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Abstract

Aerosol size distribution measurements from 0.03µm to 25µm diameter were taken at

ambient humidity aboard the German research vessel, FS-Polarstern, during a transect

from Bremerhaven in northern Germany, to Cape Town in South Africa across latitudes

53
◦

32
′

N to 33
◦

55
′

S, denoted cruise number ANT XXI/1. The data were segregated5

according to air mass history, wind speed and latitude. Under clean marine conditions,

the averaged size distributions were generally in good agreement with those reported

previously for diameters less than 0.5µm and can be approximated by two log-normal

modes, with significant variation in the mean modal diameters. Two short periods of

tri-modal behaviour were observed. Above 0.5µm, there is indication of a limit to the10

mechanical generation of marine aerosol over the range of wind speeds observed. A

new technique to determine the errors associated with aerosol size distribution mea-

surements using Poisson statistics has been applied to the dataset, providing a tool to

determine the necessary sample or averaging times for correct interpretation of such

data. Finally, the data were also used to investigate the loss rate of condensing gases15

with potentially important consequences for heterogeneous marine photochemical cy-

cles.

1 Introduction

Marine atmospheric aerosol play a key role in a number of climate processes. Aerosol

particles directly affect the radiative balance of the atmosphere by absorbing and scat-20

tering in-coming solar radiation (Haywood and Boucher, 2000) and indirectly affect it

by impacting on the microphysical properties of marine clouds (Ramanathan et al.,

2001). Understanding these processes is important in determining climate change

(Houghton et al., IPCC 2001). Although the production rate per unit area of marine

aerosols may be small compared to industrial regions, the oceans cover 70% of the25

Earth’s surface making them a significant global source of atmospheric particulates.
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In addition to their direct and indirect effects on radiative forcing, marine aerosols are

also known to significantly affect the chemistry of the atmosphere through heteroge-

neous and multiphase processes (von Glasow et al., 2002; Keene 1998). For example,

the activation of bromine from sea-salt aerosol particles has been postulated as a het-

erogeneous cycling mechanism with significant atmospheric implications (Sander et5

al., 2003). Modelling results predict significant impacts of Reactive Halogen Species

(RHS) on marine photochemistry (Sander et al., 1996; Vogt et al., 1999; McFiggans et

al., 2000; von Glasow et al., 2004) through ozone depletion, perturbation to the NOx

and HOx ratio and coupling to the sulphur cycle. The direct participation of marine

aerosol in radiative forcing and the control of multiphase chemical processes by avail-10

able deliquesced particles thus provides the motivation for measurement of ambient

marine aerosol.

Of fundamental importance to the quantification of these processes is the aerosol

size distribution, which spans several orders of magnitude in both number and size

(Fitzgerald, 1991; O’Dowd et al., 1997). Mechanical generation of particles by bub-15

ble bursting is the largest primary source of sea-salt aerosol number concentrations

(Blanchard and Woodcock, 1957; Blanchard, 1963; Spiel, 1998). Air bubbles entrained

into the ocean by wind and subsequently bursting at the sea surface generate film and

jet aerosol, with peak modal diameters in the sub and super micron size ranges re-

spectively. At winds speeds greater than approximately 8 ms
−1

, droplets can be ripped20

directly from wave crests, generating large particles known as spume droplets (Mon-

ahan et al., 1983; Smith et al., 1989). The number concentration of particles in these

modes is a function of the wind speed, and the concentration is often expressed in the

following form:

logC ≈ aU10 + b (1)25

where C is the concentration, U10 is the wind speed at 10 m and a and b are constants

for a given size or mode (See O’Dowd et al., 1997, and references therein).

The composition of the marine aerosol is not pure sea-salt. Particles smaller

than 0.1µm in diameter in the Aiken mode (Dp=20–100 nm) and nucleation mode
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(Dp<10 nm) were thought to be predominately sulphate, however more recent stud-

ies have shown that particles below 100 nm also contain sea-salt (Nilsson et al., 2001;

Mårtensson et al., 2003; Geever et al., 2005) as well as significant levels of organic

material (Hoffman and Duce, 1976; O’Dowd et al., 2004; Coe et al., 2006). In a study

by Cavalli et al. (2004), it was proposed that the increase in organic content of clean5

marine Aitken mode aerosol was linked to an increase in biological productivity. The

influence of organic component mixtures on aerosol cloud activation properties is still

uncertain (McFiggans et al., 2006)

This paper presents aerosol number size distribution measurements from a N-S

hemisphere Atlantic ocean cruise (ANT XXI/1) which formed part of a UK NERC project10

“Global Marine Sources of Reactive Halogen Species”. In this paper, aerosol measure-

ment data from the cruise is compared to existing results from the marine environment

and characterised as a function of wind speed. The aerosol number size distributions

are then used to calculate the upper and lower limit to the mass transfer rates for HOI,

an important iodine reservoir compound in the marine boundary layer. The uptake of15

HOI is thought to play a controlling role in iodine-mediated halogen activation from sea-

salt. These mass transfer rates represent an upper limit to the HOI loss rate (assuming

no solubility limit is reached and irreversible uptake occurs) and their variability is rep-

resentative of that of the condensation sink for any condensing gaseous compound.

2 Methodology20

Measurements were taken on board the German research vessel, the FS Polarstern.

The Polarstern sailed from Bremerhaven in Northern Germany (53
◦

32
′

N8
◦

34
′

E) to

Cape Town, South Africa (33
◦

55
′

S18
◦

22
′

E) in October and November 2003

The cruise left port on the 22 October 2003 and docked in Cape Town on the 14

November. The ship stopped once offshore from Las Palmas, Grand Canaria, on the25

30 October for several hours to transfer scientists and equipment aboard. Figure 1

shows a track plot of the course from the 24th onwards, the point from which valid
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data was collected thereafter. The data set from the 24th onwards is nearly continuous

comprising over 460 h of measurements. As well as the aerosol instrumentation (see

below), there was supporting meteorological data, GPS and sea surface characteristics

from the ship’s data systems, GC-MS air sample analyses from the University of York,

measurement of halogen radical concentrations, including BrO and IO, by multi-axis5

DOAS (MAXDOAS) from the University of Heidelberg, water soluble gas concentra-

tions using mist chambers from the University of Virginia and soluble particulate phase

species and volatile inorganic Br and SO2 using a combination of filters and impactors

from the University of New Hampshire. These data are the subject of further publica-

tions.10

2.1 Instrumentation

Size distribution measurements were made using a Differential Mobility Particle Sizer

(DMPS) and a GRIMM Optical Particle Counter (OPC), model 1.108. The GRIMM

OPC optically sized particles from 0.3 to 20µm in diameter and produced a particle

size histogram every 6 s, using the intensity of scattered light at a particular angle to15

size the particles (Mie, 1908). The DMPS sizes charged particles by, using an electric

field, selecting them for detection as a function of their electrical mobility; a technique

based on the work of Knutson (1971) and Knutson and Whitby (1975). The size range

covered by the DMPS was 3 to ∼830 nm diameter, although data presented here will

concentrate on particles larger than ∼30 nm.20

The DMPS consists of two “Vienna” style Differential Mobility Analysers (DMAs) as

described by Winklmayr et al. (1991). An ultrafine DMA (effective length 11 cm) for

particles in the size range 3.4–34 nm and a standard DMA (effective length 28 cm) for

particle sizes from 30–830 nm. The aerosol particles are then counted using condensa-

tion particle counters (CPC). The ultrafine DMA was attached to a TSI 3025A ultrafine25

CPC (particle detection limit 50% at 3 nm) and the standard DMA, to a TSI 3010 CPC

(particle detection limit 50% at 10 nm). The DMPS was a modified version of the sys-

tem described by Williams (1999). The DMAs were operated in parallel and utilised
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a custom built sealed, re-circulating sheath air system, which was humidity controlled

and filtered. The humidity control was achieved using Perma Pure Nafion
©

driers.

These usually operate on the principle of passing air down a series of semi-permeable

tubes which have a counter flow of dry air, removing water vapour. However, during

this experiment, the humidity of the sheath air was controlled by using moist air in the5

counter flow allowing the sheath air to be dried (RH<10%) or set to ambient. The tem-

perature and relative humidity of the sheath air flow was monitored as it entered and

exited the DMA.

The sheath and aerosol inlet flows were recorded by measuring the differential pres-

sure across flow tubes designed at the University of Manchester. The aerosol inlet10

flow tubes were designed to have laminar flow in order to reduce particle losses. The

sheath flow was monitored and actively controlled using a software (LabView®) driven

proportional, integral, differential (PID) control module which updated at approximately

10 Hz. The DMPS produced a spectrum once every 10 min. An average sheath flow,

aerosol flow and sheath temperature were taken during each scan and used in the15

subsequent data inversion routines.

The DMAs were calibrated before the cruise using NIST traceable Polystyrene Latex

Spheres (PSL). The PSL diameter was plotted against the measured diameter and a

linear regression was fitted to the data to produce a correction factor for each DMA.

A 2 m long, 1 1/4” OD stainless steel tube with a PM10 head (i.e. sampling all parti-20

cles 10µm in diameter and smaller) was mounted on A deck of the ship, approximately

20 m above sea level. This was used as the main inlet for the DMPS. The inlet was

fixed on the starboard side of the vessel, approximately 1/3 of the ship’s length from

the bow. The inlet was pumped at ∼17 l/min
−1

to maintain the size transmission char-

acteristics of the PM10 head and the DMPS sub-sampled from the main draw with a25

1/4” OD stainless steel pipe. The sub-sample was brought inside via a port hole to

an air conditioned corridor, where it was introduced to the DMPS approximately 2.5 m

from the main draw. Calculations of the diffusional losses down the sub-sample, using

the methodology as described in Baron and Willeke (2001, 579–581), showed there
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was 50% transmission of 4 nm particles, increasing to 100% transmission for 9–10 nm

particles.

The GRIMM OPC was mounted directly to the top of the 2 m DMPS inlet, below

the PM10 head. The sample inlet of the GRIMM was extremely short, ∼8 cm, with

a cowl to protect it from wind-ramming and rain ingress. Tests carried prior to the5

underway measurements found that this arrangement did not produce any significant

losses, when compared to measurements with no inlet system attached. The GRIMM

was mounted externally and so recording data very close to the ambient RH.

2.2 Error analysis

A new method was used to calculate the error associated with each concentration data10

point in the DMPS spectrum using an approach based on Poisson statistics. Poisson

statistics are applied to systems with a large number of test subjects, but with low prob-

abilities of observing the desired outcome. DMA’s sample all aerosol, but only select

charged particles in a very narrow band of mobility, where the probability of charging

an individual particle is low. For a given number of particles counted, n, in one event15

(per mobility channel per sample time), the standard deviation associated with n is n
1/2

(Taylor, 1982). This error is then propagated through the DMPS inversion algorithms

to yield an error in dN/dlogDp, the concentration of particles at a given diameter nor-

malised to the logarithm of the bin spacing. This approach involves correcting for the

shape of the transfer function of the DMA, the flow rate of the particle counter and the20

size dependent effects of multiple charging. The effects of multiple charging can be

accounted for using the approximation of Wiedensohler et al. (1988). For example,

taking a typical polluted (clean) event and denoting it as polluted (clean), then a raw

particle count of 730 (3) at a size of 30 nm yields a value for dN/dlogDp of 3675 (12.8)

with an error of 143 (8.8), (values in cm
−3

). These calculations are based on use of a25

standard DMA with a TSI 3010 CPC and an integration time of 6 s. This then provides

the uncertainty in the measurement based on the counting statistics associated with
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each data point in time. When averaging the data over different sampling times or me-

teorological conditions, these errors were combined to give an uncertainty associated

with the average measurements, as well as the statistical variance within the averaged

data.

2.3 Meteorology5

The relative humidity (RH), air temperature (T , and sea temperature) and wind speed

(U) from cruise ANT XXI/1 can be seen in Fig. 2. The RH rarely peaks above 90%, with

the only exceptions being on the 27 October and 3 November. Throughout the cruise,

the RH was mainly below 80%.

The air temperature (and sea temperature) increased steadily from the Northern10

Hemisphere as the ship steered south from 11
◦

C to 28
◦

C at approximately 9.6
◦

N,

thereafter decreasing to just under 17
◦

C. The wind speed was variable throughout and

will be discussed further in the next section.

3 Results

Figure 3 shows a time series of the total particle number concentrations recorded by15

the GRIMM and the DMPS. The total number recorded by both instruments is highly

variable throughout the campaign and is generally governed by two factors: air mass

history and wind speed. For dates prior to the 3 November, the air masses originated

from the North Atlantic and European regions, representing clean marine air masses

or anthropogenically influenced air masses respectively. After the 3 November, the20

air was entirely marine in origin, flowing from the Eastern Atlantic. The back trajecto-

ries were generated from the online NOAA HYSPLIT transport and dispersion model,

(http://www.arl.noaa.gov/ready/hysplit4.html), and were initialised at 3 heights: 100 m,

500 m and 1000 m. In all cases, the lowest level had spent at least the previous 24 h

within the boundary layer.25
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The highest hourly averaged concentrations were recorded on the 27 October at

02:00 am and were 172 757.0 cm
−3

and 69.9 cm
−3

for the DMPS and GRIMM respec-

tively. The lowest hourly averaged values were 47.7 cm
−3

and 2.8 cm
−3

for the DMPS

and GRIMM on the 8 November at 12:00 p.m.

The differing conditions identified by the back trajectories had very different influ-5

ences on the observed size distributions, examples of which are shown in Fig. 4. For

a clean marine air mass example, the average number size distribution exhibited 4

modes; a mode in the size range less than 0.1µm, two modes in the size range 0.1–

1µm and a mode in the super micron range, all of which are statistically significant

from one another. The two smallest modes agree well with the concept of the marine10

aerosol as widely reported by other authors (see Fitzgerald, 1991, and O’Dowd et al.,

1997 for reviews). The mean modal diameter of the super-micron mode reported by

others is variable, with diameters ranging from ∼1µm (Exton et al., 1985) to ∼7µm

(O’Dowd et al., 1997). The mode observed in this data set that appears around 0.6µm

and develops with increasing wind speed does not fit the generally-accepted picture15

of the clean marine environment in the works cited above. Furthermore, from 02:00

on the 9th to 09:00 on the 10th, there are two periods when the number size distribu-

tion below 0.5µm is tri-modal, with mean modal diameters of 0.073µm, 0.145µm and

0.334µm, which again does not fit the currently accepted picture of the marine aerosol

number size distributions cited in other works, and is not seen when averaging the data20

as a function of wind speed. This indicates that the distribution shape is transient with

statistically significant trimodality below 500 nm on timescales shorter than 1 h. One

possible explanation for this behaviour is that there could be an external mixture of

hygroscopic and less hygroscopic aerosol. The humidity in the DMPS was run at am-

bient RH and it could be that the tri-modality represents an ensemble of aerosol with25

2 different compositions and growth factors. The instrumentation was not available to

test this hypothesis.

Data obtained from the ultra-fine DMA was intermittent, so there is limited informa-

tion in the sub 30 nm size range. However, during periods when data were available,
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no evidence for a nucleation mode was seen in the clean marine air masses. For the

polluted case, the sub 0.1µm mode is greatly enhanced due to anthropogenic sources.

During the clean marine cases, the number in these modes is dependant on the wind

speed. Figure 4 shows the size distributions from the DMPS and GRIMM averaged

over different wind speed regimes from the 3 November onwards. This period was5

chosen as it represents the clearest cases of “clean” marine air. It can be seen that

the number concentration in all the modes increases with increasing wind speed. The

most noticeable development however is in the mode centred around 0.6µm. Figure 5

shows a time series of the mean modal diameters from the 3 November onwards for

cases when the sub 0.5µm number size distribution is bi-modal. The mean modal di-10

ameters are quite variable for the two modes, with an average, maximum and minimum

of 0.064, 0.095 and 0.034µm respectively for the sub 0.1µm mode and 0.220, 0.350

and 0.117µm respectively for the mode >0.1µm.

The errors within associated size ranges of the DMPS data have been studied and

as well as generating a statistical variance when averaging the data up to 1 h and over15

different wind speeds, an error associated with the measurement has been calculated

using the technique described above. An example of the relative importance and mag-

nitude of each is shown in Fig. 6, which is the same data as shown in Fig. 4. For

diameters less than ∼0.2µm, the statistical variance (i.e. the degree of scatter within

the measured data set) is larger than the error due to the uncertainty in the measure-20

ment. At sizes larger than 0.15µm, the measurement error begins to increase relative

to the standard deviation. This is an important result as it shows that when the number

concentrations are low and the sampling statistics are poor, variations in the distribu-

tion due to changing conditions may not be discernable from the uncertainty in the

measurements. This technique can be used to determine a suitable sampling strategy25

to optimise accuracy with suitable sample or averaging times for different ambient con-

ditions. For the data presented here as a function of wind speed, the measurement

error was much smaller than the standard deviation.

A detailed analysis of the DMPS data revealed a possible concern with the sampling
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system. When summing the total number concentration above ∼350 nm to compare

with the total number concentration from the GRIMM as a function of wind speed,

the total number concentration from the DMPS did not follow the same trend as the

GRIMM. In fact, the total number concentration began to decrease with increasing

wind speed. Above ∼8 ms
−1

the apparent response of the instrument declined. In-5

tegrating over more size channels (i.e. from smaller sizes) showed a similar problem

but to a lesser extent. This behaviour can only be attributed to limitations in the trans-

mission characteristics of the PM10 sample head attached to the DMPS inlet. For this

reason, the DMPS data was not used in any of the parameterisation of the total number

concentration as a function of wind speed given below.10

Figure 7 shows the total number concentration from the GRIMM for particles in the

range 0.3µm < Dp< 1.0µm and for Dp>1.0µm as a function of wind speed from the

3 November onwards. The error bars are 1 standard deviation, which are larger than

the averaged measurement errors. Also plotted are the approximate concentrations

using Eq. (1), and the values taken from O’Dowd (1997), which represent the number15

concentrations in the modelled film and jet modes plus spume modes. Fitted to the

Polarstern data is a sigmoid function of the form:

y = base +
max

1 + exp
(

x0−x
rate

)
(2)

where base is the value at small x, max is the value at large x, x0 is the value of x at

which y is (base+max)/2 and rate is the rise rate. The values for each fit are given in20

Table 1 below. The largest relative increase is in the larger size range, with concentra-

tions increasing from 0.38 to 3.29 cm
−3

, a factor of 8.7, compared to the smaller mode

with an increase from 8.9 to ∼30 cm
−3

, a factor of just over 3. What is also significant is

the apparent plateau at higher wind speeds. This differs significantly from the approx-

imate concentrations given by O’Dowd et al. (1997), although it must be remembered25

that the approximation given by Eq. (1) is for pure sea-salt particles within a modelled

mode, whereas the data presented here does not consider composition and is a sum-
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mation over similar size ranges. However it is likely that in the size ranges covered, the

vast majority of the particles are likely to be sea-salt. For particles with Dp <1µm, the

approximation falls within the standard deviation of the measurements for all points ex-

cept the first and last. For the jet plus spume modes, the approximation lies within the

errors for wind speeds up to 10 ms
−1

, but then is lower than the values measured dur-5

ing the 2003 cruise. For both size ranges, the approximation from O’Dowd et al. (1997)

does not show the levelling out of the concentration.

3.1 Loss rates of trace gaseous compounds

Using the combined DMPS and GRIMM size distribution data, the condensational loss

rate, kt of trace gases can be calculated. The calculations are based on the equation10

given by Schwartz (1986):

kt =
4π

3

∞
∫

0

(

r2

3Dg

+
4r

3c̄gγ

)

−1

r3 dN

d log r
d log r (3)

where r is the particle radius, Dg is the gaseous diffusion coefficient, cgis the average

kinetic velocity of the gas molecules and γ is the uptake coefficient, which accounts for

diffusional limitation to mass transfer to particles in the transition regime. kt values cal-15

culated using this expression have been shown by Sander (1999) to differ by no more

than 15% from the flux matching expression of Fuchs and Sutugin (1971). The binary

diffusion coefficient evaluated according to Maitland (1981) is used rather than the self

diffusion coefficient. The calculations use the entire size range of the GRIMM and part

of the DMPS data from Dp ≈0.03µm to 0.3µm, with the caveat that the total num-20

ber concentration from this instrument at high wind speeds will be under-estimated.

The hourly averaged temperatures and pressures were also used in the calculations

thereby giving an accurate estimation of kt under the conditions that prevailed during

the cruise period. Hypoiodous acid (HOI) is a reservoir compound of reactive inor-

ganic iodine formed from the reaction of iodine monoxide (IO) and hydroperoxy radi-25

12876

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/12865/2006/acpd-6-12865-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/12865/2006/acpd-6-12865-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 12865–12893, 2006

Aerosol size

distribution

measurements in the

Eastern Atlantic

P. I. Williams et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

cals (HO2). Uptake of HOI to halide-containing deliquesced aerosol particles (such as

sea-salt) will play a role in controlling the release of dihalogen compounds (IBr and ICl)

and hence will modulate the level of iodine-mediated halogen activation from sea-salt

aerosol. The mass transfer calculation is thus an example of the way that aerosol size

distribution measurement can be used to assess the relative effects of aerosol variabil-5

ity on multiphase processes. The calculated mass transfer rates represent an upper

limit to the HOI loss rate (assuming no solubility limit is reached and irreversible uptake

occurs) and their variability is representative of that of the condensation sink for any

condensing gaseous compound. The calculations use the molecular weight of HOI.

Figure 8 shows the time series for kt,HOI for the entire cruise. Two uptake coefficients10

are used, γ=0.03 and γ=1.00. Using the lower value, the loss rate is limited by uptake

probability, whereas a value of unity leads to significant diffusional limitation to the loss

to the larger particles (hence the loss rate is not increased in proportion to the increase

in accommodation coefficient). This is easily seen from inspection of Eq. (3). The

value 0.03 is representative of the lower limit to uptake coefficient of hypohalous acids15

measured in the laboratory, whereas 1 is the maximum probability with which gases

can be taken up by the aerosol surface and so provides an upper limit. The loss rate

under clean marine conditions is low, as expected and the e-folding lifetime of HOI

(τ=1/kt) is never less than ∼150 s for the period of the 3rd onwards. From 14:00 on

the 3 November to the morning of the 10 November, the lifetime of HOI is greater than20

10,000s for the entire time with only two exceptions. In the limit (γ=1), loss rates and

hence lifetimes are a factor of 20–30 higher and lower, respectively.

The average loss rate as a function of size (dk t/dlogDp) and wind speed is shown

in Fig. 9. The data shows that there are two persistent sinks for the condensation of

trace gases, one at ∼0.28µm and the other at ∼2.0µm, and that the loss rate within25

these mode increases with wind speed. The data also shows that a third mode de-

velops around 0.8µm and increases in amplitude by more than an order of magnitude

over the range of wind speeds sampled. These results differ from the work of other

studies. Coe et al. (2006) found similar size dependence loss rates up to diameters of
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0.5µm at a coastal site, but showed the second sink extended up to 10µm. O’Dowd et

al. (1997), modeling the potential scavenging flux of sulphuric acid (H2SO4), show the

dominance of the spume mode aerosol at approximately 10µm and a second mode at

approximately 1.4µm. This second mode was more than a factor of 2 lower in the flux

of H2SO4 rather than of the same order as in this study.5

4 Discussion and conclusions

Particle number size distribution measurements and total number concentrations were

made from the Northern hemisphere off the coast of France to the Southern Hemi-

sphere approaching Cape Town, South Africa. The air masses were characterised

as a function of air mass history into clean marine and anthropogenically influenced10

regimes and also as a function of latitude. The cases identified as clean marine were

then segregated as a function of wind speed. For the clean marine cases, the clas-

sic view of a marine aerosol size distribution agreed well with the results reported by

other authors at low wind speeds. However, some significant differences were also ob-

served. Firstly, the spume mode measurements were lower in both size and number.15

Secondly, another mode was identified that developed with increasing wind speed at

approximately 0.6µm. Finally, the data showed 2 short periods (12–15 h) of tri-modal

behavior for aerosols smaller than 0.5µm. This may be due to the humidity in the DMA

separating a hygroscopic and less hygroscopic mode. This separation in the hygro-

scopicity of the modes could be caused by additional organic material being present in20

the particles.

For the majority of the project under clean marine conditions, the size distribution

data for aerosols smaller than 0.5µm can be described using two log-normal distribu-

tions. However, the data collected here shows that the mean modal diameters can vary

significantly. Plotting the mean modal diameter as a function of wind speed and fitting a25

linear regression (not shown), identified an increase in size with increasing wind speed

for particles >0.1µm and a decrease in size with increasing wind speed for the mode
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<0.1µm. The R2
for these two cases were 0.59 and 0.32 respectively. Based on the

scatter around the regression, which was quite high, it is therefore concluded that the

variation in modal diameter is not sensitive to wind speed. Due to the limitations of the

DMPS sampling system, the number concentration in these modes cannot be reliably

quantified.5

The total number concentrations as a function of wind speed for sizes

0.3µm<Dp<1.0µm and for Dp>1.0µm using the GRIMM OPC were calculated. From

this a parameterisation as a function of wind speed for these different sizes was gen-

erated using a sigmoid fit to the data. This initially produces an increase in total num-

ber with increasing wind speed up to approximately 10 ms
−1

, thereafter approaching10

a plateau. The data suggests that in the size ranges covered and the wind speeds

sampled, there is a limit to the mechanical generation of film and jet modes in the

open ocean. This significantly differs from the work of other authors and needs further

investigation.

A detailed approach considering the errors associated with the DMPS measure-15

ments as well as the statistical variance was employed. This was based on Pois-

son statistics, whereby the standard deviation associated with each data point is n1/2
,

where n is the number of counts in each measurement step. The standard deviation

was then propagated through the DMPS data inversion routines to yield an error asso-

ciated with the measurements. This revealed that under conditions where the number20

of particles sampled was low and averaging times were short, the error associated with

the uncertainty in the measurements was comparable to the statistical variance. Using

an averaging period of 1 h was found to be acceptable.

Although not shown, the significance of this new technique is more apparent for the

ultrafine DMA and TSI UCPC 3025A data. The utrafine CPC has an internal aerosol25

sample flow rate of 0.03 l min
−1

, irrespective of the total flow into the instrument. The

3010 CPC was operated with an aerosol flow rate of 0.6 l min
−1

(plus a 0.4 l min
−1

bleed

flow of particle free air). The number concentration and hence the measurement error

scales directly with the aerosol flow rate. Therefore, when the two DMA’s measure the
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same mobility, the measurement error associated with the ultrafine DMA and TSI 3025

will be a factor of 20 larger than the measurement error associated with the standard

DMA and 3010 CPC.

The size distribution data was used to calculate the loss rate, kt of HOI with accom-

modation coefficients of 0.03 and 1. The calculated lifetime of halogen species such5

as HOI is highly variable, under clean conditions ranging from ∼150 to 3500 s with α=1

and from ∼3000 to 70 000 s with α=0.03. The sensitivity to uptake coefficient variability

within the studied range is greater than the variability in calculated mass transfer rate

due to variation in available aerosol in all but the absolute extremes of aerosol load-

ing throughout the project and at all times in marine air (as can be seen from Fig. 8).10

Comparing to Coe et al. (2006) the total loss rate under clean conditions is higher and

hence the lifetime shorter than in this study. However, considering the potential sam-

pling limitations of the GRIMM OPC, the contribution from the spume mode is likely to

be under-estimated and hence the total kt also under-estimated.
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Table 1. Fit coefficients for the number concentration as a function of wind speed. Numbers in
brackets represent 1 standard deviation.

Size Range Base Max x0 Rate

0.3µm<Dp <1.0µm 9.21 (0.26) 21.3 (0.52) 9.00 (0.09) 1.29 (0.09)
Dp >1µm 0.44 (0.07) 3.02 (0.18) 9.71 (0.21) 1.45 (0.19)
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Fig. 1. Ship track from cruise ANT XXI/1 October–November 2003 coloured to the total number
concentration (Dp >30 nm).
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Fig. 2. Relative humidity (RH), wind speed and air and sea temperature from cruise ANT XXI/1.
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