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Abstract. We propose a second generation phenomeno-
logical model for nonlinear interaction of gravity waves on
the surface of deep water. This model takes into account
the effects of non-locality of the original Hasselmann dif-
fusion equation still preserving important properties of the
first generation model: physically consistent scaling, adher-
ence to conservation laws and the existence of Kolmogorov-
Zakharov solutions. Numerical comparison of both models
with the original Hasselmann equation shows that the second
generation models improves the angular distribution in the
evolving wave energy spectrum.

1 General theory

Forecasting wind waves is an important problem for
oceanographers, coastal engineers, meteorologists and naval
architects. It is widely accepted that the evolution of an
ensemble of weakly nonlinear surface gravity waves is de-
scribed by kinetic equation for waves. A simplified numer-
ical solution of the kinetic equation (the discrete interac-
tion approximation) is, indeed, central to modern operational
wave-predicting models.

The kinetic equation for waves was first discovered by
Nordheim (1928) (see also Pierls, 1981) in the context of
solid state physics. Later on, this quantum-mechanical tool
was applied to a wide variety of classical problems, includ-
ing waves in plasma and hydrodynamics. Hasselmann (1962)
and Zakharov and Filonenko (1966), Zakharov (1966) inde-
pendently derived kinetic equation for surface waves from
the original hydrodynamic equation

Correspondence to:A. Pushkarev
(andrei@cox.net)

∂nk

∂t
= Snl[n] (1)

Snl[n] = 2πg2
∫

|Tk,k1,k2,k3|
2(nk1nk2nk3 + nknk2nk3

−nknk1nk2 − nknk1nk3)δ(ωk + ωk1 − ωk2 − ωk3)

δ(k + k1 − k2 − k3) dk1dk2dk3,

whereω=
√

gk.
Although, Hasselmann’s and Zakharov’s results differ in

the general form of interaction coefficient, they become iden-
tical, on the resonant surface (see Dyachenko and Lvov,
1995; Resio et al., 2001)

k + k1 = k2 + k3

ωk + ωk1 = ωk2 + ωk3 . (2)

It is important to recognize that that the meaning of func-
tion nk in Hasselmann’s and Zakharov’s presentation is dif-
ferent: “observable” wave action (Hasselmann) and “canon-
ical” wave action (Zakharov). The details can be found in
Zakharov (1999), here we just mention that the reason for
appearance of the observable wave action in Hasselmann’s
derivation consists in underestimation of “forced” harmon-
ics. The difference between the observable and the canoni-
cal wave action is small for physically important situations
on deep water. In this paper we assume that the canonical
and the observable wave action are identical. Equation (1)
is known in oceanography as Hasselmann equation, orSnl

model. It formally conserves four integrals of motion: the
wave actionN , the wave energyE, and two components of
the momentumP :

N =

∫
nkdk (3)
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E =

∫
ωknkdk (4)

P =

∫
knkdk (5)

The conservation of these quantities becomes obvious if
Eq. (1) is rewritten in a differential form (see Zakharov,
2003).

Introducing polar coordinates(ω, φ) and supposing that

|k|=
ω2

g

Eq. (1) can be presented in the form

∂n

∂t
=

1

ω3
L̂ Â[n] , (6)

whereL̂ is the differential operator

L̂ =
1

2

∂2

∂ω2
+

1

ω2

∂2

∂φ2
(7)

andÂ is the integral operator

Â[n] = L̂−1 ω3 Snl . (8)

This operator has the form (see Appendix):

Â[n] =

∫
A(ω, ω1, ω2, ω3, φ − φ1, φ − φ2, φ − φ3)

× n(ω1, φ1)n(ω2, φ2)n(ω3, φ3)dω1dω2dω3dφ1dφ2dφ3 .

HereA is a complicated function homogeneous with respect
to ω-variables:

A(εω, εω1, εω2, εω3, φ − φ1, φ − φ2, φ − φ3) =

= ε21A(ω, ω1, ω2, ω3, φ − φ1, φ − φ2, φ − φ3) . (9)

Solutions of the stationary kinetic equation

Snl[n] = 0 (10)

can be written in the form

L̂ Â[n] = 0. (11)

Formally, thermodynamic solutions

n =
T

ωk + µ
(12)

satisfy the equation

Â [n] = 0 (13)

but in reality, for functions like Eq. (12), the integrals inA
diverge at largeω.

Solutions that are physically relevant satisfy the following
equation:

Â[n] = P + Q ω +
M cosφ

ω
. (14)

HereP andM are fluxes of energy and momentum to high
wave numbers area andQ is the flux of wave action to small
wave number region. The general solution of Eqs. (13),
(14) has to have, atk→∞, thermodynamical asymptotes
to Eq. (12). However, due to the presence of dissipation at
high wave numbers, one has to eliminate the thermodynamic
asymptotes and putT →0 at k→∞. As a result, one can
get a Kolmogorov-Zakharov (hereafterKZ) solution of the
Eq. (14) in the form:

n(ω, φ) =
g10/3 P 1/3

ω8
F

(
ω Q

P
,

M

ω P
, cosφ

)
, (15)

while the energy spectrumε(ω, φ) can be expressed through
n(ω, φ) as follows:

ε(ω, φ) =
2ω4

g2
n(ω, φ) . (16)

Thus, the generalKZ spectrum of energy is

ε(ω, φ) =
g4/3 P 1/3

ω4
F

(
ω Q

P
,

M

ω P
, cosφ

)
. (17)

HereF is a dimensionless function of three variables to be
determined numerically.

For the isotropic case we haveM=0 and the Kolmogorov
solution is described by the function of one variable:

ε(ω, φ) =
g4/3 P 1/3

ω4
H

(
ω Q

P

)
. (18)

Solution (18) presumes that there is a flux of energyP , di-
rected to high wave numbers, together with a flux of wave ac-
tion Q is generated by external sources in this area. IfQ=0,
Eq. (18) gives the simpleKZ solution: Zakharov-Filonenko
spectrum (hereafterZF spectrum, (see Zakharov and Filo-
nenko, 1966):

ε(ω, φ) = c0
g4/3 P 1/3

ω4
. (19)

FunctionH(ξ) has the asymptotic behavior:H(ξ)→q0 ξ1/3

as ξ→∞. If P=0, Eq. (18) gives another simpleKZ so-
lution: Zakharov-Zaslavskii spectrum (Zakharov, 1966; Za-
kharov and Zaslavskii, 1982):

ε(ω, φ) = q0
g4/3 Q1/3

ω11/3
. (20)

If Q=0, Eq. 18 describes a “pure” direct cascade governed
by fluxes of energyP and momentumM:

ε(ω, φ) =
g4/3

ω4
P 1/3 G

(
M

ω P
, cosφ

)
. (21)

In the asymptotic area we haveM/ω P→0 and the spectrum
takes the form

ε(ω, φ) =
g4/3

ω4
P 1/3

(
c0 +

c1 cosφ

ω
+ · · ·

)
, (22)

wherec0, c1 are first and second Kolmogorov constants. All
spectra become isotropic asω→∞.
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2 Hasselmann-Iroshnikov model

Because the “exact” operator̂A[n] is very complicated, nu-
merical solution of the non-stationary Eq. (6), as well as of
the stationary form of Eq. (10) is quite complicated. Sev-
eral simplified models of this operator have been attempted
to date. The most popular one is so calledDIA (Discrete
Interaction Approximation), developed by Hasselmann et al.
(1985). It is not our purpose to discuss theDIA model in this
paper, since it has been the topic of considerable discussion
in previous papers. Another approximation was simultane-
ously and independently offered by Hasselmann and Has-
selmann (1981) in somewhat different form by Iroshnikov
(1985). They assumed that the coupling coefficientTkk1k2k3

is essential only if all the vectorsk, k1, k2, k3 are close to
each other (locality hypothesis).

Of course, there is no physical justification for such an as-
sumption, but the mathematical model, adequate to this hy-
pothesis, is interesting by itself. Hasselmann and Iroshnikov
found that the assumption of locality presumes thatSnl is a
fourth-order nonlinear differential operator. Explicit forms
of this operator are quite complex.

However, the explicit form of Hasselmann-Iroshnikov
equation can be found by a unique way from very simple
consideration Dyachenko et al. (1992). This equation has to
conserve wave action, energy, and momentum; thus it has to
be presented in the form of Eq. (6). SinceSnl is modeled by
fourth-order differential operator,̂A has to be a second-order
operator. This operator has to be found uniquely from the
requirement that Eq. (13) must have solutions of the form

n =
P

ω + µ

for any arbitraryP andµ. This requirement, together with
the scaling property Eq. (1) implies

Â = a ω26n4 L
1

n
. (23)

Finally, Eq. (1) takes the form

∂n

∂t
=

a

ω3
L ω26n4 L

1

n
, (24)

wherea is some constant. Stationary spectra in the differen-
tial Hasselmann-Iroshnikov model satisfy the nonlinear el-
liptic equation

n4

(
∂2

2∂ω2
+

1

ω2

∂2

∂φ2

)
1

n
=

P + ω Q + M cosφ/ω

c ω26
(25)

which must be solved numerically.
We should emphasize that Eq. (24) is a simplification of

Eq. (1). It cannot be rigorously obtained from Hasselmann’s
equation. Despite this fact, Eq. (24) reproduces all the basic
properties of Eq. (1), i.e. it preserves all constants of motion
and allows for the existence of bothKZ and thermodynamic

spectra. All these solutions satisfy Eq. (25). The thermody-
namic parametersT andµ are defined by the asymptotic be-
havior ofn(ω, φ) at ω→∞. One can find an approximately
“pure” KZ solution of Eq. (25) assuming that

n(ω, φ) =
1

ω8
F(ω, φ), (26)

whereF(ω, φ) is a “slow function” of frequency. Within an
accuracy of a few percent, we have

L
1

n
'

28F

ω2

and

F '

(
28

a

)1/3 (
P + ω Q +

M cosφ

ω

)1/3

. (27)

3 Local diffusion models

The fourth-order differential Eq. (24) is still a complicated
approximation and is not convenient for analytical and nu-
merical studies. To replace it, we propose a second-order
nonlinear diffusion equation see Zakharov and Pushkarev
(1999). In this very simple diffusion model, the complicated
operatorA becomes just a local algebraic expression

Â[n] = α1 ω24n3 , (28)

whereα1 is some constant to be chosen empirically.
Now Eq. (1) can be written as the following nonlinear par-

tial differential equation:

∂n

∂t
=

α1

ω3
L̂ n3 ω24 . (29)

This equation conserves basic constants of motion: wave ac-
tion, energy, and momentum; it also maintains a full set of
KZ solutions.

n(ω, φ) =
1

α
1/3
1 ω8

(
P + ω Q +

M cosφ

ω

)1/3

. (30)

These solutions are close toKZ solutions for full differential
Hasselmann-Iroshnikov model. We will call Eq. (29) Diffu-
sion Model One (hereafterDE1). This equation has no ther-
modynamic solutions. However, since wave spectra in nature
are closer to a KZ form than to thermodynamic asymptotic
forms, this is not a major problem.

TheDE1 model was solved numerically by Zakharov and
Pushkarev (1999) and by Polnikov and Farina (2002). It was
proposed to consider the constantα1 in front of the right-
hand side of Eq. (29) as a special “tuning” constant to match
the qualitative characteristics of theSnl model. The value of
this constant was chosen by comparison of numerical simula-
tion of Eq. (29) with numerical simulation of Eq. (1). Model
DE1 reproduces several major properties ofSnl, such as: the
spectral peak down-shift andZF power lawnω∼ω−8. Its
numerical simulation is at least three orders of magnitude
less time-consuming than a direct numerical simulation of
Snl model.
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4 Non-local diffusion models

The simple local diffusion modelDE1 has at least one major
weak point. It predicts an angular spreading that is broader
than that supported by experimental data. To improve this
situation, we propose here two new diffusion models,DE2
andDE3. Both models are local in frequency but nonlocal
with respect to angleφ:

model DE2 : A = α2 ω24n < n2 >

model DE3 : A = α3 ω24n < n >2

where

< n2 >=
1

2π

∫ 2π

0
n2(ω, φ) dφ (31)

and

< n >=
1

2π

∫ 2π

0
n(ω, φ) dφ . (32)

Equation (14), which definesKZ spectra, can be easily solved
by both nonlocal models. ForDE2 this yields

n(ω, φ) =
P 1/3

α
1/3
2 ω8

1 +
ω Q
P

+
M cosφ

P ω[(
1 +

ω Q
P

)2
+

1
2

M2

P 2 ω2

]4/3
(33)

and forDE3

n(ω, φ) =
P 1/3

α
1/3
3 ω8

1 +
ω Q
P

+
M cosφ

P ω(
1 +

ω Q
P

)2/3
. (34)

Equations (33) and (34) display sharper dependence on the
angle than Eq. (30). Let us mention that Eqs. (30), (33), (34)
are valid only for frequenciesω>ωcrit . The ωcrit can be
found from equation

P + ωcrit Q =
M

ωcrit

,

which yields

ωcrit =

√
P 2 + 4M Q − P

2Q
(35)

If ω<ωcrit , spectra are negative in a certain sector ofω, φ

plane. To avoid this contradiction, one has to match Kol-
mogorov spectra atω∼ωcrit either with a non-stationary so-
lution or with a stationary one with the presence of damping.

To examine the characteristics of these three diffusion
models, we performed the following steps:

1. Numerically computed the solution of the Cauchy prob-
lem for theSnl model.

2. “Calibrated” the diffusion models (DE1, DE2, and
DE3) for the Cauchy problem to determine the con-
stantsα1, α2, and α3, which provide the best corre-
spondence between time dependence of the total energy
compared to the originalSnl .

3. Selected the best of the three models (DE1, DE2 and
DE3) based on the comparison of the details of the en-
ergy spectrum with the energy spectrum inSnl model.

4. Performed numerical tests with the “best” diffusion
model to compare its characteristics with the corre-
sponding ones obtained from numerical simulation of
Snl model.

5 Calibration of the DE

As noted above, to calibrate different diffusion models, we
solved numerically the same Cauchy problem forDE1,
DE2, DE3 andSnl in the wind-driven case. We compare
our calculations with the results of numerical solution of the
exact kinetic equation using a revised version of the Resio-
Tracy code (Pushkarev et al., 2003).

The linear external source rateγ=γ in
+ γ diss was chosen

in the following manner. The wind input termγ in (Donelan
et al., 1985) was taken as

γ in
= 2 · 10−4

(
ω

ω0
− 1

)2

ω cosθ,

−π/2 < θ < π/2; ω0 < ω < ω1 (36)

and the high-frequency dissipation term as

γ diss
= −D(ω − ω1)

2,

ω1 < ω < ωmax ,

γ diss
= 0, ω < ω1 . (37)

Here ω0=0.94 corresponds to wind velocityU'10.4 m/s
andω1=8.48. High-frequency damping is used to simulate
infinite-capacity phase volume at high wave numbers. Con-
stantD=−1.0 and frequencyω1 are defined experimentally
from the condition of the effectiveness of the energy flux ab-
sorption at high frequencies. We did not provide any damp-
ing at small wave-numbers.

We found that constants

α1 = 0.9 · 10−7

α2 = 1.8 · 10−7

α3 = 2.6 · 10−7 (38)

generated quite good correspondence in total energy behav-
ior (see Fig. 1) and mean spectral frequency (see Fig. 2) as
functions of time for all models.

Figures 3–26 demonstrates the three-dimensional structure
and line-levels of energy density forSnl , DE1, DE2 and
DE3 at three moments of time. All models demonstrate a
growth in energy near the spectral peak along with a spectral
peak down-shift and increased angular spreading away from
the spectral peak. AllDE models exhibit lower spectrum
maximum at the latest timet'3.7 h, than the modelSnl .

Figures 27–28 demonstrate one-dimensional cuts of en-
ergy density distribution along the angle atω=1.0 (approxi-
mately location of the spectral maximum) andω=1.9 (twice
the frequency of the spectral maximum) fort=3.83 h. One
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can notice a significant deviation of the amplitude of the
spectral maximum for modelSnl from corresponding values
in modelsDE. This deviation practically vanishes atω=1.0.
This observation illustrates the following facts:

1. All DE models miss the “peakness” property ofSnl

model (see Fig.27), while the correspondence improves
away from the spectrum peak (see Fig. 28).

2. The distribution of energy is broader for theDE models
than forSnl model (see Fig. 27).

Figure 28 also demonstrates that diffusion modelsDE2
and DE3 exhibit much closer correspondence in angular
width with Snl model than the modelDE1.

Based on better correspondence in the angular width, we
choose the modelsDE2 andDE3 as the best corresponding
to Snl model. Since modelsDE2 andDE3 exhibit practi-
cally identical behavior, further discussion is based on the
modelDE3.

Figures 29–31 show the directional spectrum as a function
of ω, and Figs. 32–34 show the logarithm of the directional
spectrum as a function of logω for three times. One can
see that correspondence betweenSnl andDE3 model is very
good everywhere, except in a narrow area near the spectral
peak. The spectral tail exhibitsω−4 behavior at all times of
the simulation for both modelsSnl andDE3.

6 Testing of the “best” diffusion model

This section describes detailed comparison of theDE3 and
Snl models. We performed this comparison for the spe-
cific “academic” choice of linear ratesγ in and γ out (see
Pushkarev et al., 2003). The reason is, it is not possible
to reach complete equilibrium state for the situation with
the wind input described in previous section – the spectral
maximum continues to down-shift, though the rate of down-
shifting dramatically diminishes.

To reach an actual equilibrium in this case, one has to in-
troduce an artificial low-frequency damping, which stops the
down-shift of the spectral maximum. We achieved that by
choosing the following linear ratesγ in andγ out :

γ in
= D1e

(
−

(
ω−ω0
0.19

)4
−

(
θ

π/4

)8
)

if 0.63 < ω < 1.26 (39)

and angular isotropic linear dissipation

γ diss
=

{
−D2(ω − 0.63)2 if ω < 0.63
−D3(ω − 5.65)2 if ω > 5.65 .

(40)

Here Di (i=1, 2, 3) are positive constants. Coefficient
D1=9.4·10−3 at Eq. (39) was defined from a condition of
smallness in the growth rate with respect to the correspond-
ing local frequency. Negative components were chosen to
represent the high and low frequency damping terms. They
were introduced to absorb the direct (energy) and inverse
(wave action) cascades. ConstantsD2=−1. andD3=−0.08

as well as frequenciesω=0.63 andω=5.65 were defined ex-
perimentally from the following two conditions: effective-
ness of the fluxes absorption and maximization of the inertial
(forcing and damping free) interval with respect toω. Fig-
ures 35, 36 show distribution of damping and instability de-
fined by Eqs. (39), (40).

As in the previous section, we performed calibration by
matching the time dependence of the total energy inDE3
andSnl models. The result of this match gave the value of
the constant

α3 = 2.2 · 10−7 (41)

Figures 37, 38 and 39 show the total energy, the average
frequency and the energy flux as functions of time. It is quite
obvious that these averages exhibit quite similar behavior in
Snl andDE3 models.

Figure 40 shows the angle averaged energy density and
cross-section of the energy density at zero angle forDE3
model. One can see that the angle-averaged spectrum behav-
ior is close toω−4. The energy density along a cut at zero
angle decays a little faster thanω−4, but still slower than
ω−5. All these observations are in agreement with Eq. (22).

Figure 41 and Fig. 42 show the behavior of local values of
the first and second Kolmogorov constantsC0 andC1 (see
Pushkarev et al., 2003), calculated from the energy spectrum
at the latest time of simulation for the modelDE3. One can
estimate the value of the first Kolmogorov constant as

0.4 < C0 < 0.5 (42)

and the value of the second Kolmogorov constant as

0.20 < C1 < 0.26. (43)

These values are in good agreement with the values of Kol-
mogorov constants measured forSnl model (see Pushkarev
et al., 2003)

0.33 < C0 < 0.37 (44)

0.18 < C1 < 0.27. (45)

7 Analytical properties of DE3 model

In our investigations we found that theDE2 andDE3 model
were the most suitable models of all those tested here, at least
in terms of reproducing relevant characteristics of spectral
growth.

The equation

∂n

∂t
=

α3

ω3
Lω24Dn, D =< n >2 (46)

can be simplified by separation of variables. As far as the
diffusion coefficientD depends only on frequencyω, one can
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present a solution of Eq. (43) in the form of Fourier series in
angle

n(ω, θ, t) =

∞∑
n=−∞

Nn(ω, t)einθ

Nn =
1

2π

∫ 2π

0
n(ω, θ, t)e−inωdθ (47)

Now D=N3
0 .

In DE3 model,N0 satisfies the closed equation

∂N0

∂t
=

α3

2ω3

∂2

∂ω2
ω24N3

0 (48)

coinciding with DE1 equation for the radially-symmetric
spectrum. Other coefficientsNn satisfy the linear equations

∂Nn

∂t
=

α4

ω3

(
1

2

∂2

∂ω2
−

n2

ω2

)
ω24N2

0Nn . (49)

For large values ofn one can assume

1

2

∂2

∂ω2
�

n2

ω2
. (50)

Now Nn behaves as follow

Nn ' e−α3n
2ω19

∫ t
0 N2

0dt .

Assuming that in the stationary regimeN0'α1p
1/3/ω8, one

finds that the high angular harmonics vigorously decay in the
high-frequency domain

Nn(t) ' e−α3N
2
0n2ω3t .

This consideration corroborates with the experimental fact of
angular broadening of spectra in the high frequency region
ω�ωp.

The “conservative” (free of sources) Hasselmann kinetic
equation has a two-parameter family of self-similar solutions
(Zakharov, 2002). All the diffusive models have these so-
lutions automatically. Since the only nonlinear equation in
DE3 model matches the isotropic equation (48), this model
is a convenient model for analytical studies of self-similar
solutions. This a potentially important point and deserves
future research.

In the presence of source terms, the variables inDE3
model do not separate any more. However, even in this case
the use of the spectral code in angle looks very promising.
We hope that on this way we would be able to speed up the
computation times in order of magnitude in comparison with
theDE1 model.

8 Conclusion

The diffusion approximationDE3 provides a good repro-
duction of integral properties ofSnl : the total energy, the
mean frequency, and the energy flux to high wave-numbers
as functions of time. It also reproducesKZ spectra of en-
ergy densityω−4 and, after a proper optimization, the values
of Kolmogorov constants.

This paper does not address the comparison of diffusive
models with theDIA models. However, based on our exper-
iments, we expect that their numerical performance should
be comparable in efficiency. As far as both groups of mod-
els are purely phenomenological, one could examine care-
fully: which model better represents the spectral evolution
described by the exactSnl equation. However, this is be-
yond the scope of this article and requires special investiga-
tion which will be reported elsewhere.

The separation of variables inDE3 makes this model
much more suitable for analytical study thanDE1. At the
moment we use for the solution ofDE3 model the same nu-
merical algorithm as for theDE1 model. Even in a frame-
work of this approach, theDE3 model is 103 times faster
than the exactSnl model, which can be very useful in inves-
tigations. Moreover, we believe that the use of spectral code
in angle will make possible to speed up the code at least an
order of magnitude.

The DE3 model fails to reproduce the “peakness” prop-
erty of Snl model; as a resultDE3 exhibits lower values
of energy density at the spectral peak and a wider angular
spread of energy in the vicinity of the spectral peak. How-
ever, DE3 reproduces very well the angular spreading in
the spectral region with frequencies greater than the spectral
peak.

We are working on development ofDE models to im-
prove overall agreement with the full integral representation
for spectral evolution.

Appendix

Operator A is expressed through Green function
G(ω, ω′, φ) for the operatorL. The Green function
satisfies the equation

LG(ω, ω′, φ) = δ(ω − ω′) δ(φ)

G(0, ω′, φ) = 0, G(∞, ω′, φ) = const.

One can find

G(ω, ω′, φ) = −
1

2π

∞∑
−∞

√
ωω′

1n

einφ
×

×

[(
ω′

ω

)1n

Q

(
1 −

ω′

ω

)
+

( ω

ω′

)1n

Q

(
ω′

ω
− 1

)]
.
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Fig. 1. Total energyE as the function of timet (hours). Solid line
– Snl model, dotted line –DE1 model, dashed line –DE2 model,
dash-dotted line –DE3 model.

Here

1n =

√
1

4
+ 2n2

and

Q(ξ) =

{
1 ξ > 0
0 ξ < 0

OperatorA has the form

A =
16π

g4

∫
G(ω, ω′, φ − φ′)

×
∣∣T (ω′, ω1, ω3, ω3, φ

′
− φ1, φ

′
− φ2, φ

′
− φ3)

∣∣2
× [n(ω1, φ1)n(ω2, φ2)n(ω3, φ3)

+n(ω′, φ′)n(ω2, φ2)n(ω3, φ3)

−n(ω′, φ′)n(ω1, φ1)n(ω2, φ2)

−n(ω′, φ′)n(ω1, φ1)n(ω3, φ3)
]
δ(ω′

+ ω1 − ω2 − ω4)

δ(ω
′2 cosφ′

+ ω2
1 cosφ1 − ω2

2 cosφ2 − ω2
3 cosφ3)

×δ(ω
′2 sinφ′

+ ω2
1 sinφ1 − ω2

2 sinφ2 − ω2
3 sinφ3)

×ω
′3ω3

1ω
3
2ω

3
3dω′dω1dω2dω3dφ′dφ1dφ2dφ3

EquationA[n]=0 has “formal” thermodynamic solutions

n =
T

ω + p ω2 cosφ + q ω2 sinφ + µ

HereT , p, q, andµ are constants.
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Fig. 2. Average frequency〈ω〉 as the function of timet (hours).
Solid line –Snl model, dotted line –DE1 model, dashed line –
DE2 model, dash-dotted line –DE3 model.

Fig. 3. Energy density as a function of frequency and angle forSnl

model.

Fig. 4. Energy density as a function of frequency and angle forSnl

model.
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Fig. 5. Energy density as a function of frequency and angle forSnl

model.

Fig. 6. Energy density as a function of frequency and angle forSnl

model.

Fig. 7. Energy density as a function of frequency and angle forSnl

model.

Fig. 8. Energy density as a function of frequency and angle forSnl

model.

Fig. 9. Energy density as a function of frequency and angle for
DE1 model.

Fig. 10. Energy density as a function of frequency and angle for
DE1 model.
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Fig. 11. Energy density as a function of frequency and angle for
DE1 model.

Fig. 12. Energy density line levels as a function of frequency and
angle forDE1 model.

Fig. 13. Energy density line levels as a function of frequency and
angle forDE1 model.

Fig. 14. Energy density line levels as a function of frequency and
angle forDE1 model.

Fig. 15. Energy density as a function of frequency and angle for
DE2 model.

Fig. 16. Energy density as a function of frequency and angle for
DE2 model.
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Fig. 17. Energy density as a function of frequency and angle for
DE2 model.

Fig. 18. Energy density line levels as a function of frequency and
angle forDE2 model.

Fig. 19. Energy density line levels as a function of frequency and
angle forDE2 model.

Fig. 20. Energy density line levels as a function of frequency and
angle forDE2 model.

Fig. 21. Energy density as a function of frequency and angle for
DE3 model.

Fig. 22. Energy density as a function of frequency and angle for
DE3 model.
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Fig. 23. Energy density as a function of frequency and angle for
DE3 model.

Fig. 24. Energy density line levels as a function of frequency and
angle forDE3 model.

Fig. 25. Energy density line levels as a function of frequency and
angle forDE3 model.

Fig. 26. Energy density line levels as a function of frequency and
angle forDE3 model.

Fig. 27. Energy density cuts atω=1.0. Solid line –Snl model,
dotted line –DE1 model, dashed line –DE2 model, dash-dotted
line –DE3 model.

Fig. 28. Energy density cuts atω=1.9. Solid line –Snl model,
dotted line –DE1 model, dashed line –DE2 model, dash-dotted
line –DE3 model.
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Fig. 29. Directional spectrum of the energy as a function ofω.
ModelSnl – solid line, modelDE3 – dotted line.

Fig. 30. Directional spectrum of the energy as a function ofω.
ModelSnl - solid line, modelDE3 – dotted line.

Fig. 31. Directional spectrum of the energy as a function ofω.
ModelSnl – solid line, modelDE3 – dotted line.

Fig. 32. Decimal logarithm of the directional spectrum of the en-
ergy as a function of the decimal logarithm ofω for Snl model (solid
line) andDE3 model (dash-dotted line). Dashed line – function
proportional toω−4, dotted line – function proportional toω−5.

Fig. 33. Decimal logarithm of the directional spectrum of the en-
ergy as a function of the decimal logarithm ofω for Snl model (solid
line) andDE3 model (dash-dotted line). Dashed line – function
proportional toω−4, dotted line – function proportional toω−5.

Fig. 34. Decimal logarithm of the directional spectrum of the en-
ergy as a function of the decimal logarithm ofω for Snl model (solid
line) andDE3 model (dash-dotted line). Dashed line – function
proportional toω−4, dotted line – function proportional toω−5.
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Fig. 35. Linear growth rate as a function of frequency and angle.

Fig. 36. Linear growth rate line levels as a function of frequency
and angle.

Fig. 37.Total energyE as the function of timet (hours). Solid line
– Snl model, dotted line –DE3 model.

Fig. 38. Average frequency〈ω〉 as the function of timet (hours).
Solid line –Snl model, dotted line –DE3 model.

Fig. 39. Energy flux as the function of timet (hours). Solid line –
Snl model, dotted line –DE3 model.

Fig. 40. Decimal logarithm of cross-section and averaged energy
density as a function of decimal logarithm of frequency forDE3.
Solid line – angle averaged density, dash-dotted line – cross-section
at zero angle, dashed line – function proportional toω−4, dotted
line – function proportional toω−5.
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Fig. 41. Dimensionless function ω4

2πP 1/3g4/3

2π∫
0

ε(ω, θ)dθ vs.

log10ω.

Fig. 42. Dimensionless functionP 2/3ω5

πMg7/3

2π∫
0

ε(ω, θ) cosθdθ vs.

log10ω.
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