereafter according to Eq. (12). As an input to this we first have to calculate the

interference kernel matrices ACO−O3, ACO−H2O, ACO−N2O, and ACO−CO2 (Sect. 4.5.1).
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The second input to Eq. (12) are the a priori covariances for the interfering species

Sv1 =SO3, Sv2 =SH2O, Sv3 =SN2O, and Sv4 =SCO2, which are presented in Sect. 4.5.2.

Then Sect. 4.5.3 shows the resulting interference errors versus altitude and their com-

parison to the smoothing errors as well as to the natural variability of CO.

4.5.1 Interference kernels5

The interference kernel matrices for our four interfering species are the quadratic sub-

matrices ACO−O3,ACO−H2O,ACO−N2O, and ACO−CO2 of the generalized averaging kernel

matrix as defined via Eq.(7). Analogously with the term “averaging kernels” we here-

after use the term “interference kernels” for the rows of these interference kernels ma-

trices. They reflect the response of the CO-profile retrieval to a unit perturbation of the10

true profile of the interfering species (in arbitrary units of our state vector quantity, i.e.,

scaling factors of VMR-layer averages). The interference kernels for the four interfering

species are plotted in Figs. 6a–d.

4.5.2 A priori covariances of the interfering species

To construct the a priori covariance Sv1=SO3 needed to estimate the CO-O3 interfer-15

ence error we used an ensemble of 1438 ozone sonde (brewer mast) profiles provided

by the meteorological observatory Hohenpeissenberg. This German weather service

site is located 30 km north of the Zugspitze. The Hohenpeissenberg ozone sound-

ings are performed 3 times a week (i.e., Monday, Wednesday, and Friday), and our

ensemble covers the time span January 1995–February 2006. Figure 7a shows the20

profile ensemble and its mean, and Fig. 7b shows the covariance calculated from this

ensemble.

To construct the a priori covariance Sv2=SH2O we utilized the data set of the (4

times daily) radio soundings performed during the Garmisch AIRS validation cam-

paign between 19 August–17 November 2002. Garmisch is located only 6 km from the25

Zugspitze horizontally. We used a subset of 66 radio sondes that had been launched
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coincident to the solar FTIR measurements (i.e., filtering for clear sky conditions). This

ensemble of water vapor profiles and the resulting covariance is plotted in Fig. 8.

To estimate the a priori covariance Sv3 =SN2O we used an ensemble of 14 aircraft

profiles from a number of campaigns performed from 1995 - 1997 between 20–70
◦
N

which were provided by the ETHmeg data base (http://www.megdb.ethz.ch/dbaccess.5

php), see Fig. 9.

The a priori covariance Sv4=SCO2 was constructed from 134 profiles measured dur-

ing two aircraft campaigns in July/August 2000 and May/June 2003 between 31–56
◦
N.

This data was provided by the ETHmeg data base, see Fig. 10.

4.5.3 Interference errors compared to the smoothing error10

Based on the results of Sects. 4.5.1 and 4.5.2 the interference error covariances

SCO−O3, SCO−H2O, SCO−N2O, and SCO−CO2 can be calculated according to Eq. (12).

In analogy to Fig. 5 (illustrating the smoothing error versus altitude) we plot the square

roots of the diagonal elements of the interference error covariances as profiles versus

altitude, see Fig. 11a. Again, as for the smoothing error, we plotted the full ensemble of15

interference errors versus altitude calculated around each of the retrieved states of the

Zugspitze test ensemble. The spread of the interference error profiles of one species is

again due to non-linearity effects as discussed in Sect. 3.4 in general and in Sect. 4.4

for the case of smoothing errors. Figure 11a shows via an example a crucial result of

this paper, namely, that interference errors can become comparable to the magnitude20

of the smoothing error or even larger: the CO-O3 interference errors exceed the CO

smoothing errors in the altitude range between ≈14–19 km and the CO-H2O interfer-

ence errors are comparable to the CO smoothing errors in the lower troposphere.
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5 Sensitivity studies and minimization of interference errors

5.1 Experiment with widened micro-window

In the RRC micro-window set there is only one extremely weak water vapor feature at

2156.57 cm
−1

, which is nearly hidden below the strong wing of the saturated CO R3

absorption line (Fig. 1c). Therefore, we decided to investigate the effect of widening5

this micro-window to the range 2156.0–2159.15 cm
−1

, in order to include one addi-

tional, strong water line located at 2158.11 cm
−1

(see grey shaded area in Fig. 1c).

The question is, whether the CO-H2O interference error is decreased or increased by

widening the micro-window.

The answer can be seen by comparing Fig. 11b (based on the widened micro-10

window) with Fig. 11a (based on the RRC micro-window). Clearly, the CO-H2O inter-

ference error is significantly larger when the micro-window is widened since the water

vapor (profile scaling) retrieval is then dominated by the stronger 2156.57 cm
−1

wa-

ter line. Obviously, the HITRAN 2000 line strengths of the strong 2156.57 cm
−1

water

vapor line and the weaker 2158.11 cm
−1

water vapor line are not perfectly consistent,15

leading to an increased residual around the weaker 2158.11 cm
−1

water vapor line for

retrieval from the wider micro window. And this increased water vapor residual is in the

wing of the CO R3 line (where the weighting function yields information on CO) leading

to an increased CO-H2O interference error.

5.2 Optimizing the regularization strength of the retrieval of the interfering species20

In this section we show that the interference errors can be reduced by changing the

regularization of the retrieval of the interfering species from a simple scaling retrieval

to a less regularized (profile) retrieval. The idea behind this is that a (less regular-

ized) profile retrieval for an interfering species should lead to a smaller residual around

the spectral feature of this interfering species (than scaling), and thus to less interfer-25

ence on the target species retrieval. The disadvantage is that a non-regularized profile
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retrieval of an interfering species, in principle, leads to an effective “deweigthing” of

the spectral domain where the interfering species absorbs, i.e., a reduced informa-

tion content for the target species from this spectral domain, and thereby an increased

smoothing error is expected. The trade-off between the two effects is illustrated here-

after.5

Figure 12 shows on the horizontal scale the transition from a scaling retrieval (using

the L1 operator in combination with very high values for the regularization parameter,

i .e., αO3 =10
13

) towards an essentially non-regularized profile retrieval (αO3 =10
−11

).

The vertical scale in Fig. 12 shows “mean smoothing errors” (red curves) and “mean

interference errors” (black curves). We define these as the altitude average (arithmetic10

mean up to 25 km) of the stdv-smoothing error profiles and stdv-interference error pro-

files plotted in Fig. 11, i.e.,

σ̄CO−CO :=

√

n
∑

i=1

(

SCO−CO

)

i i
/n , . . . mean CO smoothing error

σ̄CO−O3 :=

√

n
∑

i=1

(

SCO−O3

)

i i
/n , . . . mean CO − O3 interference error

· · ·

(16)

These errors are calculated around all retrieved states of the Zugspitze test ensemble.

The ensemble–type nature of these plots again results from the described non-linearity15

effects. As a result from Fig. 12 it can be seen, that the so-defined mean CO-O3

interference error decreases for decreasing αO3 as expected. Figure 12 also shows

that the mean CO smoothing error increases slightly with decreasing αO3, which is

also expected as outlined at the beginning of this section. Therefore, an optimum

αO3 for the retrieval of the interfering species O3 can be found by searching for the20

minimum of the combined error, i.e., sqrt(σ̄2
CO−CO(αO3) + σ̄2

CO−O3(αO3)), see green

curves in Fig. 12. The resulting optimum setting for αO3 is found from the minimum

of the average of all green curves (blue diamonds in Fig. 12), i.e., αO3 = 10
2
. The
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optimization for αH2O, αN2O, and αCO2 was performed in an analogous manner and

the results are summarized in Table 1. In the case of CO2, the high value of αCO2 =

10
13

means, that no further optimization relative to a scaling retrieval of CO2 could be

achieved.

The effect of incorporating these four optimized α-values into the retrieval is shown5

in Fig. 11c. The interference errors are significantly reduced compared to the RRC

standard retrieval where all interfering species were retrieved via scaling (Fig. 11a),

and are now much smaller than the smoothing error for all altitude regions. The cor-

responding effect on the altitude-averaged mean errors is shown in Table 2. Three

different retrieval scenarios are given. Scenario i ) corresponds to the RRC standard10

retrieval (Fig. 11a), i.e., the mean errors are given for the case in which all interfering

species are retrieved via scaling. Scenario ii) corresponds to Fig. 11c, i.e., using the

optimum α-values for all four interfering species. This reduces the mean CO-O3 in-

terference error down to 0.57%, which can be compared to the initial value of 3.12 %

obtained in Scenario i ). At the same time the mean CO smoothing error only increases15

slightly from 5.21% to 5.26%. In addition, the mean CO-H2O interference error is de-

creased from 0.72 % down to 0.03 %. There is no major improvement for the mean

CO-N2O and CO-CO2 interferences. The overall improvement of the “mean total error”

σ̄tot := sqrt(σ̄2
CO−CO + σ̄2

CO−O3 + σ̄2
CO−H2O + σ̄2

CO−N2O + σ̄2
CO−CO2) is 13.55%. Finally,

Scenario iii) uses the optimum α-values only for O3 and H2O, while a scaling retrieval20

is used for N2O and CO2. The corresponding numbers in Table 2 show that the overall

improvement is the same as for Scenario ii). Therefore, for a practical retrieval, Sce-

nario ii) is to be preferred, since it requires less computational effort. We want to make

the point that with both Scenarios i ) and ii) the interference errors have been almost

eliminated, since σ̄tot=5.29% of these Scenarios is only marginally (1.5%) higher than25

the smoothing error σ̄CO−CO= 5.21% of the standard Scenario i .
Finally we want add one remark about retrieval noise errors, forward model errors,

and forward model parameter errors (see Eq. 1) which we have intentionally not treated

in our examples. One might wonder whether errors belonging to these three classes
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might increase or decrease due to our optimization of the α’s of the interfering species.

The answer is that in principle they will always decrease, i.e., our minimization of in-

terference errors is always accompanied also by a reduction of retrieval noise errors

and forward model (parameter) errors. This can be seen from analogy to the finding by

Steck (2000, see Fig. 4 therein): as a result of a change in (target species) regulariza-5

tion strength (to higher or lower values, respectively) the smoothing error is shifted, in

principle, in the same direction (higher or lower values, respectively) and both retrieval

noise errors and forward model (parameter) errors are shifted in the opposite direc-

tion. This finding for a varied target species regularization can directly be transferred

to our case of changing interfering species regularization since the latter is directly10

linked to changes of the effective target species regularization: As mentioned above,

any increase or decrease in the regularization strength of the interfering species has

the effect of weighting the target species retrieval to a higher or lower degree in the

spectral range where the interfering species absorbs.

6 Summary and conclusions15

This paper shows that a class of potentially significant errors exists in infrared remote

sounding of profiles of atmospheric composition that has not been treated in the lit-

erature up to now. This new class of “interference errors” supplements the well-know

traditional classes of “smoothing errors,” “forward model errors,” “forward model param-

eter errors,” and “retrieval noise errors,” formulated this way in classical error analysis20

of optimal estimation by Rodgers. Interference errors are a concern for atmospheric

spectroscopy in the infrared domain, since many vibration-rotation bands of different

trace species overlap there. This is not the case in the microwave atmospheric spec-

trum. Optimal estimation was first applied to microwave sounders, and this might be a

historical reason, why classical error analysis did not include the treatment of interfer-25

ence errors. The interference effect physically originates from spectral residuals due

to any type of regularization of the retrieval of interfering species which then lead to
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artifacts in target species retrieval.

A general theoretical formulation of interference errors is given. It is based on a

generalized state vector comprising all retrieval parameters, including the interfering

species in addition to the target species. The point is made, that even in the usual

case of an intended retrieval of interfering species via simple profile scaling, a full5

profile (i.e., vector-type) entry has to be introduced into the state vector. We show

how this can be achieved for the interfering species by formally implementing a profile

retrieval using the Tikhonov-type first order regularization matrix (with a very high reg-

ularization strength), which effectively emulates a scaling retrieval. This leads then to

a generalized averaging kernel matrix comprising the classical averaging kernels plus10

the newly-defined interference kernels. The latter are used for estimating the interfer-

ence error, using realistic climatological covariances describing the true atmospheric

variability of the interfering species.

The general formulation is illustrated by applying it to a real sounding situation. This

is demonstrated for the example of optimal estimation of CO profiles from ground-15

based solar infrared spectra recorded with the high-resolution Fourier Transform spec-

trometer at the NDACC Primary Station Zugspitze, Germany. The errors resulting to

the CO profiles from CO-O3, CO-H2O, CO-N2O, and CO-CO2 interferences are quan-

tified in detail. A crucial result of this paper is that interference errors can become

comparable to the magnitude of the smoothing error or even larger: For the widely20

used standard CO retrieval approach the CO-O3 interference errors exceed the CO

smoothing errors in the altitude range between ≈14–19 km, and CO-H2O interference

errors are comparable to the CO smoothing errors in the lower troposphere.

Part of our general theoretical formulation is that in principle effects from non-linearity

of the retrieval effect the magnitude of the interference errors (and smoothing errors).25

This is because interference kernels (and averaging kernels) depend in principle on

the true state at the time of measurement within the range of possible atmospheric

states encountered and the range of possible forward model parameters (e.g., varying

actual solar zenith angles). In consequence, the smoothing errors and interference
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errors show a state dependency. This principle effect is shown to play a significant role

in a real sounding situation. This is illustrated by the example of CO standard profile

retrievals from solar FTIR, which show that interference errors and smoothing are in

fact varying by a factor of two and more, depending on the state. This implies that

the common practice in the infrared community of using just one “typical” averaging5

kernel for characterization of a retrieval does not hold in general and has to be re-

considered on a case-to-case basis. Therefore, throughout the example section of this

paper smoothing errors and interference errors are computed around an ensemble of

states retrieved from a test ensemble of Zugspitze solar FTIR spectra.

We present two case studies showing how the error analysis can be utilized for10

reducing interference errors, e.g., via changed micro-window sets or optimized regu-

larization constraints for the retrieval of the interfering species. The first case study,

again for the example of solar FTIR CO retrievals, shows that a widened micro-window

including one additional (stronger) water line leads to strongly increased interference

errors. This is due to inconsistencies in the water vapor line strengths in the HITRAN15

data base. In the second case study it is shown that a profile retrieval for the interfering

species (instead of a simple profile scaling) can significantly reduce the interference

errors. A scheme to systematically minimize the interference errors is suggested. This

scheme is based on a Tikhonov–type retrieval for the interfering species using the first-

derivative regularization operator and optimizing the regularization parameter. In this20

case it is shown (for the example of optimal estimation of CO profiles from solar FTIR

spectra) that the interference errors become negligible by using Tikhonov-type profile

retrievals for the interfering species O3 and H2O with regularization parameters αO3=

10
2
, αH2O= 10

0
.

Interference errors have not been treated in a rigorous and quantitative way up to25

now, although, a theoretical formulation for the treatment of all further classes of pos-

sible errors (i.e., smoothing errors, forward model parameter errors, forward model

errors, and errors from measurement noise) have previously been described in the lit-

erature. Therefore, we have not discussed these further classes of possible errors in
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the example section of this paper. However, we conjectured that simultaneous opti-

mization of smoothing and interference errors would also lead to lower retrieval noise

and forward model (parameter) errors.

This paper shows how to identify and quantify interference errors, and how to mini-

mize the total error including interference errors and the smoothing error. The general5

formulation is illustrated for the example of solar FTIR spectrometry of CO profiles.

However, the findings of this paper can be applied to soundings of all infrared-active

atmospheric trace gases, which are more than two dozen gases with relevance to cli-

mate and ozone. Morereover, these findings hold for all kind of infrared remote sound-

ing systems, i.e., retrievals from ground-based, balloon-borne, airborne, or satellite10

spectroradiometers.
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Table 1. Optimum settings of the regularization strength α for retrieval of the interfering species
O3, H2O, N2O, and CO2 found from linear minimization of interference and smoothing errors.

αO3 αH2O αN2O αCO2

10
2

10
0

10
5

10
13
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Table 2. Results of the combined minimization of interference errors and smoothing errors;
“opt. α” refers to the numbers given in Table 1.

α

α α α α

“opt. α” refers to the numbers given in Table 1.  

     mean 

errors 

α-settings 

COCO−σ
 

3OCO−σ  O2HCO−σ
 

O2NCO−σ
 

2COCO−σ
 

tot
σ  improvement versus 

scaling 

Scenario i) 

scaling for all 

interfering 

species  

5.21 % 3.12 % 0.72 % 0.09 % 0.01 % 6.12 %  

Scenario ii) 

opt. α used for 

all interf. 

species  

5.26 % 0.57 % 0.03 % 0.04 % 0.01 % 5.29 % 13.55 % 

Scenario iii) 

opt. α used for 

O3 and H2O, 

scaling for  

N2O and CO2 

5.26 % 0.57 % 0.03 % 0.08 % 0.01 % 5.29 % 13.55 % 
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Fig. 1. Forward calculation of the three micro-windows (a)–(c) of the solar infrared absorption
spectrum used for CO profile retrievals. The contributions of the different absorbing species are
separated. Note, that the grey-shaded spectral area in (c) is not used for the standard retrieval.
It is only used for the sensitivity study with the widened micro-window in Sect. 5.1.
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Fig. 2.  Climatological ensemble of CO aircraft profiles used to construct the Zugspitze CO a 
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Fig. 2. Climatological ensemble of CO aircraft profiles used to construct the Zugspitze CO a
priori profile (a) and the CO a priori covariance (b). Note, that the state vector quantity for the
CO profile retrieval is scaling factors of the a priori VMR profile given in a 1-km layer grid.
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Fig. 3. CO profiles retrieved via optimal estimation from a test ensemble of 156 Zugspitze solar
FTIR spectra plotted together with the climatological aircraft profile ensemble used to construct
the a priori information (see also Fig. 2).
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Fig. 4. Averaging kernels (rows of the averaging kernel matrix) for the Zugspitze standard
retrieval of CO profiles via optimal estimation. The nominal altitudes of the kernels are given as
well as the areas of the kernels as a function of altitude (black curve in the right part). Note, that
the averaging kernels are calculated for the state vector quantity for the CO retrieval, which is
scaling factors of the a priori VMR profile given in a 1-km layer grid. The kernels plotted are the
average of the kernels calculated around all states retrieved from the Zugspitze test ensemble
of 156 spectra.
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Fig. 5. Profile of the stdv of the true CO variability (dashed line: square roots of the diagonal
elements of the climatological CO covariance) and ensemble of smoothing error profiles (solid
lines: square roots of the diagonal elements of the smoothing error covariance) calculated
around all states retrieved from the Zugspitze test ensemble of 156 spectra. The ensemble
type nature of the smoothing errors is a result of the non-linearity of the retrieval (i.e., the
averaging kernels) with respect to the different possible states.
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Fig. 6. Interference kernels (rows of the interference kernel matrices) for the interfering species
O3 (a), H2O (b), N2O (c), and CO2 (d) impacting the standard retrieval of CO profiles. The
nominal altitude of the kernels is given. Note, that the kernels are calculated for the state
vector quantity for the retrieval, which is scaling factors of the a priori VMR profiles given in
a 1-km layer grid. The interference kernels plotted are the average of the kernels calculated
around all states retrieved from the Zugspitze test ensemble of 156 spectra.
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Fig. 7. Climatological ensemble of ozone sonde profiles used to construct the Zugspitze O3 a
priori profile (a) and the O3 climatological covariance (b). Note, that the state vector quantity
for the retrieval is scaling factors of the a priori VMR profile given in a 1-km layer grid.
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Fig. 8. Climatological ensemble of radio sonde profiles used to construct the Zugspitze H2O a
priori profile (a) and the H2O climatological covariance (b). Note, that the state vector quantity
for the retrieval is scaling factors of the a priori VMR profile given in a 1-km layer grid.
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Fig. 9. Climatological ensemble of aircraft profiles used to construct the Zugspitze N2O a priori
profile (a) and the N2O climatological covariance (b). Note, that the state vector quantity for the
retrieval is scaling factors of the a priori VMR profile given in a 1-km layer grid.
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Fig. 10. Climatological ensemble of aircraft profiles used to construct the Zugspitze CO2 a
priori profile (a) and the CO2 climatological covariance (b). Note, that the state vector quantity
for the retrieval is scaling factors of the a priori VMR profile given in a 1-km layer grid.
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Fig. 11. (a) Analogous plot to Fig. 5. In addition, the profiles of the interference errors CO-
O3, CO-H2O, CO-N2O and CO-CO2 are plotted (colored curves: square roots of the diagonal
elements of the interference error covariances) which have been calculated around all states
retrieved from the Zugspitze test ensemble of 156 spectra. The ensemble type nature of the
interference errors is a result of the non-linearity of the retrieval (i.e., the interference kernels)
with respect to the different possible states. (b) Same as (a) but for widened micro-window
as indicated in Fig. 1c. (c) Same as (a) but for optimized (profile) retrievals for the interfering
species using the regularization parameters given in Table 1.
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Fig. 12. This image displays the trade-off between minimizing interference errors and the
smoothing error. Plotted are altitude averaged CO smoothing errors (red curves) and CO-O3

interference errors (black curves) calculated around all states retrieved from the 156 spectra
of the Zugspitze test ensemble as a function of the regularization strength αO3. The ensemble
type nature of the plots is due to non-linearity effects. The combined CO smoothing and CO-
O3 interference errors are plotted (blue curves), and their average (blue diamonds) shows a

minimum for αO3=10
2
.
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